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Recent advance on quantum devices realizes an artificial quantum spin system known

as the D-Wave 2000Q, which implements the Ising model with tunable transverse

field. In this system, we perform a specific protocol of quantum annealing to attain

the ground state, the minimizer of the energy. Therefore the device is often called the

quantum annealer. However the resulting spin configurations are not always in the

ground state. It can rather quickly generate many spin configurations following the

Gibbs-Boltzmann distribution. In the present study, we formulate an Isingmodel to control

a large number of automated guided vehicles in a factory without collision. We deal with

an actual factory in Japan, in which vehicles run, and assess efficiency of our formulation.

Compared to the conventional powerful techniques performed in digital computer, still

the quantum annealer does not show outstanding advantage in the practical problem.

Our study demonstrates a possibility of the quantum annealer to contribute solving

industrial problems.

Keywords: quantum annealing, automated guided vehicle (AGV), optimization problem, Ising model,

digital annealer

1. INTRODUCTION

Quantum annealing is a technology recently attracting attentions from both of academic and
business sides. It solves the unconstrained binary quadratic programming problem (recently also
termed as the quadratic unconstrained binary optimization (QUBO) problem) written as the
following cost function

E(q) = qTQq, (1)

where q is a vector of binary variables and Q is a matrix characterizing the problem to be solved.
Surprisingly, QA is realized in an actual quantum device using present-day technology (Berkley
et al., 2010; Harris et al., 2010; Johnson et al., 2010; Bunyk et al., 2014). We call the device
performing the protocol of QA as the quantum anneler. However the optimization problem, which
includes the unconstrained binary quadratic programming problem, is solved following adequate
algorithm on the digital computer. In this sense, QA is not necessarily an alternative way to solve
the optimization problem but it rather provides Because QA is one of the natural computing,
utilizing quantum tunneling effect, which escapes from local minima into a global minimum
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(Kadowaki and Nishimori, 1998), compared to the conventional
approach solving the optimization problem, it does without
program a priori. In addition, the well-known quantum annealer,
the D-Wave 2000Q, does not demand a huge amount of electric
power for the computational part of the quantum devices
compared to the high-performance computing. In this sense,
QA is an optional way of computing, and main target of
researches on QA can be searching its applicable situation in
practical problems.

Unfortunately the range of applications is restricted to the
case with the specific form as in Equation (1). The well-
known optimization problem can be recasted by the form as
in Equation (1) (Lucas, 2014), but the performance of QA
is not necessarily revealed. The formulations of the specific
form and QA for them have been tested such as portfolio
optimization (Rosenberg et al., 2016), protein folding (Perdomo-
Ortiz et al., 2012), the molecular similarity problem (Hernandez
and Aramon, 2017), computational biology (Li et al., 2018), job-
shop scheduling (Venturelli et al., 2015), election forecasting
(Henderson et al., 2018), and machine learning (Crawford et al.,
2016; Arai et al., 2018a; Khoshaman et al., 2018; Neukart et al.,
2018; Ohzeki et al., 2018b; Takahashi et al., 2018). In addition,
studies on implementing the quantum annealer to solve various
problems have been performed (Arai et al., 2018a; Ohzeki et al.,
2018a,b,b; Takahashi et al., 2018). The potential of QA might
be boosted by the nontrivial quantum fluctuation, referred to
as the nonstoquastic Hamiltonian, for which efficient classical
simulation is intractable (Seki andNishimori, 2012, 2015; Ohzeki,
2017; Arai et al., 2018b; Okada et al., 2019b). Most of them
have not sufficed demand from practical situations as the size of
the problems and time to solutions. Even one of the attractive
formulations, the traffic optimization (Neukart et al., 2017), has
not reached a level at the practical demand.

In a point of theoretical view, the potential performance
of QA is well known. When the protocol of QA follows the
quantum adiabatic condition, the ground state can be efficiently
attained (Suzuki and Okada, 2005; Morita and Nishimori,
2008; Ohzeki and Nishimori, 2011b). This is not a realistic
situation in performing QA in quantum devices such as D-Wave
2000Q. Thus, in the current version of quantum annealer, the
attained solution is not always optimal owing to the limitations
of devices and environmental effects (Amin, 2015). Although
several protocols based on QA do not follow adiabatic quantum
computation are proposed (Ohzeki, 2010; Ohzeki and Nishimori,
2011a; Ohzeki et al., 2011; Somma et al., 2012, the application of
QA should be considered by taking account into an uncertain
behavior of outputs from the quantum annealer. Recently,
characteristic behavior on outputs of the quantum annealer is
partially clarified. The outputs fall into a wide-flat valley of
the cost function to be solved by QA rather than a sharp one
(Kadowaki and Ohzeki, 2019). This fascinating property of QA
is found in its application to the machine learning (Ohzeki
et al., 2018a). The solutions in a wide-flat valley have robustness
against the errors in the cost function. In the context of the
machine learning, the errors in the cost function exist between
formulations for the training and test data. However the solutions
attained by QA shows good performance for the test data

even although optimization is performed for the training data.
In the case of formulating the optimization problem, we can
not avoid the error in the cost function because we do not
necessarily find the way to accomplish the desired task or we
do not directly optimize the desired quantity by controlling the
tunable parameters.

In the present study, we deal with the controlling problem
of automated guided vehicles (AGVs), which are portable robots
for moving materials in manufacturing facilities and warehouses
(Ullrich, 2014; Fazlollahtabar et al., 2015; Fazlollahtabar and
Saidi-Mehrabad, 2016), by use of the quantum annealer. The
automated guided vehicles move along markers or wire on floors
or uses vision, magnets, or lasers for navigation in a few cases.
Currently, in most of factories, transportations of materials relies
on AGVs and their smooth control. However, in limited-size
factories, AGVs are frequently involved in traffic congestion
around intersections because a large number of AGVs cross them
simultaneously. Then we need a simple but smart system for
controlling the AGVs without any collision. In the control of
AGVs, rapid response is necessary for dealing with instantaneous
changes in a system. Thus, it is expected that D-Wave 2000Q can
provide a method for establishing the future infrastructure for
controlling AGVs because it can output approximate solutions in
a few tens of microseconds. The practical problem on facilities
in actual factory has not been considered yet in the context of
practical application of QA.

The remaining part of the paper is organized as follows: In
the next section, we formulate the control of AGVs as the QUBO
problem, which can be solved using D-Wave 2000Q. The solution
does not always satisfy certain constraints for controlling AGVs,
and output solutions must be postprocessed. We explain how to
attain reasonable solutions via the postprocessing. In the third
section, we solve the QUBO problem via D-Wave 2000Q and the
corresponding integer programming via the Gurobi Optimizer
(Gurobi Optimization, 2018) to check the validity of the solutions
from the quantum annealer. In the following section, we report
the results attained by D-Wave 2000Q and other solvers as
references. In the last section, we summarize our study and
discuss the direction of future work of the quantum annealer.

2. METHODS

We give the Ising model or QUBO problem for controlling
AGVs in this section. Below we demonstrate their movements
in the Japanese actual factory following our formulation, but
it is generic and not specific to individual situations. We do
not formulate the entire plan as QUBO problem to control all
AGVs simultaneously. This is one of the essential bottleneck
of the current version of quantum annealaer. We must reduce
the number of binary variables to describe the problems within
the maximum number of qubits in the quantum annealer, and
simplify the formulation as far as possible. We consider iterative
scheme to provide an adequate route for each AGV during time
period T. At time t0, we gather information on the location,
xi, and the task, si, distributed to each AGV. We solve our
QUBO problem and employ its solution to control the AGVs
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during time period T. After moving the AGVs at t0 + T, we
again gather information on the current situation and iterate the
above procedure.

We focus on a controlling plan in time period T. We define
the binary variable for each AGV as qµ,i = 0, 1, where µ is the
index for a route and i is that for an AGV. The index of the
route is selected from a set of routes, M(xi, si), where si is the
given task for the i-th AGV. The index of i runs from 1 to N,
which is the number of AGVs. The set of routes is constructed a
priori following the tasks and the structure of the factory in which
the AGVs run. One of the indicators for representing efficiency
of the controlling AGVs is their waiting rate. The waiting rate
is calculated by the ratio of the number of stopping AGVs and
the total number of AGVs. However it is not straightforward to
formulate the cost function to minimize the waiting rate. Instead
we simply maximize the movements of AGVs while avoiding the
collisions between them as

E(q) = −

N
∑

i=1

∑

µ∈M(xi ,si)

dµqµ,i

+λ1

N
∑

i=1





∑

µ∈M(xi ,si)

qµ,i − 1





2

+λ2

∑

e∈E

T
∑

t=1





N
∑

i=1

∑

µ∈M(xi ,si)

Fµ,t,eqµ,i − 1





2

, (2)

where E denotes all edges of the network along which the AGVs
move in the factory, λ1 and λ2 are predetermined coefficients,
and dµ is the length of the route µ. The first term in Equation
(2) is to achieve an efficient control of the AGVs, we define the
simple cost function for increasing the total length in traveling
of the AGVs. We count the total length of the routes employed
by each AGV dµqµ,i. The second and third terms represent
the penalties for avoiding unfeasible solutions. The second term
ensures that each AGV qµ,i select a single route. The third term
avoids collision between different AGVs for each t, which ranges
from t = 1 to t = T and each e, which denotes an edge in
the routes for Fµ,t,e 6= 0 in the factory. Here we define a binary
quantity for characterizing the µ-th route as Fµ,t,e with 0 and 1.
For each route, Fµ,t,e = 1 on the edge occupied by the selected
route, µ, at time t. On the contrary, Fµ,t,e = 0 on the edge
unoccupied by the selected route, µ, at time t.

We here add a comment on the relationship of our problem
with the previous study for reducing the traffic flow of taxis
in the literature (Neukart et al., 2017). The similar formulation
was proposed for the traffic-flow optimization of moving
taxis. However, the previous study did not consider the time
dependence of Fµ,t,e. In the present study, we assume that the
speed of the AGVs is almost constant. In addition, the AGVs can
move as expected and can be predicted precisely. They did not
also include the length of tours for each taxi and time dependence
on movement along the tour of each taxi. In order to more
clarify the connection with the previous study, let us expand the
third term in Equation (2). We then obtain a quadratic term as

λ2
∑

e∈E

∑T
t=1

(

∑N
i=1

∑

µ∈M(xi ,si)
Fµ,t,eqµ,i

)2
and a linear term

as −2λ2
∑N

i=1

∑

µ∈M(xi ,si)
dµqµ,i, because

∑

e∈E

∑T
t=1 Fµ,t,e =

dµ. When λ2 = 1, the first term in Equation (2) vanishes with
the resultant linear term and then the cost function (2) coincides
with that in the previous study. In this sense, the present study
is an extension of the previous one. We apply our formulation
straightforwardly to the optimization problem on the traffic flow
of taxis.

Once we formulate the QUBO problem, we immediately
generate the binary configurations as the outputs of the D-Wave
2000Q. We attain numerous outputs from D-Wave 2000Q for
the same QUBO problem in a short time. In our case, we set
the annealing time to attain a single output as 20 [µs] due to
limitation of the quantum coherence time. It is thus difficult to
certainly attain the ground state of the QUBO problem. In this
sense, the quantum annealer does not work well for solving the
optimization problem. The short annealing time is a bottleneck
of the D-Wave 2000Q in a sense. However the outputs can be
quickly attained. Let us here take the bottleneck as advantage of
the D-Wave 2000Q. We generate many of outputs from the D-
Wave 2000Q as sampling of binary configurations. The samples
follow the Gibbs-Boltzmann distribution of the QUBO problem
but with a finite strength of the quantum fluctuation as discussed
in the literature (Amin, 2015). However, the solutions employed
to control the AGVs must satisfy all constraints. We then filter
out the outputs that do not satisfy the constraints from those of
D-Wave 2000Q. As a result, we obtain feasible solutions without
collisions and the multiple selection of routes. We check the
efficiency of our postprocessed solutions in the next section to
verify the capability of the D-Wave 2000Q in a limited practical
application such as controlling the AGVs in factories.

We formulate the QUBO problem for the quantum annealer
to contribute to the practical application appearing in various
factories but we may utilize other solvers rather than the D-
Wave 2000Q. In the present study, we also test the Fujitsu digital
annealer (DA), which can solve the QUBOproblem quickly as the
D-Wave 2000Q (Tsukamoto et al., 2017; Aramon et al., 2018).

In order to check the validity of our QUBO problem, which
is not a direct formulation of the efficiency controlling the
AGVs, we solve it in an adequate way. Our formulation can be
reformulated as the integer programming as

max
q







N
∑

i=1

∑

µ∈M(xi ,si)

dµqµ,i







, (3)

s.t.
∑

µ∈M(xi ,si)

qµ,i = 1 ∀i and

N
∑

i=1

∑

µ∈M(xi ,si)

Fµ,t,eqµ,i = 1 ∀t, ∀e.

We solve this integer programming by the branch and bound
method via the Gurobi Optimizer (Gurobi Optimization, 2018)
to confirm validity of our formulation.

We describe our whole system for controlling the AGVs in
Figure 1. In order to shorten the time of the whole procedure
to control the AGVs, we prepare a database that stores the set
of routes when we create the QUBO during the time period T.
In advance, we generate the shortest paths from an origin to a
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FIGURE 1 | Our system for controlling AGVs. In the sector of classical computer, we prepare the QUBO at each time according to the current situation of the factory

(xi , si ). For this task, we have database storing the set of routes.

destination for each task. We divide the shortest paths into sets
of several vertices at the longest vT, where v is the maximum
speed of the AGVs, and store them. When we build the QUBO
matrix, we only elucidate a vertex set included in a part of the
shortest paths for achieving the given task beginning at xi up to
the reachable position at the end of period T. For instance, let us
consider the case as in Figure 1. We take the first AGV at x1 = 8
at t = 0, which has the shortest path of the route for achieving its
task consisting of the node set {8, 9, 7, 4, 5, 6}. Then, we prepare
the route set as {8}, {8, 9}, {8, 9, 7}, {8, 9, 7, 4}, {8, 9, 7, 4, 5}, and
{8, 9, 7, 4, 5, 6}, which indicate “stop,” “1 step ahead,” and “2
steps ahead,” etc.. The second AGV at x2 = 1 at t = 0 has
the route set at {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, and
{1, 2, 3, 4, 5, 6}. In order to increase the total length of the routes,
two AGVs prefer to select {8, 9, 7, 4, 5, 6} and {1, 2, 3, 4, 5, 6},
respectively. However the third term in Equation (2) does not
allow this solution. The overlap between two routes increases
the value of f (q). The minimization of f (q) avoids collision
between two AGVs and select the solution with {8, 9, 7, 4} and
{1, 2, 3, 4, 5, 6}, or {8, 9, 7, 4, 5, 6} and {1, 2, 3, 4}. The solution of
q comes from the D-Wave 2000Q, the digital annealer etc.. in
short time. As detailed below, we need to filter out the infeasible
solutions satisfying the constraints for safely controlling the
AGVs in practice. The whole time for the above procedure
should be short for efficient control of the AGVs. We ere utilize
the current version of the quantum annealer, which does not
necessarily find the optimal solutions of our QUBO problem but
quickly generates feasible solutions. Belowwe confirm availability
of the D-Wave 2000Q in our proposed system by simulating

the whole system utilizing the feasible solutions attained from
our scheme.

3. RESULTS

In this section, we report the results attained by iteratively solving
the QUBO problem by using the D-Wave 2000Q at each time
period for controlling the AGVs. For proving the efficiency of
our method, we prepare a simulation environment for an actual
factory as shown in Figure 2. The map is one of the actual
factories in Japan. Although we below take a single map as a test
of our formulation, we prepare different situations by increasing
the number of AGVs and changing initial conditions. These are
the essentially different situations in terms of that we attain a
completely different matrix Q.

First, we test our formulation in the real setting of the actual
factory. The factory usually utilizes 10 AGVs for product delivery,
and the AGVs move simultaneously along four fixed routes
according to predetermined tasks. We generate six candidates
movement of each AGV. Thus the maximum size of the QUBO
matrix is 60, which is embeddable in the D-Wave 2000Q. Notice
that the QUBO matrix becomes very sparse in our formulation.
Thus we further enlarge the size of the problem without an
efficient embedding program (Okada et al., 2019a,c). The speed
of each AGV is 0.5 m/s. The distance between nodes is 10 m.

We simulate the controlled AGV movement following
the results by the following different methods. One is the
conventional method, and the other is our method attained by
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FIGURE 2 | Factory used in the present study. In this factory, 10 AGVs move

along a road and complete their tasks.

the outputs from D-Wave 2000Q. Notice that the conventional
method for controlling the AGVs is a rule-based method at every
intersection in the actual factory. The rule is that when the AGVs
require the same intersection route, only one AGV can move in
and out at the intersection. For example, when two AGVs require
the same intersection, one AGV waits until the other AGV leaves
the intersection. The AGVs that move along the circumference
of the factory have higher priority for entering an intersection
for increasing the working rate. On the other hand, we solve the
QUBO problem via D-Wave 2000Q at each time period. The time
period is set to be 3 s, namely T = 3 [s]. We set the parameters
as λ1/(1 + λ2) = 1.0 and λ2/(1 + λ2) = 2.0. Because D-Wave
2000Q does not deal with large elements of QUBO matrix Qij,
the elements of the QUBO matrix is rescaled within the range
of the available magnitude. D-Wave 2000Q solves the QUBO
problem 1000 times for finding reasonable solutions. We filter
the solutions that do not satisfy the constraints and select one of
the reasonable solutions formoving the AGVs further. The AGVs
move following the selected solution during the time period of 3
s. The solution indicates the movement in the next 5 s. Thus, the
movement of the AGVs is updated before they reach the end of
the given route.

First the results attained by the conventional method and D-
Wave 2000Q are shown in Figure 3. We simulate the AGVs in the
actual factory for 1,000 s and indicate the accumulated waiting
time by circles. The waiting rate is calculated by the ratio of
the number of stopping AGVs and the total number of AGVs.
Several circles represent the locations that frequent traffic jams
of the AGVs happened. The size of a circle is proportional to
the accumulated waiting time of the AGVs at that point. In
the case of the conventional method, the time average of the
waiting rate converges to 20%. On the other hand, in the case
with the D-Wave 2000Q, It can be seen from Figure 3 that the
number of circles, which represent the accumulated waiting time,
is considerably reduced compared to the conventional method.
The time average of the waiting rate converges to 5%. The actual
movement of the AGVs from an initial condition is shown in
the Supplemental Video Files. Compared to the result of the
conventional method, the AGVs move smoothly following the
solution attained by our method with the D-Wave 2000Q. The
readers can find the smooth movements of the AGVs in the
Supplemental Video Files.

FIGURE 3 | Comparison among the solvers: (upper) Conventional method and

(bottom) D-Wave 2000Q. The green dots denote the locations of the AGVs at

the end. The blue circles represent the accumulated waiting time for the AGVs.

4. OTHER SOLVERS AND VALIDITY OF
FORMULATION

It is not necessary to solve our QUBO problem using D-Wave
2000Q; one can utilize other solvers. One method is the DA,
which solves the QUBO problem using an improved version of
SA. Notice that the DA can solve the QUBO problem with a
large number of binary variables compared to D-Wave 2000Q.
The number of binary variables in our QUBO problem is 60,
which is the product of the actual number of the AGVs (10) in
the Japanese factory and the number of candidates of routes (6),
which is set a priori so as to be embedded on the D-Wave 2000Q.
Thus, the number of the binary variables is quite small. Even
though theDA does not exhibit its potential efficiency in this case,
we find that the time average of the waiting rate converges around
6% as shown in Figure 4. Similarly to the case with the D-Wave
2000Q, DA also leads to nice performance to control the AGVs
by use of our formulation.

In addition, in order to verify our formulation of the QUBO
problem, we solve the corresponding integer programming
through the relaxation of the binary variables to continuous
variables by utilizing the branch and bound method via Gurobi
Optimizer version 8.01 on a 4-core Intel i7 4770K processor
with 32 GB RAM. In this case, we attain the optimal solution
of the corresponding integer programming in a very short time
and utilize the optimal solution to control the AGVs. Similarly
to the previous results attained by the D-Wave 2000Q and DA,
the optimal solutions controlls the AGVs without collisions.

Frontiers in Computer Science | www.frontiersin.org 5 November 2019 | Volume 1 | Article 9

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Ohzeki et al. Control of AGVs by Quantum Annealer

FIGURE 4 | Comparison among the solvers: (upper) Fujitsu digital annealer

and (bottom) Gurobi Optimizer as a reference. The same symbols are used

in Figure 3.

The time average of the waiting rate converges to 7%, which
is slightly higher than the results of D-Wave 2000Q and DA.
This is due to stochasticity of D-Wave 2000Q and the DA.
The cost function itself is not necessarily a direct indicator of
performance. Thus the optimal solution for the cost function is
not always optimal for the actual performance in terms of the
waiting rate. Similar phenomena appear in machine learning.
Generalization performance, which is the measure of potential
power in machine learning but not directly related to the cost
function to be optimized, can be enhanced via stochastic methods
to optimize cost functions. In particular, QA actually leads to
better generalization performance, as shown in the literature
(Ohzeki et al., 2018a). This is indirect evidence of the robustness
of the solutions in the wide-flat minimum attained in the
quantum annealer as reported in the literature (Kadowaki and
Ohzeki, 2019).

In order to assess the typical performance of our QUBO
problem, we repeat the iterative optimization for controlling the
AGVs at each time period starting from the same initial condition
10 times. Because the D-Wave 2000Q and DA have stochasticity,
we compute the average and maximum performance, as shown
in Table 1. As shown in Table 1, the variances among the
different runs are small for each solver. The Gurobi Optimizer
always leads to the optimal solutions, but the waiting rates
are not less than the results obtained by D-Wave 2000Q and
DA. This is because the optimal solutions do not always lead
to the best control of the AGVs in terms of the waiting rate.
Our QUBO problem is not directly related to the waiting
rate. In order to reduce the waiting rate, we add another

TABLE 1 | Working rates of the AGVs obtained by the conventional method,

D-Wave 2000Q, Fujitsu digital annealer, Gurobi Optimizer, and modified

optimization problem for Gurobi Optimizer.

2pt Conventional D-Wave

2000Q

Fujitsu digital

annealer

Gurobi Gurobi +

Average 80 94.2± 1.2 93.4± 1.2 93 96

Max 80 96 94 93 96

constraint for the AGVs such that if several AGVs reach the
same intersection, the AGV with more following AGVs is
preferentially allowed to enter the intersection. We solve the
improved integer programming with the additional constraint by
employing the Gurobi Optimizer and also show its efficiency in
Table 1. As shown in Table 1, the waiting rate is reduced by the
improved integer programming and the result is comparable with
the D-Wave 2000Q and DA with stochasticity. As well known,
the integer programming can be easily improved by considering
deeply the structure of the target problem. In addition, the
digital computer can accept any formulation of the integer
programming. This is themost advantage of the digital computer.
The quantum annealer is not acceptable for an intricate QUBO
problem due to the limitation of the quantum device. However
our QUBO problem is simple but valuable for the quantum
annealer to control the AGV in the factory, which is one of
the important problems in industry. This is the first evidence
showing possibility for the quantum annealer to contribute on
the practical application although it has many bottlenecks to
be solved.

Below, we discuss the efficiency of the solvers from another
point of view, the computational time. We investigate the
“actual” computational time, which is obtained in a standard-
user environment, and the quality of the attained solutions
against the increase in the number of the AGVs and candidate
routes. We prepare a hundred of different initial locations of the
AGVs such as each pair of the AGVs encounter at an intersection
and solve the optimization problem. We report the comparison
results in average and variance below.

The D-Wave 2000Q takes 20 µs, which is predetermined by
users, to once solve the optimization problem in the quantum
chip with superconducting qubits. However preprocessing
and postprocessing for preparation to solve the optimization
problem, the latency of the network when we utilize the D-
Wave 2000Q via cloud service, and the queueing time can not
be avoided. Thus the actual computational time takes a little
bit longer. The D-Wave 2000Q outputs many samples of the
solutions once. We set the number of samples as 1,000 and
measure the actual computational time. We then estimate the
actual computational time per output sample as 1.39(33) ms for 9
spins, 1.33(11) ms for 21 spins, 1.51(5) ms for 30 spins, 1.45(12)
ms for 39 spins, 1.90(16) ms for 51 spins, and 2.22(22) ms for 60
spins. These computational times per output sample are only to
solve the QUBO problems without any assurance of precision of
the attained solutions. The probability for attaining the ground
state P0 gradually decreases as the number of spins increases. In
fact, P0 = 1.00 for 9 spins, P0 = 0.99(6) for 21 spins, P0 = 0.97(2)
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for 30 spins, P0 = 0.91(1) for 39 spins, P0 = 0.87(2) for 51 spins
and P0 = 0.74(2) for 60 spins.

The number of binary variables consists of the multiplication
of that of the AGVs and the routes. The computational time
drastically increases for the case of D-Wave 2000Q beyond 60
spins. This is due to the limitation of the number of binary
variables to be solved simultaneously. We solve the case with
a larger number of binary variables by utilizing qbsolv, which
divides the original problem into a number of small problems. To
iteratively use D-Wave 2000Q, we must wait for several seconds
owing to the job queue via the cloud service provided by the D-
Wave systems Inc. at each iteration to solve the small problems.
The actual computational time per output sample and iteration is
1.80(44) ms for 90 spins, 1.77(59) ms for 399 spins, and 1.37(53)
ms for 900 spins. The iteration numbers become 2 × 10 for
90 spins, 8 × 10 for 399 spins, and 33 × 10 for 900 spins.
The former number in the product is the number of division
of the original large problem into small subproblems, and the
latter one is that of repetition to solve the optimization problem.
Thus, the actual computational time can be extremely long. In
addition, the probabilities for attaining the ground state get worse
as P0 = 0.27(12) for 90 spins P0 = 0.03(5) for 399 spins and
P0 = 0.001(9) for 900 spins. This is a weak point to employ the
D-Wave 2000Q to solve the QUBO problem. Although it seems
that the computational time does not depend on the number of
binary variables, the probability for attaining the ground state
gradually decreases as the number of binary variables increases.
On the other hand, the Gurobi Optimizer leads to the optimal
solutions for each case. Its computational time to attain the
optimal solution depends on the number of binary variables.
2.79(6) ms for 30 spins, 3.46(5) for 60 spins 4.25(6) for 90 spins,
and 8.70(6) ms for 400 spins.

On the other hand, for the DA, the machine time is set to
be enough to solve the optimization problem about 8 ms. The
actual computational time per output sample takes a little bit
longer than the machine time as 0.216(2) s for 9 spins, 0.219(4)
s for 21 spins, 0.222(6) s for 30 spins, 0.220(7) s for 39 spins,
and 0.232(9) for 51 spins, 0.240(11) for 60 spins, 0.230(6) ms for
90 spins, 0.336(18) s for 399, and 0.519(32) ms for 900 spins.
Up to 1,024 spins, the current version of the DA can solve
once the optimization problem without dividing it into small
subproblems. This is an advantage point of the DA in comparison
with the D-Wave 2000Q. In addition, the probability for attaining
the ground state P0 is relatively higher compared to that of the
D-Wave 2000Q as P0 = 1.0 for 9, 21, 30, 39, and 51 spins, P0 =

1.000(5) fpr 60 spins, P0 = 0.97(3) for 90 spins, P0 = 0.71(3) for
399 spins, and 0.37(12) for 900 spins. Notice that the higher value
of the probability for attaining the ground state is obtained by
tuning the annealing schedule. Instead, the actual computational
time takes longer.

We compute the time to solutions (TTS) defined as

TTS(p) = tc
log(1− p)

log(1− P0)
, (4)

where tc is the actual computational time per output sample and p
is a predetermined precision to attain the ground state. The time

FIGURE 5 | Comparison of the time to solution (TTS). The horizontal axis

denotes the number of AGV N and the vertical one represents time to solution

in seconds. The filled circles and squares denote the TTS obtained by D-Wave

2000Q and the DA, respectively. The outlined circles and squares represent

the actual computational time (upper bound of the TTS) by the D-Wave 2000Q

and the DA. In addition, we plot the actual computational time by the Gurobi

Optimizer by the triangles. The directions of the triangles distinguish the results

by different levels of the “presolve” option for the Gurobi Optimizer as “default,”

“none,” “conservative,” and “aggressive”.

to solution is an indicator of the performance of the solver in the
stochastic way.We show the comparison data of TTS (0.99) of the
D-Wave 2000Q and the DA and the actual computational time of
the Gurobi Optimizer in Figure 5. In the successful cases with
P0 = 1.0, we plot the actual computational time instead of the
TTS. The actual computational time per output sample can be
upper bound for the TTS.

5. CONCLUSIONS

We formulate the QUBO problem for controlling the AGVs in
the actual factory in Japan. This is the first step of the practical
application of the quantum annealer to the actual situation in
industry. In order to reduce the number of binary variables,
which is embeddable on the D-Wave 2000Q, we do not deal
with the whole control of the AGVs but iterate the procedure
in the predetermined time period, T = 3 s. The numbers of
the binary variables that can be solved within T = 3 s, which
is determined by the product of the numbers of AGVs and
routes, are up to ∼ 400 for D-Wave 2000Q with a technique
of division of the large problem, known as qbsolv, ∼ 90 for the
DA, and over 10,000 for the Gurobi Optimizer in terms of the
TTS and the actual computational time to attain the optimal
solution. Notice that, in order to control the AGVs, it is not
necessarily to find the optimal solutions. In this sense, the present
study discovers possibility of the current version of the quantum
annealer for contributing on the practical applications in the
actual situation in industry. We emphasize that our formulation
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is very simple to control the AGVs, which can bemapped into the
integer programming. The quantum annealer is not acceptable
for an intricate QUBO problem, as in our formulation, due
to the limitation of the quantum device. The digital computer
can accept any formulation of the integer programming. Thus
further improvements of our formulation will be achievable by
considering a better problem setting. This is the most advantage
of the digital computer. In this sense, this is the first evidence
showing possibility for the quantum annealer to contribute on
the practical application although it has many bottlenecks to
be solved.

Notice that we employ the actual computational time basically
to estimate the performance of the D-Wave 2000Q and the DA,
not the machine time. In future, if we can avoid the latency of
the communication and queuing time for dealing with the jobs
to solve the optimization problem in both of the devices via
cloud services, better efficiency can be achieved. In this sense,
the computational time of the D-Wave 2000Q and the DA can
be reduced significantly. For instance, the machine time for
solving the QUBO problem by the D-Wave 2000Q can be set to
be 20µs and that of the DA is 8 ms. The D-Wave 2000Q can
be a candidate for controlling the AGVs in real factories. The
time period was set in the present study following the current
situation of the real factory, in which several workers walks,
In the cases without any workers, the AGVs can move faster
than the setting of the present study. Then shorter response
time for controlling the AGVs is necessary. The next-generation
quantum annealer beyond the D-Wave 2000Q is expected as a
candidate for controlling the AGVs in such future factories. The
D-Wave quantum processing units continues to steadily grow
in number of qubits. The precision to find the ground state
getting better, the TTS becomes shorter. In this sense, the shorter
response time can be achieved and such future factories can be
created by the next-generation quantum annealer, although the
current version, the D-Wave 2000, is just a proof of concept.
In the intermediate stage, the hybrid computation of the digital

computer and the quantum annealer, or several simulations on
the digital hardware are valuable as discussed in the literatures
(Ohzeki, 2019; Waidyasooriya et al., 2019). Although the digital
computer works quite well at the level of our formulation only
with a few ingredients to control the AGVs, the present study
is the first step toward the efficient control of AGVs in future
factories as one of the candidates in the real-world application of
the QA.
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