2204.10850v1 [cs.CV] 22 Apr 2022

arXiv

Control-NeRF': Editable Feature Volumes for Scene Rendering and Manipulation

Verica Lazova'?

verica.lazova@uni-tuebingen.de

Sergey Tulyakov?

stulyakov@snap.com

YUniversity of Tiibingen,

a) Original scenes

Vladimir Guzov'?

vladimir.guzov@mnf.uni-tuebingen.de

2Max Planck Institute for Informatics, Saarland Informatics Campus,

T-rex inserted inside the garden scene

b) Inserting objects from one scene into another

Kyle Olszewski®

kolszewski@snap.com

Gerard Pons-Moll'?

gerard.pons-moll@uni-tuebingen.de

3Snap Inc.

Second T-rex added to the scene

¢) Copying and moving objects within the scene

Figure 1. Our model allows novel view synthesis and controlled scene editing and manipulation: editing parts of the object applying rigid
and non-rigid transformations(a); adding and removing objects in the scene (b); moving objects from one scene into another (c).

Abstract

We present a novel method for performing flexible, 3D-
aware image content manipulation while enabling high-
quality novel view synthesis. While NeRF-based ap-
proaches [23] are effective for novel view synthesis, such
models memorize the radiance for every point in a scene
within a neural network. Since these models are scene-
specific and lack a 3D scene representation, classical edit-
ing such as shape manipulation, or combining scenes is
not possible. Hence, editing and combining NeRF-based
scenes has not been demonstrated. With the aim of obtain-
ing interpretable and controllable scene representations,
our model couples learnt scene-specific feature volumes
with a scene agnostic neural rendering network. With this
hybrid representation, we decouple neural rendering from
scene-specific geometry and appearance. We can general-
ize to novel scenes by optimizing only the scene-specific 3D
feature representation, while keeping the parameters of the
rendering network fixed. The rendering function learnt dur-

ing the initial training stage can thus be easily applied to
new scenes, making our approach more flexible. More im-
portantly, since the feature volumes are independent of the
rendering model, we can manipulate and combine scenes
by editing their corresponding feature volumes. The edited
volume can then be plugged into the rendering model to
synthesize high-quality novel views. We demonstrate scene
manipulation including mixing scenes, deforming objects
and inserting objects into scenes, while producing photo-
realistic results.

1. Introduction

Scene manipulation and rendering are long-standing
problems in graphics, with the goal of creating the desired
visual content and providing immersive abilities to explore
it. Traditionally, the process consists of acquiring textured
meshes of objects and scenes, followed by combining them
using specialized software and hardware to reach the de-
sired composition, and finally, rendering the scene using

graphical pipelines. Acquiring, composing and rendering
are non-trivial problems that require time and experience,
and, hence, are not readily available for amateur users.

Impressive progress in Novel View Synthesis (NVS)
sparkled by the recently introduced Neural Radiance Fields
(NeRF) [23], represents an attractive vehicle for scene ma-
nipulation and rendering. However, NeRF and most follow-
up works suffer from two main shortcomings, limiting their
use for creative applications. First, they require per-scene
training, and second, the scene is represented by a neu-
ral network, which makes editing and manipulation diffi-
cult. Recent work has shown how to generalize NeRF to
novel scenes [51], but those works have not demonstrated
editing and control. Other recent work have shown edit-
ing capabilities by learning per object NeRF models or de-
composing a single scene into foreground objects and back-
ground [17,37,55]. However, these models are either ob-
ject or scene specific, or work on synthetic scenes without
realistic background [16], limiting its applicability. What
is missing is a neural representation and model which al-
lows to represent multiple real scenes, while allowing intu-
itive control. This would retain the realism and simplicity of
neural rendering models, while keeping the versatility and
intuitive control of traditional computer graphics represen-
tations (meshes, volumes and textures).

In this work, we present Control-NeRF, a novel approach
which can represent multiple scenes, and allows intuitive
control and editing. Our idea is to decouple the rendering
network from the neural scene representation. We learn a
latent representation of the scene, encoded as a spatially dis-
entangled feature volume (i.e., in which the point features
describe the content and radiance at that point in the scene),
coupled with a neural rendering function that computes the
radiance and density conditioned on the point feature. This
decoupled model results in several advantages. First, the
model can be trained on multiple scenes at once, produc-
ing different scene representations for each of them, while
learning a general rendering network. Second, once the
model is learned, new scene representations can be learned
while holding the rendering network fixed (desirable if for
example we want to stream scenes without having to re-
train or transmit the rendering network). Third, as we show
in the experiments, the learned representations are aligned
with the real 3D scenes, which allows for intuitive manip-
ulation such as displacing, rotating and displacing objects,
integrating objects from other scenes, or simply combining
scenes, see Fig. 1. Most importantly, because each scene
has its own representation and the rendering network is
shared across scenes, editing and composition can be done
post-hoc without re-training. We demonstrate that learn-
ing Control-NeRF efficiently on real scenes requires a care-
ful coarse-to-fine strategy — in which the optimized feature
volume dimensions are progressively increased — and a to-

tal variation regularizer on the feature volume representa-
tion. In our evaluations, we demonstrate that our approach
allows for NVS using a single model for multiple real train-
ing scenes while being comparable to scene specific models.
We also demonstrate how to efficiently generalize to novel
scenes by optimizing the scene representation while keep-
ing the rendering network fixed. Finally, we demonstrate
various creative manipulation tasks such as compositing of
different real scenes, displacing and rotating objects, and in-
serting objects. In summary, our primary contributions are:

* A novel NVS model which can learn multiple real
scene representations at once, while sharing a render-
ing network.

* We demonstrate that the resulting scene representa-
tions are aligned with the real 3D scenes allowing for
creative 3D-aware manipulation and editing without
having to retrain the model.

» Extensive evaluations demonstrating our approach sig-
nificantly outperforms competing approaches in terms
of the types of manipulations achievable while en-
abling high-quality image synthesis.

* We will release our code and models for research pur-
poses.

2. Related Work

Novel View Synthesis. Novel-view-synthesis (NVS) is
a widely studied problem in the area of image-based render-
ing. Most NVS methods are focused on warping or blend-
ing the input images and inpainting the occluded regions.
Recent NVS efforts [1,9, 31, 32] have achieved high qual-
ity results relying on geometry proxies, such as rough re-
constructions, depth maps or point-clouds to warp the in-
put images to the target view. Many works use the ability
of generative networks to to hallucinate occluded regions
from one or a few images [21,39,45], which can be comple-
mented with the use of appearance flow [26,42,62]. How-
ever, in case of large viewpoint transformations, best results
are attained only for simple/synthetic scenes, or by using a
large number of input images. Other techniques, e.g. mul-
tiplane images [54,61], have proven suitable for large-scale
scenes like those captured in real photographs. Most of
these frameworks, however, focus only on NVS and typ-
ically provide little or no ability to edit the scene content
(e.g., adding or deforming objects).

Implicit Surface and Appearance Representations.
The use of implicit surfaces [4, 5, 20, 27] for geometry
and appearance reconstruction has proven popular in recent
works, with their ability to capture detailed objects with
varying topology at arbitrary resolutions. Methods such as
PIFu [34] use these to capture the surface and texture of
dynamic humans from monocular images, an approach that
was refined and improved in [11, 15, 35] to allow for higher
fidelity and realtime performance capture. Methods like

these can be used for NVS simply by rendering the obtained
reconstructions. However, while they achieve impressive
results for individual objects, they struggle to capture the
full geometry and appearance of complex real scenes.

Volumetric Representations. Explicit voxel grids [13]
have recently been employed for various tasks related to im-
plicit surface and appearance representation, including gen-
erative modeling of 3D objects [48, 63], shape and appear-
ance reconstruction from images [12, 14,25, 43,49]. Other
recent works, such as [38] have explored the use of latent
representations with a volumetric structure to implicitly en-
code a scene’s appearance and structure for neural render-
ing. They use multiple images of static objects to learn a
feature volume that can be resampled to a given camera’s
viewpoint. Also, [18] use multiple calibrated images of
static and dynamic scenes to learn a latent volumetric rep-
resentation that can be used for rendering of novel views,
including time varying effects (e.g. human motion). How-
ever, these works do not allow for interactive editing or ma-
nipulation of the scene, and are typically scene specific, re-
quiring separate networks for each captured scene. Some
methods, such as [25] train a network which infers a latent
volumetric representation of previously unseen images that
can be spatially transformed to allow for NVS and editing.
However, the image quality of the manipulated objects is
relatively low, and it only works on simple scenes.

Hybrid Latent and Geometric Representations. Other
recent approaches combine explicit representations of a
scene’s geometry with a latent representation to exploit neu-
ral rendering techniques. Some methods learn neural tex-
tures [46] used in conjunction with UV-maps to allow for
realistic image synthesis and manipulation. The learnt tex-
tures, however, are specific to the corresponding objects and
scenes used during training, and thus cannot generalize to
new scenes without retraining. In NPBG [1], given several
images of a scene with a corresponding 3D point cloud, neu-
ral descriptors are fitted to points, which are then used with
the input data to learn to infer novel views of the scene.
This work requires a point cloud of the scene, obtained us-
ing multi-view stereo or depth sensor data as part of the
training process. Therefore the overall quality of the final
results depends heavily on the quality of the reconstruction.

Neural Radiance Fields. Neural Radiance Fields
(NeRF) [23] builds on prior work on implicit surface rep-
resentations by introducing a sophisticated MLP architec-
ture trained to produce an estimate of the density and out-
going radiance throughout the scene. Volume rendering
techniques are used to enforce consistency with the training
images, which enables the inference of high-quality novel
views of the scene. Subsequent efforts have addressed var-
ious limitations of this work and extended it to new appli-
cations, e.g. accelerating its training and rendering perfor-
mance and quality [16,24,30,44,51]; extending it to large-

scale scenes [19,59]; allowing for the capture and synthesis
of dynamic scenes with non-rigid regions, including human
heads and bodies [28, 29, 52]; relighting the captured con-
tent [2, 3,40]; camera and body pose estimation [41, 57];
and NVS with unknown camera parameters [53]. Some
works [6,47, 58] use projected features from images into
a space that may be queried in a manner similar to [15, 34].
With a NeRF-like radiance function they demonstrate the
ability to perform NVS using a single or few input images.
However the overall quality and complexity of the synthe-
sized images is limited, and they do not enable general ma-
nipulations of the scene, as in our method. Recently there
have been few works that combine voxel grids and neural
radiance fields. [16] use sparse voxel fields to learn local
radiance fields for improved rendering performance. For
the given scene they build the voxels by pruning the voxel
grid at training time. They can also do local shape editing
and build scenes by compositing separate objects together.
While this method shows impressive results on individual
objects, they struggle to deal with real scenes with complex
background and front facing scenes, where the scene is not
observed from all sides. Another similar work, [56] has in-
troduced a method that learns an object-compositional neu-
ral radiance field. They learn separately a scene branch to
encode the scene appearance and individual object branches
for all the object in the scene. This method allows for
object-level editing, such as moving and transforming the
objects in the scene. However unlike our method it is scene-
specific and does not support moving objects across multi-
ple scenes. For a more comprehensive survey of work in
this area, please refer to [7].

3. Control-NeRF

We present our novel-view synthesis method, Control-
NeREF, (Figure 2) that is based on feature volumes and Neu-
ral Radiance Fields [23] and allows for scene editing, mix-
ing and manipulation. We decouple geometry/appearance
from rendering by learning dense feature volume as repre-
sentation for every scene and a single rendering model that
generalizes across scenes. The rendering model takes a fea-
ture vector sampled from the volume and predicts density
and color value. As shown in [23], these predictions are
used as input to a volume rendering function that accumu-
lates the point along a ray to generate a pixel color.

This section of the paper is organized as follows. In
Sec. 3.1, we briefly review the general framework used
for performing novel view synthesis using neural radiance
fields. Sec. 3.2 describes how we make use of learnt fea-
ture volumes to condition the radiance field output on a
given scene. In Sec. 3.3, we describe the losses and the
training procedure for optimizing the network parameters
and per-scene feature volumes. We also show how to learn
feature volumes for novel scenes not seen at training time.

Feature Volumes and
Multiresolution Training

Volumetric scene
representations

Vs(p)

Scene Editing

Training

Gradient flow

Gradient flow
—
Rendering L
Fo

Novel Scene Optimization

Gradient flow

s

— —
Rendering ’
i

Figure 2. Our method learns a volumetric representations for multiple scenes simultaneously. Left in the figure we show visualizations of
the learned feature volumes. We query the volume along the ray and predict color and density based on the obtained features. The pixel
color is derived using volume rendering, similar to [23]. At training time the volume and the rendering network are trained jointly. For
novel scenes, the rendering network is fixed and only the scene volume is optimized. As shown on the right, these volumes can be edited

and mixed and for the purpose of scene editing.

(Sec. 3.3.4). Sec. 3.4 describes how we can use the learnt
feature volumes for arbitrary creative scene manipulations
and render the result.

3.1. Background

Most works based on Neural Radiance Fields [23] pre-
dict radiance and color for a pair of point and viewing angle
direction of a single scene:

Fo : (v(p),7(d)) = (c,0))]

where ¢ € R? is an RGB value indicating the radiance
from point p € R? in direction d € R3, and ¢ € R is
the density value p, indicating how much the radiance con-
tributes to view rays intersecting the scene at that point. Op-
tionally, one can use v which is a positional encoding [50]
used to allow this network to better capture high-frequency
details. Images are rendered one pixel at a time, using vol-
umetric sampling techniques, querying the MLP at points
along the camera ray r(t) = o + td (where o indicates the
camera origin and ¢ indicates the distance from the origin
along the ray) corresponding to that pixel. By integrating
the radiance values at a point using its density, the appropri-
ate color values can be computed.

The problem with NeRF based approaches is that the
scene is memorized within the neural network, which makes
compositing of scenes and editing hard.

3.2. Formulation

To allow realistic editing, our method decouples the
scene representation from the neural rendering network. In-
stead of memorizing a mapping from scene point and view-
ing directions to radiance with an MLP as in Eq. 1, we learn

a scene-specific volume of deep features. Then a rendering
network maps from deep features extracted at continuous
locations of the volume, to radiance and color.

Scene Representation Given a set of input RGB images
T = {I'}Y: from M training scenes s € S, M = |S],
we seek to learn a latent volumetric representation Vs €
RWHDFE for each scene s, with a spatial resolution of
W x H x D and a feature vector of length F' in each cell,
which can be both rendered from novel views and edited
to allow for novel manipulations of the scene content while
still allowing for high-quality view synthesis. We use a res-
olution of W = H = D = 128 and a feature vector of
length F' = 64 in our experiments.

Rendering Network The rendering network is a learned
mapping from a deep feature v, € R%* to radiance and
color. The deep feature describes the local shape and ap-
pearance of the corresponding position p = (x,y, z) in
scene s extracted from a scene-specific volume of deep fea-
tures. Mathematically,

Fo : (5(Vs;p)),7(d)) = (¢, 0))

where the feature vector v is obtained by sampling of the
feature volume v = S(V;, p), where S indicates the trilin-
ear resampling operation. As in NeRF the density Fyg is in-
tegrated along rays r to produce pixel colors — this operation
is denoted by C(r, Vs, ©). In contrast to equation 1, the for-
mulation in equation 2 allows us to optimize the volume V;
for each scene, while simultaneously learning the parame-
ters of the density network Fg : (vs,v(d)) — (c,0). After
this initial training stage, the parameters © of this render-

ing module are fixed. For every novel scene, we only opti-
mize its feature volume V. This will allow us to combine
and edit scenes by manipulating their respective feature vol-
umes Vs, and render the result using the general rendering
module C.

Note: As in NeREF, in practice, 2 networks are trained: a
coarse network in which samples are taken from evenly-
spaced intervals along the view ray, and a fine network
which uses the density values from the coarse network to
select sample points more likely to contribute to the corre-
sponding ground-truth pixel color value C(r). In the fol-
lowing, we denote the density integrals of the coarse and
fine networks as C'f(r), C.(r) respectively. !

3.3. Training Strategy and Generalization

3.3.1 Training Losses

Reconstruction Loss. Our primary loss is a straightfor-
ward reconstruction loss on the rendered pixel values. As
in [23], at each iteration we randomly sample and integrate
a subset of the rays R ; from the images for the current scene
s, and compute the mean-squared error between them and
the corresponding pixels in the ground-truth images:

£T(RsaIsv ‘/57 6) =

]ErNRS |:‘

Cu(r, Vs, 0) — C(r) z + Héf(r, V,,0) - C(r)

3)

Using this loss for each training scene (see Sec. 3.3.3),

we jointly optimize the network parameters © and the fea-
ture volumes V for all training scenes.

’ 2

2

Total Variation Loss. One very useful property that we
want the volumes to exhibit is that neighbouring feature
vectors should have similar values. NeRF [23], has this
property by default, since it relies on R3 (3D locations as
input). In order to encourage similar behaviour for our fea-
ture volumes we add regularization. In our experiments,
we found that a more consistent and coherent feature vol-
ume was learned if we introduce a total variation regulariza-
tion [33] loss to the learned feature volume. To reduce the
memory usage and computation introduced by this loss, we
apply it on the 64-dimensional feature vectors in a randomly
sampled contiguous subregion R C V; that is 1/4 of the
current latent feature volume dimensions (see Sec. 3.3.2)
for the current scene s during each training iteration.

»Ctv(vs) =]ERNVS [

T(R)I, “)

IFor simplicity, from here on we use © to refer to the total learnable
parameters of the 2 rendering networks.

(2 Jy 2Jy 9. k) 2Jy
|R+1]k: Rzgk:| +|R’L]+1k Rzgk:|

+Rijk+1 — Rijrl®

T(R) =)

i4.k

®)

Thus, we minimize the following total loss function by

optimizing the parameters © and feature volumes V corre-

sponding to the calibrated images Z and the corresponding
view rays R for each training scene:

argmin L(R,Z,V,0) =
v.© (6)
ESNS [ET(R57IS7 Vsa 9) +)‘Etv(vs)}

where \ = 1074

3.3.2 Multi-Resolution Volume Training

As the final volume contains a 64-dimensional feature vec-
tor per cell in the 1282 volume, training the network at this
full resolution is quite intensive. As such, we employ a hi-
erarchical training process to compute these volumes in a
coarse-to-fine manner. This allows for improved training
time while retaining the ability to perform high-quality im-
age synthesis and manipulation. We start training with a
feature volume resolution of 162. The model is trained until
convergence, optimizing both the current feature volume Vi
and rendering module parameters ©. We then upsample the
learnt feature volume to increase its dimensions by a factor
of 2, and proceed to train until convergence at the new reso-
lution. We use 4 stages in our hierarchical training process,
doubling the feature volume dimensions at each stage until
we reach the target resolution of 1283.

3.3.3 Multi-Scene Training

To allow the rendering module to be employed for multiple
scenes, it needs to be trained in a multiscene scenario. Dur-
ing training we randomly select one of the scenes s € S and
load its feature volume Vj, then train using rays sampled
from this volume for several consecutive iterations, before
saving the feature volume and repeating the process with a
new randomly selected scene. While sampling a new scene
at each training iteration would better approximate the ef-
fect of incorporating samples from multiple scenes at each
step in the optimization, this would require additional over-
head as feature volumes are loaded into GPU memory, then
copied back to be stored for their next use. We empirically
found that 50 consecutive iterations between scene transi-
tions produced a sufficient balance between training perfor-
mance and multi-scene representation capacity.

3.3.4 Generalization to Novel Scenes

After the initial training stage in which the parameters © of
the radiance network Fig are trained in conjunction with the
optimization of the M per-scene feature volumes Vi . a,
we allow for efficient generalization to novel scenes by fix-
ing the parameters © and solely optimizing the parameters
of the feature volumes corresponding to these novel scenes.
Given a new set of scenes G not used during the initial
training stage, and a set of images corresponding to each
scene T = {I; ?;91 for each scene g € G, we perform
the optimization process as described above, while only
optimizing the corresponding feature volume Vg/ for each
scene. We employ the hierarchical training strategy defined
in Sec. 3.3.2 , and the losses defined in Eqns. 3 and 4, but
for these scenes only optimize the feature volumes corre-
sponding to each scene g to minimize the total loss:

arg min E(R/ , T , V/, 0) =
v (7)
Egng |£1(Ry, T, Vy,) + ALu(V,)

Given sufficient training scenes, the learnt radiance func-
tion can be applied to optimize for novel scenes more effi-
ciently than when training to infer the volumes and network
parameters together as in the initial training process. In our
experiments we show that a small number of training scenes
(we used only 6) are sufficient to train a generalizable radi-
ance function.

3.4. Scene Editing and Manipulation

Our volumetric representation of scene-specific content
allows for scene manipulations by manipulating it’s feature
volume. By applying the trilinear resampling operation S
defined in Sec. 3.2 to contiguous subregions of the feature
volume (or the entire volume, if global scene deformations
are desired), nonrigid spatial manipulations can be applied.
If V, is the original feature volume and P € R3WHD jg a
matrix of 3D coordinates indicating where to sample from
for each point in the modified volume (which may be the
coordinates of the corresponding point in the original vol-
ume, for stationary regions), V,,, = S(V,, P) will produce
a volume with the desired spatial deformation. Even more
s0, since our radiance function can generalize across scenes,
features from multiple scenes can be mixed together to sim-
ulate inserting objects from one scene into another.

4. Experiments and Results
4.1. Dataset and Implementation Details

For our initial training stage, we use 6 scenes from the
dataset provided by LLFF [22], consisting of a total of 230
images (an average of approximately 38 images per scene)

[[[PSNR 1 [SSIM 1 [LPIPS | |

NSVF [16] || 20.414 | 0.536 | 0.449
NPBG [1] 19.430 | 0.727 | 0.242
Ours 25.635 | 0.853 | 0.181

Table 1. Quantitative comparison with NPBG [1] and
NSVF [16]. Metrics are computed across test images for scenes
from from LLFF [22] dataset. “Ours” is our method trained on 6
scenes simultaneously as in our original setup. Please consult the
appendix for more detailed comparisons.

with the cameras’ extrinsic and intrinsic parameters esti-
mated by COLMAP [36]. After this stage, we fix the render-
ing module parameters and optimize the feature volumes for
new scenes individually. We use 2 scenes from this dataset,
withheld during the initial training stage, to demonstrate our
novel scene generalization capabilities (fern and trex, shown
in Figure 1), consisting of a total of 75 images. Please con-
sult the appendix for more details.

4.2. Scene Content Manipulation

Using the scene resampling and editing techniques de-
scribed in Sec. 3.4, we demonstrate various creative manip-
ulations enabled by our method. In Figure 5 we show scene
manipulation by moving object from one scene into another.
The scenes shown in these examples are real scenes from
the LLFF [22] dataset.

In Figure 4, we show single scene editing by removing
objects or making copies of existing objects.

4.3. Evaluations and Comparisons.

Editing Comparisons. We provide qualitative and quan-
titative comparisons of our approach to scene manipula-
tion to two related methods, Neural Point-Based Graphics
(NPBG) [1] and Neural Sparse Voxel Fields (NSVF) [16].
NPBG uses 3D point clouds of a scene with corresponding
RGB images and camera poses to allow for both realistic
neural rendering of novel views of the scene and copying
content from one scene into another. NSVF uses sparse vox-
els scene representation that is pruned at training time. This
representation is useful for isolated objects, but struggles
with real scenes with complex background.

For our quantitative comparisons we evaluate the novel-
view-synthesis capabilities of our method in comparison
to NPBG and NSVF (Table 1). For the qualitative com-
parisons we evaluate the scene editing capabilities of our
method in comparison to NPBG (Figure 5). While in the-
ory NSVF could perform similar manipulations, the offi-
cial implementation doesn’t support multi-scene editing or
scene manipulation. Nevertheless in Figure 3 we compare
our method to NSVF in the task of novel view synthesis of
complex real scenes. We could not compare to the recent
method of [56], as there is currently no released implemen-

Figure 3. Comparison to NSVF [16] in Novel view synthesis. As discussed, NSVF struggles with real frontal scenes, in which the content

is not captured from 360°.

Original Scene

Removing objects

Multiplying objects

Figure 4. Replicating and removing object from scenes The first column shows the original scene. The rest of the columns show the
edited scene from two different views. The differences are marked with yellow rectangles in the first view.

tation. Using 43 images from the 8 aforementioned scenes
(The 6 initial training scenes and the 2 scenes optimized
with fixed renderer parameters) withheld during the train-
ing process, we compute the Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [60] between
the ground truth and the images synthesized using both
methods. Table 1 contains the results, which show that our
method outperforms [1] and [16] using each metric. In
Fig. 5 we show that, while both approaches can be used
to combine scenes, our approach outperforms [1] when it

comes to editing capabilities.

Additional Results and Details. Please consult the sup-
plementary video and document for animated results from
these experiments, as well as further results and details on
our approach and evaluations. We include additional NVS
and manipulation results for various datasets. In all these
scenarios, we only train the feature volumes of the new
scenes while keeping the rendering parameters fixed. We
also provide the results of experiments with non-rigid scene
manipulation and articulated animation; an ablation study

Original Ours

Ours (Zoomed-in)

NPBG (Zoomed-in) NPBG

Figure 5. Scene Editing Results. The first column shows the original scenes that are used in the edit. An object from the source scene
is replicated in the target scene. The following columns show novel view of our editing results and results obtained using NPBG [1]. We
kindly ask readers to zoom in on these images and consult the supplementary video for more results and animations.

evaluating the utility of our approaches key components;
a perceptual study asking users to evaluate our approach
compared to NPBG [1]; and comparisons with the origi-
nal NeRF [23], as well as a modified version of this work
adapted to handle multiple scenes.

5. Conclusion

With our method we have explored a promising method
for flexible scene manipulation attainable with neural radi-
ance fields. In disentangling between rendering and scene
representation, our approach extends the work of state-of-
the-art NVS methods to enable practical techniques for effi-
cient multi-scene training and high-fidelity image synthesis
and manipulation. We have shown a wide range of possi-
ble edits, such as replicating and removing objects, apply-
ing rigid and non-rigid transformations and moving objects
from one scene to another.

In future work, we intend to explore methods to enhance
our approach with more editing options: modifying the tex-
tures and appearance of scene content; producing more re-
alistic edits by adapting to different lighting conditions, e.g.
shadows; and exploring techniques for more efficient scene
optimization and rendering.

Acknowledgements: We thank Aymen Mir, Bharat Bhatnagar,
Garvita Tiwari, Ilya Petrov, Jan Eric Lenssen, Julian Chibane,
Keyang Zhou and Xiaohan Zhang for the in-depth discussions,
valuable insights and honest feedback.

This work is and supported by the German Federal Ministry
of Education and Research (BMBF): Tiibingen Al Center, FKZ:
01IS18039A; and partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - 409792180
(Emmy Noether Programme, project: Real Virtual Humans).

Gerard Pons-Moll is a member of the Machine Learning
Cluster of Excellence, EXC number 2064/1 — Project number
390727645.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]
(9]

(10]

[11]

[12]

[13]

(14]

Kara-Ali Aliev, Dmitry Ulyanov, and Victor Lempit-
sky. Neural point-based graphics. arXiv preprint
arXiv:1906.08240, 2(3):4, 2019.

Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Milden-
hall, Kalyan Sulkavalli, Milo§ HaSan, Yannick Hold-
Geoffroy, David Kriegman, and Ravi Ramamoorthi.
Neural reflectance fields for appearance acquisition.
https://arxiv.org/abs/2008.03824, 2020.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T.
Barron, Ce Liu, and Hendrik Lensch. NeRD: Neu-
ral reflectance decomposition from image collections.
https://arxiv.org/abs/2012.03918, 2020.

Rohan Chabra, Jan Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local SDF priors for detailed
3D reconstruction. In The European Conference on Com-
puter Vision (ECCV), 2020.

Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion, 2020.

Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis for sparse views of novel scenes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7911-7920, June 2021.

Frank Dellaert and Lin Yen-Chen. Neural volume rendering:
Nerf and beyond, 2021.

AXYZ DESIGN. AXYZ Design.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,
George Drettakis, and Gabriel Brostow. Deep blending for
free-viewpoint image-based rendering. ACM Transactions
on Graphics (TOG), 37(6):1-15, 2018.

A.Horé and D. Ziou. Image quality metrics: Psnr vs. ssim. In
2010 20th International Conference on Pattern Recognition,
pages 2366-2369, 2010.

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and
Tony Tung. ARCH: Animatable Reconstruction of Clothed
Humans. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3090-3099, Seattle, WA, USA, June 2020. IEEE.

Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In
Proceedings of the 24th Annual ACM Symposium on User In-
terface Software and Technology, UIST ’11, page 559-568,
New York, NY, USA, 2011. Association for Computing Ma-
chinery.

James T. Kajiya and Brian P. Von Herzen. Ray tracing vol-
ume densities. Computer Graphics (SIGGRAPH), 1984.
Markus Knoche, Istvan Sardndi, and Bastian Leibe. Repos-
ing humans by warping 3D features. In CVPR Workshop on
Towards Human-Centric Image/Video Synthesis, 2020.

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

Ruilong Li, Yuliang Xiu, Shunsuke Saito, Zeng Huang, Kyle
Olszewski, and Hao Li. Monocular real-time volumetric per-
formance capture. arXiv preprint arXiv:2007.13988, 2020.
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Advances
in Neural Information Processing Systems (NeurlPS), vol-
ume 33, 2020.

Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields, 2021.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 2019.

Ricardo Martin-Brualla, Noha Radwan, Mehdi Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. https://arxiv.org/abs/2008.02268,
2020.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D reconstruction in function space. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019.

Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues
Hoppe, Rohit Pandey, Noah Snavely, and Ricardo Martin-
Brualla. Neural rerendering in the wild. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6878-6887, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405-421. Springer, 2020.

Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Chakravarty R. Alla Chaitanya, Anton Kaplanyan, and
Markus Steinberger. Donerf: Towards real-time rendering of
neural radiance fields using depth oracle networks, 2021.
Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao
Li, and Linjie Luo. Transformable bottleneck networks. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

Eunbyung Park, Jimei Yang, Ersin Yumer, Duygu Ceylan,
and Alexander C Berg. Transformation-grounded image
generation network for novel 3d view synthesis. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Jeong Joon Park, Pete Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. DeepSDF: Learning contin-
uous signed distance functions for shape representation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 165-174, 2019.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron,
Sofien Bouaziz, Dan Goldman, Steven Seitz, and Ri-
cardo Martin-Brualla. Deformable neural radiance fields.
https://arxiv.org/abs/201 1.12948, 2020.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-NeRF: Neural radiance fields
for dynamic scenes. https://arxiv.org/abs/2011.13961, 2020.
Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. DeRF: De-
composed radiance fields. https://arxiv.org/abs/2011.12490,
2020.

Gernot Riegler and Vladlen Koltun. Free view synthesis. In
European Conference on Computer Vision, pages 623—-640.
Springer, 2020.

Gernot Riegler and Vladlen Koltun. Stable view synthesis.
arXiv preprint arXiv:2011.07233, 2020.

Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear
total variation based noise removal algorithms, 1992.
Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. PIFu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2019.

Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, June 2020.

Johannes Lutz Schonberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
NieBner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In Proc.
Computer Vision and Pattern Recognition (CVPR), IEEE,
2019.

Vincent Sitzmann, Michael Zollhofer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. arXiv preprint
arXiv:1906.01618, 2019.

Pratul Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T. Barron. NeRV:
Neural reflectance and visibility fields for relighting and
view synthesis. https://arxiv.org/abs/2012.03927, 2020.
Shih-Yang Su, Frank Yu, Michael Zollhoefer, and Helge
Rhodin. A-NeRF: Surface-free human 3d pose refine-
ment via neural rendering. https://arxiv.org/abs/2102.06199,
2021.

Shao-Hua Sun, Minyoung Huh, Yuan-Hong Liao, Ning
Zhang, and Joseph J. Lim. Multi-view to novel view: Syn-
thesizing novel views with self-learned confidence. In Pro-
ceedings of the European Conference on Computer Vision,
2018.

10

[43]

(44]

(45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

Yongbin Sun, Ziwei Liu, Yue Wang, and Sanjay E. Sarma.
Im2avatar: Colorful 3d reconstruction from a single image,
2018.

Matthew Tancik, Ben Mildenhall, Terrence Wang, Divi
Schmidt, Pratul Srinivasan, Jonathan T. Barron, and Ren Ng.
Learned initializations for optimizing coordinate-based neu-
ral representations. https://arxiv.org/abs/2012.02189, 2020.
Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox.
Single-view to multi-view: Reconstructing unseen views
with a convolutional network. CoRR abs/1511.06702, 1(2):2,
2015.

Justus Thies, Michael Zollhofer, and Matthias Niener. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Transactions on Graphics 2019 (TOG), 2019.
Alex Trevithick and Bo Yang. GRF: Learning a general
radiance field for 3D scene representation and rendering.
https://arxiv.org/abs/2010.04595, 2020.

Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.
Efros, and Jitendra Malik. Learning shape abstractions by
assembling volumetric primitives. In Computer Vision and
Pattern Regognition (CVPR), 2017.

Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Ji-
tendra Malik. Multi-view supervision for single-view re-
construction via differentiable ray consistency. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, t. ukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering, 2021.

Ziyan Wang, Timur Bagautdinov, Stephen Lombardi, Tomas
Simon, Jason Saragih, Jessica Hodgins, and Michael
Zollhofer. Learning compositional radiance fields of dy-
namic human heads. https://arxiv.org/abs/2012.09955, 2020.

Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. NeRF-: Neural ra-
diance fields without known camera parameters.

https://arxiv.org/abs/2102.07064, 2021.

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion, 2021.
Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In International Conference on Com-
puter Vision (ICCV), October 2021.

Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In Proceedings of the IEEE/CVF In-

(571

(58]

[59]

(60]

[61]

[62]

[63]

ternational Conference on Computer Vision, pages 13779—
13788, 2021.

Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Al-
berto Rodriguez, Phillip Isola, and Tsung-Yi Lin. iN-
eRF: Inverting neural radiance fields for pose estimation.
https://arxiv.org/abs/2012.05877, 2020.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
https://arxiv.org/abs/2012.02190, 2020.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. NERF++: Analyzing and improving neural radiance
fields. https://arxiv.org/abs/2010.07492, 2020.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric, 2018.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. ACM Transactions on
Graphics, 37(4):65:1-65:12, 2018.

Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-
lik, and Alexei A Efros. View synthesis by appearance flow.
In Proceedings of the European Conference on Computer Vi-
sion, 2016.

Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,
Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-
sual object networks: image generation with disentangled 3d
representations. In Proceedings of the Neural Information
Processing Systems Conference, pages 118-129, 2018.

11

A. Training and Architecture Details

As noted in Sec. 3.1, we use a positional encoding func-
tion [50] on each dimension of the direction vector d € R3, to
map this vector into a higher-dimensional space before passing it
as input to our radiance function Fe : (vs,7v(d)) — (c,0), where

__(sin (207rp) , COs (207rp) R
v(p) = (sin (2"~ '7p) , cos (2" 'mp)) ®)
We use L = 4 in our experiments.
¢
cw) = [Tootvetv., dyat, ©
tn
t
T(t) = exp <—/ a(vs)ds) (10)
tn

where v, = S(V;, p) is the 64-dimensional sampled feature
vector from the volume V; for scene s at point p € R3, and S
represents the trilinear sampling operation. The density values
sampled from the network can thus be used to determine the prob-
ability of a ray terminating at the sampled point along the ray.
In practice, following the example of [23], we use a discretized
approximation of this integral, using a 2-stage process in which
we optimize a coarse network C’C(r) that samples 64 points from
evenly spaced bins along the ray length, followed by sampling
these points plus another 64 points from our fine network C +(r)
using the coarse network opacity results to sample from more rel-
evant portions of the scene volume (see Sec. 5.2 of [23]. For our
experiments, the networks are trained using 1024 rays per batch
sampled from the LLFF [22] multi-view image datasets, scaled to
a resolution of 504 x 378.2 The network architecture we use is
overall based on that of [23], except that the input channels have
been modified to accept our feature vector in place of the param-
eters representing the point to be sampled in the training scene.
While they use a positionally encoded representation of each di-
mension in the the 3D position p sampled along the view ray (with
L = 10, for a total of 60 parameters passed as input to represent
this position in the scene as in Eq. 8), we pass the 64-dimensional
feature vector sampled from the volume as described above into
the network with no positiona encoding.

B. Ablation

We performed an ablation study to evaluate the efficacy of the
total variation loss and multi-resolution training techniques de-
scribed earlier. We use the trained model to optimize the fea-
ture volumes for the ferns and trex scenes with and without the
aforementioned techniques. We provide the per-scene results of
these experiments both with and without the Total Variation loss
and multi-resolution training described in Secs. 3.3.2 and 3.3.3,
using the Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) [60] metrics. As Table 2 shows, these results show that
overall our final approach outperforms these less sophisticated al-
ternatives per-scene in nearly all cases for each metric, and on av-
erage for all metrics.

2This differs slightly from the training parameters used in [23], as they
use 4096 rays per batch sampled from 1008 x 752 images and an addi-
tional 128 samples from the fine network for training. See Sec. C of this
document for comparisons to the results obtained when training both their
and our network using the parameters described above.

12

PSNRT

Fern T-Rex Avg.
Our method 25.752 | 26.510 26.131
w0 Multiscale 24789 | 25.617 25.203
w\o Total Variation (TV) | 25.039 | 25.504 25.271
w\o Multiscale, w\o TV | 22.193 | 19.296 20.745
SSIM 1
Fern T-Rex Avg.
Our method 0.820 | 0.907 0.864
w'\ 0 Multiscale 0.793 | 0.878 0.835
w0 Total Variation (TV) | 0.804 0.869 0.836
w\o Multiscale, w\o TV | 0.704 | 0.691 0.698
LPIPS|
Fern T-Rex Avg.
Our method 0236 | 0.153 0.195
w'\o Multiscale 0.279 0.209 0.244
w\o Total Variation (TV) | 0.230 | 0.221 0.226
w\o Multiscale, w\o TV | 0.324 | 0.366 0.345

Table 2. Per-scene quantitative ablation results.

Num. Scenes PSNR?T SSIM? LPIPS|
1 24.1 0.79 0.29
3 25.13 0.83 0.26
6 26.13 0.86 0.19

Table 3. Quantitative results on generalization w/ varying
number of training scenes.

Original Scenes

r::.

Resulting Composition (3 views)

Figure 6. Combining objects from various datasets. Note that
we use the rendering network trained on 6 scenes from LLFF [22]
and finetune a volume for each object separately.

C. Additional Evaluations
C.1. Generalization to Novel Content

To demonstrate the generalization capacity of our networks, we
provide additional results showing interactive scene composition,
editing and novel view synthesis on multiple datasets from dif-
ferent domains. For these results, we use the same network used
for our previous experiments, trained on the 6 LLFF scenes pre-
viously described. The feature volumes for each subject are then
optimized using the same approach as before, for the LLFF scenes
withheld during training.

We use images from the DeepVoxels [38] dataset, which con-

Original Scenes
&

Resulting Composition (3 views)

Figure 7. Combining people from AXYZ [8] dataset. Note that
we use the rendering network trained on 6 scenes from LLFF [22]
and finetune a volume for each subject separately.

Original Scenes

Resulting Composition (3 views)

Figure 8. Combining objects from various datasets. Tight ob-
ject fusion is achieved by choosing in each voxel the feature set
with maximum L2 norm among voxels of original scenes.

tains multiple calibrated images of static 3D objects such as furni-
ture. We use 479 images captured from the full 360° field around
an object, at a resolution of 512 x 512. We also use a multi-view
dataset set of similarly rendered images of textured 3D models
of scanned human subjects from AXYZ Design [8] (25 primarly
frontal images per subject, at a resolution of 512 x 512). The fea-
ture volume optimization takes approximately 6 hours per subject.

Fig. 6 portrays the combination of the feature volumes for a
vase and a stand with that of a human subject from the AXYZ
dataset. We also we combine feature volumes for 4 human sub-
jects (Fig. 7). Interestingly, despite the large difference in the ap-
pearance of the subjects in these datasets from the network training
images, including a complete lack of humans in the LLFF images,
and the relatively small number of scenes used for training the
rendering network, the results are quite reasonable. This suggests
that the initial network parameter training and feature volume op-
timization does indeed learn a disentangled representation that al-
lows for a flexible approach to rendering novel content beyond that
which is similar to what it has seen during training.

We also noticed that the color and density information carried
by each voxel correlates with the Lo norm of its feature vector.

13

PSNRT | SSIMT | LPIPS|
NeRF [23] 28.045 | 0.881 | 0.137
NeRF-multiscene || 25.262 | 0.815 | 0.194
Ours 25.635 | 0.853 | 0.181

Table 4. Quantitative comparison with NeRF [23]. Metrics are
averaged across test images for 8 scenes from from LLFF [22]
dataset. Our method is trained on multiple scenes simultaneously
while NeRF memorizes only one scene.

This allows us to fuse feature volumes by choosing feature vector
with maximum Lo norm among the voxels with the same coordi-
nates from original scenes. This way, we can achieve tight contact
between objects from different scenes without artifacts (Fig. 8).

Figure 9. Rigid and non-rigid transformations of objects ex-
tracted from a scene. The middle column shows the original ob-
ject/scene. Please zoom in and consult the supplementary video
for further demonstrations.

C.2. User Study

We also conducted a user study to evaluate the scene manipula-
tion capabilities of our method and Neural Point-Based Graphics
(NPBG) [1]. Given 6 scenes and 10 pairs of edited images per
scene (ours vs. NPBG), Amazon Mechanical Turk users were pre-
sented these pairs and asked to decide which image was preferable.
5 workers were asked per image pair, for a total of 300 questions
asked (18 unique users participated). In 62% of the cases, users
preferred our edited images.

C.3. Scene Content Deformation

Fig. 9 shows various rigid and non-rigid manipulations of ob-
jects extracted from these volumes and on entire scenes, obtained
using the aforementioned volume deformation and resampling
techniques. While we show examples such as stretching and scal-
ing specific scene content, the flexiblity of our editing framework
allows for arbitrary manipulations that can be specified as local or
global modifications to a scene’s feature volume.

C.4. Additional Video Results

In the supplementary video, we show continuous novel view
synthesis results, for both scenes used to train the rendering net-
work, and for novel scenes for which we simply optimize the
feature volumes. We also show results for manipulated scenes
in which content is combined from multiple training and novel
scenes, as well as videos showing various creative manipulations
such as the aforementioned local scaling and non-rigid deforma-
tion of the image content.

PSNR1

Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. Fern | T-Rex || Avg. || Total Avg.
NeRF [23] | 33.965 | 22.562 | 33.099 | 21.276 | 28.564 | 29.484 || 28.158 || 26.843 | 28.567 || 27.705 || 28.045
Ours 30.938 | 18.438 | 28.930 | 21.182 | 27.526 | 25.807 || 25.470 || 25.752 | 26.510 || 26.131 || 25.635
SSIM?
Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. || Fern | T-Rex || Avg. || Total Avg.
NeRF [23] | 0.963 | 0.814 | 0.932 | 0.744 | 0.893 | 0.912 || 0.876 || 0.856 | 0.930 || 0.893 0.881
Ours 0.943 | 0.770 | 0.861 | 0.764 | 0.883 | 0.875 || 0.849 || 0.820| 0.907 || 0.864 0.853
LPIPS|
Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. || Fern | T-Rex || Avg. || Total Avg.
NeRF [23] | 0.093 | 0.186 | 0.068 | 0.204 | 0.110 | 0.133 || 0.132 || 0.168 | 0.137 || 0.152 0.137
Ours 0.131 | 0.227 | 0.207 | 0.178 | 0.123 | 0.190 || 0.176 || 0.236 | 0.153 || 0.195 0.181

Table 5. Per-scene quantitative results compared with the results of the original NeRF implementation. We report the results with
networks trained per-scene until convergence using their approach, while ours, uses 1 network trained for all scenes.

C.5. Comparisons with NeRF

Multi-scene NeRF. In Table 4 we show a comparison to NeRF
[23] on NVS. As NeRF is a scene-specific method, while our
rendering network generalizes across scenes, we adapted it for a
multi-scene scenario by associating each scene with a one-hot en-
coding vector. NeRF is then conditioned on this code in order to
generate the specific scene. We have increased the capacity of the
network accordingly to accommodate multiple scenes. While the
original NeRF performs better than our method, we outperform
NeRF in the multiscene scenario.

Single-scene NeRF. Below we provide further details on the
comparisons with the original implementation of NeRF [23], us-
ing the training parameters described in Sec. A of this document
on the LLFF dataset. For these comparisons, we measure the dif-
ference between synthesized novel views and ground-truth images
withheld for each scene during training, as in their evaluations. In
our experiments, the total amount of computation time required to
optimize the radiance function parameters for NeRF for a single
scene until convergence, which required approximately 48 hours,
or roughly 2 days. > Thus, training for all of the 8 scenes in the
results depicted in Tab. 5, a total of approximately 16 days of com-
putation was required (though this was performed in parallel on
multiple systems) using an NVIDIA V100 GPU for each scene.
In contrast, training our single rendering network on the set of
6 training scenes took a total of roughly 36 hours. This network
can then be applied to novel scenes using our feature volume op-
timization process. For the novel scenes, an average of 5.5 hours

3These numbers are slightly different than those reported in [23], but
as noted above, we use a different training image resolution and number
of samples in the fine network C' r(r) in our experiments. As pre-trained
models for each of these scenes were not available for their implementa-
tion, we trained the models for each scene using the above parameters for
a more direct comparison.

(also performed in parallel on multiple systems) was required to
compute their feature volumes, meaning that for these 8 scenes in
total roughly 47 hours, or slightly less than 2 days of total com-
putation was required. We further note that, while NeRF essen-
tially memorizes a representation of the training scene that allows
for a limited range of novel view synthesis, our approach addi-
tionally allows for the intuitive manipulation and combinination
of data from multiple scenes, as demonstrated in our experimental
results. Thus, given that computational efficiency in training a sin-
gle network for multiple scenes networks is an advantage of our
approach, we conduct additional evaluations in which we examine
how well NeRF performs with similar computational resources.

We trained the NeRF network for each of the 8 scenes for 100K
iterations, or approximately 5.5 hours, which is comparable to the
time required to run the novel scene feature volume optimization
for a single scene using our approach. After this point, in our ex-
periments the performance improved slowly until converging after
approximately 2 days to the aforementioned results. The results
are depicted in Tab. 6, with the results for Neural Point-Based
Graphics (NPBG) [1] included for further comparison. As seen
in these tables, while NeRF does produce results that are slightly
more visually appealing when given unrestricted computational re-
sources, when the training time is restricted the results are compa-
rable, with ours outperforming each alternative on average in 2 out
of 3 metrics. We also note that these 2 metrics, SSIM and LPIPS,
are generally regarded to correspond better to realistic and more
higher quality images for the human visual system [10]. Addition-
ally, in Table 7, we show more detailed comparisons against Neu-
ral Point-Based Graphics (NPBG) [1] and Neural Sparse Voxel
Fields [16].

14

PSNRt

Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. Fern | T-Rex || Avg. || Total Avg.
NPBG [1] 26.058 | 17.854 | 19.172 | 17.535 | 22.106 | 20.651 || 20.563 || 18.285 | 20.407 || 19.346 || 20.259
NeRF [23] 100K | 32.492 | 21.952 | 31.957 | 21.172 | 27.478 | 27.922 || 27.162 || 26.370 | 27.209 || 26.790 || 27.069
Ours 30.938 | 18.438 | 28.930 | 21.182 | 27.526 | 25.807 || 25.470 || 25.752 | 26.510 || 26.131 || 25.635
SSIM?
Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. || Fern | T-Rex || Avg. || Total Avg.
NPBG [1] 0.890 | 0.668 | 0.804 | 0.572 | 0.769 | 0.794 || 0.750 || 0.706 | 0.774 || 0.740 0.747
NeRF [23] 100K | 0.953 | 0.776 | 0.908 | 0.718 | 0.859 | 0.870 || 0.847 || 0.830 | 0.903 || 0.867 0.852
Ours 0.943 | 0.770 | 0.861 0.764 | 0.883 | 0.875 || 0.849 || 0.820 | 0.907 || 0.864 0.853
LPIPS|
Per-Scene, Training Per-Scene, Novel
Room | Leaves | Fortress | Orchids | Flower | Horns || Avg. || Fern | T-Rex || Avg. || Total Avg.
NPBG [1] 0.163 | 0.272 | 0.200 | 0.301 | 0.204 | 0.222 || 0.227 || 0.267 | 0.231 || 0.249 0.232
NeRF [23] 100K | 0.126 | 0.235 | 0.107 | 0.250 | 0.155 | 0.199 || 0.179 || 0.212 | 0.178 || 0.195 0.183
Ours 0.131 | 0.227 | 0.207 | 0.178 | 0.123 | 0.190 || 0.176 || 0.236 | 0.153 || 0.195 0.181

Table 6. Full per-scene quantitative results. We report the per-scene and average results on the initial training scenes as well as on the
novel scenes used in our generalization process, as well as the average across both datasets.

PSNR 1
Fern Leaves Fortress Orchids Flower Trex Horns Average
NSVF 20.594 17.316 26.901 14.309 22.930 17.467 23.380 20.414
NPBG 18.285 17.854 19.172 17.535 22.106 20.407 20.651 19.430
Ours 25.752 18.438 28.930 21.182 27.526 26.510 25.807 24.878

Ours (single scene) 25.082 20.554 29.618 20.374 26.260 24.753 25.425 24.581

SSIM 1
Fern Leaves Fortress Orchids Flower Trex Horns Average
NSVF 0.575 0.402 0.721 0.250 0.629 0.490 0.682 0.536
NPBG 0.706 0.668 0.804 0.572 0.769 0.774 0.794 0.727
Ours 0.820 0.770 0.861 0.764 0.883 0.907 0.875 0.840
Ours (single scene) 0.792 0.738 0.854 0.704 0.840 0.868 0.834 0.804
LPIPS |
Fern Leaves Fortress Orchids Flower Trex Horns Average
NSVF 0.448 0.519 0.346 0.571 0.385 0.445 0.431 0.449
NPBG 0.267 0.272 0.200 0.301 0.204 0.231 0.222 0.242
Ours 0.236 0.227 0.207 0.178 0.123 0.153 0.190 0.188
Ours (single scene) 0.272 0.261 0.198 0.245 0.173 0.195 0.238 0.226

Table 7. Quantitative comparison with NPBG [1] and NSVF [16]. Metrics are computed across test images for scenes from from
LLFF [22] dataset. “Ours” is our method trained on 6 scenes simultaneously as in our original setup. “Ours (single scene)” is our method
trained for one scene at a time.

15

	1 . Introduction
	2 . Related Work
	3 . Control-NeRF
	3.1 . Background
	3.2 . Formulation
	3.3 . Training Strategy and Generalization
	3.3.1 Training Losses
	3.3.2 Multi-Resolution Volume Training
	3.3.3 Multi-Scene Training
	3.3.4 Generalization to Novel Scenes

	3.4 . Scene Editing and Manipulation
	4 . Experiments and Results
	4.1 . Dataset and Implementation Details
	4.2 . Scene Content Manipulation
	4.3 . Evaluations and Comparisons.

	5 . Conclusion
	A . Training and Architecture Details
	B . Ablation
	C . Additional Evaluations
	C.1 . Generalization to Novel Content
	C.2 . User Study
	C.3 . Scene Content Deformation
	C.4 . Additional Video Results
	C.5 . Comparisons with NeRF

