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Abstract— This paper examines the use of control allo-
cation techniques for the control of multiple inputs to a
ground vehicle to track a desired yaw rate trajectory while
minimizing vehicle sideslip. The proposed controller uses
quadratic programming accompanied by linear quadratic
regulator gains designed around a linear vehicle model to
arrive at a combination of vehicle commands. Several failure
scenarios are examined and the results for two different
quadratic programming approaches are presented along with
a discussion of the advantages each method has to offer.

I. I NTRODUCTION

Control allocation (CA) of over-actuated vehicles in-
volves generating an optimal set of effector commands that
match actual body torque to the desired body torque as
closely as possible while minimizing the control effort and
obeying the position and rate constraints of the effectors.A
control allocation approach is generally used when different
combinations of effector commands can produce the same
result and when the number of effectors available exceeds
the number of states being controlled. A key feature of
control allocation is that of reconfiguration. In the event
an effector failure is detected, the control effort is redis-
tributed among the remaining active effectors to minimize
the tracking error. Different methods of control allocation
have been developed for aerospace vehicles [3], [6], marine
vessels [17], and other areas where this proves to be a
valuable safety aspect. Increasing driver/passenger safety
is a constant motivation for related research on ground
vehicles. Research has been conducted on the control of
ground vehicles via state feedback using steering angle,
differential braking, and even aerodynamic actuators as
control inputs [15], [19]. The addition of differential braking
as a control parameter has proven to be successful in
maintaining vehicle stability during drastic maneuvers [18]
and in rollover prevention [4].

This paper examines the use of quadratic programming
in determining an on-line solution to the control allocation
problem to control a ground vehicle with redundant effector
inputs (e.g. differential braking and steering) to track a de-
sired yaw rate trajectory while minimizing vehicle sideslip.
The proposed controller uses quadratic programming (QP)
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accompanied by linear quadratic regulator (LQR) gains
designed around a linear vehicle model to arrive at a
combination of vehicle commands.

II. CONTROL ALLOCATION

The control allocation problem has become harder to
solve as over-actuated vehicles become increasingly com-
plex with the advancement of science. The general control
allocation problem is well stated in [9] as the computation
of an optimal set of effector commandsu that will produce
some desired overall control effect,ū. In other words, given
a desired responsēu, determineu such thatBu = ū subject
to u− ≤ u ≤ u+, whereu+ and u− are upper and lower
bounds placed on the effectors andB is a matrix defining
the effectiveness of the effectors. If multiple solutions
exist, choose one that will minimize the predetermined cost
function. If there are no solutions, findu such thatBu
approximates̄u as well as possible.

Traditional CA approaches are centered around a simple
least squares approach. The least squares method uses a
pseudo-inverse of a reference model and determines the
effector commands as a function of the commanded, or
desired, effects. Although this method is easily implemented
and computationally efficient, it does not consider effector
command limitations [2].

Model predictive control (MPC) has recently gained
popularity in the vehicle control community due to ad-
vancements that significantly reduce the computational time
required to solve this type of optimization. MPC has been
developed significantly in the chemical industry where plant
dynamics allow for sufficient computational time. Recent
advancements in MPC however, allow for a faster on-
line solution by shifting some of the computational burden
off-line [1]. This has been proven to be an effective CA
technique for rollover prevention of ground vehicles [4] but
still possesses significant computational complexity along
with a trade off between simplicity of on-line solution and
memory to store off-line computed solutions.

III. V EHICLE

A. Nonlinear Vehicle Model

The vehicle model used to study the proposed controller
is a 4 wheeled ground vehicle with three actuators available
to control the moment about the yaw axis: differential



braking of the front and rear tires and steering angle of
the front tires. The free body diagram is shown below:
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Fig. 1. Free body diagram of vehicle model

wherer is the yaw rate,V is the velocity vector acting at
the vehicle’s center of gravity,β represents sideslip angle,
and δ is the steering angle. Subscriptsf , r, R, L denote
front, rear, right, and left sides of the vehicle respectively.
Note that all forcesF and slip anglesα are drawn in the
positive direction such that lateral forceFy = −Cαα where
Cα represents tire cornering stiffness.

Applying Newton’s laws of motion to the free body
diagram (Fig.1), the nonlinear equation of motion about
the yaw axis at the center of gravity can be written as

Ψ̈ = ṙ = [a(FyfL cos(δ) + FyfR cos(δ)
−FxfL sin(δ) − FxfR sin(δ))
−b(FyrL + FyrR) + tr

2
(∆Fxr)

+
tf

2
(FyfR sin(δ) − FyfL sin(δ)

+FxfR cos(δ) − FxfL cos(δ))]/Iz

(1)

where Iz is the moment of inertia about the yaw axis.
A good estimate of sideslip angle can be writtenβ =
tan−1(Vx

Vy
). Differentiating this w.r.t. time gives the equa-

tion of motion for sideslip:

β̇ = (FyrL + FyrR + FyfL cos(δ) + FyfR cos(δ)
−FxfL sin(δ) − FxfR sin(δ))/mV cos(β)

−V̇ tan(β)/V − r

(2)

A Pacejka tire model [7] is used to model the behavior
of the tires. This nonlinear tire model uses tire slip angle
and vertical force to approximate the lateral force acting on
the tire. Similar to vehicle sideslip, the equations for tire
slip angle can be written:

αrL = tan−1

[

V sin(β) − rb

V cos(β) + r tr

2

]

αrR = tan−1

[

V sin(β) − rb

V cos(β) − r tr

2

]

αfL = tan−1

[

V sin(β) + ra

V cos(β) + r
tf

2

]

− δL

αfR = tan−1

[

V sin(β) + ra

V cos(β) − r
tf

2

]

− δR (3)

Vertical forces are a function of roll angle and yaw
rate. For the maneuvers considered in this paper, the roll
dynamics are assumed to be slower than the input dynamics
so that the roll angle is strictly proportional to lateral
acceleration. Therefore, roll angle is approximated as in [8]
by:

φ =
WhV r

g

Kφf + Kφr − Wh
(4)

whereW is the vehicle weight,h is the distance between
the center of gravity and the roll axis,g is acceleration due
to gravity, andKφ is the total roll stiffnesses of the axle.
A more accurate roll model is used in [4] where transient
roll dynamics are not ignored. By further assuming that the
vehicle travels on flat terrain and neglecting longitudinal
weight transfer, the vertical load difference is approximated
for each axle by taking the moment about the roll axis and
combining it with the above expression forφ.

∆Fzf =

[

WfV rhf

g
+ φKφf

]

/tf

∆Fzr =

[

WrV rhr

g
+ φKφr

]

/tr (5)

The vertical load at each tire is:

FzfR = Fzf − ∆Fzf

FzfL = Fzf + ∆Fzf

FzrR = Fzr − ∆Fzr

FzrL = Fzr + ∆Fzr (6)

B. Linear Vehicle Model

The proposed control law is designed around a linearized
model of equations (1-2) given in state space form below.
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(7)

C0 = Cαf + Cαr

C1 = aCαf − bCαr

C2 = a2Cαf + b2Cαr

whereCαf andCαr are constants representing the front and
rear linearized tire cornering stiffness values (per axle). The
state space model also utilizes small angle approximations,
the assumption of constant vehicle velocity, and neglects
lateral and longitudinal weight transfer.

The nature of the input matrixB implies that the differen-
tial braking inputs can only affect vehicle sideslip indirectly
through the coupling between the two states. Because of
this, it is necessary to add a fourth virtual inputν. This
relaxes the equality constraint on the sideslip and removes
some of the control responsibility from the steering angle
without affecting the yaw rate.



IV. CONTROLLER DESIGN

Observe that, for a given desired derivative vectorẋdes =
[

β̇ ṙ
]T

, there is more than one possible corresponding
input vectoru. One may, for example, use a least squares
weighted pseudo-inverse to compute an input vectoru to
matchẋdes, but such a procedure does not necessarily obey
effector constraints (e.g., position limits). The proposed
controller uses QP-based CA to compute corresponding
optimal input commands that, when possible, match the
desired derivative vector while obeying effector constraints.

The control law assumes full state feedback of yaw rate
and sideslip are available. These values can be obtained
using traditional estimation [18], or measured by using
Global Positioning System and inertial sensors [5], [11].
Considering the availability of such measurements along
with how inaccuracies due to the linearization of the vehicle
model affect the QP optimization, a more robust form of
QP based control allocation presented in [10] may be more
appropriate.

The proposed controller can be thought of as being split
into two separate parts: a control law which defines a total
control effectū that the vehicle must produce, and a control
allocator that calculates an optimal combination of effector
commandsu that when applied to the vehicle will produce
the desired control effect̄u.

LQR gains designed for a modified linear vehicle model
are used to produce a desired control effect,ū. The modified
system assumes a perfect input matrixB = I2x2, and
also includes the addition of an integrator to place more
emphasis on yaw rate tracking and less on minimization of
sideslip. The resulting state space model takes the form:
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Applying the Algebraic Riccati Equation yields a gain
matrix K2x3 such that

[

ūβ

ūr

]

= −K





β
re

er



 (9)

where re is defined as the difference between actual and
desired yaw rate, ander = ṙe. The controller gainsK serve
to drive the vector of signals

[

β re er

]T
to zero, and

[

ūβ ūr

]T
are the resulting sideslip and yaw rate control

effects the control allocator tries to match.

A. Quadratic Programming

The control allocation is achieved by solving a quadratic
programming problem which involves the minimization
of a quadratic cost function subject to both equality and

inequality constraints. The general form of the quadratic
programming problem is:

min
x

1

2
uT Qu + cT u (10)

subject to Bu = ū

and u− ≤ u ≤ u+

whereu is the set of effector commands andc and Q are
weights placed respectively on the linear and quadratic parts
of the cost function. These weights can be chosen to favor
certain effectors and/or weight the frequency content of the
effector commands over time.

The incorporation of inequality constraints ensures that
the set of commandsu will always be inside the attainable
operating ranges of the effectors whether they be position
limits, rate limits or any other limiting factor associated
with the effectors. The input effectiveness matrixB from
the linear vehicle model (7) is incorporated into the equality
constraint which serves to ensure that the solution vectoru
matches the desired control effect vectorū.

Proper selection of the quadratic weight matrixQ sig-
nificantly affects the optimization with the addition of the
virtual sideslip effectorν. A large quadratic penalty is
placed onν to reduce its use and leave most of the control
responsibility up to the real effectors.

B. Sign Preserving Quadratic Programming

In the event that̄u exists such that the solutionu must
lie outside the inequality constraints, the QP problem is
deemed infeasible. The method of sign preserving quadratic
programming (SPQP) proposed in [16] guarantees feasibil-
ity by allowing scaling of the control effort.

Sign preserving quadratic programming introduces slack
variablesσ for each control effort so that the problem is
modified as follows:

min
u,σ

1

2
uT Quu + cu

T u + 1

2
Qσ(1 − σβ)2 (11)

+ 1

2
Qσ(1 − σr)

2

s.t. Bu − Σū = 0
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where Σ =

[

σβ 0
0 σr

]

The slack variablesσβ andσr allow for individual scaling
of the components of the control effect vector with the least
control authority (function of statesu in input effectiveness
matrix B). The separate scaling of̄uβ and ūr maintains
problem feasibility while preserving the sign of the total
desired control effect vector.

The SPQP problem incorporates the equality constraint of
Bu−Σū = 0 just as the nominal QP problem (10) meets the
equality constraint ofBu − ū = 0. This “allocation error”
provides a measure of how well the controller is able to
match the desired control effect. Due to SPQP’s ability to



scaleū by Σ, the exclusion ofΣ when calculating allocation
error for the SPQP method produces a larger allocation error
for the part of the control effect being scaled. Therefore,
allocation error for the individual states are included in
the results section to give the reader a way to observe
which parts of̄u are being scaled for the different scenarios
presented.

V. SIMULATION

The full nonlinear vehicle model with the nonlinear
tire model (equations 1-6) and the proposed controller
were implemented in Matlab/Simulink. A single sine wave
oscillation corresponding to a double lane change maneuver
was computed off-line and used as the desired yaw rate
trajectory.

Three different scenarios are presented to demonstrate
reconfiguration ability: 1) nominal case, no failures experi-
enced 2) front brake failure at 2.75 seconds, and 3) steering
failure at 2.75 seconds. For each of these cases the vehicle
was simulated at constant velocities of 45, 55, and 65mph
for both regular QP and SPQP algorithms. This assumes a
separate controller regulates fuel flow to the engine during
differential braking commands to maintain a constant speed.

Failures were implemented by scaling the columns of
the input effectiveness matrixB from equation (7) cor-
responding to the failed effector. Actual implementation
would require the controller to be alerted of a failure
through an on-board vehicle diagnostic system such as the
one demonstrated in [13]. Therefore, on-line calculation of
input effectiveness matrixB would be necessary due to its
dependence on both failure mode and velocity.

A constant position limit of±0.5rad(≈ 30deg) was
placed on the steering angle of the front tires. The limits
placed on the differential braking commands were calcu-
lated on-line by taking75% of the vertical force on the
inside tires as the approximate maximum braking force
that can be applied without producing slippage. Researchers
have shown that on-line estimates of vertical force and
road friction coefficient are possible through the use of
extended Kalman-Bucy filtering and Bayesian hypothesis
selection [14]. Alternatively, the underestimation of road
friction coefficient has been shown to provide conservative
approximations of maximum braking force available to the
vehicle [12].

VI. RESULTS

Since neither disturbances nor sensor noise were simu-
lated in the experiment, the results presented here are for
relative comparison only and are not a measure of true
performance (qualitative not quantitative). The root mean
squared errors of yaw rate and sideslip tracking are used
to compare algorithms and assess the effectiveness of the
controller in each scenario. Root mean squared allocation
error, although subjective in nature, is also included for
reasons stated in section IV-B.

As mentioned earlier, the quadratic penalty placed on the
virtual effectorν significantly affects the control action. A
quadratic penalty ofQν = 1e4 resulted in minimal use of
the differential braking commands as the controller relies
heavily on the virtual effector to minimize sideslip. This
value provided better yaw rate tracking for the straight QP
approach by placing most of the control effort in the steering
command and treating the differential braking as more of
a secondary/backup input. A larger penalty ofQν = 1e6
was also studied, in which case the differential braking
commands were relied on significantly to minimize sideslip.
The difference in magnitude of the braking commands is
shown in Fig. 2 with plots of the commanded braking force
for different values ofQν .

Fig. 2. nominal case braking commands at 45mph using QP
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The results for each of the mentioned virtual effector
weightsQν = 1e4 and Qν = 1e6 are included in Tables
I and II, respectively. For the sake of consistency and
to better demonstrate the control action taken on by the
braking commands, all following figures are results from
simulations run with a quadratic penalty ofQν = 1e6 on
the virtual effector.

The advantage of the SPQP algorithm’s ability to scale
the control effort is made clear by the comparatively lower
yaw rate tracking error it provides for speeds of45 and
55mph. The scaling occurs only in the sideslip portion of the
control effectūβ and is a function of the weight placed on
the virtual effectorν. A higher weight onν requires a larger
scaling of ūβ resulting in greater sideslip allocation error
and sideslip tracking error than the straight QP approach
(Fig. 4). The effect of this scaling is apparent in the
differential braking commands shown in figure 3 which
appear to be significantly different than those resulting from
the regular QP algorithm (Fig. 2).

Due to the coupling in equations (1) and (2), the QP op-
timization produces a differential braking command which
opposes the steering angle command in an effort to keep
the sideslip angle small. This leaves the yaw rate tracking



Fig. 3. nominal case: commands at 45mph using SPQP
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Fig. 4. nominal case: tracking at 45mph using SPQP
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up to the steering command which has the most authority
over both states. Less braking force opposing the steering
angle requires less steering input resulting in improved yaw
rate tracking. Better sideslip tracking is also achieved due
to the direct impact of the steering input onβ. For this
reason, better performance of the straight QP algorithm is
seen in the case of a brake failure just as it is when braking
input is reduced by a small quadratic penalty on the virtual
effector.

In the event of a steering failure however, yaw rate track-
ing is left solely up to the differential braking commands
which are then used to minimize the yaw rate error after
the failure occurs. Figures 5 and 6 display the controller’s
ability to maintain best possible yaw rate tracking through
reconfiguration while respecting the limitations of the re-
maining effectors.

VII. C ONCLUSION AND FUTURE WORK

Control allocation and its reconfiguration abilities prove
to be very useful in dealing with over-actuated systems

Fig. 5. Steering Failure: effector commands at 65mph using QP
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Fig. 6. Steering Failure: tracking at 65mph using QP
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such as the proposed ground vehicle model. QP based
CA in particular, has been shown to provide intelligent
distribution of control effort among the effectors in both
nominal and failure cases. SPQP gives the best yaw rate
tracking performance for the45 and 55mph cases but
regular QP consistently outperforms SPQP in the area of
sideslip minimization. The two types of QP examined in
this paper clearly offer different advantages and degrees
of freedom which should be taken into account depending
on the specific design goal. Additionally, for basic control
allocation purposes a QP based method provides fast on-line
commands yielding good results.

Better performance is achievable if the full potential
of the braking commands can be exploited. Future work
involves using a linear programming optimization in accor-
dance with the tire friction circle to calculate a more ac-
curate estimate of differential braking limits. Improvements
in performance that may be obtained with additional inputs
such as differential acceleration and 4 wheel steering will
also be investigated.



TABLE I

RESULTS FOR QUADRATIC PENALTY OF1e4 ON VIRTUAL EFFECTORν

Nominal
Vel Alg RMS r RMS β RMS r Allocation RMS β Allocation

(mph) (deg/s) (deg) ‖Bu − ū‖ ‖Bu − ū‖

45 QP 0.4112 0.0179 2.755E-07 1.249E-06
45 SPQP 0.4111 0.0180 2.755E-07 1.249E-06

55 QP 0.3185 0.0899 3.656E-07 2.389E-06
55 SPQP 0.3044 0.0915 3.644E-07 9.702E-06

65 QP 0.2937 0.2047 5.008E-07 4.534E-06
65 SPQP 0.1853 0.2414 4.883E-07 3.081E-04

Front brake failure
45 QP 0.4111 0.0179 2.755E-07 1.249E-06
45 SPQP 0.4111 0.0180 2.755E-07 1.250E-06

55 QP 0.3184 0.0900 3.656E-07 2.390E-06
55 SPQP 0.3043 0.0916 3.644E-07 9.703E-06

65 QP 0.2937 0.2049 5.008E-07 4.536E-06
65 SPQP 0.1852 0.2416 4.883E-07 3.083E-04

Steering failure
45 QP 0.3124 0.2701 3.325E-07 2.539E-06
45 SPQP 0.3124 0.2699 3.325E-07 2.540E-06

55 QP 0.2618 0.3813 4.689E-07 4.617E-06
55 SPQP 0.2490 0.3815 4.669E-07 1.047E-05

65 QP 0.2605 0.5246 6.707E-07 7.870E-06
65 SPQP 0.1808 0.5424 6.585E-07 2.523E-04

TABLE II

RESULTS FOR QUADRATIC PENALTY OF1e6 ON VIRTUAL EFFECTORν

Nominal
Vel Alg RMS r RMS β RMS r Allocation RMS β Allocation

(mph) (deg/s) (deg) ‖Bu − ū‖ ‖Bu − ū‖

45 QP 0.4318 0.0053 2.698E-07 1.091E-06
45 SPQP 0.1103 0.0218 2.734E-07 4.674E-04

55 QP 0.3348 0.0522 3.505E-07 1.988E-06
55 SPQP 0.0843 0.1252 3.506E-07 1.119E-03

65 QP 0.3077 0.1360 4.630E-07 3.677E-06
65 SPQP 0.3223 0.3377 4.448E-07 2.709E-03

Front brake failure
45 QP 0.4284 0.0083 2.700E-07 1.128E-06
45 SPQP 0.1097 0.0221 2.738E-07 4.686E-04

55 QP 0.3313 0.0603 3.518E-07 2.075E-06
55 SPQP 0.0843 0.1256 3.512E-07 1.121E-03

65 QP 0.3039 0.1506 4.679E-07 3.854E-06
65 SPQP 0.3230 0.3383 4.451E-07 2.712E-03

Steering failure
45 QP 0.3157 0.3198 3.294E-07 2.511E-06
45 SPQP 0.1016 0.3418 2.486E-07 8.494E-04

55 QP 0.2645 0.4388 4.623E-07 4.542E-06
55 SPQP 0.3587 0.5726 3.188E-07 2.129E-03

65 QP 0.2628 0.5916 6.570E-07 7.695E-06
65 SPQP 1.0405 0.9854 4.616E-07 4.963E-03
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