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The effect of a high-frequency excitation on nontrivial solutions and bistability in a delayed Duffing oscillator with a delayed
displacement feedback is investigated in this paper. We use the technique of direct partition of motion and the multiple scales
method to obtain the slow dynamic of the system and its slow flow. The analysis of the slow flow provides approximations of the
Hopf and secondary Hopf bifurcation curves. As a result, this study shows that increasing the delay gain, the system undergoes a
secondary Hopf bifurcation. Further, it is indicated that as the frequency of the excitation is increased, the Hopf and secondary
Hopf bifurcation curves overlap giving birth in the parameter space to small regions of bistability where a stable trivial steady state
and a stable limit cycle coexist. Numerical simulations are carried out to validate the analytical finding.

1. Introduction

This paper concerns the effect of a high-frequency excitation
on the nontrivial solutions and on bistability dynamic of a
Duffing type oscillator with a delayed displacement feedback
in the form

ẍ + ηẋ + ω2x + βx3 + λx(t − τ) = 0, (1)

where η is the damping, ω is the natural frequency, β the
nonlinearity, and λ, τ are the amplitude and the time delay,
respectively. The parameters η, β and λ are assumed to be
small and positive. This equation may serve as the simplest
model for describing the dynamic of various controlled phys-
ical and engineering systems; see [1–3]. Other works have
been devoted to study the dynamic of a Duffing oscillator
under a delayed feedback control [4–6]. In addition, (1) has
been considered in [7] as a simple model for a vibration
problem in turning machine for modelling the nonlinear
generative effect in metal cutting [1] or for exploring the
control of a flexible beam in a simple mode approach [8].
On the other hand, numerous physical applications focusing
on bistability dynamic can be found in the literature [9, 10].
In [1, 11–13], attention has been paid to the linear stability
analysis of the trivial steady state of delayed oscillators of
type (1). While the investigation of stability of nontrivial
solutions in (1) has received little attention from analytical

view point, the influence of high-frequency excitation on
nontrivial steady state has not been tackled. In [12], for
instance, a detailed and systematic study on the dynamic of a
delayed Duffing oscillator was confined to the linear stability
analysis.

In this paper, we explore the bifurcation of a nontrivial
solution of (1) created in Hopf bifurcation, and we analyze
the influence of a high-frequency excitation on the bifurca-
tion diagram of this nontrivial state. We show analytically
and numerically that as the frequency of the excitation is
increased, bistability dynamic appears in small regions in
the parameter space causing the response of the system to
undergo possible jumps between two steady states.

2. Trivial Solution

We begin with a brief review of the stability chart of the trivial
solution x = 0 of (1) by considering its linear version

ẍ + ηẋ + ω2x + λx(t − τ) = 0. (2)

The stability analysis of the trivial solution is obtained using
the corresponding transcendental characteristic equation

s2 + ηs + ω2 + λe−τs = 0. (3)

This equation possesses infinitely many finite roots for λ /= 0
and τ /= 0. The stability occurs when two dominant roots of
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(3) are placed on the imaginary axis at the desired resonant
frequency, while other roots remain in the stable left half of
the complex plane. The imaginary characteristic roots are
s = ±iωc, where ωc is the resonance frequency and i =

√
−1.

The subscript c implies the crossing of the root loci on the
imaginary axis. We substitute s = ±iωc into (3), separate the
real and imaginary parts, eliminate the trigonometric terms
and we solve for the control parameters λ and τ. This yields
the stability diagram corresponding to the Hopf bifurcation
curves in the (λ, τ) parameter plane with the parametric
representation

λ =

√
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ω2 − ω2
c

)2
+
(

ηωc

)2
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1

ωc
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c
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, ℓ=1, 2, 3, . . . ,

(4)

where ℓ corresponds to the ℓth lobe from the left in the
stability diagram illustrated in Figure 1. The family of Hopf
curves ℓ = 1, 2, . . . are shown for the given parameters η1 =
0.067 and a1 = 0.02. In the dashed region bellow the Hopf
curve, the trivial solution is stable. Above this region, the
trivial equilibrium is unstable.

3. Nontrivial Solutions

Following [8], (1) can be viewed as the one mode model of
a hinged-clamped beam. Assume that the beam is subjected
to an axial high-frequency excitation of the form aΩ2 cosΩt,
where a is a nondimensional amplitude of excitation and
Ω is the excitation frequency; the quantity aΩ denotes the
excitation strength. Applying the standard method of direct
partition of motion [8, 14, 15], we can separate the dynamic
of (1) into a slow dynamic (at the time-scale of free system
oscillations) and the fast motions (at the rate of the fast
excitation). Since the slow motions, denoted by the variable
z, are of primary concern, the equation describing the slow
dynamic of the oscillator (1) reads

z̈ + ηż + ω2z + βz3 + λz(t − τ) = 0, (5)

where the frequency is now depends on the excitation
strength aΩ and given by [8]

ω =

√

1 +
π4

2
(aΩ)2. (6)

Now the method of of multiple scales [16] is applied to
explore the existence of nontrivial steady state. We assume
that damping, nonlinearity, and delay are small, and scaling
by introducing a small book-keeping parameter µ, (5) can be
recast as

z̈ + ω2z + µ
(

ηż + βz3 + λz(t − τ)
)

= 0. (7)

A first-order uniform expansion of the solution to (7) is
sought in the form

z
(

t;µ
)

= z1(T1,T2) + µz2(T1,T2) + O
(

µ2
)

, (8)
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Figure 1: Hopf bifurcation curves, taken from [8], for ℓ = 1, . . . , 4,
Ω = 100, η1 = 0.067, and a1 = 0.02.
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Figure 2: Amplitude of the periodic oscillation versus the time
delay as given by (10), β = 1.25, η = 0.067, λ = 1.2, and a1 = 0.02.

where the independent time scales are defined as T1 = t
and T2 = µt. It follows that the derivatives become d/dt =

D1 + µD2 and d2/dt2 = D2
1 + 2µD1D2 + µ2D2 where D

j
n =

∂ j/∂T
j
n. We follow, as usual, the classical steps of the multiple

scale method by substituting (8) into (7), using the notation

D
j
n = ∂ j/∂T

j
n, equating coefficients of like powers of µ,

and eliminating secular terms. The modulation equations of
amplitude R and phase θ of the periodic solutions are given
at first-order approximation by the system

dR

dt
= −µ

1

2
ηR + µ

λ

2ω
R sin(ωτ), (9a)

R
dθ

dt
= µ

3β

8ω
R3 + µ

λ

2ω
R cos(ωτ). (9b)

A fixed point in this slow flow corresponds to a periodic
motion in the original system (7). Solving for the fixed points
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Figure 3: Hopf and secondary Hopf bifurcation curves for different values of Ω; β = 1.25, η = 0.067, and a1 = 0.02. (a) Ω = 0, Hopf and
secondary Hopf curves; (b) Ω = 100, region I: stable trivial solution, region II: stable limit cycle, and region III: quasiperiodic solution; (c)
Ω = 150, region IV: multistability domain.

of dθ/dt = 0 in (9a) and (9b) we obtain the amplitude of the
periodic motion (limit cycle)

R = 2

√

−
λ

3β
cosωτ. (10)

Figure 2 plots the variation of this amplitude versus the time
delay τ. As it can be seen from this figure, the bifurcation
value of this limit cycle is τ = π/2.

Instead of employing the system (9a) and (9b), to obtain
the relation between the amplitude of the periodic solution,
R, and time delay, τ, as done in [12], we will take advantage
from this modulation system to determine the region of
existence of this periodic motion born by Hopf bifurcation.

The condition for the nontrivial solution (10) to be real
is

(4n− 3)π

2ω
� τ �

(4n− 1)π

2ω
, n = 1, 2, . . . . (11)

Substituting ω by its value given by (6), the condition (11)
becomes

(4n− 3)π

2
√

1 + π4(aΩ)2/2
� τ �

(4n− 1)π

2
√

1 + π4(aΩ)2/2
, n = 1, 2 . . . .

(12)

By differentiating once (9a), the stability of the nontrivial
solution can be discussed using the corresponding charac-
teristic equation

s2 +

(

1

2
η −

λ

2ω
sinωτ

)

s = 0 (13)
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Figure 4: Time trace of z(t); β = 1.25, a1 = 0.02, τ = 5, (a) region I, λ = 0.1, stable trivial solution, (b) region II, λ = 0.8, stable limit cycle,
(c) region III, λ = 1.2, quasiperiodic solution, and (d) region IV, λ = 2, τ = 2, multistability solutions.

and the critical value for tested sign of the nontrivial
eigenvalue

λcr =
ηω

sinωτ
. (14)

This eigenvalue is negative if λ < λcr for any time delay
τ and negative or positive on the rest of the (λ, τ) plane.
The bifurcation curves of the nontrivial steady states given
by (12) and (14), corresponding to the secondary Hopf
bifurcation, are illustrated in Figure 3(a) for Ω = 0. The
Hopf curves of Figure 1 are also plotted in this figure. In
Figures 3(b) and 3(c) are shown the Hopf and the secondary
Hopf curves for Ω = 100 and Ω = 150, respectively. Three
regions can be distinguished in Figure 3(b). The region I
(dashed zone) located bellow the Hopf curves corresponds
to the domain of stability of the trivial steady state z =
0. The region II (white zone) corresponds to the existence
domain of a stable limit cycle born by Hopf bifurcation

when crossing from region I to region II. In the region III
(antidashed zone), quasiperiodic oscillations resulting from
a secondary Hopf bifurcation take place when crossing from
region II to region III. It is worthy to notice that a similar
equation to (7) was studied numerically, and it was shown
that as the delay gain is increased, the system undergoes
a secondary Hopf bifurcations [12, 13, 17]. Figure 3(c)
indicates that by increasing the frequency Ω, the Hopf and
the secondary Hopf bifurcation curves overlap giving birth
to regions (dashed region IV in Figure 3(c)) on which a
stable trivial steady state and a stable limit cycle coexist.
To validate the analytical finding, we show in Figure 4
numerical time traces integration of (7) corresponding to
the different regions I, II, III, and IV of Figures 3(b) and
3(c). Figure 4(a) shows that the stable trivial equilibrium
in region I loses its stability, and a stable periodic solution
is born by Hopf bifurcation as illustrated in Figure 4(b).
Figure 4(c) indicates the existence of a quasiperiodic solution
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born by a secondary Hopf bifurcation (region III). Finally, it
can be seen from Figure 4(d) (corresponding to region IV)
that the trivial stable solution (dotted line) coexists with a
stable large amplitude limit cycle (solid line) indicating that
multistability can occur in small regions in the parameter
plane (λ, τ).

4. Conclusion

We have investigated the effect of a high-frequency excitation
on nontrivial steady-state solutions and bistability in a
delayed Duffing oscillator. The technique of direct partition
of motion and the multiple scales method were applied
to obtain the equation governing the slow dynamic of the
oscillator and the corresponding slow flow. The nontrivial
solutions of the slow flow were studied, and the secondary
Hopf bifurcation curves were obtained. It was shown that a
high-frequency excitation causes the Hopf and the secondary
Hopf diagrams to overlap giving rise to small regions in the
parameter space control (gain versus time delay) where a
stable equilibrium and a stable large amplitude limit cycle
may coexist. This coexistence may produce possible jumps
between the two steady states. This bistability regime can be
either desirable or undesirable depending on the application
under consideration. The analytical result of this work has
been confirmed using numerical simulations.
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