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Abstract. The interactions of integrins with extraceUu- 

lar matrix proteins can activate focal adhesion kinase 

(FAK) and suppress apoptosis in normal epithelial and 

endothelial cells; this subset of apoptosis has been 

termed "anoikis." Here, we demonstrate that FAK 

plays a role in the suppression of anoikis. Constitutively 

activated forms of FAK rescued two established epithe- 

lial cell lines from anoikis. Both the major autophos- 

phorylation site (Y397) and a site critical to the kinase 

activity (K454) of FAK were required for this effect. 

Activated FAK also transformed MDCK cells, by the 

criteria of anchorage-independent growth and tumor 

formation in nude mice. We provide evidence that this 

transformation resulted primarily from the cells' resis- 

tance to anoikis rather than from the activation of 

growth factor response pathways. These results indicate 

that FAK can regulate anoikis and that the conferral of 

anoikis resistance may suffice to transform certain epi- 

thelial cells. 

I 
N normal epithelial (Frisch and Francis, 1994; Bou- 
dreau et al., 1995) and endothelial (Meredith et al., 
1993; Brooks et al., 1994) cells, signaling by the appro- 

priate liganded integrins suppresses a subset of apoptosis 
known as "anoikis" (for review see Ruoslahti and Reed, 
1994). Anoikis is physiologically important in controlling 
the cell number in the skin (Polakowska et al., 1994) and 
digestive tract (Hall et al., 1994), as well as morphogenesis 
of the mammary gland (Boudreau et al., 1995) and devel- 
oping mouse embryo (Coucouvanis and Martin, 1995). 
With the advent of anoikis, epithelial anchorage depen- 
dence is also being reexamined in terms of the connections 
between integrin signaling and the apoptotic machinery. 
In principle, the acquisition of anoikis resistance could fa- 
cilitate anchorage-independent growth and perhaps trans- 
formation. Different integrin heterodimers may differ in 
their ability to suppress apoptosis in a given cell type 
(Boudreau et al., 1995; Zhang et al., 1995). Tumor cells 
perhaps could gain anchorage independence in a specific 
environment by expressing an anoikis-suppressing integrin 
type (Juliano and Varner, 1993). 

Malignant transformation of cells by activated forms of 
ras or src is accompanied by a conversion to anoikis resis- 
tance (Frisch and Francis, 1994). The causal relationships 
between anoikis resistance and transformation are cur- 
rently unknown and cannot be studied with such onco- 
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genes because they also perturb growth factor pathways. 
Integrin-matrix interactions lead to the autophosphoryla- 
tion of the tyrosine kinase, FAK, 1 which is thought to act 
as an integrin signal transducer. FAK interacts with a 
number of cellular proteins, including c-src, grb2, phos- 
phatidylinositol-3-kinase, paxillin, and p130 caS (SchaUer and 
Parsons, 1994, 1995; Schlaepfer et al., 1994; Polte and Hanks, 
1995; Richardson and Parsons, 1995). Importantly, while 
cell-matrix interactions facilitate mitogenic signaling by 
growth factors (for review see Schwartz and Ingber, 1994), 
these interactions might not be expected to be mitogenic 
by themselves. The current understanding of FAK sup- 
ports this idea. For example, although FAK interacts with 
grb2 and c-src, cell-matrix interactions have not been shown 
to activate either ras-GTP-binding activity or src-kinase 
activity. In fact, the SH2 domain of c-src interacts with 
FAK and actually promotes cell-matrix interactions (Kap- 
lan et al., 1995). 

In light of these properties, the possibility that FAK 
might control anoikis was tested in this study. We used a 
form of FAK that had been activated by membrane target- 
ing. The expression of activated FAK conferred resistance 
to anoikis, which sufficed to transform MDCK cells. 

Materials and Methods 

Antibodies and Immunologic Detection Methods 

For immunofluorescence, cells were fixed in 2% formaldehyde for 10 min, 

1. Abbreviat ions used in this paper: FAK, focal adhesion kinase; MPB, my- 
elin basin protein. 
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permeabilized in cold acetone for 5 min, and reacted with the primary an- 

tibodies, followed by FITC-labeled goat anti-mouse (1:100; Boeringer 
Mannheim Biochemicals, Indianapolis, IN), and photographed using a mi- 
croscope (Axiovert; Carl Zeiss, Inc., Thornwood, NY) (final magnifica- 
tion, 450). 

For experiments comparing phosphorylated proteins in attached vs. 
suspended cells, MDCK cells expressing CD2-FAK (wild-type), CD2- 
FAK(454*), or CD2-FAK(397*) were detached by trypsinization followed 
by washing with DME/10% FCS and DME/0.5% BSA. Cells were then 
either washed once with PBS and lysed in modified RIPA buffer 
(Schlaepfer et al., 1994) ("suspended cells"), or plated on type I collagen 
(20 i~g/ml)-coated dishes for 40 min at 37°C and lysed in modified RIPA 
buffer ("adherent cells"). Antibodies were added to lysates containing 
equal amount of protein, and samples were rotated at 4°C for 1 h. Gam- 
mabind Sepharose (Pharmacia, Uppsala, Sweden) was added to the ly- 
sates to precipitate the antibody-antigen complexes, and rotation was 
continued for 2 h. The immunoprecipitates were then washed three times 
in wash buffer (RIPA buffer without SDS or deoxycholate), resuspended 
in SDS-PAGE sample buffer, boiled, electrophoresed on 4--12% Precast 
SDS-PAGE gels (NOVEX, Encinitas, CA), and electrophoretically blot- 
ted onto Immobilon-PVDF membranes. The blots were reacted with pri- 
mary antibodies as indicated followed by HRP-labeled anti-mouse (Bio- 
Rad Laboratories, Hercules, CA), and visualized by enhanced chemilumi- 
nescent detection (Amersham Corp., Arlington Heights, IL). 

For analysis of MAP kinase activation, MDCK cells, MDCK cells ex- 
pressing CD2-FAK (wild-type), and rat embryonic fibroblast (REF-52) 
cells were serum starved in DME/0.5.% FCS for 18 h and detached by 
trypsinization followed by washing with DME/0.5% FCS and DME/0.5% 
BSA. Cells were then either immediately lysed in modified RIPA buffer 
(time zero), or kept in suspension or plated on type I collagen (20 ~g/ml)- 
coated dishes at 37°C for 15-120 min and lysed in modified RIPA buffer. 
Cells stimulated with 800 nM PMA for 15 rain were used as a positive con- 
trol for MAPK activation. MAP kinase activity was assayed essentially as 
described (Chen et al., 1994). Briefly, MAP kinases were immunoprecipi- 
rated from total cell lysates (200 i.tg/sample) with polyclonal anti-MAP ki- 
nase antibody C-16 (Santa Cruz Biotechnology, Santa Cruz, CA) and 
Gammabind Sepharose as described above. The immunoprecipitates were 
washed twice with 250 mM Tris, pH 7.5, and once with 100 mM NaC1, 50 
mM Hepes, pH 8.0. The immunoprecipitated MAP kinases were incu- 
bated in a mixture containing 1 I~Ci of [~/-32p]ATP, 50 IxM ATP, 10 mM 

MgC12, 1 mM DT]?, 1 mM benzamine, 0.3 mg/ml myelin basic protein 
(MBP; Life Technologies, Inc., Grand Island, NY) and 25 mM Hepes, pH 
8.0, at 30°C for 20 rain. The samples were electrophoresed on a 15% poly- 
acrylamide gel. After staining with Coomassie brilliant blue, the gel was 
dried and analyzed by autoradiography. Quantitative analysis of the MBP 
bands was carried out by using the Bio-Rad GS Phosphorlmager. Equal 
immunoprecipitation and loading of MAP kinases was assessed by immu- 
noblotting samples of immunoprecipitated MAP kinases with a mono- 
clonal anti-MAP kinase antibody (clone B3B9). 

Antibodies were obtained from the following sources: CD2: clone 
RPA2.10 (PharMingen, San Diego, CA); CD8: clone 2.43 (Sarmiento et 
al., 1980; gift of B. Buehler, Burnham Institute); src: clone 237 (obtained 
from Dr. Joan Brugge, Ariad Pharmaceuticals) and v-src Ab-1 (Oncogene 
Science Inc., Manhasset, NY); MAPK: clone B3B9 (obtained from M. 
Weber, University of Virginia); phosphotyrosine: Py20 (Transduction 
Laboratories, Lexington, KY); FAK: clone 77 (Transduction Laborato- 
ries); paxillin: clone 349 (Transduction Laboratories); vinculin: (poly- 
clonal; Sigma Chemical Co., St. Louis, MO). 

Plasmids 

The CD2-FAK (wild-type), CD2-FAK (397* or 454*), or CD2 plasmids 
were described previously (Chanet  al., 1994). CD8-FAK was constructed 
by fusing the Nco-BamHI fragment containing the ectodomain and trans- 
membrane domain of mouse CD8 (from pLVLy2-Hy; Nakauchi et al., 
1987), with the Clal-EagI fragment containing the FAK coding sequence 
using an oligonucleotide adaptor to adjust the reading frame. 

Anoikis Assays 

Assays for internucleosomal DNA cleavage were performed as described 
previously (Frisch and Francis, 1994). Briefly, cell lines were grown to 
confluence, trypsinized, and 3 × 106 ceils were suspended on polyhydroxy- 
ethylmethacrylate-coated dishes for 7 h; low tool wt DNA was analyzed 
on a 1.4% agarose gel after normalizing loading vol against the corre- 
sponding total cellular protein (using Bio-Rad protein assay). Results are 

representative of 2-3 repetitions. For flow cytometric analysis, cells were 
fixed in 70% ethanol and stained with 20 p,g/ml propidium iodide in the 
presence of 5 p,g/ml RNase before flow cytometry on a FACscan (Becton 
Dickinson, Mountain View, CA) and the percentages of cells in apoptosis 
were determined using the DNAquest program. 

Results 

Expression and Localization of CD2-FAK 

A chimeric protein created by the fusion of the CD2 anti- 
gen ectodomain to full-length FAK activates FAK such 
that it retains tyrosine 397 autophosphorylation and full 
tyrosine kinase activity in suspended cells (Chan et al., 
1994). MDCK cells or the immortalized keratinocyte cell 
line HaCat were transfected with expression plasmids 
bearing the CD2-FAK chimeras in which the FAK se- 
quences were wild-type or mutated to disable the src-SH2 
target sequence (Y397F) or the kinase activity (K454R). 
Western blotting of the cell lines revealed expressed pro- 
teins of the predicted molecular weights that were reactive 
with anti-CD2 antibodies (Fig. 1 A). Western blotting with 
anti-FAK antibodies indicated that less CD2-FAK was ex- 
pressed than endogenous FAK (Fig. 1 A). 

Immunofluorescence analysis showed punctate, pericy- 
toplasmic localization of CD2-FAK in MDCK and HaCat 
cells (Fig. 1 B). Because focal contacts of these cell lines 
were not well-formed under these experimental condi- 
tions, localization of CD2-FAK to these structures was 
confirmed in rat embryo fibroblasts that were transiently 
transfected with the CD2-FAK (wild-type or mutant) ex- 
pression constructs (Fig. 1 B). The CD2 ectodomain pro- 
tein expressed alone localized diffusely over the entire cell. 

CD2-FAK Is Constitutively Activated in MDCK Cells 

In contrast with wild-type FAK, CD2-FAK, expressed 
transiently in transfected COS cells, remains active in sus- 
pended cells (Chan et al., 1994). We used this property of 
CD2-FAK to examine the cellular effects of FAK activation. 

First, we performed several experiments to determine 
whether CD2-FAK behaved as a constitutively activated 
FAK in MDCK cells. Tyrosine phosphorylation of the en- 
dogenous FAK was undetectable in suspended cells and 
increased rapidly in cells adhering to collagen (Fig. 2, top). 
This occurred whether the coexpressed CD2 -FAK was in 
its wild-type or mutated form. However, the CD2-FAK 
(wild-type) was highly phosphorylated in suspended cells, 
and even more phosphorylated in attached cells. This 
phosphorylation was abolished by mutation of tyrosine 
397 and dramatically reduced by mutation of lysine 454. 
The levels of the FAK or CD2-FAK proteins themselves 
were affected neither by the cells' attachment status nor 
by these point mutations. 

The cytoskeletal protein paxillin is normally phosphory- 
lated on tyrosine in response to cell a~dhesion, possibly by 
FAK (Schaller and Parsons, 1995). Suspended cells that 
expressed the wild-type CD2-FAK had hyperphosphory- 
luted paxillin (Fig. 2, top) compared with those that ex- 
pressed the CD2-FAK mutants. This result and the high 
phosphorylation level indicate that CD2-FAK has consti- 
tutive signaling activity in the MDCK cells. 

FAK that is phosphorylated on tyrosine 397 complexes 
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Figure 1. Expression and focal contact lo- 
calization of CD2-FAK in MDCK cells. 
The CD2-FAK (wild-type), CD2-FAK 

(397* or 454"), or CD2 plasmids (Chan et 
al., 1994) were cotransfected with a plas- 
mid bearing the neomycin phosphotrans- 
ferase gene into a homogeneous subclone 
of MDCK or HaCat cells. The Western 

blot probed with anti-CD2 (A, left) con- 
firms expression of the ~175-kD CD2- 
FAK or ~50-kD CD2 proteins, while the 
blot probed with anti-FAK antibody (A, 
right) shows the relative expression levels 
of endogenous FAK (closed arrow) and 
CD2-FAK (open arrow) proteins. (B) 
CD2-FAK localizes to focal contacts. 
Control MDCK cells (b), control HaCat 
cells (d), or their respective CD2-FAK- 
expressing derivatives (a and c) were fixed 
and stained with anti-CD2 antibody. 
(Cells expressing the CD2 ectodomain 
alone showed weak diffuse staining over 
the entire cell surface; data not shown). 
Because focal contacts were not readily 
detectable in MDCK cells, constructs 
were expressed transiently in REF-52 fi- 
broblasts. After transfection with the CD2 
ectodomain (e), CD2-FAK (wild-type) 0'), 
or CD2-FAK (397*) (g) expression con- 
structs, the cells were fixed and stained for 
CD2 (e-g) or vinculin (h). 
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Figure 2. Tyrosine phosphorylation of wild-type and mutant 
forms of CD2-FAK, endogenous FAK, and paxillin in suspended 
and adherent MDCK cell variants; in vivo association of CD2- 
FAK (wild-type) with c-src. Lysates prepared from suspended (S) 
or adherent (A) MDCK cells expressing CD2-FAK (wild-type), 
CD2-FAK(454*), or CD2-FAK(397*) were immunoprecipitated 
with anti-CD2, anti-FAK, anti-paxillin, or anti-src antibodies. Top 
left: anti phosphotyrosine immunoblot of the immunoprecipi- 
tates; top right: the same blot stripped and reprobed with anti- 
CD2, anti-FAK, and anti-paxillin antibodies to confirm equal 
loading. Bottom left: anti-CD2 immunoblot of anti-src immuno- 
precipitates; bottom right: the same blot stripped and reprobed 
with anti-src antibodies. 

Figure 3. CD2-FAK accelerates the spreading of MDCK cells on 
collagen. 2 × 106 MDCK (control), CD2-FAK (wild-type)/ 
MDCK, or CD2-FAK (397*)/MDCK cells were plated on col- 
lagen-coated, BSA-blocked coverslips in serum-free medium 
containing 0.5 mg/ml BSA. After 8 min at 37°C, unattached cells 
were washed off, and the attached cells were photographed at the 
indicated times. Spread and unspread cells were scored by exami- 
nation of the photographs (~400 total cells per time point) and 
the fractions of unspread cells were plotted as a function of time. 
- - l - ,  control; ---IF-, CD2-FAK; .4i-, CD2-FAK(397*). 

in vivo with c-src or the src-related kinase, c-fyn (Cobb et 
al., 1994; Schlaepfer et al., 1994). To test whether CD2- 
FAK was capable of this interaction, proteins from CD2- 
FAK/MDCK cells were immunoprecipitated with anti-src 
antibodies and the immunoprecipitates were analyzed for 
the presence of CD2-FAK on Western blots (Fig. 2, bot- 
tom). CD2-FAK (wild-type) coprecipitated with c-src and 
this association was insensitive to the adhesion status of 
the cells. By contrast, CD2-FAK (397* or 454*) failed to 
associate with c-src. The combined results suggested that 
CD2-FAK localizes normally in attached cells, but is ac- 
tive in both suspended and attached cells. 

The MDCK cells that expressed CD2-FAK were found 
to spread on collagen-coated glass faster than control cells 
or cells expressing CD2-FAK (397*) (Fig. 3). This indi- 
cates that the activation of FAK accelerated the normal 
cellular response to matrix adhesion, and is consistent with 
the reported deficiency of cell spreading in FAK knockout 
cells (Ilic et al., 1995). Despite these effects, the morphol- 
ogy of the cells was not discernibly affected by CD2-FAK 

(data not shown). 

CD2-FAK Confers Anoikis  Resistance 

MDCK cell lines that stably expressed the constructs de- 
scribed above were assayed for anoikis by the criteria of 
internucleosomal DNA cleavage and subgenomic DNA 
content in flow cytometric analyses. A large fraction (21.2%) 
of the cells expressing the unfused CD2 ectodomain alone 
underwent apoptosis when detached from matrix (Fig. 4). 
These results were similar to those reported previously for 
untransfected MDCK cells (Frisch and Francis, 1994). In 
contrast, MDCK cells expressing CD2-FAK (wild-type) 

showed N10-fold less apoptosis than the other transfec- 
tants. Cells expressing either the kinase domain or SH2 
target domain ihutants of CD2oFAK remained fully sensi- 
tive to anoikis, demonstrating the dependence of anoikis 
rescue upon these activities of FAK. CD2-FAK similarly 
rendered HaCat  cells anoikis resistant, showing that the 
effect occurs in at least two different epithelial cell types. 
The expression of a CD8-FAK fusion protein in MDCK 
cells conferred anoikis resistance as well, ruling out the 

Figure 4. CD2-FAK and CD8-FAK confer anoikis resistance in 
MDCK cells. Agarose gel analysis of low-mol-wt DNA extracted 
from the indicated cell lines held in suspension (normalized 
against total cellular protein) and the corresponding percentages 
of cells undergoing apoptosis, determined by flow cytometry (as 
described in Materials and Methods) are shown. 
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Table L CD2-FAK Confers Anchorage Independence in 
MDCK Cells 

Cell line Soft agar plating efficiency (%) 

CD2 0 

CD2-FAK (397*) clone 4 0 

CD2-FAK (397*) clone 10 0 

CD2-FAK (wild-type) clone 9 "12.8 ± 1.2 

CD2-FAK (wild-type) clone 30 12.5 ± 1.2 

bcl2/mdck clone 21 9.5 ± 1.6 

bcl2/mdck clone 32 7 .1 .±  1.3 

src/mdck 18.8 +- 3.4 

ras/mdck 0.8** ± 0 

3 × 104 cells of the indicated cell lines were plated on soft agar as described previ- 
ously (Frisch, 1991) incubated for 16 d and photopgraphed; colonies greater than eight 
cells were counted on duplicate plates and averaged. 
(NB: each colony was ~10-fold larger compared with the other cell lines). 

possibility of spurious signaling effects due to the CD2 
ectodomain. 

These results suggested that FAK plays an important 
role in integrin-mediated control of cell survival and that 
the adhesion-independent activation of FAK can bypass 
this control. Moreover, the point mutants suggest that 
FAK kinase activity and interactions with SH2 domain 
proteins, such as src-family proteins, are both required for 
this effect. 

CD2-FAK Confers Anchorage Independence and 
Tumorigenicity upon MDCK Cells. 

To test whether the activated FAK would allow cells to 
grow independently of anchorage, soft agar colony assays 
were performed (Table I). CD2-FAK (wild-type), but not 
CD2-FAK (397*), endowed MDCK cells with anchorage 
independence. However, the HaCat keratinocytes, which 
normally undergo both terminal differentiation (Breit- 
kreutz et al., 1993) and apoptosis in suspension, did not be- 
come anchorage independent; this implies that CD2-FAK 
may affect anoikis but not terminal differentiation, al- 
though the latter has not been tested directly. 

CD2-FAK-expressing cells were also tumorigenic in 
nude mice (100% tumor incidence; Table II), although the 
CD2-FAK/MDCK cells produced smaller tumors (41.0 mg 
+ / -  16) than did v-Ha-ras-transformed MDCK cells (270 
mg + / -  150). The CD2-FAK (397*)-expressing cells were 
nontumorigenic. 

CD2-FAK Controls Anoikis But Not Growth 
Factor Responsiveness 

To assess the role of apoptosis in the oncogenic potential 
of the CD2-FAK-expressing cells, MDCK cells that over- 
expressed the bcl-2 protein--and were therefore resistant 
to anoikis (Frisch and Francis, 1994)--were tested for an- 
chorage-independent growth (Table I) and tumorigenic 
potential (Table II). Surprisingly, the bcl-2-transfected 
cells scored positively in both assays. This result suggested 
that the acquisition of anoikis resistance was sufficient to 
confer the transformed phenotype in MDCK cells. 

To investigate whether CD2-FAK affected growth fac- 
tor pathways, we first examined MAPK activity. MAPK is 
stimulated by cell adhesion in fibroblasts in a process 
thought to involve FAK (Schlaepfer et al., 1994). As a 

Table II. CD2-FAK Confers Tumorigenicity in MDCK Cells 

Incubation Tumor 
Cell line Cell number time Incidence 

days 

CD2-FAK (397*) clone 4 5 × 106 56 0/8 

CD2-FAK (397*) clone 10 5 × 106 56 0/8 

CD2-FAK (wild-type) clone 9 5 × 106 56 8/8 

CD2-FAK (wild-type) clone 30 5 X l06 56 8/8 

ras/mdck 1 >( 106 30 8/8 

bcl2/mdck clone 21 5 × 106 56 8/8 

Cells in 0.3 ml of serum-free medium were injected at two sites per mouse into four 
female, 4--5-wk-old, nu/nu mice (Harlau Sprague-Dawley). Tumors were dissected 
and weighed after the incubation times indicated. 

control, we first studied the effect of cell adhesion to col- 
lagen on MAP kinase activity in rat embryonic fibroblast 
REF-52 cells. Activation of MAP kinase enzymatic activ- 
ity was studied by an immunocomplex kinase assay using 
myelin basin protein (MBP) as a substrate. Consistent 
with the results reported by others (Chen et al., 1994), 
MAP kinase activity was transiently increased in REF-52 
cells plated on an ECM substratum (Fig. 5). The maximal 
activity of MAP kinases, four to fivefold induction (nor- 
malized to the amount of MAPK) compared to detached 
cells, was seen at 15-30 min after plating, whereafter the 
kinase activity declined. When cells were kept in suspen- 
sion, MAP kinase activity remained unchanged relative to 
constitutively growing controls (not shown). In contrast 

00t 

100 

0 20 40 60 80 1 O0 120 

Time (rain) 

Figure 5. CD2-FAK does not augment adhesion-stimulated 
MAP kinase activity. Serum-starved REF-52 cells (filled boxes), 
CD2-FAK/MDCK cells (filled circles), and MDCK ceils (open 
circles) detached from plastic were replated on collagen for 15, 
30, 60 or 120 min. Whole cell lysates (200 Ixg total protein) were 
subjected to MAP kinase immunocornplex assays using MBP as a 
substrate; phosphorylated MBP was separated by a 15% SDS gel 
and autoradiographed. MAP kinase activity is expressed as arbi- 
trary units based on the quantitative analysis of the MBP bands 
by phosphorlmager. -II--, REF-52; -0--, CD2-FAK/MDCK; 
--O--, MDCK. 
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Table III. CD2-FAK Does Not Affect Serum Dependence 

Maximal fold Percent of maximum in Percent of maximum in 
Cell line increase 0.5% serum 0.2% serum 

Control  29.8 9.1 ± 3 3.2 ± 1 

C D 2 - F A K  wtc  9 25.3 6.8 ± 2 3.0 +- 0 

C D 2 - F A K  wtc  30 23.1 10.3 ± 3 5.2 -+ 1 

s rc /mdck 17.1 61.4 ± 6 45.6  + 9 

Ceils (5 × 104) were plated in 35-mm diameter wells and changed to medium contain- 
ing the indica~d content of FBS after 6 h. Cells were counted in triplicate at time zero, 
at 6 h postplating (time zero) and 96 h postplating. The maximal fold increases in cell 
number occurred in 10% serum. 

with the results we obtained with fibroblasts, MAP kinase 
activity was only slightly stimulated (1.2-fold) by adhesion 
in normal MDCK cells and in CD2-FAK--expressing cells; 
no quantitative or qualitative differences were found in 
the MAP kinase activation between the CD2-FAK- 
expressing and parental MDCK cells (Fig. 5). By contrast, 
the M A P K  activity of MDCK cells was highly stimulated 
by PMA. These results argue against a mechanism wherein 
CD2-FAK transformed MDCK ceils by activating the ras- 
MAPK pathway. 

Second, FAK complexes with c-src and could potentially 
activate it (Cobb et al., 1994). However, total cellular c-src 
kinase activity was not affected by CD2-FAK (data not 
shown). 

Finally, because it was still possible that novel targeting 
of c-src or other molecules might stimulate growth factor 
responsiveness in the CD2-FAK-expressing cell lines, the 
cell's dependence on serum concentration for growth was 
measured. Serum dependence was greatly reduced by the 
expression of v-src, but was not affected by CD2-FAK 
(Table III). 

Discussion 

In this report, we have shown that the activation of an in- 
tegrin signal transducer, FAK, confers resistance to anoikis. 
In the case of MDCK cells, this was accompanied by an- 
chorage-independent growth and significant tumorigenic 
potential. 

Analogous to previous studies with such molecules as 
raf-1 kinase (Stokoe et al., 1994) and sos (Aronheim et al., 
1994), the membrane targeting of FAK via either CD2 or 
CD8 served to activate it, by mechanisms that are not 
clear. Speculatively, the targeting may alleviate FAK's 
requirement for upstream activating signals, such as the 
proposed interaction of FAK with integrin 13-subunits 
(Schaller et al., 1995). The possibility that CD2-FAK's ef- 
fects might arise from spurious protein interactions rather 
than the preservation of FAK in an active state in sus- 
pended cells was considered; it was unlikely for several 
reasons. First, the CD2-FAK protein localized to focal 
contacts, suggesting that its carboxy-terminal focal adhe- 
sion targeting sequence (FAT; Hildebrand et al., 1993) is 
functional and that the CD2 transmembrane domain does 
not drive it to specific sites on the membrane. Second, the 
kinase and SH2 target sequences of the FAK moiety were 
required for the observed effects. Third, the substitution 
of CD2 extracellular and transmembrane domains with 

those of CD8 was without consequence. Finally, CD2- 
FAK stimulated cell spreading, an activity attributed to 
normal FAK (Ilic et al., 1995); artifactual interactions of 
CD2-FAK with novel cellular substrates would be difficult 
to reconcile with this effect. In recent complementary ex- 
periments, the perturbation of FAK in vivo using inhibi- 
tory peptides or antibodies was found to cause apoptosis 
(Hungerford, J., M. Compton, M. Matter, B. Hoffstrom, 
and C. Otey, manuscript submitted for publication). While 
this supports our conclusions, the interference with FAK 
causes cell rounding, which might suffice to cause apopto- 
sis, confounding the interpretation. 

The results reported herein suggest that FAK may con- 
tribute to epithelial carcinogenesis. In this connection, 
FAK is often overexpressed human carcinomas (Owens 
et al., 1995). However, the role of FAK in transformation 
is apparently unusual for a signal transducer: FAK con- 
trois anoikis without detectably altering growth factor re- 
sponse pathways. This conclusion was obtained through 
the use of a cell line (MDCK) in which the alleviation of 
anoikis sufficed to produce anchorage-independent growth, 
and in turn, tumor formation in vivo. That MDCK cells 
had this property was supported by results with bcl-2 ex- 
pression. Bcl-2 is an apoptosis suppressor that is appar- 
ently devoid of growth-stimulatory effects and in fact in- 
hibits the growth of several tumor cell lines (Pietenpol et al., 
1994). We reported previously that bcl-2 conferred anoikis 
resistance in MDCK cells (Frisch and Francis, 1994). Sur- 
prisingly, we found herein that bcl-2 also transformed 
MDCK cells, demonstrating that the conversion of MDCK 
cells to an anoikis-resistant state suffices to transform 
them. 

That the effect of CD2-FAK was primarily on anoikis 
rather than growth control was also supported by several 
revealing differences between cells transformed by CD2- 
FAK and those transformed by ras or src. First, in contrast 
with CD2-FAK, activated ras or v-src caused a dramatic 
relief of growth factor dependence and an increased maxi- 
mal proliferation rate. Second, transformation by ras or 
src inhibited MDCK cell spreading on collagen (data not 
shown), while CD2-FAK stimulated it. Third, CD2-FAK 
expression neither morphologically transforms nor confers 
anchorage-independent growth in NIH3T3 fibroblasts 
(Schwartz, M., Scripps Research Institute, personal com- 
munication), a cell type that is normally resistant to 
anoikis but can be transformed by oncogenes that stimu- 
late mitogenesis, such as ras. Finally, although cell adhe- 
sion transiently stimulates the (mitogenic) MAPK path- 
way in fibroblasts, we observed no such stimulation in 
MDCK cells. The basis for this discrepancy is unclear, but 
it may be that MAPK is stimulated by focal adhesion 
plaque formation or stress fiber formation, which are more 
extensive in fibroblasts than in epithelial cells, rather than 
by integrin-matrix interactions alone. In this connection, 
cytochalasin treatment prevents adhesion-dependent MAPK 
activation in fibroblasts (Chert et al., 1994). 

In summary, the acquisition of resistance to anoikis is a 
potentially crucial step in the acquisition of a fully trans- 
formed phenotype by epithelial cells. Certain cells (such as 
MDCK) appear to fall short of the transformed state by 
this step alone, but it can be transgressed by the activation 
of FAK, or, potentially, other integrin signal transducers. 
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