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Chapter 1

ROBUST SYNCHRONIZATION OF CHAOTIC

SYSTEMS BASED ON TIME-DELAYED FEEDBACK

CONTROL

H. Huang and G. Feng

Department of Manufacturing Engineering and Engineering Management,

City University of Hong Kong, Kowloon, Hong Kong,

hhuang@student.cityu.edu.hk; megfeng@cityu.edu.hk

The master-slave synchronization problem for chaotic Lur’e systems is
studied in this chapter based on time-delayed feedback control. It is as-
sumed that the master system of the synchronization scheme is subject
to noise disturbances. Delay-independent and delay-dependent synchro-
nization criteria are presented such that the controlled slave system can
robustly track the noise-disturbed master system with guaranteed H∞

performance. It is shown that the design of the time-delayed feedback
controller can be accomplished by means of the feasibility of linear ma-
trix inequalities. A simulation example is finally given to demonstrate
the effectiveness and performance of the developed approaches.

1.1. Introduction

Since the pioneering work of Pecora and Carroll [1], chaotic synchroniza-

tion has been an active research topic and achieved many successful appli-

cations, such as secure communication, chemical reactions and information

processing (see, e.g., [2–8]). On the other hand, the so-called Lur’e sys-

tems are regarded as a class of feedback systems whose forward path is

a linear time-invariant system and whose feedback path is a memoryless

(possibly time-varying) nonlinearity satisfying a sector condition [9]. As is

well known now, many nonlinear systems can be represented in this form,

such as Chua’s Circuit [10], n-scroll attractors [11] and hyperchaotic at-

tractors [12], and so on. The master-slave synchronization problem for

chaotic Lur’e systems has recently attracted considerable interest. It basi-

cally relates to give sufficient conditions for master-slave synchronization for

3
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identical or nonidentical Lur’e systems. A unified framework for synchro-

nization of dynamical systems was presented in [13], as well as the relation

between synchronization and global asymptotical stability. The absolute

stability theory was utilized in the development of synchronization condi-

tions for master-slave Lur’e systems via static and linear feedback in [4, 5].

By applying the vector modulation and either full static state feedback or

linear dynamic output error feedback, the authors in [14–18] investigated

the master-slave synchronization schemes for identical or nonidentical Lur’e

systems. A unifying definition for synchronization between stationary finite

dimensional deterministic dynamical systems was presented in [2]. An ex-

cellent overview of various methods for synchronization of chaotic systems

was available in [3].

It is also known that time delay is often encountered in various control

systems, which is one of the main sources for instability and poor perfor-

mance [19–21]. From the point of view of control, time-delayed systems

have received special attention over the past few years [22]. The propaga-

tion delay was firstly introduced into the chaotic synchronization problem

in [23]. The authors called this problem a phase sensitivity because of

the distance between two remote chaotic systems and showed that the ex-

istence of time delay may destroy synchronization. During the past few

years, the master-slave synchronization problem via time-delayed feedback

control has received much attention, and many results have been reported

in the open literature. In [24–27], several delay-independent and delay-

dependent synchronization conditions have been proposed to ensure the

error system to be globally asymptotically stable. However, it is worth

noting that in those works, the feedback gain matrices can be designed

only when a nonlinear programming problem corresponding to the derived

matrix inequalities conditions is solved. Recently, the linear matrix inequal-

ity (LMI) approach has been widely used in circuits, systems, and control

community, because it can be solved efficiently by the standard numeri-

cal packages [28, 29]. The authors in [30, 31] have presented some LMI

based synchronization criteria such that the controlled slave system can

track the master system. The existing results related to this issue can be

generally classified into two categories: delay-independent synchronization

criteria [24, 26, 27] and delay-dependent synchronization criteria [25, 30, 31].

The delay-independent conditions are irrespective of the size of time delay.

While the delay-dependent conditions are related to the size of time delay.

Generally, the delay-dependent conditions are considered to be less conser-

vative than the delay-independent conditions, especially when the size of
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time delay is small.

In recent years, a wide variety of synchronization approaches have been

proposed to handle the master-slave synchronization problem, which in-

cludes adaptive control [32, 33], fuzzy control [34, 35], coupling control [36],

manifold-based method [37], active control [38], impulsive-control method

[39], and time-delayed feedback approach [25, 27], etc. In this chapter,

our attention is focused on the master-slave synchronization problem for

chaotic Lur’e systems by using the time-delayed feedback control method.

In the synchronization scheme, the master system is assumed to be dis-

turbed by the exogenous noise input. The main objective of this chapter

is to study the master-slave synchronization for chaotic Lur’e systems with

guaranteed performance in H∞ sense. A delay-independent synchroniza-

tion criterion is first given such that the controlled slave system can robustly

track the master system. As mentioned above, the delay-independent con-

ditions are often more conservative than the delay-dependent conditions.

Then, delay-dependent conditions are presented to ensure the existence of

the desired time-delayed feedback controller such that the master system

and the slave system are synchronized. Moreover, several slack variables

are introduced to further reduce the conservatism of the synchronization

conditions. It is also shown that the design of the time-delayed feedback

controller can be achieved by solving some LMIs. Finally, the Chua’s Cir-

cuit system [10, 40] is used as an example to demonstrate the application of

the proposed time-delayed feedback controller design approaches and their

performance.

The rest of this chapter is organized as follows. The master-slave syn-

chronization scheme is formulated in Section 1.2 for chaotic Lur’e systems

with time-delayed feedback control, and some preliminaries are also given.

Section 1.3 is dedicated to presenting a delay-independent synchronization

criterion such that the existence of the feedback controller can be guaran-

teed by means of the feasibility of an LMI. In Section 1.4, delay-dependent

synchronization conditions without/with slack variables are obtained by

using the well-known Jensen’s inequality and a newly established bounding

technique, respectively, such that the controlled slave system can synchro-

nize the master system with guaranteed H∞ performance. An example with

simulation results is used to demonstrate the effectiveness of the developed

approach in Section 1.5, which is followed by conclusions in Section 1.6.
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1.2. Problem Formulation

Notations: The following notations adopted in this chapter are standard.

Let R denote the set of real numbers, R
n the n-dimensional Euclidean space

and R
n×m the set of all n×m real matrices. The superscript “T” stands for

matrix transposition. I is the identity matrix with appropriate dimension.

For a real square matrix X, the notation X > 0 (X ≥ 0, X < 0, X ≤

0) means that X is real symmetric and positive definite (positive semi-

definite, negative definite, negative semi-definite, respectively). For τ > 0,

C([−τ, 0]; Rn) denotes the family of continuous functions ϕ from [−τ, 0] to

R
n with the norm ‖ϕ‖ = sup

−τ≤ϑ≤0

|ϕ(ϑ)|, where | · | is the Euclidean norm

in R
n. Let L2[0,∞) be the space of square-integrable vector functions over

[0,∞). The shorthand notation diag{M1,M2, . . . , MN} denotes a block

diagonal matrix with diagonal blocks being the matrices M1,M2, . . . , MN .

The notation ∗ always denotes the symmetric block in a symmetric matrix,

e.g.,
[

X Y

∗ Z

]

=

[

X Y

Y T Z

]

.

Matrices, if not explicitly stated, are assumed to have compatible dimen-

sions. Sometimes, the arguments of a function will be omitted in the anal-

ysis when no confusion can arise.

Consider a master-slave synchronization scheme for chaotic Lur’e sys-

tems with time-delayed feedback control, in which the master system is

subject to noise input:

M :







ẋ(t) = Ax(t) + Bσ(Cx(t)) + Dw(t)

p(t) = Hx(t)

S :







ẏ(t) = Ay(t) + Bσ(Cy(t)) + u(t)

q(t) = Hy(t)

C : u(t) = M(p(t − τ) − q(t − τ))

(1.1)

with master system M, slave system S and time-delayed feedback controller

C. Fig. 1.1 is a block diagram of the master-slave synchronization scheme

(1.1). The master and slave systems are the so-called Lur’e systems with

state vectors x(t), y(t) ∈ R
n and output vectors p(t), q(t) ∈ R

l, respectively.

w(t) ∈ R
m is the disturbance term belonging to L2[0,∞). The real matrices

A ∈ R
n×n, B ∈ R

n×nh , C ∈ R
nh×n, D ∈ R

n×m and H ∈ R
l×n are known
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constant matrices. τ ≥ 0 is a constant time delay. As in [9, 15, 27], the

diagonal nonlinearity σ(·) : R
nh 7→ R

nh satisfies a sector condition with

σi(·) (i = 1, 2, . . . , nh) belonging to sector [0, k]. That is,

σi(ξ)(σi(ξ) − kξ) ≤ 0,∀ ξ, for i = 1, 2, . . . , nh. (1.2)

)(tpMaster System Delay τ

)(tu

Slave System)(tq

Delay )( τ−tq

+
− Control System)( τ−tp

τ

Fig. 1.1. Time-delayed feedback control based master-slave synchronization scheme.

The scheme aims at robustly synchronizing the slave system S to the

noise-perturbed master system M with a guaranteed performance by uti-

lizing the time-delayed feedback to the slave system S with control signal

u(t) ∈ R
n with feedback gain matrix M ∈ R

n×l and time delay τ .

Remark 1.1. The time-delayed feedback control based master-slave syn-

chronization scheme for Lur’e systems is assumed to be subject to noise

perturbation, which may be more practical than those studied in [5, 18, 24,

26, 27]. When w(t) = 0 and τ = 0, the master-slave synchronization scheme

(1.1) reduces to the one studied in [5, 18]. When w(t) = 0, the master-slave

synchronization scheme (1.1) degenerates into the one discussed in [27].

The purpose of this chapter is to develop several approaches to dealing with

the guaranteed performance synchronization problem for chaotic Lur’e sys-

tems. It should be pointed out that based on the developed approaches,

some delay-independent and delay-dependent synchronization criteria can

be easily obtained for Lur’e systems studied in [5, 18, 24, 26, 27].

Define the errors e(t) = x(t)−y(t) and z(t) = p(t)− q(t), then the error

system can be obtained as follows:

E : ė(t) = Ae(t) − MHe(t − τ) + Bη(Ce(t), y(t)) + Dw(t), (1.3)

z(t) = He(t), (1.4)

with η(Ce(t), y(t)) = σ(Ce(t) + Cy(t)) − σ(Cy(t)).
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Let C =
[

c1 c2 . . . cnh

]T
with ci ∈ R

n (i.e., cT
i denotes the ith

row vector of C). As in [4, 18, 27], to obtain synchronization criteria for

the master-slave synchronization scheme (1.1), the following assumption is

made:

A: The nonlinearity η(Ce, y) belongs to sector [0, k], namely,

0 ≤
ηi(c

T
i e, y)

cT
i e

=
σi(c

T
i e + cT

i y) − σi(c
T
i y)

cT
i e

≤ k,

∀e, y; i = 1, 2, . . . , nh(cT
i e 6= 0). (1.5)

Then, it follows from (1.5) that

ηi(c
T
i e, y)(ηi(c

T
i e, y) − kcT

i e) ≤ 0, ∀ e, y; i = 1, 2, . . . , nh. (1.6)

The objective of this chapter is to develop several delay-independent

and delay-dependent approaches to the design of the time-delayed feedback

controller, such that controlled slave system S can robustly synchronize

the master system M with a guaranteed performance in the H∞ sense.

That is, given a prescribed level of noise attenuation γ > 0, find a suitable

time-delayed feedback controller C such that the error system (1.3) with

w(t) = 0 is globally asymptotically stable, and

‖z(t)‖2 < γ‖w(t)‖2 (1.7)

under zero-initial conditions for all nonzero w(t) ∈ L2[0,∞), where the

norm ‖ · ‖2 is defined as

‖ψ‖2 :=

√

∫ ∞

0

ψT (t)ψ(t)dt.

In this case, the master system M and the slave system S are said to be

synchronized with guaranteed H∞ performance γ.

We end this section by recalling two lemmas.

Lemma 1.1 (Schur complement [28]). The LMI

[

S11 S12

ST
12 −S22

]

< 0,

where S11 = ST
11, S22 = ST

22, is equivalent to

S22 > 0, S11 + S12S
−1
22 ST

12 < 0.
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Lemma 1.2 (Jensen inequality [19]). For any constant matrix X ∈

R
m×m,X = X T , scalar δ > 0, vector function ω : [0, γ] → R

m such that

the integrations concerned are well defined, then

δ

∫ δ

0

ωT (s)Xω(s)ds ≥

(
∫ δ

0

ω(s)ds

)T

X

(
∫ δ

0

ω(s)ds

)

.

1.3. Delay-Independent Synchronization Criterion

First of all, a delay-independent approach is proposed to deal with the

master-slave synchronization problem of chaotic systems, which is appli-

cable to time delay of arbitrary size. An LMI synchronization condition

is derived for the design of time-delayed feedback controller, such that the

controlled slave system can robustly synchronize the noise-disturbed master

system with guaranteed H∞ performance.

Theorem 1.1. Assume that the feedback gain matrix M is given. The

master system M and the slave system S are synchronized with guaranteed

H∞ performance γ, if there exist real matrices P > 0, Q > 0 and a diagonal

matrix Λ = diag(λ1, λ2, . . . , λnh
) > 0 such that the following LMI holds:













Ω1 −PMH PB + kCT Λ PD HT

∗ −Q 0 0 0

∗ ∗ −2Λ 0 0

∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ −I













< 0, (1.8)

where

Ω1 = PA + AT P + Q.

Proof. We first show that the error system (1.3) with w(t) = 0 is globally

asymptotically stable under the condition of Theorem 1.1. When w(t) = 0,

the error system (1.3) can be rewritten as:

ė(t) = Ae(t) − MHe(t − τ) + Bη(Ce(t), y(t)). (1.9)

It is clear that the LMI (1.8) results in

Ω2 =





Ω1 −PMH PB + kCT Λ

∗ −Q 0

∗ ∗ −2Λ



 < 0. (1.10)
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It follows from (1.6) that for any diagonal matrix

Λ = diag(λ1, λ2, . . . , λnh
) > 0,

0 ≤ −2

nh
∑

i=1

λiηi(c
T
i e, y)(ηi(c

T
i e, y) − kcT

i e)

= −2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+2keT (t)CT Λη(Ce(t), y(t)). (1.11)

Choose a Lyapunov functional candidate as

V1(t) = eT (t)Pe(t) +

∫ t

t−τ

eT (s)Qe(s)ds, (1.12)

where P > 0, Q > 0 are to be determined. Then, by directly calculating

the time-derivative of V1(t) along the trajectory of system (1.9) and taking

(1.11) into account, one has

V̇1(t) = 2eT (t)P ė(t) + eT (t)Qe(t) − eT (t − τ)Qe(t − τ)

= eT (t)(PA + AT P )e(t) − 2eT (t)PMHe(t − τ)

+2eT (t)PBη(Ce(t), y(t)) + eT (t)Qe(t)

−eT (t − τ)Qe(t − τ)

≤ eT (t)(PA + AT P + Q)e(t) − 2eT (t)PMHe(t − τ)

+2eT (t)PBη(Ce(t), y(t)) − eT (t − τ)Qe(t − τ)

−2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+2keT (t)CT Λη(Ce(t), y(t))

= σT
1 (t)Ω2σ1(t), (1.13)

with

σ1(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t))
]T

.

Since Ω2 < 0, there must exist a sufficiently small ǫ > 0 such that

Ω2 + diag{ǫI, 0, 0} ≤ 0,

which implies

V̇1(t) ≤ −ǫeT (t)e(t).

According to the stability theory of [20], the error system (1.9) is globally

asymptotically stable.
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Next, to establish the H∞ performance to the master-slave synchroniza-

tion scheme (1.1) under zero initial condition, we introduce

J(t) =

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt. (1.14)

Under the zero initial condition, from (1.12) one has V1(0) = 0 and V1(t) ≥ 0

for t > 0. Then

J(t) ≤

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt + V1(t)|t=∞ − V1(0)

=

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t) + V̇1(t)
]

dt. (1.15)

Following the similar line of the proof of (1.13), it is not difficult to derive

that

zT (t)z(t) − γ2wT (t)w(t) + V̇1(t) ≤ σT
2 (t)Ω3σ2(t) (1.16)

with

σ2(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t)) wT (t)
]T

,

Ω3 =









Ω1 + HT H −PMH PB + kCT Λ PD

∗ −Q 0 0

∗ ∗ −2Λ 0

∗ ∗ ∗ −γ2I









.

By employing Lemma 1.1, the LMI (1.8) is equivalent to Ω3 < 0. From

(1.16), one thus has that for w(t) 6= 0

zT (t)z(t) − γ2wT (t)w(t) + V̇1(t) < 0. (1.17)

which implies J(t) < 0 for w(t) 6= 0. That is to say, ‖z(t)‖2 < γ‖w(t)‖2.

Therefore, the master system M and the slave system S are synchronized

with guaranteed H∞ performance γ. This completes the proof. ¤

The following theorem presents a delay-independent synchronization

controller design method to ensure that the slave system S can synchro-

nize the master system M with guaranteed H∞ performance γ, which is

formulated by means of the feasibility of an LMI.

Theorem 1.2. Let γ > 0 be a prescribed constant scalar. The master

system M and the slave system S are synchronized with guaranteed H∞
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performance γ, if there exist real matrices P > 0, Q > 0, G and a diagonal

matrix Λ = diag(λ1, λ2, . . . , λnh
) > 0 such that the following LMI holds:













Ω4 −GH PB + kCT Λ PD HT

∗ −Q 0 0 0

∗ ∗ −2Λ 0 0

∗ ∗ ∗ −γ2I 0

∗ ∗ ∗ ∗ −I













< 0, (1.18)

where

Ω4 = PA + AT P + Q.

And the feedback gain matrix can be designed as

M = P−1G.

Proof. It can be directly deduced from Theorem 1.1 by applying the

change of the variable M = P−1G. ¤

Remark 1.2. It should be noted that the performance index γ described

in Theorem 1.2 can be optimized by the convex optimization algorithm [28,

29].

Algorithm 1.1. min
P,Q,G,Λ

γ2, subject to the LMI (1.18).

Remark 1.3. The master-slave synchronization scheme (1.1) with w(t) = 0

was studied in [26, 27], where the obtained delay-independent synchroniza-

tion criteria were expressed in terms of matrix inequalities. From Theorems

1.1 and 1.2, an LMI based synchronization condition can be immediately

derived shown in the following corollary.

Corollary 1.1. The master-slave synchronization described in (1.1) with

w(t) = 0 can be achieved with M = P−1G, if there exist real matrices

P > 0, Q > 0, G and a diagonal matrix Λ > 0 such that




Ω4 −GH PB + kCT Λ

∗ −Q 0

∗ ∗ −2Λ



 < 0, (1.19)

where Ω4 is the same as the one in Theorem 1.2.

In general, the delay-independent synchronization condition is viewed

to be more conservative than the delay-dependent counterpart, especially

when the size of time delay is small. It is thus worth developing delay-

dependent synchronization criteria. The following section is to this purpose.
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1.4. Delay-Dependent Synchronization Criteria

By utilizing the well-known Jensen inequality [22], a delay-dependent syn-

chronization condition is first proposed in this section.

Theorem 1.3. Assume that the feedback gain matrix M is given. The

master system M and the slave system S are synchronized with guaranteed

H∞ performance γ, if there exist real matrices P > 0, Q > 0, R > 0 and a

diagonal matrix Λ = diag(λ1, λ2, . . . , λnh
) > 0 such that the following LMI

holds:


















Σ1 −PMH + R Σ2 PD τAT R HT

∗ −Q − R 0 0 −τHT MT R 0

∗ ∗ −2Λ 0 τBT R 0

∗ ∗ ∗ −γ2I τDT R 0

∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ −I



















< 0, (1.20)

where

Σ1 = PA + AT P + Q − R,

Σ2 = PB + kCT Λ.

Proof. As in the proof of Theorem 1.1, we first prove that the error

system (1.3) with w(t) = 0 is globally asymptotically stable under the

condition of Theorem 1.3. It follows from the LMI (1.20) that

Σ3 =









Σ1 −PMH + R Σ2 τAT R

∗ −Q − R 0 −τHT MT R

∗ ∗ −2Λ τBT R

∗ ∗ ∗ −R









< 0. (1.21)

By using Lemma 1.1, the LMI (1.21) is equivalent to Σ4 + τ2ΣT
5 RΣ5 < 0,

with

Σ4 =





Σ1 −PMH + R PB + kCT Λ

∗ −Q − R 0

∗ ∗ −2Λ



 ,

Σ5 =
[

A −MH B
]

.

Then, there must exist a sufficiently small scalar ǫ > 0 such that

Σ4 + τ2ΣT
5 RΣ5 + diag{ǫI, 0, 0} ≤ 0. (1.22)
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In addition, for any diagonal matrix Λ = diag(λ1, λ2, . . . , λnh
) > 0,

0 ≤ −2

nh
∑

i=1

λiηi(c
T
i e, y)(ηi(c

T
i e, y) − kcT

i e)

= −2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+2keT (t)CT Λη(Ce(t), y(t)). (1.23)

Choose a Lyapunov functional candidate as:

V2(t) = eT (t)Pe(t) +

∫ t

t−τ

eT (s)Qe(s)ds

+τ

∫ 0

−τ

∫ t

t+θ

ėT (s)Rė(s)dsdθ, (1.24)

where P > 0, Q > 0 and R > 0 are to be determined. By calculating the

time-derivative of V2(t) along the solution of system (1.9), one can derive

V̇2(t) = 2eT (t)P ė(t) + eT (t)Qe(t) − eT (t − τ)Qe(t − τ)

+τ2ėT (t)Rė(t) − τ

∫ t

t−τ

ėT (s)Rė(s)ds

= eT (t)
[

PA + AT P + Q
]

e(t)

−2eT (t)PMHe(t − τ) + 2eT (t)PBη(Ce(t), y(t))

−eT (t − τ)Qe(t − τ) + τ2ėT (t)Rė(t)

−τ

∫ t

t−τ

ėT (s)Rė(s)ds. (1.25)

By Lemma 1.2, one has

−τ

∫ t

t−τ

ėT (s)Rė(s)ds ≤ −
(

∫ t

t−τ

ė(s)ds
)T

R

∫ t

t−τ

ė(s)ds

= −[e(t) − e(t − τ)]T R[e(t) − e(t − τ)]

= −eT (t)Re(t) + 2eT (t)Re(t − τ)

−eT (t − τ)Re(t − τ). (1.26)
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Therefore, from (1.22), (1.23), (1.25) and (1.26), it is not difficult to derive

V̇2(t) ≤ eT (t)
[

PA + AT P + Q − R
]

e(t)

+2eT (t)(−PMH + R)e(t − τ) + 2eT (t)(PB + kCT Λ)η(Ce(t), y(t))

−eT (t − τ)(Q + R)e(t − τ) − 2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+τ2ėT (t)Rė(t)

= ξT
1 (t)

[

Σ4 + τ2ΣT
5 RΣ5

]

ξ1(t),

≤ −ǫeT (t)e(t), (1.27)

with

ξ1(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t))
]T

.

It follows from [20] that the error system (1.9) is globally asymptotically

stable.

Next, to establish the H∞ performance to the master-slave synchroniza-

tion scheme (1.1) under zero initial condition, we introduce

J(t) =

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt. (1.28)

Under the zero initial condition, it follows from (1.24) that V2(0) = 0 and

V2(t) ≥ 0 for t > 0. Then

J(t) ≤

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt + V2(t)|t=∞ − V2(0)

=

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t) + V̇2(t)
]

dt. (1.29)

Following the similar line of the proof of (1.27), it is easy to obtain that

zT (t)z(t) − γ2wT (t)w(t) + V̇2(t) ≤ ξT
2 (t)

[

Σ6 + τ2ΣT
7 RΣ7

]

ξ(t) (1.30)

with

ξ2(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t)) wT (t)
]T

,

Σ6 =









Σ1 + HT H −PMH + R PB + kCT Λ PD

∗ −Q − R 0 0

∗ ∗ −2Λ 0

∗ ∗ ∗ −γ2I









,

Σ7 =
[

A −MH B D
]

.
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By utilizing Lemma 1.1, the LMI (1.20) results in

Σ6 + τ2ΣT
7 RΣ7 < 0.

It follows from (1.30) that for w(t) 6= 0

zT (t)z(t) − γ2wT (t)w(t) + V̇2(t) < 0. (1.31)

and thus J(t) < 0 for any w(t) 6= 0. It leads to ‖z(t)‖2 < γ‖w(t)‖2.

Therefore, the slave system S is synchronized to the master system M

with guaranteed H∞ performance γ. This completes the proof. ¤

Then we have the following result.

Theorem 1.4. Let γ > 0 be a prescribed constant scalar. The master

system M and the slave system S are synchronized with guaranteed H∞

performance γ, if there exist real matrices P > 0, Q > 0, R > 0, G and a

diagonal matrix Λ > 0 such that the following LMI holds


















Σ8 −GH + R Σ9 PD τAT P HT

∗ −Q − R 0 0 −τHT GT 0

∗ ∗ −2Λ 0 τBT P 0

∗ ∗ ∗ −γ2I τDT P 0

∗ ∗ ∗ ∗ −2P + R 0

∗ ∗ ∗ ∗ ∗ −I



















< 0, (1.32)

where

Σ8 = PA + AT P + Q − R,

Σ9 = PB + kCT Λ.

And the feedback gain matrix can be designed as

M = P−1G.

Proof. By Theorem 1.3, it is only to show that the LMI (1.20) holds. In

fact, for P > 0, R > 0,

PT R−1P − 2P + R = (P − R)T R−1(P − R) ≥ 0,

which gives −PT R−1P ≤ −2P + R. It then follows from (1.32) that


















Σ8 −GH + R Σ9 PD τAT P HT

∗ −Q − R 0 0 −τHT GT 0

∗ ∗ −2Λ 0 τBT P 0

∗ ∗ ∗ −γ2I τDT P 0

∗ ∗ ∗ ∗ −PT R−1P 0

∗ ∗ ∗ ∗ ∗ −I



















< 0. (1.33)
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Now, pre- and post multiplying the above matrix inequality (1.33) by

diag{I, I, I, I, RP−1, I} and diag{I, I, I, I, P−1R, I}, respectively, and not-

ing the change of variable M = P−1G, it can be seen that the resulting LMI

is the same as (1.20). Therefore, by Theorem 1.3, the master-slave synchro-

nization scheme (1.1) is synchronized with guaranteed H∞ performance γ.

This completes the proof. ¤

Remark 1.4. It is noted that the performance index γ described in Theo-

rem 1.4 can also be optimized by the convex optimization algorithm [28, 29].

Algorithm 1.2. min
P,Q,R,G,Λ

γ2, subject to the LMI (1.32).

Remark 1.5. The authors in [24, 27] have investigated the master-slave

synchronization scheme with w(t) = 0. The proposed delay-dependent

synchronization criteria in [24, 27] were formulated by means of matrix

inequalities. It implies that to obtain the time-delayed feedback controller,

one needs to solve a corresponding nonlinear programming problem. By

Theorem 1.4, an LMI-based delay-dependent synchronization condition can

be obtained shown in the following corollary, which can be facilitated readily

by the Matlab LMI Control Toolbox [29].

Corollary 1.2. The master-slave synchronization described in (1.1) with

w(t) = 0 can be achieved with M = P−1G, if there exist real matrices

P > 0, Q > 0, R > 0, G and a diagonal matrix Λ > 0 such that









Σ8 −GH + R PB + kCT Λ τAT P

∗ −Q − R 0 −τHT GT

∗ ∗ −2Λ τBT P

∗ ∗ ∗ −2P + R









< 0, (1.34)

where Σ8 is the same as the one in Theorem 1.4.

In order to further reduce the conservatism of the synchronization con-

dition, we will introduce some slack variables in our design.

Before proceeding further, we present a useful lemma to estimate the

term −
∫ t

t−τ
ėT (s)Rė(s)ds, which plays a key role in the derivation of the

main results in this section.

Lemma 1.3. For the error system (1.3) and any real matrices R >

0, N1, N2, N3, N4 with appropriate dimensions, the following inequality
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holds:

−

∫ t

t−τ

ėT (s)Rė(s)ds ≤ τπT
1 (t)NT R−1Nπ1(t)

+2πT
1 (t)NT [e(t) − e(t − τ)], (1.35)

with

π1(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t)) wT (t)
]T

,

N =
[

N1 N2 N3 N4

]

.

Proof. Let

Π1 =

[

NT R−1N NT

N R

]

,

Π2 =

[

I −NT R−1

0 I

]

.

Then, one has

Π2Π1Π
T
2 =

[

0 0

0 R

]

≥ 0,

which implies Π1 ≥ 0. Noting the fact that
∫ t

t−τ

ė(s)ds = e(t) − e(t − τ), (1.36)

it yields that

−

∫ t

t−τ

ėT (s)Rė(s)ds

≤ −

∫ t

t−τ

ėT (s)Rė(s)ds +

∫ t

t−τ

[

π1(t)

ė(s)

]T

Π1

[

π1(t)

ė(s)

]

ds

= −

∫ t

t−τ

ėT (s)Rė(s)ds +

∫ t

t−τ

{

πT
1 (t)NT R−1Nπ1(t)

+2πT
1 (t)NT ė(s) + ėT (s)Rė(s)

}

ds

= τπT
1 (t)NT R−1Nπ1(t) + 2

∫ t

t−τ

πT
1 (t)NT ė(s)ds

= τπT
1 (t)NT R−1Nπ1(t) + 2πT

1 (t)NT [e(t) − e(t − τ)]. (1.37)

That is, the inequality (1.35) is true. This completes the proof. ¤
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Now, we are in a position to present our main results.

Theorem 1.5. Assume that the feedback gain matrix M is given. The

master system M and the slave system S are synchronized with guaran-

teed H∞ performance γ, if there exist real matrices P > 0, Q > 0, R >

0, N1, N2, N3, N4 and a diagonal matrix Λ = diag(λ1, λ2, . . . , λnh
) > 0 such

that the following LMI holds:























Θ11 Θ12 Θ13 Θ14 τAT R τNT
1 HT

∗ Θ22 −N3 −N4 −τHT MT R τNT
2 0

∗ ∗ −2Λ 0 τBT R τNT
3 0

∗ ∗ ∗ −γ2I τDT R τNT
4 0

∗ ∗ ∗ ∗ −τR 0 0

∗ ∗ ∗ ∗ ∗ −τR 0

∗ ∗ ∗ ∗ ∗ ∗ −I























< 0, (1.38)

where

Θ11 = PA + AT P + Q + N1 + NT
1 ,

Θ12 = −PMH − NT
1 + N2,

Θ13 = PB + kCT Λ + N3,

Θ14 = PD + N4,

Θ22 = −Q − N2 − NT
2 .

Proof. Firstly, we show that the error system (1.3) with w(t) = 0 is

globally asymptotically stable under the condition of Theorem 1.5. When

w(t) = 0, the error system (1.3) can be given as follows:

ė(t) = Ae(t) − MHe(t − τ) + Bη(Ce(t), y(t)). (1.39)

From the LMI (1.38), it is obvious that













Θ11 Θ12 Θ13 τAT R τNT
1

∗ Θ22 −N3 −τHT MT R τNT
2

∗ ∗ −2Λ τBT R τNT
3

∗ ∗ ∗ −τR 0

∗ ∗ ∗ ∗ −τR













< 0. (1.40)
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Let

Π3 =





Θ11 Θ12 Θ13

∗ Θ22 −N3

∗ ∗ −2Λ



 ,

Π4 =
[

A −MH B
]

,

Π5 =
[

N1 N2 N3

]

.

By employing Lemma 1.1, the LMI (1.40) is equivalent to

Π3 + τΠT
4 RΠ4 + τΠT

5 R−1Π5 < 0. (1.41)

Then, there must exist a sufficiently small scalar ǫ > 0 such that

Π3 + τΠT
4 RΠ4 + τΠT

5 R−1Π5 + diag{ǫI, 0, 0} ≤ 0. (1.42)

It follows from (1.6) that for any diagonal matrix

Λ = diag(λ1, λ2, . . . , λnh
) > 0,

0 ≤ −2

nh
∑

i=1

λiηi(c
T
i e, y)(ηi(c

T
i e, y) − kcT

i e)

= −2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+2keT (t)CT Λη(Ce(t), y(t)). (1.43)

Choose a Lyapunov functional candidate as

V3(t) = eT (t)Pe(t) +

∫ t

t−τ

eT (s)Qe(s)ds

+

∫ 0

−τ

∫ t

t+θ

ėT (s)Rė(s)dsdθ, (1.44)

where P > 0, Q > 0, R > 0 are to be determined. Then, by directly

computing the time-derivative of V3(t) along the trajectory of system (1.39),

one can derive

V̇3(t) = 2eT (t)P ė(t) + eT (t)Qe(t) − eT (t − τ)Qe(t − τ)

+τ ėT (t)Rė(t) −

∫ t

t−τ

ėT (s)Rė(s)ds

= eT (t)(PA + AT P + Q)e(t) − 2eT (t)PMHe(t − τ)

+2eT (t)PBη(Ce(t), y(t)) − eT (t − τ)Qe(t − τ)

+τ ėT (t)Rė(t) −

∫ t

t−τ

ėT (s)Rė(s)ds. (1.45)
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By following the similar line of the proof of Lemma 1.3, it can be easily

derived that

−

∫ t

t−τ

ėT (s)Rė(s)ds ≤ τπT
2 (t)ΠT

5 R−1Π5π2(t)

+2πT
2 (t)ΠT

5 [e(t) − e(t − τ)], (1.46)

with

π2(t) =
[

eT (t) eT (t − τ) ηT (Ce(t), y(t))
]T

.

This together with (1.42), (1.43) and (1.45) gives

V̇3(t) ≤ eT (t)(PA + AT P + Q)e(t) − 2eT (t)PMHe(t − τ)

+2eT (t)PBη(Ce(t), y(t)) − eT (t − τ)Qe(t − τ)

+τ ėT (t)Rė(t) + τπT
2 (t)ΠT

5 R−1Π5π2(t)

+2πT
2 (t)ΠT

5 [e(t) − e(t − τ)]

−2ηT (Ce(t), y(t))Λη(Ce(t), y(t))

+2keT (t)CT Λη(Ce(t), y(t))

= πT
2 (t)

[

Π3 + τΠT
4 RΠ4 + τΠT

5 R−1Π5

]

π2(t)

≤ −ǫeT (t)e(t). (1.47)

According to the stability theory in [20], the error system (1.39) is globally

asymptotically stable.

Next, to establish the guaranteed H∞ performance to the master-slave

synchronization scheme (1.1) under zero initial condition, we introduce

J(t) =

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt. (1.48)

Under the zero initial condition, from the definition of V3(t), one has

V3(0) = 0 and V3(t) ≥ 0 for t > 0. Then

J(t) ≤

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t)
]

dt + V3(t)|t=∞ − V3(0)

=

∫ ∞

0

[

zT (t)z(t) − γ2wT (t)w(t) + V̇3(t)
]

dt. (1.49)

By using Lemma 1.3 and following the similar line of the proof of (1.47),

one can deduce that

zT (t)z(t) − γ2wT (t)w(t) + V̇3(t)

≤ πT
1 (t)

[

Π6 + τΠT
7 RΠ7 + τNT R−1N

]

π1(t), (1.50)
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with π1(t) and N being the same as those in Lemma 1.3,

Π6 =









Θ11 + HT H Θ12 Θ13 Θ14

∗ −Q − N2 − NT
2 −N3 −N4

∗ ∗ −2Λ 0

∗ ∗ ∗ −γ2I









,

Π7 =
[

A −MH B D
]

.

Applying Lemma 1.1 again, the LMI (1.38) can guarantee

Π6 + τΠT
7 RΠ7 + τNT R−1N < 0.

It implies that for w(t) 6= 0,

zT (t)z(t) − γ2wT (t)w(t) + V̇3(t) < 0, (1.51)

and thus J(t) < 0 for any w(t) 6= 0. That is, ‖z(t)‖2 < γ‖w(t)‖2. There-

fore, the master-slave synchronization scheme (1.1) can be achieved with

guaranteed H∞ performance γ. This completes the proof. ¤

Next is our result on the feedback controller design.

Theorem 1.6. Let γ > 0 be a prescribed constant scalar. The master sys-

tem M and the slave system S are synchronized with guaranteed H∞ perfor-

mance γ, if there exist real matrices P > 0, Q > 0, R > 0, N1, N2, N3, N4, G

and a diagonal matrix Λ > 0 such that the following LMI holds:






















Ξ11 Ξ12 Ξ13 Ξ14 τAT P τNT
1 HT

∗ Ξ22 −N3 −N4 −τHT GT τNT
2 0

∗ ∗ −2Λ 0 τBT P τNT
3 0

∗ ∗ ∗ −γ2I τDT P τNT
4 0

∗ ∗ ∗ ∗ Ξ55 0 0

∗ ∗ ∗ ∗ ∗ −τR 0

∗ ∗ ∗ ∗ ∗ ∗ −I























< 0, (1.52)

where

Ξ11 = PA + AT P + Q + N1 + NT
1 ,

Ξ12 = −GH − NT
1 + N2,

Ξ13 = PB + kCT Λ + N3,

Ξ14 = PD + N4,

Ξ22 = −Q − N2 − NT
2 ,

Ξ55 = −2τP + τR.
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And the feedback gain matrix can be designed as:

M = P−1G.

Proof. By Theorem 1.5, to prove Theorem 1.6, it is sufficient to show

that the LMI (1.38) holds. In view of the inequality

PT R−1P ≥ 2P − R

resulting from

(P − R)T R−1(P − R) = PT R−1P − 2P + R ≥ 0,

the LMI (1.52) implies that






















Ξ11 Ξ12 Ξ13 Ξ14 τAT P τNT
1 HT

∗ Ξ22 −N3 −N4 −τHT GT τNT
2 0

∗ ∗ −2Λ 0 τBT P τNT
3 0

∗ ∗ ∗ −γ2I τDT P τNT
4 0

∗ ∗ ∗ ∗ −τPT R−1P 0 0

∗ ∗ ∗ ∗ ∗ −τR 0

∗ ∗ ∗ ∗ ∗ ∗ −I























< 0. (1.53)

Pre- and post multiplying the above matrix inequality (1.53) by

diag{I, I, I, I, RP−1, I, I} and diag{I, I, I, I, P−1R, I, I}, respectively, and

applying the change of variable M = P−1G, one can see that the resulting

LMI is the same as (1.38) in Theorem 1.5. Therefore, the master system M

and the slave system S are synchronized with guaranteed H∞ performance

γ. This completes the proof. ¤

Remark 1.6. The performance index γ described in Theorem 1.6 can be

optimized by the convex optimization algorithm [28, 29].

Algorithm 1.3. min
P,Q,R,N1,N2,N3,N4,G,Λ

γ2, subject to the LMI (1.52).

Remark 1.7. Theorem 1.6 presents a delay-dependent synchronization

condition to the design of the time-delayed feedback controller, such that

the slave system is synchronized to the master system with guaranteed

H∞ performance γ. It should be pointed out that several slack variables

N1, N2, N3 and N4 have been introduced into the LMI condition (1.52) by

employing the developed bounding technique (Lemma 1.3). The matrices

N1, N2, N3 and N4 are even not required to be symmetric. The purpose of

the introduction of the slack variables is to further reduce the conservatism

of the derived synchronization criterion. It is thus expected that Theorem
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1.6 will be less conservative than Theorems 1.2 and 1.4 due to the increasing

freedom of these slack variables.

When w(t) = 0, the following corollary can be directly deduced from

Theorem 1.6.

Corollary 1.3. The master-slave synchronization described in (1.1) with

w(t) = 0 can be achieved with M = P−1G, if there exist real matrices

P > 0, Q > 0, R > 0, N1, N2, N3, G and a diagonal matrix Λ > 0 such that













Ξ11 Ξ12 Ξ13 τAT P τNT
1

∗ Ξ22 −N3 −τHT GT τNT
2

∗ ∗ −2Λ τBT P τNT
3

∗ ∗ ∗ Ξ55 0

∗ ∗ ∗ ∗ −τR













< 0, (1.54)

where Ξ11,Ξ12,Ξ13,Ξ22 and Ξ55 are the same as those in Theorem 1.6.

Remark 1.8. As can be seen in Corollary 1.3, several slack variables have

been used to reduce the conservatism of the synchronization condition.

Therefore, Corollary 1.3 may be less conservative than the results reported

in [26, 27, 31].

1.5. A Simulation Example

The Chua’s Circuit [10, 40] is used as an example to illustrate the appli-

cation of the proposed time-delayed feedback controller design approaches

and their performance. The advantage of the delay-dependent approach

with slack variables over the delay-independent approach and the delay-

dependent approach without slack variables are also demonstrated.

Consider the Chua’s Circuit subject to noise disturbances:






ẋ = a(y − h(x)) + w(t)

ẏ = x − y + z − w(t)

ż = −by + w(t)

(1.55)

with nonlinear characteristic

h(x) = m1x +
1

2
(m0 − m1)(|x + c| − |x − c|)

and parameters a = 9, b = 14.28, c = 1, m0 = −(1/7), m1 = (2/7). The

noise disturbance is taken as

w(t) = 0.01e−0.0001t sin(2π × 0.005t).
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The system can be represented in Lur’e form with noise input by

A =





−am1 a 0

1 −1 1

0 −b 0



 ,

B =





−a(m0 − m1)

0

0



 ,

C = H =
[

1 0 0
]

,

D =
[

1 −1 1
]T

,

and σ(ξ) = 1

2
(|ξ + c| − |ξ − c|) belonging to sector [0, k] with k = 1. This

representation results in nh = 1. Let τ = 0.1, then the following results

have been obtained by applying Algorithm 1.3:

P =





0.7823 −1.1055 0.2156

−1.1055 3.6897 −0.2491

0.2156 −0.2491 0.2547



 ,

Q =





1.3625 −2.7241 0.1868

−2.7241 5.4542 −0.3705

0.1868 −0.3705 0.0277



 ,

R =





0.5645 −0.2728 0.0233

−0.2728 1.2742 −0.0865

0.0233 −0.0865 0.0119



 ,

N1 =





−5.6351 2.7237 −0.2313

2.7182 −12.7378 0.8635

−0.2321 0.8646 −0.1186



 ,

N2 =





5.6375 −2.7169 0.2316

−2.7205 12.7298 −0.8638

0.2322 −0.8642 0.1186



 ,

N3 =





−0.0097

0.0103

−0.0005



 , N4 =





0.0055

−0.0062

0.0003



 ,

Λ = 2.2872, G =





2.8512

−0.8993

−0.6346



 ,
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M = P−1G =





8.1453

1.6736

−7.7490





with the optimal H∞ performance index γmin = 1.5359. The simulation

results for the master-slave synchronization scheme of the Chua’s Circuits

(1.55) are shown in Fig. 1.2. The initial conditions are taken as x(0) =
[

0.15 −0.21 −0.32
]T

and y(0) =
[

−0.3 0.15 0.11
]T

. In Fig. 1.2,

(a) and (b) represent the state x(t) of the master system and the state

y(t) of the slave system, respectively; (c) is the responses of the error state

e(t) of the error system. The simulation results confirm the effectiveness of

Theorem 1.6 for the design of the time-delayed feedback controller for the

master-slave synchronization scheme of Chua’s Circuits (1.55).

In order to further demonstrate the advantage of Theorem 1.6 over The-

orems 1.2 and 1.4, a more detailed comparison between the minimum H∞

performance indexes for different time delays are summarized in Table 1.1.

The results clearly demonstrate the much better performance of the delay-

dependent approach with slack variables over the other two approaches.

Table 1.1. Comparison of the minimum H∞ performances for different
time delays.

Methods τ = 0.001 τ = 0.01 τ = 0.1 τ = 0.14534

Algorithm 1.1 infeasible infeasible infeasible infeasible

Algorithm 1.2 infeasible infeasible infeasible infeasible

Algorithm 1.3 0.0021 0.0254 1.5359 3.8349e + 003

Furthermore, by solving the LMI (1.52) via the Matlab LMI Control

Toolbox, the maximum allowed time delay in Theorem 1.6 is τmax =

0.14534. In this case, the time-delayed feedback gain matrix can be de-

signed as

M =





5.5363

0.9019

−6.0015



 , (1.56)

and the simulation results for τ = 0.14534 are shown in Fig. 1.3. How-

ever, it has been observed throughout simulations that with the same time-

delayed feedback controller (1.56), the Chua’s Circuits can be synchronized

for any τ ∈ [0, 0.3). Figs. 1.4 and 1.5 are the simulation results when

τ = 0.2999 and τ = 0.3, respectively. This clearly demonstrates that there

still exists some extent of conservatism in the proposed design approaches

and thus suggests an interesting future research topic.
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Fig. 1.2. Simulation results for master-slave synchronization of Chua’s Circuits (1.55)

when τ = 0.1.
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Fig. 1.3. Simulation results for master-slave synchronization of Chua’s Circuits (1.55)

when τ = 0.14534.
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Fig. 1.4. Simulation results for master-slave synchronization of Chua’s Circuits (1.55)

when τ = 0.2999.
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Fig. 1.5. Simulation results for master-slave synchronization of Chua’s Circuits (1.55)

when τ = 0.3.
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Table 1.2. Comparison of the maximum value τmax of the allowed time
delay .

Methods Maximum allowed time delay τmax

Corollary 1.1 (Delay-independent) infeasible

Yalcin et al. [27] 0.039

Han [31] 0.1411

Corollary 1.3 (Delay-dependent) 0.14537

On the other hand, to show that Corollary 1.3 is less conservative than

the results in [27, 31], we consider the above Chua’s Circuit (1.55) with

w(t) = 0. By solving the LMI (1.54) in Corollary 1.3 via Matlab LMI

Control Toolbox, the maximum allowed time delay is τmax = 0.14537 with

the following feasible solution:

P = 1.0e + 003 ×





0.2618 −0.5135 0.1355

−0.5135 1.7996 −0.2138

0.1355 −0.2138 0.1333



 ,

Q = 1.0e + 003 ×





0.4782 −1.1636 0.1551

−1.1636 2.8315 −0.3774

0.1551 −0.3774 0.0504



 ,

R =





132.6923 −170.9180 22.9523

−170.9180 667.6112 −89.1729

22.9523 −89.1729 12.0424



 ,

N1 =





204.0386 −681.3601 258.2893

−750.4066 62.6136 −200.4339

100.4606 −9.5308 26.2343



 ,

N2 =





359.8469 −190.2322 25.6369

743.8114 −622.2504 82.7985

−98.6266 82.5678 −10.0928



 ,

N3 =





−485.4716

556.2536

−74.8843



 , G =





173.2172

63.2663

−243.1735



 ,

Λ = 487.4069, M = P−1G =





5.5358

0.9015

−6.0021



 .

Table 1.2 gives the comparisons of the maximum allowed time delay τmax,

from which one can clearly see that Corollary 1.3 is less conservative than

the results in [27, 31].
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1.6. Conclusion

The master-slave synchronization problem has been studied for a class

of chaotic systems based on the time-delayed feedback control. Delay-

independent and delay-dependent synchronization criteria have been de-

rived such that the controlled slave system can robustly synchronize the

noise-perturbed master system with guaranteed H∞ performance. It is

shown that the time-delayed feedback controller can be determined by solv-

ing some LMIs. An example with simulation results is provided to demon-

strate the performance of the proposed approaches and the advantages of

the delay-dependent synchronization condition with slack variables over

the delay-independent condition and the delay-dependent condition with-

out slack variables.
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This chapter investigates the synchronization of chaotic systems subject 

to parameter uncertainties.  Based on the fuzzy-model-based approach, 

a fuzzy model is first employed to represent the chaotic systems.  A 

switching controller is then proposed to deal with the synchronization 

problem of which the system states of the response chaotic system is 

driven to approach those of the drive chaotic system.  Stability 

conditions in terms of linear matrix inequalities are derived based on 

the Lyapunov stability theory.  The tracking performance and 

parameter design of the proposed switching controller are formulated as 

a generalized eignevalue minimization problem which can be solved 

numerically using some convex programming techniques.  Simulation 

examples are given to show the effectiveness of the proposed approach. 

2.1.   Introduction 

Chaotic control is a challenging task due to the complex characteristic of 

the chaotic systems.  Chaos stabilization and synchronization are 

important topics which has drawn a great deal of attention from 

researchers.  Comparing to the chaos stabilization problem, chaos 
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synchronization is much harder to be achieved.  To stabilize the chaos 

behaviour, the control objective is only to suppress the chaotic dynamics 

and drive the system states to the equilibrium.  However, chaos 

synchronization requires driving the system states of the response chaotic 

system to follow those of the drive chaotic system.  In such a case, the 

tracking control problem is considered.  Furthermore, the 

synchronization problem will become more complex if the chaotic 

systems are subject to parameter uncertainties. 

Various control approaches such as nonlinear controllers [1, 2], active 

controllers [3, 4], fuzzy controllers [5-7] and adaptive controllers [8, 9], 

were reported to realize the synchronization of identical or different 

chaos systems.  In general, synchronization is achieved by modifying the 

chaotic behaviour of the response chaotic system with the controller [1-

4], which is typically designed with the pole-placement or nonlinearity 

compensation techniques.  If the fuzzy-model-based control approach [5-

7] is adopted, a fuzzy model is derived to represent the dynamics of the 

chaotic system as a weighted sum of some linear sub-systems.  The fuzzy 

model gives a fixed framework to model some general chaotic systems.  

This particular structure is in favour of the system analysis and controller 

synthesis.  Adaptability was granted to controllers [8, 9] of which the 

controller parameters were updated in an online manner according to 

some adaptive laws to cope with the changes of the operating conditions.  

Consequently, the adaptive controller offered an outstanding robustness 

property.  However, the complex adaptive laws will always increase the 

computational demand and structural complexity of the fuzzy controllers. 

In this chapter, the synchronization of chaotic systems subject to 

parameter uncertainties is handled based on the fuzzy-model-based 

approach.  A fuzzy model will first be employed to represent the chaotic 

system.  To deal with the parameter uncertainties and achieve 

synchronization, a switching controller is proposed.  A switching law is 

then derived to guarantee the convergence of the error states between the 

response and the drive chaotic systems based on the Lyapunov stability 

theory.  The conditions for system stability and tracking performance are 

formulated as a generalized eigenvalue minimization problem (GEVP), 

which can be solved readily using some convex programming technique. 
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This chapter is organized as follows.  In section 2.2, the fuzzy model 

representing the dynamics of the chaotic system subject to parameter 

uncertainties is presented.  A switching controller is proposed based on 

the fuzzy model of the chaotic system.  In section 2.3, the stability 

conditions and the switching laws are derived based on the Lyapunov 

approach.  In section 2.4, numerical examples on synchronizing two 

different chaotic systems are given to demonstrate the effectiveness of 

the proposed approach.  A conclusion is drawn in section 2.5. 

2.2.   Fuzzy Model and Switching Controller 

In this section, a fuzzy model [5] is employed to represent the chaotic 

system subject to parameter uncertainties.  Based on the fuzzy model, a 

switching controller is then proposed to realize the synchronization of 

two chaotic systems.  The switching activity of the controller is able 

compensate the uncertain nonlinearity of chaotic systems.  Stability 

conditions in terms of linear matrix inequalities (LMIs) are derived to 

guarantee the system stability based on the Lyapunov stability theory. 

2.2.1.  Fuzzy Model 

Let p be the number of fuzzy rules describing the uncertain response 

chaotic system with control input term.  The i-th rule is of the following 

format, 

 Rule i: IF ))((1 tf x  is i

1M  AND … AND ))(( tfΨ x  is i
ΨM  

 THEN )()()(  ttt i uBxAx +=&  (2.1) 

where i

αM  is a fuzzy term of rule i corresponding to the function 

))(( tf xα  with known form, α = 1, 2, ..., Ψ; i = 1, 2, ..., p; Ψ is a positive 

integer.  
nn

i
×ℜ∈A  and nn×ℜ∈B  are known constant system and input 

matrices respectively.  It is required that B is invertible.  
1)( ×ℜ∈ ntx  is 

the system state vector and 1)( ×ℜ∈ ntu  is the input vector.  The system 

dynamics are described by, 
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 ( ))()())(()(
1=

tttwt i

p

i
i BuxAxx +∑=&  (2.2) 

where 

 1=))((
1

tw
p

i=
i x∑ , [ ]10))(( ∈twi x  for all i (2.3) 
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xxx
x

μμμ

μμμ

L

L
(2.4) 

is a nonlinear function of x(t) and ))((
M

txi α
α

μ  is the grade of 

membership corresponding to the fuzzy terms 
i

αM .  It should be noted 

that the grades of membership, ))((
M

txi α
α

μ , are uncertain in value as the 

chaotic system is subject to parameter uncertainties.   

Similarly, the dynamics of the drive chaotic system can be 

represented by a fuzzy model with q fuzzy rules in the format of (2.1) but 

without the control input.  Consequently, the dynamics of the drive 

chaotic system can be represented as, 

 )(ˆˆ))(ˆ(ˆ)(ˆ
1

ttwt
q

j
jj xAxx ∑=

=

&  (2.5) 

where 1)(ˆ ×ℜ∈ ntx  is the system state vector.  nn

j

×ℜ∈Â  is a known 

constant system matrix; [ ]10))(ˆ(ˆ ∈tw j x  is the grade of the 

membership and 1))(ˆ(ˆ
1

=∑
=

q

j
j tw x . 

2.2.2.  Switching Controller 

A switching controller is proposed to drive the system states of the 

response chaotic system of (2.2) to follow those of the drive chaotic 

system of (2.5).  The proposed switching controller is defined as follows, 

 )())(()(
1

1

ttmt i

p

i
i eGBeu

−

=
∑=  (2.6) 
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where )(ˆ)()( ttt xxe −=  is the error system state vector, nn

i

×ℜ∈G  is the 

feedback gain to be designed and mi(e(t)) is a scalar function to be 

determined later.  The scalar function of mi(e(t)) is a switching function 

which takes either 0 or 1 to compensate the uncertainties in the 

membership functions of the fuzzy models. 

2.2.3.  Error System 

The error system is formed by the response and drive chaotic systems of 

(2.2) and (2.5).  From (2.2) and (2.5), with the property that 

1))((
1

=∑
=

p

i
i tw x , we have, 

 )(ˆ)()( ttt xxe &&& −=  

)(ˆˆ))(ˆ(ˆ)()())((
11

ttwtttw
q

j
jj

p

i
ii xAxBuxAx ∑−+∑=

==
 

 

)(ˆˆ))(ˆ(ˆ)(

)(ˆ))(()(ˆ))(()())((

1

111

ttwt

ttwttwttw

q

j
jj

p

i
iii

p

i
i

p

i
ii

xAxBu

xAxxAxxAx

∑−+

∑+∑−∑=

=

===
 

 )(ˆˆ))(ˆ(ˆ)(ˆ))(()()())((
111

ttwttwtttw
q

j
jj

p

i
ii

p

i
ii xAxxAxBueAx ∑−∑++∑=

===
 

 ))(ˆ),(()()())((
1

tttttw
p

i
ii xxmBueAx e++∑=

=
 (2.7) 

where ( ) )(ˆˆ))(ˆ(ˆ)(ˆ))(()(ˆ),(
11

ttwttwtt
q

j
jj

p

i
ii xAxxAxxxme ∑−∑=

==
.  It should be 

noted that wi(x(t)), ))(ˆ(ˆ tw j x  and )(ˆ tx  are bounded due to the nature of 

the membership functions and chaotic drive system.  From (2.6) and 

(2.7), we have, 

 ( ))(ˆ),()())(()())(()(
1

1

1

ttttmttwt
p

i
ii

p

i
ii xxmeGBeBeAxe e+∑+∑=

=

−

=
&  
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2.3.  Stability Analysis 

In this section, the stability of the error system of (2.8) is investigated 

based on the Lyapunov stability theory.  In the following, wi(x(t)), 

))(ˆ(ˆ tw j x , ))(( tmi e  and ))(ˆ),(( tt xxme  are denoted as wi, jŵ , mi and me 

respectively for brevity.  To investigate the stability of the error system 

of (2.8), the following quadratic Lyapunov function candidate is 

considered. 

 )()()( T tttV Pee=  (2.9) 

where P ∈ ℜn×n is a symmetric positive definite matrix.  It is going to 

show that 0)( ≤tV&  (equality holds when e(t) = 0) which implies the 

synchronization of both drive and response chaotic systems are achieved.  

From (2.8) and (2.9), we have, 

 )()()()()( TT tttttV ePePee &&& +=  
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Let the switching law be 
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where the sign function is defined as follows. 
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From (2.10) and (2.11), we have, 
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From the property of (2.3), we have 
2
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0
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Let 
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PPGAPPGA

η
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From (2.14) and (2.15), we have, 

 ee PmmPee
TT )()()( η+−≤ tttV&  (2.16) 

It can be seen from (2.16) that the tracking performance is partially 

governed by the value of η.  A small value of η is required to attenuate 

the effect of me to the tracking performance.  It can be seen from (2.16) 

that 0)( >tV&  happens when the value of ee Pmm
Tη  is sufficiently large.  

Under this case, it can be seen from (2.9) that e(t) will be increasing.  

When e(t) increases to a sufficient large value which makes 0)( <tV&  

happen again, e(t) will be decreasing.  Hence, it can be seen that a 

smaller value of η, which gives smaller value of ee Pmm
Tη , can provide 

a better tracking performance with a smaller tracking error of e(t). 

In the following, the problem of minimizing the value of η is 

formulated as a generalized eignevalue problem (GEVP), which can be 

solved numerically using some convex programming techniques, e.g. 

MATLAB LMI toolbox.  Denote 1−= PX  and 1−= XNG ii  where Ni ∈ 

ℜn×n is an arbitrary matrix, pre-multiply and post-multiply diag{X, X} to 

the stability condition of (2.15), we have, 
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η
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The analysis results are summarized in the following Theorem. 

 

Theorem 2.1.  The error system of (2.8) is guaranteed to be input-to-

state stable if ( )( ))()(sgn1
2

1
))(( T tttm ii ePGee −=  and there exists a scalar 

η, a symmetric matrix X and an arbitrary matrix Ni such that the 

following GEVP is satisfied, 

 η  minimize
, iNX

 subject to 

 η > 0; X > 0; 

 0
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<⎥
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−+++

XX

XXNNXAXA

η
iiii , i = 1, 2, ..., p. 

 

As the sign function in (2.11) is a switching function, it will introduce 

an undesired chattering effect to the system states and control signals.  

To attenuate the chattering effect, a saturation function [10] is employed 

to replace the sign function in the switching controller to produce smooth 

control signal near the origin.  Hence, we have, 

 ( )( )Tttm ii ),()(sat1
2

1 T ePGe−=  (2.18) 

where the saturation function is defined as follows. 
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and T is a non-zero positive scalar to be determined.  It should be noted 

that the complexity of the proposed switching controller will increase 
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when the number of fuzzy rules of the response and drive chaotic 

systems is large. 

2.4.  Simulation Examples 

Two simulation examples on dealing with the synchronization of chaotic 

systems are given in this section. 

2.4.1.  Rössler and Lorenz Systems 

In this simulation example, the Rössler system is taken as the response 

system while the Lorenz system is taken as the drive system.  Both 

chaotic systems are subject to uncertain parameters in this example.  The 

proposed switching controller is employed to synchronize both Rössler 

and Lorenz systems. 

2.4.1.1. The Dynamics of the Response Rössler’s System 

The dynamics of the response Rössler’s system with input term are 

described as follows, 

 ( ) )()()()( tuttt BxxAx +=&  (2.19) 

where 
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))()((0
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1 txtcb

atxA  and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100

010

001

B ; a = 0.34, b = 0.4, )sin(
22

)( 1212 t
cccc

tc
−

+
+

=  ∈ [cmin   

cmax] = [c1   c2] > 0 is an uncertain value, c1 = 4.5, and c2 = 7.7.  It is 

assumed that [ ]dcdctx +−∈ maxmin1 )(  and d ∈ ℜ+ = 25.  The exact 

fuzzy model of the response Rössler system [5] is represented by the 

following fuzzy rules. 

Rule i:  IF x1(t) is Mi THEN )()()( ttt i BuxAx +=& , i = 1, 2. (2.20) 

The inferred response Rössler system is defined as 
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membership are unknown as the values of c(t) is uncertain. 

2.4.1.2. The Dynamics of the Lorenz System 

The dynamics of the Lorenz system are given as follows, 

 ( ) )(ˆ)(ˆˆ)(ˆ ttt xxAx =&  (2.22) 
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reported in [5] that the Lorenz system of (2.22) with [ ]ddtx ˆˆ)(ˆ
1 −∈  

can be represented by the fuzzy model with the following rules [5]. 

 Rule i:  IF )(ˆ
1 tx  is Ni THEN )(ˆˆ)(ˆ tt ixAx =& , i = 1, 2. (2.23) 

The inferred drive Lorenz system is defined as 
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28ˆ =c  and 25ˆ =d .  The values of the parameters of the drive system are 

assumed to be unknown in this example. 

2.4.1.3. The Dynamics of the Proposed Switching Controller 

The proposed switching controller of (2.6) is employed to handle the 

synchronization problem.  The switching controller is defined as, 

 )())(()(
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2

1

ttmt i
i

i eGBeu
−

=
∑=  (2.25) 

With the help of MATLAB LMI toolbox, we have  
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2G  

and η = 2.5215×10
−4

 such that the stability conditions in Theorem 2.1 are 

satisfied.  It can be seen that the value of η is a small value to ensure a 

good tracking performance. 
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Fig. 2.1.  System state responses of the drive Lorenz system. 

 

Fig. 2.1 shows the system state responses of the drive chaotic systems 

under the initial condition of [ ]T111)0(ˆ −−−=x .  Fig. 2.2 shows the 

system state responses of the response system with the proposed 

switching controller subject to the initial state conditions of 

[ ]T
111)0( −−−=x .  In this simulation, u(t) = 0 is employed for 0 ≤ t 

< 50s and the switching controller is applied for t ≥ 50s.  In order to 

alleviate the chattering effect, the saturation function with T = 10
−5

 is 

employed to replace the sign function in the switching controller.  The 

tracking error is shown in Fig. 2.3.  Referring to these figures, it can be 

seen that the proposed switching controller, which is applied for t ≥ 50s, 

is able to drive the system states of the uncertain Rössler system to 

follow those of the uncertain Lorenz system with a sufficiently small 

tracking error. 
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Fig. 2.2.  System state responses of the response Rössler system with u(t) 

= 0 for 0 ≤ t < 50s and the switching controller applied for t ≥ 50s. 
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Fig. 2.3.  The tracking error of the response Rössler to the drive Lorenz 

chaotic systems. 
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2.4.2.  Chua’s and Lorenz Systems 

In this example, the Chua’s system is taken as the response system while 

the Lorenz system in the previous example is taken as the drive system. 

2.4.2.1. The Dynamics of the Response Chua’s System 

The dynamics of the response Chua’s system with input term are 

described as follows, 

 ( ) EBxxAx ++= )()()()( tuttt&  (2.26) 
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5285.12 −=ag  and gb = 0.7143.   It is assumed that [ ]2525)(1 −∈tx .  

The exact fuzzy model of the response Chua’s system
7
 is represented by 

the following fuzzy rules. 

 Rule i:  IF x1(t) is M
i
 THEN )()()( ttt i BuxAx +=& , i = 1, 2. (2.27) 

The inferred response Chua’s system is defined as 
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H.K. Lam and F.H.F. Leung 

 
50 
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)(1

tx
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φ .  It can be 

seen that the grades of membership are unknown as the value of c(x1(t)) 

is uncertain. 

2.4.2.2. The Dynamics of the Lorenz System 

The same Lorenz system of the previous example is employed as the 

drive system.  The dynamics and the fuzzy model of the Lorenz system 

are given in the previous example. 

2.4.2.3. The Dynamics of the Switching Controller 

The switching controller in the same form of (2.25) with the 

corresponding mi(e(t)), i = 1, 2, will be employed to handle the 

synchronization problem.  With the MATLAB LMI toolbox, we have 
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and η = 2.5870×10−4 such that the stability conditions in Theorem 2.1 are 

satisfied.  The value of η is small enough to ensure a good tracking 

performance. 

The system state responses of the drive Lorenz system is shown in 

Fig. 2.1.  Fig. 2.4 shows the system state responses with the proposed 

switching controller using a saturation function with T = 10−5 subject to 

the initial state condition of [ ]T111)0( −−−=x .  In this simulation, 

u(t) = 0 is employed for 0 ≤ t < 50s and the switching controller is 

applied for t ≥ 50s.  The tracking error is shown in Fig. 2.5.  It can be 

seen from these figures that the proposed switching controller applied for 

t ≥ 50s is able to drive the system states of the uncertain Chua’s system 

to follow those of the uncertain Lorenz system with a sufficiently small 

tracking error. 
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Fig. 2.4.  System state responses of the response Chua’s system with u(t) 

= 0 for 0 ≤ t < 50s and the switching controller applied for t ≥ 50s. 

2.5.  Conclusion 

The synchronization of chaotic systems subject to parameter 

uncertainties has been investigated in this chapter.  Based on the fuzzy 

models of the response and drive chaotic systems, a switching controller 

has been proposed to handle the synchronization problem.  Stability 

conditions have been derived based on the Lyapunov approach to 

guarantee the system stability.  The guarantee of the tracking 

performance and the parameter design of the switching controller have 

been formulated as a generalized eigenvalue minimization problem, 

which can be solved numerically using some convex programming 

techniques.  Simulation examples have been given to show the 

effectiveness of the proposed approach. 



Synchronization of Uncertain Chaotic Systems  53 

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

e
1
(t

)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

e
2
(t

)

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

Time (sec)

e
3
(t

)

 

Fig. 2.5.  The tracking error of the response Chua’s to the drive Lorenz 

chaotic systems. 
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CHAPTER 3 

SLIDING MODE CONTROL OF CHAOTIC SYSTEMS 
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School of Electrical and Computer Engineering,                                           
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This chapter introduces the sliding model control of chaotic systems. The 

main two branches of chaos control, chaos control and chaos 

synchronization are discussed. Three kinds of sliding mode control methods, 

traditional sliding mode control, terminal sliding mode control and non-

singular terminal sliding mode control are used to control a chaotic system 

to realize two different control objectives, to force it to converge to zeros or 

to track desired trajectories, such as an unstable limit cycle. In addition, 

observer based chaos synchronization is described. The synchronization for 

two kinds of chaotic systems with single nonlinearity and multi-

nonlinearities are presented, respectively. In order to realize chaos 

synchronization via one single transmission channel, a time division 

multiplex based method is used. 

3.1.   Introduction 

Chaotic systems are characterized by being extremely sensitive to initial 

conditions, deterministically random and hence ultimately unpredictable, 

and continually unstable, displaying no true cyclic behaviors. Chaotic 

systems do not follow any simple, regular, and predictable trajectories. 

The motion of chaotic systems is complex, irregular, and random-like. 

Chaos has been found in many different physical systems, such as 

chemical reactors, fluid flow systems, forced oscillators, feedback 

control devices, and laser systems [1]. 
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Generally speaking, chaos control includes two branches of research: 

chaos control and chaos synchronization. The former is to control the 

variables of a chaotic system to an unstable periodic orbit or an 

equilibrium point of the system [2]. The objectives of chaos control are 

generally to enhance existing chaos or create chaos in a dynamical 

system when it is useful or beneficial, and/or to eliminate or weaken it 

when it is harmful. The latter is a special kind of chaos control, which is 

to force the trajectories of the slave chaotic system to track that of the 

master system starting from arbitrary initial conditions. Because chaos 

synchronization is essential in the application of secure communications, 

this issue has received a lot of attentions from mathematicians, physicists 

and control engineers in the last decade. 

Many methods and techniques for chaos control and chaos 

synchronization have been proposed, such as open loop control, feedback 

control, parameter-dependent control, adaptive control, fuzzy logic 

control, and neural network based control and sliding mode control, etc. 

Among these approaches, sliding mode control is an important approach, 

which is well known for its robustness. The sliding mode control is 

designed to drive and constrain the system states to lie within a 

neighborhood of the prescribed switching manifolds that exhibit the 

desired dynamics, by using switching type of control strategies. When in 

the sliding mode, the closed-loop responses of the systems become 

totally insensitive to both the internal parameter uncertainties and the 

external disturbances. Therefore, the sliding mode control can be used in 

chaos control and chaos synchronization. 

In this chapter, we will discuss the sliding mode control of chaotic 

systems, including chaos control and chaos synchronization. 

3.2.   Sliding Mode Control 

The basic principle of sliding mode control can be briefly summarized as 

follows: consider a 2nd-order uncertain nonlinear dynamical system 

 
⎩
⎨
⎧

++=
=

ubgfx

xx

)()()(2

21

xxx&

&
, (3.1) 

where x=[x1, x2]
T is the system state vector, f(x) and b(x)≠0 are smooth 

nonlinear functions of x, and g(x) represents the uncertainties and 

disturbances satisfying 
glg ≤)( x  where lg>0, and u is the scalar control 
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input. The sliding mode is described by the following first-order linear 

sliding variable 

 
2 1s x xβ= + , (3.2) 

where β >0 is a design constant. 

In order to design the control law, a η–reachability condition 

guaranteeing an ideal sliding mode motion should be satisfied, which is 

given by 

 ss
dt

d η−<2

2

1
, (3.3) 

where 0>η  is a constant. 

Assume that the initial condition of the sliding mode manifold (3.2) is 

s(0), integrating (3.3) gives the time ts as follows: 

 
(0)

s

s
t

η
≤ , (3.4) 

which means from time t=0 to t= ts, the sliding mode manifold s (3.2) 

reaches 0 from s(0)≠0. 

For system (3.1), a commonly used control design is 

 
1

2( )( ( ) ( ) sgn( ))gu b f x l sβ η−= − + + +x x , (3.5) 

which ensures that the sliding mode occurs. Therefore, for system (3.1), 

the sliding mode control (3.5) can guarantee that the system is robust to 

its uncertainties. 

Recently, a terminal sliding mode (TSM) controller was developed [19-

21]. The TSM is described by the following first-order terminal sliding 

variable 

 pqxxs /

12 β+= , (3.6) 

where β >0 is a design constant, and p and q are positive odd integers, 

which satisfy the following condition: 

 qp > . (3.7) 

For system (3.1), a commonly used TSM control design is 

 ))sgn()()()(( 2

1/

1

1 slxx
p

q
fbu g

pq ηβ +++−= −−
xx

, (3.8) 

which ensures that TSM occurs. 
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It is clear that if s(0)≠0, according to equation (3.4) the system states will 

reach the sliding mode s=0 within the finite time (0) /rt s η≤ . When 

the sliding mode s=0 is reached, the system dynamics is determined by 

the following nonlinear differential equation: 

 0/

11

/

12 =+=+ pqpq xxxx ββ &
, (3.9) 

where x1 = 0 is the terminal attractor of the system (3.9). The finite time ts 

that is taken to travel from x1(tr) ≠ 0 to x1(ts+tr)=0 is given by 

 
pq

r

tx

pqs tx
qp

p

x

dx
t

r

/1

1

0

)(

/

1

11 )(
)(

1

−−

−
=−= ∫ β

β .
 (3.10) 

This means that, in the TSM manifold (3.9), both the system states x1 and 

x2 converge to zero in finite time. 

Compared with the linear hyperplane based sliding modes, TSM offers 

some superior properties such as fast finite time convergence. This 

controller is particularly useful for high precision control as it speeds up 

the rate of convergence near the equilibrium point. However, the TSM 

controller design methods still have a singularity problem. It can be seen 

in the TSM control (3.8) that the second term containing 2

1/

1 xx pq −  may 

cause a singularity if x2≠0 when x1= 0. This situation does not occur in 

the sliding mode because when s = 0, pqxx /

12 β−= , hence as long as 

q<p<2q, i.e. 1<p/q<2, the term 2

1/

1 xx pq −  is equivalent to ppqx /)2(

1

−  which 

is nonsingular. The singularity problem may occur in the reaching phase 

when there is an insufficient control to ensure that x2≠0 while x1= 0. The 

TSM controller (3.8) cannot guarantee a bounded control signal for the 

case of x2≠0 when x1= 0 before the system states reach the TSM 0=s . 

Furthermore, the singularity may also occur even after the sliding mode s 

= 0 is reached since, due to computation errors and uncertain factors, the 

system states cannot be guaranteed to always remain in the sliding mode 

especially near the equilibrium point (x1= 0, x2= 0), and the case of x2≠0 

while x1=0 may occur from time to time.  This underlines the importance 

of addressing the singularity problem in conventional TSM systems. 

In order to overcome the singularity problem in the conventional TSM 

systems, a nonsingular TSM (NTSM) was proposed by [12, 13], which is 

able to avoid this problem completely. The NTSM model is described as 

follows: 
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 qpxxs 21

1

β
+= , (3.11) 

where β, p and q have been defined in (3.6). One can easily see that 

when s = 0, the NTSM (3.11) is equivalent to (3.6) so that the time taken 

to reach the equilibrium point x1=0 when in the sliding mode is the same 

as in (3.10). Note that in using (3.11) the derivative of s along the system 

dynamics does not result in terms with negative (fractional) powers. This 

can be seen in the following theorem about the NTSM control. 

Theorem 3.1.  For the system (3.1) with the NTSM (3.11), if the control 

is designed as 

 ))sgn()()()(( /2

2

1 slx
p

q
fbu g

qp ηβ +++−= −−
xx , (3.12) 

where 1<p/q<2, η>0, then the NTSM manifold (3.11) will  be reached in 

finite time. Furthermore, the states x1 and x2 will converge to zero in 

finite time. 

In this section, the sliding mode control has been introduced, which 

provides the basis of chaos control and chaos synchronization to be 

described in the following sections. 

3.3.   Chaos Control 

In order to demonstrate the principle of the sliding mode based chaos 

control, a simple example is given first. 

Consider the Lorenz system described by the following equation: 

 

1 2 1

2 1 2 1 3

3 3 1 2

( )x x x

x rx x x x

x bx x x

σ= −⎧
⎪ = − −⎨
⎪ = − +⎩

&

&

&
. (3.13) 

Assume that the desired trajectories of the chaotic system (3.13) are x1ref, 

x2ref, x3ref, which are all smooth. The control signal u is applied in the 

third equation in (3.13), that is, equation (3.13) is rewritten as follows: 

 

1 2 1

2 1 2 1 3

3 3 1 2

( )x x x

x rx x x x

x bx x x u

σ= −⎧
⎪ = − −⎨
⎪ = − + +⎩

&

&

&
. (3.14) 
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The objective of chaos control is to force the variables of the chaotic 

system (3.14) to track the desired trajectories. 

A sliding mode manifold can be designed as follows: 

 
1 1 1 2 2 2 3 3( ) ( ) ( )ref ref refs a x x a x x x x= − + − + − , (3.15) 

where a1 and a2 are design parameters, which guarantee that the system 

on the sliding mode is stable. A sliding mode control law which makes 

the system (3.14) satisfy the η–reachability condition (3.3) can be 

designed as follows: 

 
1 2 1 2 1 2 1 3 3 1 2 1 1 2 2 3( ) ( ) sgn( )ref ref refu a x x a rx x x x bx x x a x a x x sσ η= − − − − − − + + + −& & & .(3.16) 

Therefore, the sliding mode control law (3.16) can realize the control of 

the chaotic system (3.14). The sliding mode control in the above example 

is the conventional method which characteristic is that the convergence 

of the system states to the equilibrium points is usually asymptotical due 

to the asymptotical convergence of the linear switching manifolds that 

are commonly chosen. We now design a NTSM controller, which is 

particularly useful for high precision control as it speeds up the rate of 

convergence near the equilibrium point. 

Theorem 1 can be used for chaos control. Consider a hysteresis-based 

PWL system constructed using a second-order linear system with a 

feedback of a hysteresis series as shown in Fig. 3.1a, which can be 

described as follows: 

 
1 2

2 1 1 2 2 1

x x

x a x a x a u

=⎧
⎨ = − − +⎩

&

&
, (3.17) 

where u is the nonlinear state feedback given by 

 
1

( , ) ( )
n

i

i

u H x n hys x
=

= = ∑ , (3.18) 

where H(x,n) is the hysteresis-series as shown in Fig. 3.1b, n is the 

number of hystereses. In order to guarantee the existence of the chaotic 

motion in system (3.17), the parameters should satisfy 

 
2

2

2 1

0

4 0

a

a a

<⎧
⎨ − <⎩

, (3.19) 

which gives rise to a pair of complex conjugate eigenvalues with positive 

real parts that result in useful oscillatory motions for generating chaos. 
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The trajectory of system (3.17) can be considered as being governed by 

piecing together trajectory parts in the subspaces, centered at the 

equilibrium points, respectively. 

 
Fig. 3.1. (a) Second-order linear system with a feedback of hysteresis-

series. (b) A hysteresis-series (n = 4). 

In order to control chaotic system (3.17), a control signal v is applied in 

the system, that is, equation (3.17) is rewritten as follows: 

 
1 2

2 1 1 2 2 1

x x

x a x a x a u v

=⎧
⎨ = − − + +⎩

&

&
. (3.20) 

If the objective of chaos control is to control the variables of a chaotic 

system to an equilibrium point of the system, the following theorem can 

be used: 

Theorem 3.2.  For the chaotic system (3.20), if a linear sliding mode and 

a terminal sliding mode are chosen as equations (3.21) and (3.22), and a 

control law is designed as equation (3.23), the variable states of system 

(3.30) can converge to zeros asymptotically: 

 1 1 1 2( )s t x xλ= + , (3.21) 

 1 1

1 1 1 1( )
p q

l t s sγ= +& , (3.22) 

 1 2v v v= + , (3.23a) 

 1 1 2 2

1

1
v ax bx au x

λ
= − − − , (3.23b) 

and 

 1 12 /1
2 1 1 1

0
1 1 1

1
sgn( )]

t
p qq

v s l d
γ p

η τ
λ

−= − +∫ & , (3.23c) 
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where λ1>0, γ 1>0, and η 1>0 are design parameters; p1 and q1 are positive 

odd integers, which satisfy the condition qp > . 

Proof.  The following Lyapunov function is considered: 

2

1 1

1
( ) ( )

2
V t l t=  

Differentiating V1(t) with respect to time, it gets: 

1 1 1( )V t l l= &&  

1 1 1 11 2 /1 1
1 1 1 1 1

1 1 1

1
( )

p q p qp q
l γ s s s

q γ p

− −= +& && &  

1 1 1 11 2 /1 1
1 1 1 1 2 1

1 1 1

1
( )

p q p qp q
l γ s v s

q γ p
λ− −= +& & &  

1 1 11
1 1 1 1

1

0p qpγ s l
q

η −= − ≤& , 

when 1 0l ≠ , two different cases are discussed as follows: 

1) 1 0s ≠& . Since 1p  and 1q  are positive odd integers, satisfying 

1 1/ 1

1

p q
s

−& >0, it can be obtained 1 0V <& . 

2)  1 0s =& ， 1 0s ≠ . According to [12]，the state variables of the system 

will not always stay on the points ( 1 0s =& , 1 0s ≠ ) and will continue to 

cross the axis 1 0s =&  in the phase plane 0- 1 1s s& . 

Therefore, l1 and s1 can converge to zero in finite time. Then, the states 

(x1, x2) will converge to zero asymptotically. This completes the proof. 

If the objective of chaos control is to force the variables of the chaotic 

system (3.20) to track the desired trajectories, for example, assuming that 

the desired trajectories of the chaotic system (3.20) are x1ref and x2ref, 

which are all smooth, the following theorem can be used: 

Theorem 3.3.  For the chaotic system (3.20), if a linear sliding mode and 

a terminal sliding mode are chosen as equations (3.24) and (3.25), and a 

control law is designed as equation (3.26), the errors between the 

variable states of system (3.20) and its desired trajectories, e = 

[e1,e2]
T=xref − x, can converge to zeros asymptotically: 

 
2 2 1 1( )s t e eλ= + & , (3.24) 
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 2 2

2 2 2 2( )
p q

l t s sγ= +& , (3.25) 

 1 2v v v′ ′= + , (3.26a) 

 
1 2 2 1 1 2 2( )ref refv x x ax bx au xλ′ = − − + − − +& & , (3.26b) 

and 

 2 22 /2
2 2 2 2

0
2 2

sgn( )]
t

p qq
v s l d

γ p
η τ−′ = − +∫ & , (3.26c) 

where λ2>0, γ 2>0, and η 2>0 are design parameters; p2 and q2 are positive 

odd integers, which satisfy the condition p2>q2. 

Proof.  The proof of Theorem 3 is similar to that for Theorem 2. 

Some simulation results of chaotic system (3.20) using Theorem 2 and 

Theorem 3 are shown in Fig. 3.2 – Fig. 3.11. For the purpose of the 

simplicity, n is chosen as 1 in chaotic system (3.20). The chaotic 

behavior of system (3.20) can be seen in Fig. 3.2 under the case of 

uncontrolled. Fig. 3.3a – Fig. 3.3d are simulation results using Theorem 

2. The control signal is activated after 240 seconds. It can be seen that 

chaotic system (3.20) converges to zeros after 240 second.. Fig. 3.4a – 

Fig. 3.4d are simulation results using Theorem 3. The desired trajectory 

is a limit cycle. The control signal is activated after 270 seconds. It can 

be seen that chaotic system (3.20) tracks the limit cycle. 
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Fig. 3.2. chaotic behavior under the case of uncontrolled. a) state x1. b) 

state x2. c) phase plane. 
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Fig. 3.3. chaotic behavior with the control in Theorem 2 after 240 

seconds. a) state x1. b) state x2. c) phase plane. d) control signal. 
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Fig. 3.4. chaotic behavior with the control in Theorem 2 after 240 

seconds. a) state x1. b) state x2. c) phase plane. d) control signal. 

3.4.   Chaos Synchronization 

Chaos synchronization is a special kind of chaos control. It usually 

appears in two chaotic systems consisting of a master system and a slave 

system, which are of identical structure and parameters except for 

different initial conditions. The chaos synchronization means that the 

trajectories of the slave system track that of the master system starting 

from arbitrary initial conditions [15, 17]. The pioneering work was done 

by [7]. Since then, many schemes for chaos synchronization have been 

proposed [5-8]. Generally speaking, two main classes of chaos 

synchronization schemes can be identified i.e. based on either the 

transverse stability or the observability. In the first case, sufficient 

conditions for the negativity of all transverse or conditional Lyapunov 

exponents are considered, ensuring synchronization of identical chaotic 

systems with unidirectional coupling. Considering the latter approach, 

the problem is formulated as an observation problem, i.e. the 

reconstruction of the system state from measurements of an output 

variable. 

Although there are many methods of chaos synchronization, sliding 

mode based method is an important method of chaos synchronization 

because of its robustness and simplicity. In this section, we will use the 

sliding mode control concept to realize chaos synchronization. 

3.4.1.  Synchronization of Chaotic System Using Observer 
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Many chaotic systems, such as Chua′s circuit, Rössler system, Lorenz 

system, and so on, can be expressed one of the following form consisting 

of linearities and nonlinearities in [10]: 

 ( ) ( ) ( )t t f= + +x Ax b x D& , (3.27a) 

or 

 ( ) ( ) ( )t t= + +x Ax Bf x D& , (3.27b) 

where x∈Rn is the state vector; A∈Rn×n, b∈Rn×1,B∈Rn×m, D∈Rn×1 are 

constant real matrices, n≥m; f(x): Rn→R is a nonlinear scale function; 

f(x): Rn→Rm is a nonlinear vector function. 

Another chaotic system reconstructed is similar to the master chaotic 

system, named slave chaotic system: 

 ( ) ( ) ( )t t f u= + + +x Ax b x D&% % %
, (3.28a) 

or 

 ( ) ( ) ( )t t= + + +x Ax Bf x D u&% % %
, (3.28b) 

where nR∈x~ , A, b, B, and D are the same as (3.27); control u is used to 

realize the synchronization of the system (3.27) and the system (3.28). u 

can be adopted two cases: ),~( xxuu =  or ),~( yxuu = , where y∈Rp and 

p≥m, is the output of system (3.27). In the former, the chaos 

synchronization is merely a control of the nonlinear system. For the later 

case, the chaos synchronization is a more challenging task. 

In order to realize chaos synchronization only using the output signal y(t), 

one important method is to regard the slave system as an observer of the 

master system [10]. But the existing methods have some disadvantages. 

The first is that the chaotic systems used for synchronization are ideal. 

The second is that synchronization of chaotic systems with multi-

nonlinearities was not well done. This section addresses these problems. 

A robust observer is proposed in [14] and used to realize the chaos 

synchronization. Since the method of the chaos synchronization makes 

the systems robust, it has significant meaning for practical applications. 

3.4.2.  Chaos Synchronization Using a Robust Sliding Mode Observer 

Consider a class of uncertain chaotic systems: 
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 ( ) ( ) ( ) ( , )t t t= + + +x Ax Bf x D ξ x&
, (3.29) 

where A, B, D and f(x) are the same as that in (3.27); B is of full rank 

matrix; ξ(t, x) = Bδ(t, x) denotes the system uncertainties, 

2( , ) ( , )t r t yα≤ +δ x , where r2 is a known positive constant and α is a 

known function. 

Because the regions of the chaotic attractors are kept in a finite space, the 

states of the chaotic systems are bounded, that is m≤x , where m is a 

positive real constant. For the nonlinear function f(x), which consists of 

the states of the chaotic system, therefore, it holds 1( ) r≤f x , where r1 is 

a known positive constant. 

3.4.3.  Implementation of Chaos Synchronization 

Based on the Walcott-Zak observer, a new robust sliding mode observer 

is designed, which avoids the strict conditions, so the design can be 

simplified. The synchronization signal is chosen as: 

 ( ) ( )t t=y Cx , (3.30) 

where y(t)∈Rp is the output of the chaotic system (3.29) and p≥m; C∈Rn 

to be determined later. 

For the master chaotic system (3.29), a robust sliding mode observer is 

proposed as follows: 

 
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , )t= + + − − +x Ax Bf x D G Cx y Bv x y&

, (3.31) 

where ˆ ( )tx ∈Rn represents the system states; A, B and D are the same as 

that of (3.27); G∈Rn×1 is a constant design matrix, and ˆ( , )v x y ∈Rm is the 

control input. The observer (3.31) is adopted as the slave system for 

chaos synchronization. 

Define the error variable e(t) as: ˆ( ) ( ) ( )t t t= −e x x . The error system is 

obtained from (3.31) and (3.29) as follows: 

 0
ˆ( ) ( ) ( ( ) ( ) ( , ))t t t= + − − +e A e B f x f x δ x Bv&

, (3.32) 

where A0=A − GC. For the sliding mode observer (3.31), a sliding mode 

manifold, which is the function of the output y(t) of the master chaotic 

system (3.29) and the variable ˆ ( )tx  of the slave system (3.31), is 

designed as the following form: 



Y. Feng and X. Yu 

 
70 

 
ˆ( )y= = = = −s Me FCe Fe F Cx y

, (3.33) 

where M∈Rm×n, F∈Rm×1, M=FC, the vector C is the output matrix of 

system (3.29). So the design of the sliding mode manifold (3.33) depends 

on the design of parameter matrix M. 

Define 1 2[ ]T T=e e e , e1∈Rm, e2∈Rn-m, and rewrite the error system (3.32) as 

the following decomposed form: 

 1 011 1 012 2 1 1
ˆ( ) ( ) ( ) ( ( ) ( ) ( , ))t t t t= + + − − +e A e A e B f x f x δ x B v&

, (3.34a) 

and 

 2 021 1 022 2( ) ( ) ( )t t t= +e A e A e&
. (3.34b) 

And rewrite s(t) (3.32) as the decomposed form: 1 1 2 2= +s M e M e , where 

M=[M1 M2], M 1∈Rm, M2∈Rm×(n-m). We have the following result [16, 

18]. 

Theorem 3.4.  For the observer (3.31) of system (3.29), the following 

two conditions are satisfied, the chaos synchronization between systems 

(3.31) and (3.29) is guaranteed: 

1) if the sliding mode manifold is chosen as (3.33) and the control 

strategy v is designed as follows: 

 l n= +v v v , (3.35a) 

 
ˆ( )

l
= −v f x , (3.35b) 

and 

 

( )
( )1 2 ( , )

T

n r r t yα β= − + + +
T

T

s MB
v

s MB
, (3.35c) 

where r1 and r2 are known positive constants. β and η are positive 

scalars, β>0, 0<η <1. 

2) The matrix G makes A0 in (3.32) a Hurwitz matrix, the matrix M 

makes 1

022 021 1 2

−−A A M M  a Hurwitz matrix, while the following condition 

is satisfied: 

 max 0 0( ) 0Tλ + ≤T T
M MA A M M , (3.36) 

where λmax(As) presents the maximum eigenvalue of As. 

Proof.  Consider the following Lyapunov function: 
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21 1 1 1
( ) ( )

2 2 2 2
V t = = = =T T T T

s s s Me Me e M Me . 

The derivative of V(t) along the error system (3.32) can be obtained: 

( )( )0
ˆ( ) ( ) ( ) ( , )V t t= = = + − − +T T T T T

s s e M Me e M M A e B f x f x δ x Bv& & &
 

0 0

1
ˆ( ) ( ) ( ) ( , )

2

T t= + + − + +T T T T T T T
e M MA A M M e s MBf x s MBf x s MBδ x s MBv

 
From (3.36), the above equation becomes: 

ˆ( ) ( ) ( ) ( , )V t t≤ − + +T T T T
s MBf x s MBf x s MBδ x s MBv&

. 

By substituting the sliding mode control strategy (3.35) into above 

equation, it can be obtained: 

( ) ( ) ( , ) nV t t≤ + +T T T
s MBf x s MBδ x s MBv&

 

( )1 2( ) ( , ) ( , )t r r t yα β≤ + + + + +T T T
s MB f x s MB δ x s MB

 
β β≤ − ≤ −T

s MB MB s
 

that is 0)( <−≤ sγtV&  for 0≠s , where 0γ β= − >MB . Therefore, the 

error system (3.32) will reach sliding mode manifold surface s=0 in a 

finite time (0)rt s γ≤ . After the error system (3.32) reaches the sliding 

mode manifold surface s=0, the dynamic behaviour of the error system 

(3.32) will depend on the linear sliding mode manifold (3.33), that is: 

 1

1 1 2 2

−= −e M M e . (3.37) 

Substituting (3.37) into the error system (3.35a), the reduced-order 

dynamic system of error system (3.32) can be obtained: 

 ( )1

2 022 021 1 2 2 2( ) ( ) ( )Mt t t
−= − =e A A M M e A e& . (3.38) 

Designing the sliding mode parameter matrix M to make AM a Hurwitz 

matrix, then the system (3.38) will be asymptotically stable. That is, after 

reaching the sliding mode manifold surface s=0, the error system (3.32) 

will converge to the equilibrium point e = 0 asymptotically. 

3.4.4.  Multi-dimensional Signals Transmission via One Signal 

Transmission Channel 

Chaos synchronization has numerous potential applications in 

mechanics, laser and chemical technologies, communications, biology 

and medicine, economics, ecology etc [3, 4, 9]. 
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For practical applications such as signal, image, speech processing and 

secure communication, it is desirable to use a smaller number of 

channels of signals from the master chaotic system for chaos 

synchronization. The challenge is how to do it via a scalar transmission 

channel. One effective approach is by using observers [10, 11]. 

Synchronization of chaotic systems with a single nonlinearity such as 

Chua system and Rössler system can be well done by using an observer 

via a single transmission channel, whereas, for the chaotic systems with 

multi nonlinearities such as hyperchaotic Chua system and Lorenz 

system, synchronization can not be realized by using a single signal 

channel. 

In order to realize chaos synchronization via one signal transmission 

channel, a method to transmit multi dimensional signals plus a 

synchronization signal of the master chaotic system using only one single 

transmission channel is proposed in [14] based on the idea of time 

division multiplex. The functional block diagram of the transmitter is 

shown in Fig. 3.5. There are three tasks in the transmitter. The first is to 

combine multi dimensional signals into one signal to be transmitted in 

one single transmission channel. The second is to add the bias level 

series, εi, i=1,…,p, to the transmission signal to distinguish each signal 

from the amplitudes. The third is to add another information to the 

transmission signal to represent the synchronization pulse signal. 

The section proposes a hardware structure as shown in Fig. 3.6. The 

transmission signal yε(t) is inputted to the two blocks: level adjustor and 

level comparator. The level adjustor is used to eliminate the bias level 

series, εi, i=1,…, p, from the transmission signal yε(t). While the level 

comparator is used to extract the sampling pulse fsyn from the 

transmission signal yε(t). The signal fsyn is the reconstructed sampling 

signal of fclk. 
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Fig. 3.5. The block diagram of the transmitter. 
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Fig. 3.6. The hardware structure of the receiver. 

3.4.5.  Synchronization of Chaotic Systems with Multi-nonlinearities 

The principle of the synchronization of uncertain chaotic systems with 

multi-nonlinearties by using observers is shown in Fig. 3.7. In the 

transmitter terminal, y1(t), y2(t), … , yp(t) represent p output signals of the 

master chaotic system, which are to be transmitted. fclk is the sampling 

pulse, which frequency must satisfy the Shannon's sampling theorem, 

while in the receiver terminal, yh1, yh2, … , yhp(t) represent p 

reconstructed output signals of the master chaotic system. It should be 

noticed that there is only one signal transmission channel between the 

transmitter and the receiver. 
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Fig. 3.7. Synchronization of uncertain chaotic systems. 

The example is hyperchaotic system formed by a pair of coupled Chua′s 

circuits in [10]: 

 
( )( ) ( , ) ( ) ( , )t t= + + + = + + +x Ax Bf x ξ x D Ax B f x δ x D&

, (3.39) 

where 

D=0, 
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( 1) 0 0 0 0

0 ( 1) 0 0 10 0

0 0 0 0 0

1 0 1 1 0

0 1 0 0 1 1

0 0 0 0 0

b

b

m m

α α
α

β

β

− +⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
− −⎢ ⎥

⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

A
, 

0

0

0 0

0 0

0 0

0 0

α
α

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B
, 

1 1

2 4

( )
( )

( )

f x

f x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
f x , 

and 

0.01sin(3 )
( , )

0.01sin(4 )

t
t

t

π
π

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
δ x , 

where 1 1 1 1( ) ( )( 1 1) / 2f x a b x x= − + − − ; 2 4 4 4( ) ( )( 1 1) / 2f x a b x x= − + − − ; 

α=10, β=14.87, m=1, a = −1.27, b=−0.68. The output matrix of the 

system (3.41) is designed as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

001010

010001
C . 

According to Theorem 4, A0 is a Hurwitz matrix, choose the spectrum of 

the matrix A0 as {−9, −8, −6, −20, −15, −7, }, the matrix G can be 

calculated: 

25.1798 14.3051 30.9801 18.7690 0.2063 52.9225

27.2248 38.2535 29.3055 7.6269 29.6791 28.7371

T− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

G

. 

 F is chosen as: F=diag{0.005, 0.005}. According to Theorem 4, the 

parameters are designed as: r2=0.9, r3=0.2, α(t, y)=0, β=0.2, ε1=8, ε2=0, 

k1=k2=1, T=1ms. The simulation results are shown in Fig. 3.8 - Fig. 3.10. 

Fig. 3.8 depicts the two output signals of the master chaotic system to be 

transmitted to the slave chaotic system, y1 and y2. Fig. 3.9 shows the one 

channel transmission signal yε contains two signals, y1 and y2, plus a 

synchronization signal. Fig. 3.10 shows phase trajectory of the 

hyperchaotic Chua′s circuit state variables x1, x2 and their estimates 1x̂ , 
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2x̂ ; Fig. 3.11 presents phase trajectory of the hyperchaotic Chua′s circuit 

state variables x2, x3 and its estimates. 
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Fig. 3.8. Two outputs y1 and y2. 
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Fig. 3.9. One transmitted signal. 
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Fig. 3.10. Phase trajectory of (x1,x2) vs.( 1x̂ , 2x̂ ). 
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Fig. 3.11. Phase trajectory of (x2,x3) vs.( 2x̂ , 3x̂ ). 

3.5.   Conclusions 

In this chapter, the sliding mode based chaos control has been discussed. 

Three methods of sliding mode methods, namely, traditional linear 

sliding mode, terminal sliding mode and nonsingular terminal sliding 

mode, have been used in chaos control. The advantages of the sliding 

mode based chaos control can be summarized as follows: it is robust to 

system uncertainties, suitable for realization, and simple to calculate. 

Furthermore, a robust sliding mode observer based chaos 

synchronization method has also been described. Based on the time 

division multiplex technique, a transmission method of the 

synchronization signals from the master system to the slave system via 

one single transmission channel has been designed. The advantages of 

this method are as follows: (i) multi-dimensional signals can be 

transmitted using the single channel so that chaos synchronization can be 

realised more efficiently without incurring significant costs of additional 

equipment/devices for transmitting more than one-dimensional signals; 

(ii) it is robust to a class of chaotic systems including internal parameter 

uncertainties and/or the external disturbances (iii) it is a systematic 

design method of chaos synchronization; (iv) it can be used for highly 

chaotic systems. 
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In this chapter, a two-staged method is presented for nonparametric 

regression with jump points. After the rough location of all the possible 

jump points are identified using the existing efficient kernel method, a 

smoothing spline function is used to approximate each segment of the 

regression function. A time scaling transformation is derived so as to 

map the undecided jump points into fixed points. This approximation 

problem is formulated as an optimization problem which can be solved 

by many existing techniques. The method is applied to several 

examples. The results obtained show that the method is highly efficient.  

4.1.   Introduction 

Statistical modelling generally assumes smoothness and continuity of the 

phenomena of interest. However, some phenomena may experience 

sudden or sharp change. For example, groundwater table may undergo 

drastic changes in very short periods of time [15] due to sudden changes 

in environment, such as land clearing. When we study the portfolio 

management, the amount of stocks of a particular investor can be viewed 
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as experiencing a jump when he/she purchases or sells his/her stocks. 

This sudden change is reflected as a jump in visual display. Without 

considering these jumps, we may make an serious error in drawing 

inference about the process under study. It is clearly important to 

estimate both the number of jumps and their locations and magnitudes. 

Problems related to regression with jump points have been addressed 

and investigated for more than two decades. [11] proposed an algorithm 

to estimate regression functions when discontinuities are present. [20] 

used one-sided moving average to find the locations of jumps, [9] used 

Fourier analysis for jump detection. [8] made use of pairing pattern and 

linear filter to develop a discontinuity detector for the purpose of 

detecting the jumps and their magnitudes. [13] estimated the locations 

and magnitudes of the jumps by the boundary kernels. [19] used the 

kernel method to estimate both the locations and magnitudes of the 

jumps. [18] used wavelets to provide a useful procedure for the detection 

of the jump points and their magnitudes. [14] proposed a two-stage 

estimation scheme for the jump locations, where the asymptotic 

properties are also studied. Most of the estimators mentioned above are 

of the kernel type. The key idea is to investigate the difference between 

the estimators of the left- and right-hand side limits for the unknown 

regression functions. On this basis, the locations and magnitudes of the 

jumps can be estimated by using the maximization argument of the jump 

points estimation. However, the overall fittings obtained using these 

methods are not very satisfactory at around jump points and around end 

points. 

At the same time, the spline method was also applied for detecting the 

jump points. [7] used linear splines to estimate discontinuities of the 

unknown regression functions. [12] applied the evolutionary algorithm to 

locate the optimal knots. 

These methods are computationally expensive. In this chapter, a two-

stage method is developed for detecting the number of jump points, their 

locations and magnitudes as well as finding the spline representations for 

the approximation of the unknown regression function with jump points. 

The following notations are used in this chapter. Let X  be the response 

variable with respect to variable t . For a given set of observations 

{ }ii tx , , 1, 2, ,i n= L , the regression function is written as: 
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                        ( ) ,
i i i

x m t ε= +   1,2, ,i n= L                             (4.1) 

where m  is an unknown function defined on [ ]0,T , { }iε , 

1, 2, ,i n= L , are independent and identically distributed ( )20,N σ   

normal random variables. For each 1, 2, ,i n= L , { }iε  represents the 

variation of ix  around ( )i
m t . Without loss of generality, we can let 

1T = . Otherwise, a re-scaling of T  can be used. 

To form a segmented regression, we write ( )m t  as: 

                  ( ) ( ) ,
l

m t m t=    for 1 ,l ltτ τ− < ≤  1, , ,l N= L            (4.2) 

where 0 0τ =  and N Tτ = , where iτ , 1, , ,i N= L  are jump points. This 

setting covers the case of the change of mean values (step changes) as a 

special case by choosing ( )l
m t  as constants. Note that the form of the 

regression ( )lm t  is usually unknown, and hence are nonparametric. It is 

well-known that spline functions are effective for approximating 

nonparametric regressions if they are smooth. However, the smoothing 

spline does not work well directly for regressions with jump points, since 

the smoothing spline is rather sensitive to the location of jump points. 

Some difficulties in jump point estimation have been demonstrated in [6] 

for linear regression with only one jump point. Intuitively, the jump 

points should be identified before applying the smoothing spline to each 

of the individual segments defined by the jump points. This is the 

motivation behind our proposed two-stage method. 

The proposed method consists of two steps. First, we should locate all 

potential locations of jump points. Then, we use a time scaling 

transformation to transform the potential jump points and spline knots 

into pre-fixed points. By doing this, the parameter estimation using least 

squares becomes an optimization problem, which can be solved by 

efficiently techniques, such as the sequential quadratic approximation 

optimization method. Finally, the modified Akaike's information 

criterion is used to determine which potential jump points are real jump 

points. We then obtain the final model. 

This chapter is organized as follows. In section 4.2, we employ the 

kernel method proposed by [19] to locate locations of all the potential 

possible jump points to within respective observation points. Then, the 
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problem formulation is given in section 4.3. section 4.4 introduces a time 

scaling transform, which is motivated by the one proposed in [16]. This 

time scaling transform is then used to derive a new time scaling 

transform, which maps the undecided jump points and spline knots into 

fixed points. The obtained optimization problem is solved by the 

sequential quadratic approximation optimization technique in the 

Optimization Toolbox within the Matlab environment. In section 4.5, we 

use the modified Akaike's information criterion to determine the number 

and locations of jump points and therefore obtain the last model. In 

section 4.6, several numerical examples are presented and solved by 

using the proposed method. Some concluding remarks are given in 

section 4.7. 

4.2.   Estimation for Potential Jump Points 

In statistics, the kernel method is an efficient and powerful statistical tool 

to detect jump points. Therefore, it is used in our two-stage method to 

find potential jumps. We assume that the following conditions are 

satisfied.  

1) The number of the observation points is sufficiently large to 

detect all the possible jump points. That is, the number of jump 

points is very small in comparison with the number of 

observation points and the number of observation points between 

consecutive jump points is sufficiently large for spline fitting. 

2) The jump points should be located in the interval [ ],1δ δ− , 

where δ  is some small positive constant. That is, there is no 

jump point in the neighborhoods of the boundary points on 

which they become undetectable. 

3) There is at most one jump point between it  and 1it + , 

0,1, , ,i n= L  where 0 0t =  and 1 1nt + = . 

4) The regression errors iε , 0,1, , ,i n= L  are independent and 

identically distributed (i.i.d) random variables with mean 0  and 

variance 
2σ < ∞ . 

Let K  be the kernel function with the bandwidth h . There are two 

popular methods to construct kernel estimators, depending on the choice 

of weights by either direct kernel evaluation or the convolution of the 
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kernel with a histogram obtained from the data. Each estimator has 

several important advantages and disadvantages. A thorough review on 

this subject can be found in the paper by [2]. [4] make use of the first 

method to construct an estimator to detect the vicinity of the jump points. 

In our two-stage method, the second method is used to identify rough 

positions of the jump points. 

For the kernel function K  and the bandwidth h , the Gasser-Müller 

estimator is defined as: 

 ( ) ( )
11

ˆ ,
i

i

n s

i h
s

i

m t x K t dτ τ
−=

= −∑ ∫   for ( )0,1 ,t ∈                     (4.3) 

where ( ) ( )1 /
h

K h K h
−• = • , 0ns = , ( )1 / 2

i i i
s t t += + , 2, , 1,i n= −L  

and 1ns = . Let ( )1m t  and ( )2m t  be two Gasser-Müller estimators 

obtained with the kernel functions 1K  and 2K , respectively, using the 

same bandwidth h . Let 

 ( ) ( ) ( )1 2
ˆ ˆ .J t m t m t= −                                   (4.4) 

To continue, we need to analyze the value of ( )J t . 

If ( )m t  has no jump point,  then, under the usual regularity 

conditions, ( )1m t  and ( )2m t  are uniformly strongly consistent 

estimators of ( )m t . Thus, the variation of ( )J t  would not be obvious. 

If ( )m t  has a jump point, then the value of ( )J t would have an 

obvious change around the jump point.  
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Fig. 4.1.  The magnitudes of ( )J t  and the regression function. 

In Fig. 4.1., we give an example where ( )m t  has a jump at 1/ 2t = . 



C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao 

 
84 

Write 

    ( ) ( ) ( ) ,m t t tϕ ψ= +                                    (4.5) 

where ( )tϕ  is the continuous part of ( )m t , while ( )tψ  is a step 

function to characterize the jumps of ( )m t . The magnitude of 

( )J t corresponding to ( )tϕ  is of small order. However, the magnitude 

corresponding to ( )tψ  is symmetric and convex downward in the 

neighborhood of the jump point if the kernel functions 1K  and 2K  are 

chosen such that 

( ) ( )1 2 ,K t K t= −                                         (4.6) 

Furthermore, if 1K  and 2K  have compact support in [ ]1,1− ,  then the 

widths of the neighborhoods mentioned above are no more than 2h . 

Based on the above discussions, we can give a numerical procedure to 

estimate rough locations (and hence, number) of the jump points. 

Algorithm 4.1. (Kernel method to detect the potential jump points) 

    Step 1: Choose h  such that ( )1/3
h O n

−= . 

    Step 2: Choose a nonnegative function ( )K t  with a compact 

support in [-1,1] and is such that 
1 0

0 1
K K

−
≠∫ ∫ . 

    Step 3: Let ( ) ( )1K t K t=  and ( ) ( )2K t K t= − . Calculate ( )J t  

by using (4.3) and (4.4), where h  is given in Step 1. 

    Step 4: Find all the points, which correspond to local maxima of 

( )J t . 

The points obtained by Algorithm 4.1 are considered as potential 

jump points due to Step 4. In the next section, we will use a time scaling 

transformation to find the accurate positions of these jump points. 

4.3.   Segmented Regression with Constraints 

Suppose that 1 2 1, , , ,Nτ τ τ −L  is a set of potential jump points (obtained 

from the kernel method crudely). Then, the interval [ ]0,1  has been 

partitioned into N  subintervals [ ]1,l l
τ τ− , 1, , .l N= L   For each 
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1, , ,l N= L  let the observation points contained in the subinterval 

[ ]1,l l
τ τ−  be denoted by 

11,1 1,, , ,
N

t tL and let 
11,1 1,,

N
x xL be the 

corresponding observations. The regression function is denoted by 

( )l
m t  in the subinterval ( ]1,l l

τ τ−  where 1, , ,l N= L 0 0,τ =  and 

N Tτ = . Now, we use the segmented regression to fit the segment ( )lm t , 

1, ,l N= L . 

The most widely used approach to curve fitting is least squares. If we 

place no restrictions on the residual sum of squares, this method is in fact 

an intoporlant which may be caused a rapid fluctuation. To avoid this, we 

incorporate a smooth penalty in the cost function. In this chapter, we will 

introduce the cubic spline for fitting the segment ( )lm t . 

A general cubic spline basis is defined as 

 ( ) ( ){ }3 32 3

11, , , , , ,
K

t t t t tθ θ
+ +

− −L .                        (4.7) 

where ( ) ( )max 0, ,k kt tθ θ
+

− = −  ,kθ  1, ,k K= L , are the knot points. 

Since the smoothness is penalized in the cost, we need the estimator 

( )ˆ
l

m t  of  ( )l
m t  is continuously differentiable at the knot ,kθ  

1, ,k K= L . Write 

 ( ) ( )
3

3

,1 , 1 , 4 ,

1 1

ˆ ,
li

k

l l l k l k l k

k k

m t a a t a t θ+ + +
= =

= + + −∑ ∑                     (4.8) 

where ,1 ,, ,
ll l i

θ θL , are the pre-fixed knots contained in the l-th segment, 

,1 , 4, ,
l l l

a a +L , are the coefficients. Since ( )3

k
t θ

+
−  is twice continuously 

differentiable, there is no any need restrictions on ( )l
m t . Define the cost 

functional as the following: 

 ( ) ( )( ) ( )( )∑ ∑∫∑
= == −

′′+−=
N

l

N

i

i

N

i

ilill dttmxtmJ
i

i

l

1 1

2

1

2

,,
1

ˆˆ,
τ

τ
λaτ     (4.9) 

where [ ]1 1, ,
T

N
τ τ −=τ L , 

11,1 1, 4 , 4, , , ,
N

T

i N ia a a+ +⎡ ⎤= ⎣ ⎦a L L , λ  is the 

smoothness parameter. 

Under the least squares method with the smoothness penalty, our 

objective is to find ( ),τ a  such that (4.9) is minimized subject to the 

following constraints 
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, 1,1.ll N l l

t tτ +≤ ≤                               (4.10) 

For this optimization problem, the estimates of the jump locations 

and the optimal regression coefficients are obtained simultaneously. Let 

this problem be referred to as Problem (P). 

For the penalized parameter λ , we can choose it by the generalized 

cross-validation method [3]. However, here we will choose it 

interactively for simplicity. 

To solve Problem (P), we need to compute the cost. We note that the 

cost (4.9) is composed of two parts. Since the first part is only related to 

the coefficient vector a , it is easily computed. The second part is the 

sum of some integrals with the integral limit related to the jump points. 

Thus, to compute it with its corresponding gradient is hard. To overcome 

this difficulty, we just introduce a time scaling transformation. By this 

transformation, the jump points and the spline knots are all mapped into 

some pre-fixed points. 

4.4.   A Time Scaling Transformation Method 

We suppose that 1, , ,Nτ τL  are N  variable times in the time interval 

[ ]0,T . A time scaling transformation is introduced such that the variable 

times 1, , ,Nτ τL  are transformed to pre-fixed times 1, , ,Nξ ξL  in the 

new time scale. This transformation was known as the enhancing 

transform, which was introduced by [10] to overcome the numerical 

difficulties in the computation of some optimal control problems. It is 

defined by 

 ( ) ,
dt

v s
ds

=                                      (4.11) 

with initial condition 

  ( )0 0,t = ( ) ,
dt

v s
ds

=                                  (4.12) 

where ( )v s  satisfies the following conditions: 

• ( ) 0v s ≥  for all s ; 

• ( )v s  is a piecewise constant on the interval ( ]1,i i
ξ ξ− ; 
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 ( )
1

1

i

i
i iv s ds

ξ

ξ
τ τ

−
−= −∫ ,                                (4.13) 

where 0 0τ = , 0 0ξ = . 

Now we apply this transformation to our problem such that the jump 

points 1 1, , ,Nτ τ −L  are mapped into the fixed points 1, , 1,N −L  and the 

spline knots 
,1 ,, , ,

ll l i
θ θL  are mapped into 

( ) ( )1/ 1 , , / 1
l l l

l i l i i+ + + +L , 1, ,l N= L . To achieve it, we just 

choose 

 ( ) ( ) ( ) ( ))1 1

1

, 1 / , /
1 1

k

k k

iN

k j k j i k j i
k j

v s ξ χ
+ +

+

⎡ + − +⎣
= =

= ∑∑  

where 
Iχ  is the indicator function, i.e., 

 ( )
1, ,

0, .
I

if s I
s

otherwise
χ

∈⎧
= ⎨

⎩
 

, ,
k j

ξ  1, , , 1, , ,kk N j i= =L L  satisfy the following conditions: 

, 0; 1, , , 1, , ;
k j k

k N j iξ ≥ = =L L                            (4.14) 

 

1

,

1 1

;
kiN

k j

k j

Tξ
+

= =

=∑∑                                (4.15) 

 ( )( ), , , 11 , 1, , , 2, , ;
k j k k j k j k

i k N j iξ θ θ −= + − = =L L        (4.16) 

 , 1 1,1 1,1 ,

1

1 1
, 1, , .

1 1k kk i k k k i

k k

k N
i i

ξ ξ θ θ+ + +
+

+ = − =
+ +

L         (4.17) 

By this transformation, we have 

 ( )( ) ( )( ) ( )
1

2 2

1
1 1

'' '' .
i

i

N N i

i i
i

i i

m t dt m t v s ds
τ

τ − −
= =

=∑ ∑∫ ∫                    (4.18) 

Let 

( ) ( )( ) ( )( )( ) ( )
2 2

, ,
1

1 1 1

ˆ, ''
lNN N l

l l i l i l
l

l i l

J m t x m t s v s dsλ
−

= = =

= − +∑∑ ∑∫ξ a  (4.19) 

where 
11,1 1, 1 , 1, , , ,

N

T

i N iξ ξ ξ+ +⎡ ⎤= ⎣ ⎦ξ L L . Problem ( P̂ ) is stated as the 

following. 

Problem ( P̂ ). ( )min ,J ξ a   subject to (4.14), (4.15), (4.16) and 

(4.17). 
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Clearly, we have the following theorem. 

Theorem 4.1. Problem (P) is equivalent to Problem ( P̂ ) in the sense that 

( ),τ a  is the optimal solution of Problem (P) if and only if ( ),ξ a  is an 

optimal solution of Problem (P). Furthermore, they have the same 

optimal cost. 

4.5.   Model Selection 

Note that the kernel method in section 4.2 tries to detect all the potential 

jump points. The spline approximation method outlined in section 4.3 

can be used in conjunction with the time transform introduced in section 

4.4 to any possible combinations of potential jump points. Suppose that 

the number p is the candidate of jump points. Then, the number of jump 

points p is required to be chosen appropriately. Several methods for 

choosing it have been suggested in the literature. We propose to use the 

Akaike Information Criterion ( AIC ) [1] for the purpose of model 

selection. Tong [17] applied AIC for model selection in a threshold 

autoregression. Hurvich and Tsai [5] derived a modified Akaike 

information criterion 
cAIC  in small samples and claimed that the 

cAIC  

dramatically reduces the bias and improves model selection. The cAIC  

penalizes the RSS  by a function of the number of free parameters and is 

given by 

 ln ,
2

c

RSS N p
AIC

N N p

+
= +

+ −
                    (4.20)  

where N  is the number of observations, p  is the number of free 

parameters in the model and RSS  is the first part of the cost (4.9). Note 

that AIC  tends to overestimate the number of parameters, thus, we will 

use BIC  as a criterion instead of AIC  when the number of observation 

points is large enough, where 

   
ln

ln .
RSS p N

BIC
N N

= +                             (4.21) 

In our simulation, for those examples, where the data produced from a 

mathematical function, BIC  will be used as the criterion as the data can 

be collected as much as we need. For the real data, we will use cAIC  as 

the criterion since the observation points are limited. 
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Algorithm 4.2. 

1. Set [ ]1 1, ,
T

N
τ τ −=τ L , which is a set of candidate jump  points, Γ  

is a set to store the solution and set it empty, 1000.cAIC =  

2.Choosing candidate jump points { }
1

m

i i
τ

=
⊂ τ  and for given spline 

knots θ , use the time scaling transformation (4.11) to solve ( P̂ ) 

and evaluate the corresponding cAIC   (or BIC ), Let 'Γ  denotes 

the current solution which is the set of the jump points and the 

regression coefficients. 

3. If 
' ,c cAIC AIC≤  set ',Γ = Γ  

' ,c cAIC AIC= and go to Step 2. If 

there is no possible candidate jump points, stop. 

4.6.   Numerical Example 

To assess the performance of our proposed method, some numerical 

examples are presented here. 

For the simulated study, the data were generated by the following 

equation: 

 ( ) ,
i i i

x m t ε= +                               (4.22) 

with  /it i n=  and iε  sampled randomly from a normal distribution with 

standard deviation εσ . In the next numerical examples, we choose 

0.1λ = . 

 

Example 4.1.  Let 200,n =  0.2εσ = , and the data is produced from 

the function: 

 

( ) ( ) ( ) ( )1/5 3/5
2 2 0.26 1 0.26 2 0.26 1 0.26 1 0.78 .m t t t t t t= − − ≤ − − > + ≥

           (4.23) 

First, we use Algorithm 4.1 to detect the rough locations of the jump 

points. We rearrange the observation points with the given candidate 

jump points. Let the spline knots vector be [0.1, 0.15, 0.3, 0.5, 0.6]. We 

use BIC  as criterion and the obtained results are that there are two jump 

points: 0.25225, 0.78178. The obtained BIC  is -4.1056. The result is 

depicted in Fig. 4.2. We do the same simulation for 100 times. The 
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results are depicted in Fig. 4.3.     

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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m(t) 

the estimate of m(t)

The magnitudes of |J(t)| 

 
Fig. 4.2. Example 4.1. with 0.01λ = . 

If we choose λ=10, then the obtained result is depicted in Fig. 4.4. 

From Fig. 4.4, we can see that if λ is enough, then the fitting becomes 

linear fitting. Thus, the parameter λ controls the gradient change rate of 

the splines.    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 4.3. Example 4.1. with 100 times simulation. 
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Fig. 4.4. Example 4.1. with 10λ = . 
 
Example 4.2. We now apply our method to a real example, which 

contains the water levels (depths) in boreholes monitored irregularly over 

time. The data are taken from the database of Agriculture of Western 

Australia and have been analyzed by [15]. There are 49 observations. 

The observation points as well as its jump estimator by Algorithm 4.1 is 

depicted in Fig. 4.5. We can see that the kernel method cannot present an 

good jump estimator since the observation points is too little from the 

figure. Thus, we have to consider all the potential jump points and use 

cAIC  as criterion to choose the best model. In the process of fitting, we 

suppose that all of the jumps are positive since the level of the 

groundwater does not experience drop instantly. We re-scaling the time 

to the new interval [0,1]. The last obtained model has 3 jump points: 

0.1050,0.2727,0.4554, 4.3148.cAIC =  The obtained results are 

depicted  in Fig. 4.6.   
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Fig. 4.5. Observation points and jump estimator of Example 4.2. 
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Fig. 4.6. The fitting result of Example 4.2. 

4.7.   Conclusion 

In this chapter, a new two stage method has been proposed for solving 

spline regression problem with jump points. First, we detect the rough 

locations of jump points based on the kernel method. Then, we introduce 

a time scaling transformation reformulate our regression problem as a 

nonlinear optimization problem which is easily to be solved. Also, some 

numerical results are presented and which are shown that our proposed 

method is efficiency.                                                                                                                    
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Chapter 5

CHAOS CONTROL FOR CHUA’S CIRCUITS

L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes

Dept. of Electronic Engineering - DELT Universidade Federal de Minas
Gerais

Email: {torres, aguirre, palhares, emmendes}@cpdee.ufmg.br

The practical implementation of Chua’s circuit control methods is dis-
cussed in this chapter. In order to better address this subject, an induc-
torless Chua’s circuit realization is first presented, followed by practical
issues related to data analysis, mathematical modelling, and dynami-
cal characterization associated to this electronic chaotic oscillator. As a
consequence of the investigation of different control strategies applied to
Chua’s circuit, a tradeoff among control objective, control energy, and
model complexity is devised, which quite naturally leads to a princi-
ple that seems to be of general nature: the Information Transmission
Via Control (ITVC) for nonlinear oscillators. The main purpose of the
present chapter is to serve as an introductory guide to the universe of
Chua’s circuit control, synchronization, and mathematical modelling.

5.1. Introduction

The so-called chaos advent was rekindled after the computer simulation car-

ried out by Lorenz in the early sixties [56]. During the seventies some basic

research took place which aimed at establishing new concepts concerning

chaotic dynamics [63]. The eighties were strongly marked by the goal of

developing tools to characterize chaos [32, 37]. Subjects of modeling [5, 36]

control and synchronization [30, 42] of chaotic systems were mainly devel-

oped in the nineties. Of course, there is active ongoing research in these

fields.

Particularly, the field of chaos control and synchronization of nonlinear

oscillations has attracted much attention lately [13, 20, 21]. While much has

been accomplished in the realm of theory, quite understandably much less

97
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has been reported in terms of practical results [13]. One of the reasons for

this imbalance is the obvious fact that more often than not ideas (theory)

develop before actual implementation. Another possible cause is the natural

difficulty to assemble a suitable setup for testing new ideas as opposed to

simulating solutions on a digital computer.

From the mid-eighties considerable effort was devoted to build simple

laboratory systems that could be used to produce chaotic data. An elec-

tronic circuit that has come to be known as Chua’s circuit is to be found

among such endeavors [57, 58]. Such a circuit has undoubtedly become a

standard benchmark in the study of nonlinear dynamics and chaos [28].

In order to be able to take full advantage of the many benefits of Chua’s

circuit in the investigation of control and synchronization algorithms, it is

important that the real circuit should include devices— called actuators—

to implement the control action. In order to gain flexibility, it is usually

desirable that the control law be implemented on a digital computer. This

will require additional real-time I/O capabilities in order to drive the actu-

ators [73]. The advantages of a setup that includes actuators goes beyond

implementing control and synchronization algorithms. Indeed, (simulated)

driven Chua’s circuits are useful in a number of different ways such as, for

instance, in the identification of new bifurcation scenarios [15].

The paper [73] described a laboratory setup, named Chua’s Circuit Con-

trol Prototype – PCChua, with the following features: (a) composed of a

Chua oscillator furnished with three actuators thus permitting mono and

multi-variable control; (b) the actuators can be driven by the analog out-

puts of a standard I/O-board; in order to be able to actuate fast enough

(c) the I/O-board is driven by a real time program written for Linux and

(d) an inductorless implementation of Chua’s circuit permits to slow down

the original dynamics to just a few hertz. This enables implementing so-

phisticated control schemes without severe time restrictions in applications

such as: design and verification of chaos control algorithms, practical syn-

chronization studies, experimental chaos based information transmission

systems, to mention a few.

In the present chapter, the aim is to present practical implementations

of control strategies for Chua’s circuit. A comprehensive account of this

issue should discuss the Chua’s circuit implementation itself (Sec. 5.2),

together with data analysis and system identification techniques used to

assess the quality of the implemented circuit and to gain insight on the

peculiarities of Chua’s circuit dynamics (Sec. 5.3). In addition, a sample

of control strategies applied to the problem of Chua’s circuit control and
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synchronization are discussed in Sec. 5.4.

5.2. Chua’s Circuit Implementation

This section is primarily focused on presenting a robust and reliable im-

plementation of Chua’s circuit. As it will be seen next, the circuit can be

easily built, which is one of the reasons for its popularity among scientists

all over the world.

5.2.1. An Overview of Chua’s Circuit

The circuit in its standard form, built as an autonomous oscillator, is com-

posed by a network of linear passive elements connected to a nonlinear

active component called Chua’s diode, as seen in Fig. 5.1.

IdI

Chua's
Diode C1 C2 L

R

+

-

+

-

x y

z

(x)

Fig. 5.1. Chua’s circuit. R is a variable resistor used to change the coupling between
the active and passive parts of the circuit. As a consequence variation of R leads to
bifurcation phenomena.

The set of differential equations that describes the circuit behavior is

obtained from Kirchhoff circuit laws, such as:

dx/dt = (y − x)/(RC1) − id(x)/(RC1);

dy/dt = (x − y)/(RC2) + z/C2; (5.1)

dz/dt = −y/L − z(rL/L);

where C1, C2, L and R are the values of the passive linear elements shown

in Fig. 5.1, and rL, not shown in the figure, denotes the series internal
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resistance of the inductor.

The static nonlinearity of Chua’s diode is the piecewise linear function

given by

id(x) = m0x + 0.5(m1 − m0) {|x + Bp| − |x − Bp|} , (5.2)

where m0, m1, Bp ∈ R are parameters. Figure 5.2 shows a measured static

nonlinearity of an implemented Chua’s diode.
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-0.001

0

0.001

0.002
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0.004

-8 -6 -4 -2 0 2 4 6 8

i 
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v (V)

Fig. 5.2. Experimentally obtained static nonlinearity of a Chua’s diode. The dots
correspond to real data, and the continuous traces are the resulting linear regression
applied to the measured data in order to reveal the piecewise affine structure of Chua’s
diode curve.

As a final remark on Chua’s circuit equations, by adopting the following

conventions






t′ = t
RC2

;

z̃ = Rz;

f(x) = Rid(x);







p = C2

C1
;

q = −R2C2

L
;

r = rLq;

(5.3)

it is possible to rewrite Eq. (5.1) in normalized form as:

ẋ = p [y − x − f(x)] ,

ẏ = x − y + z̃, (5.4)

˙̃z = qy + rz̃,
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where ẋ = dx/dt′, ẏ = dy/dt′ and ˙̃z = dz̃/dt′.

There are different ways to implement the nonlinear characteristic

Eq. (5.2) [46]. A robust and reliable way is by using operational ampli-

fiers [41], as shown in Fig. 5.3.

R2

R6

R5

R4R1

Chua’s diode

R3

Fig. 5.3. Implementation of Chua’s diode using Op.Amps. (operational amplifiers).

From the basic circuit topology shown in Fig. 5.1, many variations have

been proposed in the literature, which lead to generalizations that exhibit

a richer set of dynamical behaviors [19, 47].

5.2.2. An Inductorless Version of the Circuit

Chua’s circuit exhibits a broadband spectrum, but the majority of the

power density is concentrated roughly around the frequency determined by

the resonant sub-circuit composed by L and C2 in Fig. 5.1.

Very slow chaotic oscillations are desirable in many situations where

computers are employed to measure data from the circuit, run sophisticated

algorithms based on these data and to take some control action or to run

some file or graphical output operation.

In order to slow down the chaotic oscillations, it is necessary to use

larger energy storage elements, i.e. greater values for C1, C2 and L in

Eq. (5.1).
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However, despite the fact that off-the-shelf capacitors cover a very wide

range of capacitance values, the same is not true for commercial inductors.

Furthermore, the trade-off between coil size and maximum allowed induc-

tance leads to very large and low-accuracy inductors. One possible solution

to this problem is the replacement of the inductor by a circuit that simu-

lates the behavior of an ideal grounded inductor over several decades of fre-

quency [71]. This circuit is, indeed, a gyrator circuit built as an impedance

transformer [14, 65] as seen in Fig. 5.4. Several other configurations of

inductorless Chua circuits have been recently suggested [26, 35, 62].

zy

R7
i(t)

v(t)

R8

R9 C3

R10+ −
− +

Fig. 5.4. Op-Amp realization of the inductor simulation circuit. The voltage at zy

point can be readily used to determine the “current through the realized inductor”. In
this type of circuit it is mandatory that one of the terminals of the realized inductor be
grounded (this corresponds to grounding the terminal of R10).

From Fig. 5.4, one can see that the third state; variable z in Eq. (5.1);

which is the current through the inductor L shown in Fig. 5.1, can be readily

determined by measuring the voltage zy shown in Fig. 5.4 and using the

expression z = (zy − y)/R7; where y is the state variable corresponding to

the voltage across the capacitor C2. Therefore the complete state vector is

composed of voltages, which is in general easier to measure.

The theoretical transfer function of the simulated inductance is [65]:

Z(s) =
L{v(t)}
L{i(t)} =

V (s)

I(s)
=

R7R9R10C3

R8
s, (5.5)

where L stands for the Laplace transform; and R7 through R10 and C3

are shown in Fig. 5.4. Obviously Eq. (5.5) suggests that the inductor is

ideal since it is a pure differentiator as indicated by the zero at the origin
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of the complex s-plane. In order to investigate the limits of this configura-

tion, a realistic SPICE model was implemented and the resulting frequency

response was found to be valid for almost four decades, which easily encom-

passes the spectral content of the measured time-series from the circuit, in

chaotic and non-chaotic regimes [73].

Following the same procedure, it was also found that the assumption

of nearly zero equivalent internal resistance rL, associated to the realized

inductor, is also valid in the same frequency range. This is a very important

detail in the Chua’s circuit implementation because high internal resistance

rL prevents the appearance of chaotic dynamics [11].

The complete circuit is shown in Fig. 5.5. A set of electronic components

values that can be used in this implementation are listed in Table 5.1.

For these components, in Eq. (5.1) the corresponding theoretical circuit

parameters are: 0Ω ≤ R ≤ 2kΩ; C1 = 23, 5µF; C2 = 235µF; L = 42.3H;

rL = 0.0Ω; m0 = -0.409mS; m1 = -0.756mS; Bp = 1.86V.

R1

R2

R6

R5

R4

C1

R

C2

R7 R8

R9 C3

R10

Simulated InductorChua’s diode

R3

Fig. 5.5. Implemented inductorless Chua’s circuit without actuators. In this case the
reference point of the realized inductor is attached to the same ground reference of the
rest of the circuit (see Sec. 5.2.3). The component values are shown in Table 5.1.

The main resonant frequency corresponding to the parameters in Ta-

ble 5.1 is approximately 1.60Hz. This is important in real-time applications

because it enables the user to implement rather involved algorithms without

being pressed too hard by computation time.

5.2.3. PCChua – A Versatile Experimental Platform

This section describes an experimental setup, called PCChua [73], designed

to be a testbed in the study of control and synchronization schemes.
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Table 5.1. Possible set of electronic com-
ponents that can be used in inductorless
Chua’s circuit implementation.

Components Value

R1, R2 220Ω
R4, R5 22kΩ
R3 2.2kΩ
R6 3.3kΩ
R7, R8, R10 1.2kΩ
R9 1.5kΩ
R 2kΩ (multi-turn)
C1 23.5µF (47µF ‖ 47µF)
C2 235µF (470µF ‖ 470µF)
C3 23.5µF (47µF ‖ 47µF)
ICs TL08x (4 Op.amps.)1

1Supply voltage: ±15V.

A fundamental issue in any experimental platform for control or syn-

chronization purposes is the design and construction of devices that will

actually implement the decisions made by the controller(s). Such devices

are usually referred to as actuators. In the case of the PCChua platform,

the following describes the built-in actuators.

The PCChua setup implements the following vector differential equation

~̇x = F(~x) + ~u(t, ~x), (5.6)

where ~x = [x y z]⊤ ∈ R
3 is the state vector, F(·) : R

3 → R
3 is the Chua’s

circuit nonlinear vector field, and ~u(t, ~x) = [ux uy uz]
⊤ ∈ R

3 is the vector

of control inputs.

Equation Eq. (5.6) can be written in detail from Eq. (5.3) and Eq. (5.4)

as

ẋ = p [y − x − f(x)] + ux(t, ~x),

ẏ = x − y + z̃ + uy(t, ~x),
˙̃z = −qy + rz̃ + uz(t, ~x),

(5.7)

where the parameters p, q and r depend on the components used, see

Eq. (5.3).

From a practical point of view, the addition of the control vector ~u(t, ~x)

in Eq. (5.7) can be accomplished by including in the circuit controlled

voltage and current sources (actuators), as indicated in Fig. 5.6. The control
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IdI (x)

Chua's
Diode

R

C1 C2

L

+

-

+

-

x y z

+
- r z

r yr x

Fig. 5.6. Chua’s circuit with actuators indicated.

inputs and the actuators are related by

rx(t) =
C1

RC2
ux(t, ~x),

ry(t) =
1

R
uy(t, ~x), (5.8)

rz(t) =
L

R2C2
uz(t, ~x).

From Fig. 5.6 it is clear that the relative position of the voltage con-

trolled voltage source rz in the circuit implies that a floating realized in-

ductor (gyrator circuit) is necessary. One solution to this problem is to

use an independent power source to supply energy to the simulated induc-

tor. With this modification, the realized inductor becomes a self-contained

circuit with only two external terminals. However, it is important to no-

tice that there are alternative simulated floating inductor circuit topologies

that can be employed, as pointed out in [45]. An alternative is the use

of a floating voltage controlled voltage source instead of a floating realized

inductor.

In the PCChua, the actuators were implemented as indicated in Fig. 5.7,

using the electronic components listed in Table 5.2. The current and voltage

sources have fixed gains: 1V/V for the controlled voltage sources and -

1mA/V for the controlled current sources.

In Fig. 5.7, the adjustable offset voltages, obtained by varying R14 and

R32, are necessary to minimize the effect of small nonzero voltage levels
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+
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(c)

Fig. 5.7. Actuators circuits with fixed gain and offset adjustment. (a) Voltage-
controlled current source rx (R11 to R19); (b) voltage-controlled current source ry (R20

to R28); and (c) voltage-controlled voltage source rz (R29 to R33).

from the external reference voltages.

The external voltage sources are actually provided by a multi-purpose

data and analog output board [73], which is driven by dedicated real-time

software written for a modified version of the Linux operating system, called

RT-Linux, schematically represented in Fig. 5.8.

The multi-purpose board is used to measure the three voltages x, y and

zy (Fig. 5.1 and Fig. 5.4), and to issue three control signals rx, ry and rz to

the actuators in the PCChua (Fig. 5.6). The control and synchronization

algorithms are executed at fs = 1kHz, but the fastest rate at which data

can be acquired is fa = 100Hz, due to hardware limitations. Nevertheless,

it is important to note that fs ≫ 1.6Hz, which indicates that continuous-
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Table 5.2. Electronic components used in the
implementation of PCChua actuators.

Components Value

R11, R12, R13, R15 4.7kΩ
R16, R17, R18, R19 1kΩ
R20, R21, R22, R24q 4.7kΩ
R25, R26, R27, R28 1kΩ
R29, R30, R31, R33 4.7kΩ
R14, R23, R32 5kΩ (multi-turn)
Q1 BC547
Q2 BC557
ICs TL08x (6 Op.amps.)1

1Supply voltage: ±15V.

PCChua

Data and

Control signalsRT Linux

I/
O

 b
o
a
rd

Fig. 5.8. PCChua experimental setup overview.

time versions of control and synchronization strategies can be implemented

with small effort.

All the measured voltages in the PCChua are acquired using 12 bits

of resolution. Two of the DACs used to issue rx and ry have 10 bits of

resolution and the third one (used for rz) is limited to 8 bits.

In Fig. 5.9, an example of the famous double-scroll attractor from Chua’s

circuit, obtained by using the PCChua experimental setup, is presented.

5.3. Chua’s Circuit Data Analysis and Modeling

This section will describe a few results concerning the analysis and modeling

from data of the double-scroll attractor from Chua’s circuit. Further details

can be found in the cited references.
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Fig. 5.9. Data collected from PCChua during 60s. (a) Measured double scroll attractor
from Chua’s circuit. (b) Time-series corresponding to the voltage across capacitor C1

(x-variable) in Fig. 5.1.

5.3.1. The Issue of Observability

The key concept of observability is that of deciding if all the dynamical

information of the full phase space R
m of an m-dimensional system can be

retrieved by measuring one variable s(t) = h(x), h : R
m 7→ R, referred to

as the observable and h, as the measuring function. Briefly, a system is

observable if the full state can be found based on s(t) only.

Let ẋ = f(x), with f : R
m 7→ R

m, and s(t) = h(x), with h : R
m 7→

R be a nonlinear system and a scalar observable, respectively. From s
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a reconstructed space can be formed, for instance by taking a sufficient

number of successive derivatives X = (s(t), s(1), ..., s(d−1)), where s(j) is

the jth time derivative of s [25]. Therefore, there is Φs that maps the

original phase space to the space reconstructed from the observable s, that

is, Φs : R
m(x) 7→ R

d(X). Basically, R
m(x) will be observable from s(t) if

it is possible to go back from R
d(X) to R

m(x) on a one-to-one basis, that is,

if Φs defines a diffeomorphism. Observability of R
m(x) from s is therefore

directly related to the existence of singularities in Φs.

In this respect it would be interesting to answer the following question:

which variable is best to observe the dynamics of Chua’s circuit?

The analysis of the observability of the double scroll attractor is typi-

cally very challenging. One of the difficulties with this system is that the

great difference in the velocities of convergence and divergence along the

stable and unstable manifold. As a consequence, some definitions of ob-

servability indices, here denoted by the letter δ, are very small (≈ 10−15).

Another potential problem is that the application of some techniques to

discontinuous systems is questionable.

Such difficulties seem to have been overcome in [4] where normalized

observability indices, indicated by δ∗, were defined. The following results

are obtained: δ∗x = δ∗y = δ∗z = 1, which is consistent with the fact that

locally the system is linear almost everywhere, and we would expect to

have “global” diffeomorphisms almost everywhere too. As the tolerance (a

parameter used in the new definition) is increased δ∗y quickly diminishes,

whereas δ∗x = δ∗z = 1 remain. Increasing the tolerance even further, δ∗z
drops, thus giving the observability order x ⊲ z ⊲ y (see Table 5.3).

Table 5.3. Normalized observability
indices δ∗s for the double scroll attrac-
tor for increasing values of a tolerance.
These results give the observability or-
der x ⊲ z ⊲ y.
p δ∗x δ∗y δ∗z
0.01 1 1 1
0.02 1 0.68 1
0.10 1 0 1
0.25 0.68 0 0

The results shown in Table 5.3 clearly point out that the case of the

double scroll attractor is numerically badly conditioned and suggest that

the best observable is x, followed by z and, finally by y. This order was

confirmed by another observability test, based on data. This result, and in
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particular the poorer observability properties of the observable y has been

felt in the context of data sampling [2] and modeling [9] which is probably

due to the fact that observing the system from y all symmetry information

is lost. Analogous results for other systems can be found in [50, 51].

5.3.2. Higher-order Spectral Analysis

The results discussed in this section were published formerly in [33]. The

main objective of higher-order spectral analysis is to assess the presence

and effect of nonlinearities in the frequency domain.

5.3.2.1. The Main Concepts

The auto bispectrum is defined formally as the Fourier transform of the

third-order correlation function of the time series. The discrete bispectrum,

appropriate for sampled data, is

B(f1, f2) = E[Af1
Af2

A∗
f1+f2

], (5.9)

where Afi
is the complex Fourier component of the time series at frequency

fi, asterisk is complex conjugation, and E[·] is the expected-value, or aver-

age, operator.

If the three Fourier components in the triple product on the right hand

side of Eq. (5.9) are independent of each other (e.g., if they have random

phase relationships such as a time series with Gaussian statistics), the bis-

pectrum is zero. It is convenient to recast the bispectrum into its normal-

ized (by the power at each of the three frequencies in the triad) magnitude,

called the squared bicoherence, b2(f1, f2), which represents the fraction of

the power of the triad of Fourier components (f1, f2, f1 + f2) that is owing

to quadratic coupling.

Similar to the bispectrum, the auto trispectrum is defined formally

as the Fourier transform of the fourth-order correlation, and the discrete

trispectrum is

T (f1, f2, f3) = E[Af1
Af2

Af3
A∗

f1+f2+f3
]. (5.10)

The normalized magnitude of the trispectrum is called the squared trico-

herence, t2(f1, f2, f3), and is a measure of the fraction of the power of the

quartet of Fourier components (f1, f2, f3, f1+f2+f3) that is owing to cubic

nonlinear interactions.
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Higher-order spectral analysis can also be used as a means of model val-

idation by comparing bicoherence and tricoherence functions of (measured)

data and simulated data obtained by estimated models.

5.3.2.2. The Results

Time series of voltage vC1
measured from a realization of Chua’s circuit

for the spiral and double-scroll attractors were used to estimate nonlinear

polynomial models which can be found in [33]. The circuit parameters

used during the experiments were C1 = 11µF, C2 = 45µF, L = 20H,

Bp = 1.1 ± 0.2V, m0 = −0.37 ± 0.04mS, and m1 = −0.68 ± 0.04mS. For

the spiral attractor (sampled at 12 µs) R = 1.67kΩ and for the double scroll

(sampled at 15 µs) R = 1.64 kΩ. The high inductance (Sec. 5.2.2) reduces

the oscillation frequency from O(100 kHz) to O(1 kHz), thus facilitating

A/D conversion and recording of the data. Polynomial model parameters

were estimated from 8192 values of the voltage across C1 measured after

initial transients had decayed.

Both the measured and modeled spiral attractors have a relatively nar-

row power spectrum dominated by a primary peak fp = 2.92 Hz and its

harmonics (2fp = 5.85 and 3fp = 8.78 Hz, Fig. 5.10a). The model bicoher-

ence (Fig. 5.10c) indicates quadratic coupling between the primary and its

harmonics (e.g., the horizontal band of contours for f2 ≈ 3 Hz, Fig. 5.10c),

similar to that observed in the measurements (Fig. 5.10b). Quadratic in-

teractions involving Fourier components with frequencies less than fp are

significant in time series from both the data (1 < f2 < 3, f1 ≈ 3 Hz,

Fig. 5.10b) and the model (Fig. 5.10c). Tricoherence spectra for the mea-

sured time series (not shown) are similar to those from the polynomial

model. Cubic interactions between quartets of Fourier components are sig-

nificant for the spiral attractor, suggesting higher-order coupling between

motions with frequencies fp and its harmonics. The coupling between the

primary and its harmonics, as indicated by the bicoherence (Fig. 5.10b,c)

and tricoherence (not shown) spectra, suggest both quadratic and cubic

interactions (as occur in the spiral attractor) are reproduced well by the

polynomial model estimated from 8192 values of the voltage measured in

Chua’s circuit.

The higher-order spectral coherences from the model time series are

slightly higher than those from the data, possibly because the model ap-

proximates the infinite-order piecewise linear current in the nonlinear resis-

tor with a second- and third-order polynomial, leading to stronger quadratic
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Fig. 5.10. (a) Power spectra of measured (solid curve) and modeled (dashed curve)
voltage vc1 from Chua’s circuit when the system exhibits a spiral attractor. Contours
of bicoherence of (b) measured and (c) modeled voltage vc1 . The units of power are
arbitrary and the frequencies of the labeled power spectral peaks (panel a) are a) 2.92,
b) 5.85, and c) 8.78 Hz. The minimum contour plotted is b = 0.85, with additional
contours every 0.1. There are 32 degrees of freedom (from [33]).

and cubic coupling than observed in the actual circuit. Noise in the mea-

sured circuit may also reduce higher-order spectral values relative to those

from the model time series.

5.3.3. Discrete-time Global Modeling

The construction of discrete-time models from data has been thoroughly

discussed in the literature. Specifically concerning the double-scroll attrac-

tor, [9] and [29] presented the case of NARMAX (nonlinear autoregres-

sive moving average model with exogenous inputs) polynomial and rational

models, respectively.

5.3.3.1. Monovariable Polynomial Model

The polynomial structure is very attractive because of the simplicity and in-

sight it offers of the systems properties and therefore have been extensively

used for reproducing nonlinear dynamics.

In order to identify dynamically valid models from data generated of

Chua’s circuit, the NARMAX model [49] was chosen. The representation
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of such a model can be as follows

y(k) = F ℓ [ y(k − 1), . . . , y(k − ny),

u(k − d). . .u(k − d − nu + 1), (5.11)

e(k). . .e(k − ne)] ,

where ny, nu and ne are the maximum lags considered for the output, input

and noise terms, respectively and d is the delay measured in sampling in-

tervals, Ts. Moreover, u(k) and y(k) are respectively the input and output

signals. e(k) accounts for uncertainties, possible noise, unmodeled dynam-

ics, etc. and F ℓ[·] is some nonlinear function of y(k), u(k) and e(k). The

function F ℓ[·] can, of course, be a polynomial-type function with nonlinear-

ity degree ℓ∈ ZZ
+. In such a case, to estimate the parameters of this map,

Eq. (5.11) should be expressed in prediction error form as

y(k) = ψ
⊤(k − 1)θ̂ + ξ(k) , (5.12)

where ψ(k − 1) is the regressor vector which contains linear and nonlinear

combinations of output, input and noise terms up to and including time k−
1. The parameters corresponding to each regressor are the elements of the

vector θ̂. Finally, ξ(k) are the residuals which are defined as the difference

between the measured data y(k) and the one-step-ahead prediction ψ⊤(k−
1)θ̂. The parameter vector θ can be estimated by orthogonal least-squares

techniques [76].

One of the many advantages of such algorithms is that the Error Re-

duction Ratio (ERR) can be easily obtained as a by-product [17, 48].

In the particular case of Chua’s circuit, one thousand data points of the

output y(k), the voltage over capacitor C1, were used in the identification.

The following polynomial model was obtained:

y(k) = 3.5230y(k−1)−4.287y(k−2)−0.2588y(k−4)−1.7784y(k−1)3

+2.0652y(k−3)+6.1761y(k−1)2y(k−2)+0.1623y(k−1)y(k−2)y(k−4)

−2.7381y(k−1)2y(k−3)−5.5369y(k−1)y(k−2)2+0.1031y(k−2)3

+0.4623y(k−4)3−0.5247y(k−2)2y(k−4)−1.8965y(k−1)y(k−3)2

+5.4255y(k−1)y(k−2)y(k−3)+0.7258y(k−2)y(k−4)2

−1.7684y(k−4)2y(k−3)+1.1800y(k−4)y(k−3)2 + ψ⊤

ξ (k−1)θ̂ξ+ξ(k) ,

(5.13)
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where ψ⊤
ξ (k−1)θ̂ξ is the noise model composed of 20 linear terms of the

form ξ(k − j) used to avoid bias. This part of the model was not used

in the simulations shown below. The identification of model Eq. (5.13)

and the cluster analysis of the double-scroll and spiral attractors have been

discussed in detail in [9].

Figure 5.11 show the chaotic double-scroll attractor reconstructed di-

rectly from the original data whereas Fig. 5.12 shows the chaotic double-

scroll attractor reconstructed using polynomial model Eq. (5.13). For com-

parison purposes the analysis of the results will be postponed to next sec-

tion.

5.3.3.2. Monovariable Rational Model

Another possibility for the function F ℓ[·] in Eq. (5.11) is a rational model

defined as a ratio of two polynomials [16]

y(k) =
a(y(k−1), . . . , y(k−ny), u(k−1), . . . , u(k−nu), e(k−1), . . . , e(k−ne))

b(y(k−1), . . . , y(k−ny), u(k−1), . . . , u(k−nu), e(k−1), . . . , e(k−ne))
+ e(k),

(5.14)

where u(k) and y(k) are as before, ny, nu and ne are the maximum lags

of the output, input and noise, respectively. Moreover, such lags need not

be the same in the numerator and denominator. a(k − 1) and b(k − 1) are

polynomial functions nonlinear in the regressors taken up to time k − 1.

It is convenient to define the numerator and denominator polynomials in

Eq. (5.14) respectively as [16]

a(k − 1) =

Nn∑

j=1

pnjθnj = ψ⊤
n (k − 1)θn , (5.15)

b(k − 1) =

Nd∑

j=1

pdjθdj = ψ⊤
d (k − 1)θd , (5.16)

where θnj , θdj are the parameters of the regressors (of the numerator, pnj,

and denominator, pdj,) up to time k − 1. Nn + Nd is the total number of

parameters to be estimated.

The use of Eq. (5.14) to perform parameter estimation is not straightfor-

ward because such a function is nonlinear in the unknown parameters. An

alternative solution to this problem is to multiply both sides of Eq. (5.14)

by b(k − 1) and rearranging terms in order to yield [75]
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y∗(k) = a(k − 1) − y(k)

Nd∑

j=2

pdjθdj + b(k − 1)e(k)

=

Nn∑

j=1

pnjθnj − y(k)

Nd∑

j=2

pdjθdj + ζ(k)

= ψ⊤
n (k − 1)θn −ψ⊤

d1(k − 1)θd + ζ(k) , (5.17)

where ψ⊤
d (k − 1) = [pd1 ψ

⊤
d1(k − 1)], θd1 = 1 and

y∗(k) = y(k)pd1 =
a(k − 1)

b(k − 1)
pd1 + pd1e(k) , (5.18)

ζ(k) = b(k − 1)e(k) =





Nd∑

j=1

pdjθdj



 e(k) , (5.19)

where e(k) is white noise. Because e(k) is independent of b(k − 1) and has

zero mean, it can be written

E[ζ(k)] = E[b(k − 1)]E[e(k)] = 0 . (5.20)

Equation (5.18) reveals that all the terms of the form y(k)ψ⊤
d (k − 1),

because of y(k), implicitly include the noise e(k) which is correlated with

ζ(k). This, of course, results in parameter bias even if the noise e(k) is

white. The aforementioned correlation occurs as a consequence of multi-

plying Eq. (5.14) by b(k − 1) and should be interpreted as the price paid

for turning a function which is nonlinear in the parameters to one which

is linear in the parameters. Algorithms with intelligent structure selection

can be found in [18] and [29], to mention a few.

Using the same data as described above and also term clustering infor-

mation [8, 9], the following rational model was obtained [29]

y(k) =
1

D
×

(
2.5568y(k−1)−1.7594y(k−2)+0.2696y(k−5)+0.6192y(k−1)3

−1.0219y(k−2)3−3.2455y(k−1)2y(k−5)+0.0735y(k−3)3

+0.3444y(k−1)y(k−5)2−0.4401y(k−2)y(k−5)2

+3.4624y(k−1)y(k−2)y(k−5)+0.1986y(k−1)2y(k−2)
)

+

10∑

i=1

θ̂iξ(k − i) +

5∑

j=1

θ̂jξ(k − j)2 + ξ(k) , (5.21)
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where

D = 1+1.5164y(k−1)y(k−2)+.5657y(k−3)y(k−5)−12.8527y(k−2)2

+0.1948y(k−1)2+1.7662y(k−2)y(k−5)−0.1409y(k−5)2

−2.0470y(k−1)y(k−5) . (5.22)

Figure 5.12 shows the chaotic double-scroll attractors reconstructed us-

ing polynomial model Eq. (5.13) and rational model Eq. (5.21). Table 5.4

shows the estimated fixed points and largest Lyapunov exponents for both

the original system and the identified models.

The results suggest that both polynomial and rational models do repro-

duce the characteristic dynamical features of the original attractor. Such

results also seem to indicate that the polynomial representation is slightly

better as far as the modeling of attractors produced by Chua’s circuit is

concerned. This should come as no surprise because, in fact, the set of

equations which describe Chua’s circuit can be expressed in polynomial

form.

Table 5.4. Dynamical invariants of data and identified models for Chua’s Circuit

Data
Polynomial
Eq. (5.13)

Rational
Eq. (5.21) –
Eq. (5.22)

Fixed Points (0,2.24,-2.24) (0,2.24,-2.24) (0,2.37,-2.37)
Largest Lyapunov
Exponent

1.3516 ± 0.0343 1.3350 ±0.0563 1.4218 ±0.0596
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Fig. 5.11. Bi-dimensional reconstruction (2000 points) of Chua’s double-scroll attractor.
A window of one thousand points of these measured data were used in the identification.
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Fig. 5.12. Double-scroll attractors reconstructed from (a) simulation of the polynomial
model (Eq. (5.13)) and (b) simulation of the rational model (Eq. (5.21)). The x-axis is
y(k) and the y-axis is y(k − 4).

5.3.4. Continuous-time Global Modeling

The results of building continuous-time models from discrete-time data ob-

tained from Chua’s circuit is briefly described in this section. These results

have first appeared in [6].

5.3.4.1. The Parsimonious Models

A 38 term model was obtained from the training time series without any

structure selection, therefore, hereafter, such a model will be referred to as

the full model. Conversely, the models obtained implementing the structure

selection procedure described in [6] and references therein will be referred to

as parsimonious models in the sense that all such models will have less than

38 terms. The parsimonious models were obtained by means of structure

selection techniques.

5.3.4.2. Topological Characterization

The chaotic attractor is embedded in a space spanned by the successive

derivatives of the experimentally recorded time series, x. Such an embed-

ding will permit the comparison of the state portrait reconstructed from

the experimental data with the portrait generated by the model. The phase

space reconstructed from the recorded time series has an embedding dimen-

sion equal to 3, which coincides with the dimension of the original phase

space. However, five derivative coordinates were used to obtain a global

model.
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Since the original dynamics can be embedded in a 3D space, only the

first three coordinates will be used to characterize the topological structure

of the reconstructed state space. Therefore, the first three coordinates are

x =

∣
∣
∣
∣
∣
∣

X1 = x(t)

X2 = ẋ

X3 = ẍ .

(5.23)

The chaotic attractor is displayed in Fig. 5.13. Since the system presents

an order two inversion symmetry, every point in the time series may have

a counterpart on the opposite side of the attractor. Consequently, the

reconstructed attractor should also present an inversion symmetry [53].

This information will be used at the end of this section and will prove to

be useful in enhancing model quality.
The analysis of the dynamics starts with the computation of a first-

return map obtained from a Poincaré section. In the case of a symmetric
attractor, a fundamental map is used. This can be viewed as a first-return
map to a Poincaré set defined as

˘

(X2, X3) ∈ R
2 | X1 = 1.9, X2 < 0

¯

∪
˘

(X2, X3) ∈ R
2 | X1 = −1.9, X2 > 0

¯

,

(5.24)

built on the absolute value of one of the two variables (X1, X2). The first-

return map shown in Fig. 5.14 presents two critical points. The fact that

this map does not exhibit any layered structure, confirms the hypothesis of

symmetry.

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

X

-26.0

-16.0

-6.0

4.0

14.0

24.0

Y

Fig. 5.13. Plane projection of the x-induced attractor generated by the experiments.
X = x and Y = ẋ.
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Fig. 5.14. Fundamental first-return map of the attractor reconstructed from the exper-
imental data.

For details on this procedure, please refer to [52–54].

5.3.4.3. Model Validation

Figure 5.15 shows the projections of the attractors of some estimated model.

A further step was to compare the fundamental first-return map com-

puted for attractors generated by the models with the one associated with

the experimental data, as shown in Fig. 5.16. Models with 36 and 38

terms are characterized by fundamental first-return maps that have a lay-

ered structure which is not observed in the experimental data. The layered

structure of the first return maps of models with 36 and 38 terms could

be an indication of overparametrization [3]. As a result of this, the system

becomes unsymmetrical [54].

On the other hand, the first-return maps of models with 29 and 32

terms are much closer to the experimental one and despite the differences,

it seems fair to conclude that structure selection has been able to reduce

the complexity of the full model resulting in parsimonious models with

improved dynamics.

In order to help the algorithm account for the order two inversion, a new

model was obtained using a measure which respects the symmetry of the

attractor, that is for each point in the differential embedding space, a sym-

metrical counterpart was included in the data used to estimate the model.

For instance, if the original data set had the point x = [X1 X2 . . . X5]
T ,
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Fig. 5.15. Plane (x × ẋ) ≡ (X1 × X2) projections of the original attractor, the four
parsimonious models and the full model (Np = 38).

then the mirror image of such a point, −x, was inserted in the data set

before choosing the centers. An Np = 20 term model was found. The first

return map of which is shown in Fig. 5.17. It should be mentioned that

this model possesses an important property of the experimental flow that is

not shared by the other models since all the models mentioned in Fig. 5.16

have symmetric fixed points but the related flow is not symmetric due to

the presence of quadratic terms of the form XiXj (∀i, j 6= 1).

Although improvement in some sense can be observed, the identified

model still reveals difficulties. The first-return map does not present the

layered (ghostly) structure as before. This is a signature of perfect symme-

try as pointed out in [54]. Secondly, the maximum of the first return map

shown in Fig. 5.17 does not coincide with the x = y line as observed in

other models (Fig. 5.16), this has important consequences in the resulting

population of periodic orbits. As a matter of fact, for the Np = 20 model

the location of this maximum in relation to the x = y line is very similar to

that of the experimental dynamics (Fig. 5.16). Because of the third branch

which is increasing, rather than decreasing, as seen in the experimental map

(Fig. 5.16), the topology of part of the attractor is different. The linking

numbers, that is, the half sum of oriented crossings are computed, reveal
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some differences between the model and the dynamics underlying the ex-

perimental data. For instance, the pair of periodic orbits encoded by (200)

and (10) are displayed for the experimental dynamics (Fig. 5.18(a)) and for

the 20 term model (Fig. 5.18(b)). The linking number lk(200, 10) is equal

to -2 in both cases but it is noticed that the period-2 orbit of the model is a

symmetric orbit, that is, it visits the two scrolls in the same way, whereas it

is asymmetric and confined in to a single scroll for the dynamics underlying

the experimental data. Such an example confirms that the experimental

and the 20 term model attractors are not topologically equivalent although

both attractors are rather difficult to distinguish by simple visual inspec-

tion. A likely reason for such a difference is the third increasing branch

in the first-return map of the model, as shown in Fig. 5.17(b), which is

not observed for the experimental dynamics. Interestingly, however, the

first-return map of a Chua-type circuit with a smooth nonlinearity [44] also

presents a similar increasing branch.

N
p
=32

Experimental

N
p
=36

N
p
=18

N
p
=38

N
p
=29

Fig. 5.16. First-return maps for the five different models.

5.3.4.4. Multivariable Polynomial Modeling

The following example, first presented in [10], considers data collected from

PCChua, with the frequency of the main spectral peak around 1.6Hz [73].
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Fig. 5.17. Phase portrait (a) and the corresponding first-return map (b) generated by
the symmetrical model. This model has twenty terms, Np = 20.

This enabled collecting the data with a sampling time of Ts = 30ms.
Only 1000 observations of each state variable were used to build the

model. The data used to build the model are shown in Fig. 5.19. The
automatic structure selection scheme followed by an orthogonal extended
least squares estimation routine yielded the following model
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:

x(k) = 1 .21036203206 x(k − 1) + 0.972047183733×10+2 z(k − 1)
+0.598221283675 y(k − 1)
−0.171315924858×10−1 x3(k − 1)

+0.398097703675×10+5 y(k − 1)z2(k − 1)

+0.819593354856×10+4 x(k − 1)z2(k − 1)
−0.111072563509×10+3 y2(k − 1)z(k − 1)

y(k) = 0 .895252009866 y(k − 1) − 0.223303681119×10+6 z3(k − 1)
+0.0837143492947 x(k − 1)

+0.129325180333×10+3 z(k − 1) − 0.677214817432×10−3 x3(k − 1)

+0.181085268783×10−3 x2(k − 1)
−0.204050446812×10+1 x(k − 1)y(k − 1)z(k − 1)

z(k) = 0 .938265057186 z(k − 1) − 0.637485684220×10−3 y(k − 1)

−0.362134020185×10−4 x(k − 1)
+0.315363093575×10−5 x2(k − 1) + 0.632868345441×10−5 y2(k − 1)

−0.643318682312×10−5 x(k − 1)y(k − 1)

+0.187619321537×10−2 x(k − 1)z(k − 1).

(5.25)

As before (Sec. 5.3.3.1), only the deterministic part of the model is shown.

It is important to notice that model Eq. (5.25) cannot produce a mathe-

matically symmetrical attractor because it includes even parity terms [54].

When symmetry conditions were imposed during modeling, the new model

did not settle unto the double scroll attractor and state estimation results

did not improve.

Besides the polynomial model Eq. (5.25) multilayer perceptron (MLP)
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Fig. 5.18. (a) Experimental dynamics, and (b) model dynamics. The linking numbers
between periodic orbits encoded by (200) and (10) is equal to -2 for both the experimental
dynamics and the 20 term model dynamics. Nevertheless, the period-2 orbit does not
present the same symmetry properties. See text for a possible explanation.

neural networks were trained from the same set of data. Three networks

were trained, one for each state variable. The input layer in each case was

the same, namely [x(k−1), y(k−1), z(k−1)]⊤. The activation functions of

the nodes in the single hidden layer were hyperbolic tangent and the single

output node was linear in all three networks. In this section we discuss

the results obtained by two set of networks. The first set was composed of

three fully connected networks with two nodes in the hidden layer and the

second was composed of three fully connected networks with seven nodes
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Fig. 5.19. The measured double scroll attractor of the implemented electronic oscillator.
There are the data used to build model Eq. (5.25).

in the hidden layer. Such neural models will be referred to as MLPs2 and

MLPs7, respectively. Briefly, MLPs2 also settled to limit cycle and MLPs7

showed a very long chaotic transient— consistent with the double-scroll

attractor— before settling to a spiral strange attractor.

It was believed that all the estimated models— Eq. (5.25), MLPs2

and MLPs7— could be competitive in the implementation of a Unscented

Kalman Filter – UKF [40]. However, it was desired to verify if models with

improved global dynamics would outperform locally optimal models. In

order to investigate this issue slight changes were implemented in model

Eq. (5.25) a posteriori, as described in the following paragraph.

The free-run of model Eq. (5.25) settles to the attractor shown in

Fig. 5.20(a). Such an attractor seems to be close to a genuine solution

of the system in the sense that it could be the “stable version” of one of

the unstable periodic orbits that compose the original attractor. When this

is the case, it has been argued that the model can be perturbed (this can

be done in different ways) in order to become chaotic [1]. In the present

case this is achieved by slightly increasing the underlined parameter. For

instance, if 0.92427441 is used, model Eq. (5.25) settles to the double-scroll

attractor shown in Fig. 5.20(b)a. In what follows we shall refer to this as

the perturbed double-scroll model.

aOther parameter values were tested for perturbing model Eq. (5.25) in order to obtain
the double-scroll attractor. Nevertheless, the greater the disturbance (i.e. the farther
from the optimal set of parameters) the worse the performance of the UKF in estimating
the states, although the model might display improved global features.
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Fig. 5.20. Attractors produced by identified model (a) without and (b) with parameter
perturbation, with initial conditions x(0) = 3.2, y(0) = 0.37 and −0.009. From [10].

5.3.5. State Estimation

The results in this section were first presented in [10]. The UKF with the

identified model Eq. (5.25) was used to estimate the full state vector of

the electronic circuit using only the x component to drive the filter. The

following situations were tested: i) using Eq. (5.25) as obtained from the

modeling step; ii) slightly perturbing the underlined parameter of Eq. (5.25)

in order to approximate the resulting attractor to the original double scroll

attractor; iii) using Eq. (5.25) but jointly estimating the three parameters

in italic (which correspond to the terms of each equation with higher ERR

index), iv) the same as in (i) but using a null process noise covariance
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126 L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes

matrix Q.

It is important to declare that in the aforementioned situations, except

in (iv), Q was taken as a diagonal matrix with elements equal to the one-

step-ahead prediction error variance of the respective modelb. In case (iii),

where three parameters were also estimated, the elements of Qθ were taken

as the corresponding parameter variances obtained as a byproduct from the

extended least squares estimator used during modeling step. The results

are summarized in Table 5.5.

Table 5.5. Normalized root mean square (RMS) error of estimated states
for the electronic system. The UKF was implemented with the identified
model Eq. (5.25) — in several contexts (see text)— and with the neural
models MLPs2 and MLPs7. From [10].

situation investigated x y z

(i) model 2.80×10−7% 2.58% 0.87%
(ii) perturbed model 3.75×10−7% 5.85% 2.86%
(iii) joint parameter estimation 3.70×10−7% 3.03% 1.24%
(iv) model with Q = 0 88.46% 85.46% 76.46%
(v) MLPs2 2.57×10−7% 2.06% 1.18%
(vi) MLPs7 9.33×10−7% 1.27% 0.86%

The very low values of RMS for the estimation errors of the x component

are a consequence of low measurement noise in PCChua experimental setup

(Sec. 5.2.3) and due to the fact that the x variable is used to drive the filter.

An interesting remark that can be made based on the results of Ta-

ble 5.5 is that although the perturbed model is, in a sense, closer to the

original system (for instance, both have a positive Lyapunov exponent), the

unperturbed model— which has a lower one-step-ahead prediction error—

is better suited for use within the UKF.

When the UKF was implemented using Eq. (5.25) then, quite natu-

rally, the UKF estimates also settled to the same attractor (possibly just

a limit cycle) shown in Fig. 5.20a. This explains the very high values of

RMS for situation (iv) shown in Table 5.5. This problem can be circum-

vented by setting a lower bound for the covariance matrix P by properly

setting the process noise covariance matrix Q. Otherwise, when conver-

gence was achieved, the trace of matrix P would tend to zero. In so doing

the filter remains more active and the most recent measurements gain more

weight compared to the model and as a result the UKF settles to a double-

scroll attractor, see Fig. 5.21(a). In other words, there are two important

sources of information in the filter: on the one hand, there is the model that

bObtained by one-step-ahead simulation using each model.



August 19, 2008 15:21 World Scientific Review Volume - 9in x 6in Try1

Chaos Control for Chua’s Circuits 127

propagates the sigma points and, on the other hand, there are the measure-

ments. Suitably defining Q and R is a way of weighting differently these

two sources. So as to express lack of confidence in the model, the trace of Q

should be increased. Similarly, the trace of R ought to be directly related

to the degree of uncertainty in the measurements.

When parameters are estimated in addition to the states, the estimated

parameters converge to the values obtained during the modeling stage as

indicated in Fig. 5.22. Consequently situations (i) and (iii) have close per-

formance indices in Table 5.5.

Table 5.6 summarizes the UKF performance when extra white Gaussian

noise is added to the x component in the case of polynomial and neural

models. As can be seen, the UKF implemented with the neural model with

7 hidden nodes is significantly more robust to noise than the filters imple-

mented with the other models. At first sight this could seem inconsistent

with the results shown in Table 5.5 where MLPs7 has the highest error for

the x variable. It should be noticed however that this weakness of MLPs7

does not appear in Table 5.6 because the filters are driven by the x variable,

that is, poor performance in predicting the driving signal is not as serious as

poor performance in predicting the remainder of the state vector, in which

case the predictions are all we have.

Table 5.6. Normalized root mean square (RMS) error of
estimated states for the electronic oscillator. The UKF
was implemented with the identified model Eq. (5.25)
and with the neural models MLPs2 and MLPs7. The
x-component, that drives the filter, was corrupted with
extra additive white Gaussian noise.

model/noise x (%) y (%) z (%)

Polyn 10% 1.97 3.37 1.42
MLPs2 10% 3.48 5.63 2.55
MLPs7 10% 1.01 2.88 1.37

Polyn 25% 4.35 6.08 3.08
MLPs2 25% 8.20 12.66 5.54
MLPs7 50% 1.57 3.53 1.84

Polyn 50% 17.82 17.93 12.84
MLPs2 50% 25.56 27.20 18.13
MLPs7 50% 2.95 5.09 2.75
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Fig. 5.21. The estimated double scroll attractor of the implemented electronic oscillator.
Estimation was performed by the UKF with model Eq. (5.25) and the x component
driving the filter. (a) full state vector, (b) detail of the z component (-·-) measured data,
and (—) estimated component ẑ(k). In the plot (a) the transient at the beginning was
also included to give an idea of how quickly the filter settles. From [10].

5.4. Chua’s Circuit Control and Synchronization

The control (and synchronization) of Chua’s circuit has been chosen as a

benchmark in nonlinear control of dynamical systems by many researchers

around the world.

This is explained by the simultaneous conjugation, on Chua’s circuit,

of complex behavior, simple construction, and manageable mathematical

description composed by a set of only three piecewise affine differential
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Fig. 5.22. The solid lines (—) show the results obtained from the joint estimation of the
three parameters in italic in equation Eq. (5.25). The dotted lines (·) indicate plus and
minus one standard deviation (±

p

diag{Pθ}) of the parameters estimated by joint UKF.
The dashed lines (- -) indicate the values for these parameters estimated by extended
least squares during the modeling step. From [10].

equations. As a consequence, to control and/or to synchronize Chua’ cir-

cuits has become a paradigm in nonlinear control systems theory.

As a sample of modern nonlinear control strategies used to control Chua

circuits, or one of the many variations of this famous chaotic oscillator, it

is possible to register: feedback linearization [55], backstepping [74], sliding

mode [39], and fuzzy control [23], among others.

In this section, a sample of results from the application of different con-

trol and synchronization strategies to the circuit of Chua will be presented.

The aim is to show how Chua’s circuit can be employed to draw deep con-

clusions on the more general problem of controlling nonlinear systems.
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5.4.1. General Considerations – Control Objective,

Available Energy and Mathematical Modelling

The control of nonlinear dynamical systems is undoubtedly a vast field of

research, which has been approached from many different points of view

(see [43, 64, 66] and references therein). The lack of a universal theory,

as powerful as the well known Linear System Theory [27], with which one

would be capable of explaining the plethora of phenomena found in these

systems, almost prevents the achievement of general results.

Despite this fact, in [12] it was possible to elaborate broader conclu-

sions on the performance of controllers for nonlinear dynamics, by taking

into account a number of aspects such as: (i) maximum control effort al-

lowed (energy limits); (ii) the dissimilarities of the control objective (goal

dynamics) when compared to the natural behavior of the uncontrolled sys-

tem; and (iii) the controller structure complexity itself; i.e. the necessity or

not of accurate models of the system to be controlled in the design of the

control law. The tradeoff among these aspects can be clearly illustrated on

the control and synchronization of Chua circuits.

For example, when the control objective is to force one or more state

variables of the chaotic oscillator to follow an arbitrary reference; e.g. a

sinusoidal signal; one expects that complex and/or high energy controllers

would be necessary, as it will be presented in Sec. 5.4.4.

On the other hand, if the reference signal is constant at a specific value

such that the problem becomes one of stabilization of unstable fixed points

of Chua’s circuit, the demanded energy could be reduced, and the controller

could be made simpler than the one used in the former case, as it will be

seen in Sec. 5.4.2.

Another example is the stabilization of unstable periodic orbits (UPO);

which are the fundamental bricks in the system chaotic attractor, and there-

fore are close to the natural behavior of the uncontrolled system. In this

case, one expects that simple and low energy controllers would suffice. This

is indeed verified in the famous OGY chaos control method [61], whose vari-

ations have been applied to Chua’s circuit in [23] and [34].

Similarly, although not obvious, in the problem of synchronization of

unidirectionally coupled identical nonlinear oscillators, if one considers that

this is indeed a control problem where the reference signal is the trajectory

produced by the so-called master system, such that a slave system has to

be controlled in order to follow it, simple and/or low energy controllers

could be employed. This is a consequence of the fact that the control
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objective is to force the slave system follow one of its natural trajectories

after synchronization has been attained. If the goal trajectory belongs to

the library of natural behaviors of the slave then, after synchronization has

been reached, the control effort should vanish in the absence of noise and

perturbations. This will be discussed in the next section.

5.4.1.1. The ITVC Principle

Interesting considerations naturally arise from the close relationship be-

tween control and synchronization of nonlinear oscillators. In [72] for

continuous-time systems, and in [69] for discrete-time systems, a general

principle called Information Transmission Via Control – ITVC was pre-

sented and proved, which relates the control effort u(t), demanded to keep

the systems synchronized, to the perturbation (or information) p(t) signal

injected at the master oscillator, as shown in Fig. 5.23.

Master
x

Controller
Slave

y

xs (t)

ys (t)u(t)

η

p(t)

(t)

Fig. 5.23. Unidirectionally coupled systems or master-slave configuration. p(t) and u(t)
are the perturbation and the control signals, respectively; x(t) and y(t) are the state
vectors of the master and the slave nonlinear oscillators, which tend to synchronize by
means of the control action u(t). sx(t) and sy(t) are measured signals from the oscillators.
The Information Transmission Via Control principle [72] states that u(t) → p(t), in the
absence of noise η(t), as long as y(t) → x(t).

Consider the following information transmission system based on addi-

tively perturbed nonlinear oscillators:

ẋ = f(x) + p(t), (5.26)

ẏ = f̂(y) + u(t), (5.27)

sx = h(x) + η(t), (5.28)

where x ∈ R
n is the master oscillator state vector, f : R

n → R
n, p(t) =

[p1(t) p2(t) . . . pn(t)] is a vector of information signals, where it is allowed
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to have pk(t) = 0 for some values of k ∈ {1, 2, . . . , n}; sx ∈ R
q is the vector

of transmitted signals, such that q ≤ n; h : R
n → R

q is a general mapping;

η(t) = [η1(t) η2(t) . . . ηq(t)] is a vector of noise signals; y ∈ R
n is the slave

oscillator state vector; f̂ : R
n → R

n, and u(t) = [u1(t) u2(t) . . . un(t)] is a

vector of control signals, also represented as continuous functions of time.

In this case, the following can be established:

Theorem 5.1. (ITVC – Information Transmission Via Control Principle).

Define the synchronization error vector as

e = x − y. (5.29)

Suppose that the systems Eq. (5.26) and Eq. (5.27) have C0 (continuous)

vector fields f(x) and f̂(y), respectively. In addition, f(x) = f̂(x), ∀x ∈ R
n,

i.e. the two autonomous oscillators are identical. Under these assumptions,

one has the following result:

lim
t→∞

‖e‖ = 0 ⇒ lim
t→∞

‖p(t) − u(t)‖ = 0, (5.30)

where ‖ · ‖ denotes the Euclidean norm.

An important fact, concerning the general result of the ITVC principle,

was also proved in [72]. In practice, identical synchronization (‖e‖ → 0)

is not possible due to unavoidable noise and parameters mismatch, such

that the synchronization error does not go to zero, but instead it remains

limited: 0 ≤ ‖e‖ ≤ E < ∞. When this occurs, high-energy controllers

should not be used to recover p(t), as can be deduced from the following

result:

Theorem 5.2. (Information recovery when both systems are not identically

synchronized). Suppose that f : R
n → R

n is a Cω (analytic) function

representing the vector fields of both master Eq. (5.26) and slave Eq. (5.27)

oscillators (f(x) = f̂(x), ∀x ∈ R
n). In addition, suppose that 0 ≤ ‖e‖ ≤

E < ∞. Considering the recovering error defined as

ed = p(t) − u(t),

then

‖ed(t)‖ → ‖ė‖, (5.31)

as long as E → 0. More specifically, it is possible to write that
{
‖ed(t)‖ ≤ ‖ė(t)‖ + ρ(y)E + φ(E2)

‖ed(t)‖ ≥ ‖ė(t)‖ − ρ(y)E − φ(E2)
(5.32)
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where ρ(y) = ‖Dy
f‖ is the norm of the Jacobian matrix Dy

f of f(e + y)

evaluated around e = e0 = 0, which depends on the value of y.

The function φ(E2) : R → R
+ represents high order terms in E that

vanish when E → 0, i.e. limE→0 φ(E2)/E = 0.

By applying the above theorem, one sees that the error ed(t) in recover-

ing the perturbation (information) approaches the derivative of the syn-

chronization error e. Therefore, the theorem clearly establishes that it is

possible to achieve a dynamic condition arbitrarily close to the identical

synchronization (‖e‖ ≈ 0), and still do not recover accurately the original

perturbation signal p(t), if the controller structure is such that it results in

‖ė‖ ≫ 0.

Such controllers; i.e. the control laws that lead to the condition

‖ė‖ =
∥
∥
∥

[

f(x) − f̂(y)
]

+ [p(t) − u(t)]
∥
∥
∥ ≫ 0;

are called in this context “high-energy controllers”, because usually it

is observed negligible mismatch between master and slave oscillators

(‖f(x) − f̂(y)‖ ≈ 0); and the perturbation signal is generally kept small

(‖p(t)‖ ≈ ‖e‖) in order to not destabilize the master oscillator. Under

these assumptions, it follows that ‖ė‖ ≫ 0 ⇒ ‖u(t)‖ ≫ 0. In Sec. 5.4.4.2

an example of this situation will be discussed.

The ITVC principle, as stated in [69], has also been used as the basis

for model validation procedures that rely on the control effort spent to

synchronize identified discrete-time models with the corresponding acquired

data set from a real system [7]. Similar remarks concerning the fact that

low-energy controllers should be used in this validation approach (due to

the impossibility of achieving perfect synchronization between real data and

identified model) were also proved in [69].

5.4.2. Linear State Feedback

In this section, the control and synchronization of Chua’s chaotic oscillator

is investigated based on the design of linear state feedback controllers.

A method for selecting the controller gain matrix is proposed based on

the use of the optimization technique known as the ellipsoid algorithm [31].

The formulation presented here can be viewed as an extension of the work

in [70] where the focus was the controller structure design. The objective

is to provide a more general method to determine the non zero elements in

the controller gain matrix in order to issue stable controlled systems.
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The connection between the control and synchronization problems is

explored in detail. It is shown that the synchronization problem is similar to

the equilibrium point stabilization problem concerning the linear controller

design requirements.

Consider the controlled circuit of Chua (Fig. 5.6, page 105) described by

the set of differential equations Eq. (5.7), repeated here, but substituting z̃

by z for clarity purposes:

ẋ = p [y − x − f(x)] + ux(t, ~x),

ẏ = x − y + z + uy(t, ~x),

ż = −qy + rz + uz(t, ~x),

(5.33)

where p = C2/C1 and q = −R2C2/L. Note that the derivatives were taken

relative to the normalized time variable t = t′/RC2, where t′ represents the

actual time (Sec. 5.2.1). The nonlinear function f(x) = Rid(x) in Eq. (5.33)

is proportional to the current through the Chua’s diode, which is given by

Eq. (5.2), page 100.

The control inputs ux(t), uy(t) and uz(t) in Eq. (5.33), assuming linear

state feedback control, can be rewritten in vector form as

~u(t) = [ux uy uz]
⊤

= K(~x − ~xref(t)), (5.34)

where ~x = [x y z]
⊤

is the state vector, the reference vector is denoted

by ~xref(t) = [xref(t) yref(t) zref(t)]
⊤

and K ∈ R3×3 is the controller gain

matrix. Using the Chua’s diode characteristic Eq. (5.2) together with

Eq. (5.34), it is possible to rewrite Eq. (5.33) in matrix form as

~̇x = Ax~x +~bx + K (~x − ~xref) (5.35)

where

Ax =

{
A1 ∈ R3×3, if x ∈ [−Bp, +Bp],

A2 ∈ R3×3, if x < −Bp or x > +Bp,
(5.36)

~bx =







~b1 = pR[Bp(m0 − m1) 0 0]⊤, if x < −Bp,
~b2 = [0 0 0]⊤, if x ∈ [−Bp, +Bp],
~b3 = pR[Bp(m1 − m0) 0 0]⊤, if x > +Bp.

(5.37)

Actually, the matrix Ax is the Jacobian matrix of the nonlinear vector field

of the autonomous chaotic oscillator.

Defining the error vector as

~e = ~x − ~xref ,
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it is possible to derive the following differential equation describing the error

dynamics as a linear time-variant non-autonomous system represented by

d~e

dt
= Ax(~e + ~xref) +~bx + K~e − d~xref

dt
;

~̇e = Ak~e + ~η(t), (5.38)

Ak = Ax + K, (5.39)

~η(t) = Ax~xref(t) + bx − ~̇xref(t). (5.40)

Assuming that it is possible to adequately choose the gain matrix K in

Eq. (5.39) so that the instantaneous eigenvalues of Ak have negative real

parts, the time evolution of the error vector inside each linear region is

given by [27]

~e(t) = exp [Ak(t − t0)]~e(t0) + conv [~η(t) , exp [Ak(t − t0)]] (5.41)

where t0 corresponds to the time instant when the system enters the lin-

ear region, and conv [· , ·] denotes the linear convolution operator. Note

that, despite the complexity in Eq. (5.41), from the above assumption of

asymptotic stability, the error behavior can be approximated by

~e
(
t ≫ |λc|−1

)
≈ conv

[

~η(t) , ~h(t)
]

, (5.42)

~h(t) = exp [Ak(t − t0)] ,

λc = min |real{λ(Ak)}|, λc < 0,

Moreover, the greater the value of |λc| the faster the decay of the com-

ponents in the vector function ~h(t), in such a way that the expression

Eq. (5.42) becomes similar to

~e(t > T ) ≈ conv
[

~η(t) , ~δ(t)
]

, (5.43)

where ~δ(t) is a vector of impulsive functions whose magnitudes are pro-

portional to the areas under the graphs of the ~h(t) components, which in

turn become smaller for greater values of |λc|. This qualitative analysis was

carried out to stress that the larger the absolute values of the real parts

of the instantaneous eigenvalues of Ak in Eq. (5.39), the smaller the max-

imum steady-state error, as can be seen from Eq. (5.43). This effect can

be obtained by means of gain augmentation, e.g. through the use of large

values in a diagonal matrix K; which is a well known result from linear

control theory.
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Assuming that the matrix K was appropriately chosen, reducing the

error vector norm in order to guarantee that the state vector ~x and the

reference state ~xref will be in the same affine region after a time interval T ,

the Eq. (5.40) can be rewritten as

~η(t > T ) = Axref
~xref(t) + bxref

− ~̇xref(t). (5.44)

Note that the first two terms in Eq. (5.44) constitutes the very nonlinear

vector field of an autonomous Chua’s circuit whose state vector is ~xref .

Suppose that the control objective is to stabilize an equilibrium point

~peq of the chaotic oscillator. In this case, Eq. (5.44) becomes

~xref = ~peq = [xeq yeq zeq]
⊤,

~̇xref = 0,

Axeq
~peq +~bxeq

= 0,







⇒ ~η(t > T ) = 0. (5.45)

A similar result can be derived when the reference trajectory is gener-

ated by another Chua’s oscillator with the same parameters, i.e. a master-

slave synchronization problem,

~̇xref = Axref
~xref +~bxref

⇒ ~η(t > T ) = 0. (5.46)

The above result reveals that there exists a strong similarity between

the Chua’s circuit equilibrium point stabilization and synchronization prob-

lems. In both cases, the requirement on providing larger absolute values

for the instantaneous eigenvalues of Ak in Eq. (5.39) can be softened due

to the nature of the control objective.

The most important requirement concerning the matrix K selection is

to guarantee an asymptotically stable matrix Ak in Eq. (5.38) for all t ≥ 0.

Clearly, from Eq. (5.36) and Eq. (5.39), at any instant, only one of two

possible characteristic polynomials will be relevant in the stability analysis.

Applying the Routh criterion [27] on the coefficients of the characteristic

polynomials

det [(A1 + K) − λI] = 0 ⇒ λ3 + α2λ
2 + α1λ + α0 = 0,

det [(A2 + K) − λI] = 0 ⇒ λ3 + β2λ
2 + β1λ + β0 = 0,

(5.47)

where I ∈ R3×3 is the identity matrix and det[·] denotes matrix determi-
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nant, issues the following set of restrictions

Ω :







g1 : α0 > 0,

g2 : α1α2 − α0 > 0,

g3 : α2 > 0,

g4 : β0 > 0,

g5 : β1β2 − β0 > 0,

g6 : β2 > 0.

(5.48)

Note that the coefficients αn and βn, n = 0, 1, 2; are, in general, nonlinear

functions of the elements kij ; i, j = 1, 2, 3; in matrix K.

The great complexity exhibited in Eq. (5.48) can be reduced using sim-

pler control structures. For example, assuming that ux(t) = uy(t) = 0

in Eq. (5.33) so that, the circuit is controlled only by the voltage source

in series with the inductor L shown in Fig. 5.6, page 105, the matrix K

becomes

K =





0 0 0

0 0 0

k1 k2 k3



 , (5.49)

and there will be only two nonlinear restrictions in Eq. (5.48), namely

g2 and g5. Clearly, other control structures can be tested based on the

same approach, and the set of restrictions Eq. (5.48) bounds a region Ω

in the m-dimensional controller parameter space for which the matrix Ak

in Eq. (5.39) is asymptotically stable; where m is the number of non zero

elements in the matrix K.

Concerning the control problem, an additional requirement is to max-

imize the minimum absolute eigenvalue of Ak in Eq. (5.39), in order to

achieve a better tracking performance. This means that there exists an op-

timal set of control parameters ~k∗ inside the region Ω. On the other hand,

when dealing with the synchronization problem, the requirement on the

minimum absolute eigenvalue of Ak is not critical, as discussed previously

on the similarity between the synchronization and the equilibrium point

stabilization problems.

Considering only the restrictions gi in Eq. (5.50) and using the center-

cut ellipsoid algorithm described in [31], examining the restrictions in a

cyclical order, it is possible to select a viable matrix K that leads to asymp-

totic stability in the synchronization problem.

In the case of the general control problem; i.e. arbitrary reference signal

~xref(t); note that the coefficients α2 and β2 in Eq. (5.47) are the negative

sum of the stable eigenvalues of (A1+K) and (A2+K), respectively. Hence,
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a possible way to maximize the minimum absolute eigenvalue of Ak is to

solve the following optimization problem

max{α2 + β2}
s. t. gi > 0; i = 1, 2, . . . , 6;

(5.50)

where the restrictions gi were defined in Eq. (5.48). The use of the ellipsoid

algorithm on Eq. (5.50), issues a gain matrix K well suited for control

purposes.

A simulation procedure was carried out using the following set of Chua’s

circuit parameters: C1 = 23.5µF, C2 = 235µF, L = 43.43H, R = 1.8kΩ (see

Fig. 5.6, page 105); and m0 = −0.36mS, m1 = −0.68mS and Bp = 1.0V

as Chua’s diode parameters; Eq. (5.2), page 100. The results are shown in

Fig. 5.24 to Fig. 5.26 for the control structure represented by the gain matrix

K shown in Eq. (5.49) with k1 = −19.00, k2 = −46.47 and k3 = −3.40.

The objective is to demonstrate that a badly designed linear controller,

exhibiting large error signal as shown in Fig. 5.24 and Fig. 5.25, can still

efficiently synchronize two circuits of Chua as shown in Fig. 5.26. Note that

the gain and offset distortions for a reference signal completely inside one

affine region of Eq. (5.35) is different from the signal distortion observed

for a reference signal inside another affine region, as shown in Fig. 5.24

and Fig. 5.25 respectively. This is a result of different sets of eigenvalues

for (A1 + K) and (A2 + K) in Eq. (5.38) that leads to different temporal

behaviors for the state vector ~x in each corresponding region described by

Eq. (5.35).

The above results indicate that the synchronization problem is quite

similar to the equilibrium point stabilization problem concerning the sta-

bility requirements on the gain matrix controller selection, and that the

nature of the control objective is indeed crucial in the controller perfor-

mance evaluation.

5.4.3. Robust Control and Synchronization via

Linear Matrix Inequalities

The synchronization problem of two Chua’s circuits via state feedback can

also be addressed using optimization techniques based on the so called linear

matrix inequalities (LMIs). The main advantage of this kind of strategy is

that the control law can be derived in a systematic way if the system model

is available.

As shown in the previous section, the nonlinear Chua’s circuit can be

modelled as a piecewise linear framework. Roughly the idea is that Chua’s
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Fig. 5.24. Chua’s circuit linear control using only a voltage source in series with inductor
L (see Fig. 5.6. Control activated at t = 2.5s. (a) (—) Voltage across capacitor C1; (−−)
Reference signal: xref(t) = 1.5 + 0.5 sin(0.4πt), yref(t) = 0, zref(t) = 0. (b) Applied
control signal.

circuit can be represented by a set of “local” systems. With such mod-

elling procedure, diffused techniques from the robust H∞ control theory

can be easily applied to these systems. Section 5.4.3.1 presents the LMI

based formulation to obtain the control gain to synchronize a master-slave

scheme. To evaluate the synchronization control performance, the informa-

tion transmission problem is addressed in Sec. 5.4.3.2 using the PCChua

(Sec. 5.2.3); i.e. the information signal can be recovered in the slave system

using a coherent demodulation technique, if the robust synchronization is

established.
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Fig. 5.25. Chua’s circuit linear control using only a voltage source in series with inductor
L. Control activated at t = 2.5s. (a) (—) Voltage across capacitor C1; (−−) Reference
signal: xref(t) = 0.5 sin(0.4πt), yref(t) = 0, zref(t) = 0. (b) Applied control signal.

Notice that other robust H∞ synchronization strategies for coupled

Chua’s circuits based on LMIs have been reported in the recent litera-

ture; e.g. a fuzzy control based approach [60] and a time-delay feedback

control [67].

5.4.3.1. Robust H∞ Synchronization

Consider a synchronization scheme of nonlinear discrete time systems with

state and output transitions described as:
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Fig. 5.26. Chua’s circuit synchronization using only a voltage source in series with
inductor L. Control activated at t = 5.0s. (a) (—) Voltage across capacitor C1; (−−)
Genuine chaotic trajectory: ~̇xref = Axref

~xref +~bxref
. (b) Applied control signal.

Master







xm
k+1 = A(ρk)xm

k + B(ρk)

ym
k = Cxm

k

(5.51)

Slave







xs
k+1 = A(ρk)xs

k + B(ρk) + uk

ys
k = Cxs

k

(5.52)

where xm,s
k ∈ R

n and xm,s
k+1 ∈ R

n denote the state vectors in the discrete
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time instants k and k + 1, respectivelyc, ym,s
k ∈ R

m denotes the mea-

sured output vectors, uk ∈ R
n denotes the synchronization control vector,

A(ρk) ∈ R
n×n represents the dynamic matrix of the system, B(ρk) ∈ R

n

is the affine term, C ∈ R
m×n is the output matrix and ρk ∈ R

p is a pa-

rameter vector that depends on time k. The synchronism is achieved when

dynamical systems simultaneously describe a common trajectory on the

state space.

By defining the synchronization error as the difference between the

master and slave states, εk = xm
k − xs

k, and assuming a control law

uk = L(ρk)(ym
k − ys

k), where L(ρk) ∈ R
n×m is the matrix of synchroniza-

tion control gains, the synchronism of the master and slave systems can be

investigated by checking the synchronization system error given by:

εk+1 = (A(ρk) − L(ρk)C)εk (5.53)

Global synchronization of the master and slave systems means that, for

any initial state xs
0 of the slave, and any initial state xm

0 of the master, the

convergence condition presented below is verified

lim
k→∞

‖ εk ‖→ 0, ∀ε0 ∈ R
n (5.54)

where ‖ · ‖ is the Euclidean norm.

The difficulty to establish the general conditions for the synchronization

of global chaotic systems has led many researchers to consider particular

classes of nonlinear systems. In the literature, a class of systems commonly

investigated is the so-called Lur’e systems. Numerous approaches such as

those ones given in [22, 38, 68] deal with the synchronization of this class

of systems.

This section focus on the synchronization of a class of Lur’e discrete time

systems represented by local descriptions in the state space. The nonlinear

systems are then modelled in a piecewise linear framework with the state

space partitioned into N regions Ri with
⋃N

i=1 Ri ⊆ R
n. At each discrete

time instant k, the state vector xk visits a unique region Ri of the state

space associated to a set of constant matrices Ai, Bi e Li. Notice that such

a modelling procedure allows to apply some techniques borrowed from the

robust control theory.

Consider a scenario where the master system is disturbed by exogenous

signals wk ∈ R
q in their state and measured output:

c‘m’ and ‘s’ denote the systems master and slave, respectively.
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Master







xm
k+1 = Aix

m
k + Bi + Eiwk

ym
k = Cix

m
k + Diwk

(5.55)

where Ei ∈ R
n×q and Di ∈ R

m×q are weighting matrices.

In this noisy context the synchronization of the master and slave sys-

tems could suffer a performance degradation and, in the worst case, the

synchronization could be completely lost. The determination of a control

law uk that guarantees a robust (insensible to the presence of noise) syn-

chronization of the master and slave systems becomes fundamental.

The results stated in the sequel deal with the problem of chaotic system

synchronization in a noise environment. The main result is based on the

concept of robust H∞ stability of the error system Eq. (5.53) rewritten as:

Error

{
εk+1 = (Ai − LiC)εk + (Ei − LiDi)wk

zk = C̃εk + D̃wk

(5.56)

where zk ∈ R
r denotes a weighing vector of the synchronization error and

C̃ ∈ R
r×n and D̃ ∈ R

r×q are weighting matrices.

The robust H∞-norm performance index can be guaranteed to obtain

the upper bound γ to the induced ℓ2 gain defined as:

sup
‖w‖2 6=0

‖ z ‖2

‖ w ‖2
< γ (5.57)

where ‖ · ‖2 represents the ℓ2-norm.

Notice that the induced ℓ2 gain is the rate between the energy of the

weighting synchronization error signal ‘z’ and the energy of the exogenous

disturbing signal ‘w’. Therefore the synchronization problem can be formu-

lated as a H∞ robust stability problem of the synchronization error system

given in Eq. (5.56).

To solve this synchronization problem, namely to determine the synchro-

nization control gain matrices Li, it is sufficient to find a feasible solution

to the following LMI optimization problem:
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minδ,Si,Sj,Fi,V δ

s.t.





Sj − V T − V V Ai − FiCi V Ei − FiDi

AT
i V T − CT

i FT
i −Si + C̃T C̃ C̃T D̃

ET
i V T − DT

i FT
i D̃T C̃ −δI + D̃T D̃



 ≺ 0,

(5.58)

∀(i, j) ∈ {1 · · ·N}; where the unknowns are the symmetric definite positive

matrices Si, Sj ∈ R
n×n, i = 1, . . . , N , j = 1, . . . , N , any matrices V ∈ R

n×n

and Fi ∈ R
n×r, and the scalar γ,

√
δ > 0. The synchronization gain is given

by Li = V −1Fi. Moreover, the minimum H∞ disturbance attenuation

level from the input wk to the weighting synchronization error output ‘zk’

corresponds to the optimal solution of the minimization problem, i.e., γ =√
δ. Proof details for this result can be found in [24].

5.4.3.2. Experimental Results with Information Transmission

A practical implementation of the Chua oscillator to achieve the robust H∞

synchronization is considered. Further, the information transmission prob-

lem is investigated in the light of the information transmission via control

principle – ITVC discussed in Sec. 5.4.1.1. The information transmission

test is used as a performance index to validate the proposed approach for

robust synchronization. All the experiments were performed in the labora-

tory setup PCCHUA described in Sec. 5.2.3.

Consider the information transmission scheme exhibited in Fig. 5.27.

This scheme shows the Chua’s oscillator circuits on a unidirectional cou-

pling.

+

+ -

++ +

+
-

C1C1 C2C2

RR

L
L

idid
i(t)

η(t)

u1(t)

u2(t)

u3(t)

ym(t) ys(t)

Transmitter ReceiverController

Fig. 5.27. Unidirectional communication system. It is interesting to note that the use
of the voltage across C1, which is the x-variable, has been found to be the best scalar
variable trhrough which the dynamics of Chua’s circuit can be observed, see Sec. 5.3.1.

The information to be transmitted i(t) is injected on the master Chua’s
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chaotic oscillator (transmitter) as a perturbation only in the direction of

vC1
(t). Mathematically this perturbation corresponds to a modification

on the differential equations that govern the motion of the oscillator in

the direction of vC1
(t). Then a scalar signal ym(t) is used to carry the

information and to serve as a reference signal to allow the synchronization

of the slave oscillator (receiver). This signal can be corrupted by noise

interferences η(t) on the transmission channel.

Despite the fact that the information signal must be of very low am-

plitude in order to keep the master oscillator in the chaotic regime, the

oscillator unperturbed dynamical behavior is considerably altered, as can

be seen by comparing Fig. 5.9(a), page 108, with Fig. 5.28.

-1

-0.5

0

0.5

1

-6 -4 -2 0 2 4 6

y
 (

V
)

x (V)

Fig. 5.28. Typical information perturbed double scroll attractor exhibited by the master
oscillator – real data. This figure should be compared to Fig. 5.9, page 108. The
information signal is injected using a voltage controlled current source in parallel with
capacitor C1, shown in Fig. 5.6, page 105.

The transmitter system can be represented by the set of differential

equations
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C1
dvC1

(t)

dt
=

vC2
(t)−vC1

(t)

R
− id(vC1

(t)) + i(t)

C2
dvC2

(t)

dt
=

vC1
(t)−vC2

(t)

R
+ iL(t)

L diL(t)
dt

= −vC2
(t) − rLiL(t)

id(vC1
) = m0vC1

+
(m1−m0)(|vC1

+Bp|−|vC1
−Bp|)

2

ym(t) = vC1
(t) + η(t)

(5.59)

where C1, C2, L, R, rL, m0, m1 e Bp are the circuit’s parameters; i(t)

is the scalar information signal; ym(t) is the transmitted signal and η(t)

is the noise signal on transmission channel. By construction, the receiver

oscillator is fully controllable by the controller signals u(t).

Analogous to the transmitter the receiver system has its motion gov-

erned by the set of differential equations







C∗
1

dvC∗

1
(t)

dt
=

vC∗

2
(t)−vC∗

1
(t)

R∗
− id(vC∗

1
(t)) + u1(t)

C∗
2

dvC∗

2
(t)

dt
=

vC∗

1
(t)−vC∗

2
(t)

R∗
+ i∗L(t) + u2(t)

L∗ di∗L(t)
dt

= −vC∗

2
(t) − r∗Li∗L(t) + u3(t)

id(vC∗

1
) = m∗

0vC∗

1
+

(m∗

1−m∗

0)(|vC∗

1
+B∗

p |−|vC∗

1
−B∗

p |)

2

ys(t) = vC∗

1
(t)

(5.60)

where C∗
1 , C∗

2 , L∗, R∗, rL∗, m∗
0, m∗

1 e B∗
p are the receiver circuit’s parame-

ters; u1(t), u2(t) and u3(t) are scalar control signals and ys(t) is the receiver

output measured signal.

The ITVC principle (Sec. 5.4.1.1) states that any controller that guaran-

tees an identical, or quasi-identical, master-slave synchronization can actu-

ally perform as a demodulator and thus recovering the transmitted informa-

tion. In this way, the control signal u1(t) corresponds to the demodulated

information signal i(t).

To carry out the proposed approach the parameters of the Chua oscilla-

tor (or the communication system) shown in Fig. 5.27 have to be estimated.

This was done by using real data acquired from PCChua, together with the

Kalman filter like algorithm known as UKF [40], to estimate the parameters

shown in Table 5.7.

Further, as the PCChua is implemented in a digital platform and

the approach has been proposed in discrete-time setting, the transmitter
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Table 5.7. Estimated parameters of the PCChua os-
cillator circuit

Parameter Value Parameter Value

R 1673Ω rL 0Ω
C1 30.14µF m0 −0.365mS
C2 185.66µF m1 −0.801mS
L 52.28H Bp 1.74V

Eq. (5.59) and receiver Eq. (5.60) were discretized and the resulting commu-

nication scheme similar to the one shown in (Fig. 5.27) (now in the discrete

domain) is represented as a robust master-slave synchronization scheme.

By applying the discretization approach presented in [59], a piecewise lin-

ear representation for the transmitter and receiver systems was obtained

that describes the motion of Chua oscillator circuits by means of three

linear local models:

Transmitter







xm
k+1 = Aix

m
k + Bi + Eiwk

︸ ︷︷ ︸

ι(k)

ym
k = Cix

m
k + Diwk

Receiver







xs
k+1 = Aix

s
k + Bi + uk

ys
k = Cix

s
k

(5.61)

with the following matrices describing the local motion

A1 =





1 − T/(RC1) − Tm0/C1 T/(RC1) 0

T/(RC2) 1 − T/(RC2) T/C2

0 −T/L 1 − TrL/L





A2 =





1 − T/(RC1) − Tm1/C1 T/(RC1) 0

T/(RC2) 1 − T/(RC2) T/C2

0 −T/L 1 − TrL/L





A3 =





1 − T/(RC1) − Tm0/C1 T/(RC1) 0

T/(RC2) 1 − T/(RC2) T/C2

0 −T/L 1 − TrL/L
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B1 =






+TBp(m1−m0)
C1

0

0




 , B2 =





0

0

0



 , B3 =






−TBp(m1−m0)
C1

0

0






Ei =





0.001

0

0



 , Ci =





1

0

0





T

, Di = 0.0001

C̃i =





1 0 0

0 1 0

0 0 1



 , D̃i =





0

0

0





By solving the optimization problem in Eq. (5.58) and considering the

discretized master-slave synchronization scheme with the parameters shown

in Table 5.7, sampling time T = 10ms, and a unique synchronization gain

(Li = G, ∀i ∈ {1, 2, 3}), the following result can be obtained:

G =
[
99.45 × 10−3 2.93 × 10−3 51.50 × 10−9

]T
(5.62)

that guarantee a level γ = 9.70 × 10−4 of disturbance attenuation H∞.

By doing Li = G for i ∈ {1, 2, 3} in Eq. (5.58), the implementation of the

proposed approach for robust H∞ synchronization of the chaotic systems,

represented by piecewise linear models, was simplified and the transmission

of index model ‘i’ to the receiver system is no longer necessary.

The weighting matrices Ei and Di were defined based on the ampli-

tudes of the information signal i(t) and the noise signal η(t), respectively.

The entry term ι(k) = Eiwk assumes an equivalence of the information

signal at discrete time instants k, i.e., ι(k) ≡ T
C1

i(kT ). In the context of

communication, the performance index H∞-norm appears as a criterium

that ensures a better information reconstruction. This argument is based

on that the robust H∞ stabilization of the error system Eq. (5.56) tends

to minimize the effect of the exogenous entry ‘wk’ over the weighting syn-

chronization error vector ‘εk’ and, consequently, the information signal i(t)

has its influence minimized over the transmitted signal ym(t).

The weighting matrices C̃ and D̃ were conveniently defined in order

to establish the directions and intensities of the weighting synchronization
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error vector.

Notice that synchronization gain G in Eq. (5.62) must be transformed in

order to include the effect of the zero-order hold actuators and to generate

compensation signals compatible to the receiver system Eq. (5.60). The

synchronization gain considered in the PCChua implementation becomes

GPCchua =





2.99 × 10−3

0.54 × 10−3

2.69 × 10−3



 ≡





C1G1/T

C2G2/T

LG3/T



 (5.63)

In order to emphasize the effectiveness of the proposed methodology and

to validate its implementation two information transmission experiments

were performed in the PCChua platform.

In the first experiment, a sinusoidal signal i(t) of amplitude of 0.12mA

and frequency of 0.3Hz is used as the information signal to be transmitted,

as shown in Fig. 5.29. The information signal starts to perturb the natural

behavior of the transmitter oscillator at 30 sec and stop at 90 sec.

0 30 90 120
−0.2

−0.1

0

0.1

0.2

i(
t)

(m
A
)

Time (sec)

Fig. 5.29. [E1] Information signal: i(t) = 0.12sin(2π0.3t) mA

Figure 5.30 depicts the signal ym(t) transmitted by the master oscillator

(transmitter) that serves as a reference signal to the synchronization of the

slave oscillator (receiver). The transmission occurs in the time interval from

15 sec to 105 sec.

The synchronization error signal ε(t) corresponding to the difference

between the transmitted signal ym(t) and the measured slave signal ys(t)

is shown in Fig. 5.31. Outside the time span from 15 sec to 105 sec the

controller is inactive and the synchronization error signal corresponds to

the natural behavior of the free running receiver oscillator.
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Fig. 5.30. [E1] Transmitted signal
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Fig. 5.31. [E1] Error signal: e(t) = ym(t) − ys(t) V

Figure 5.32 shows the control action u1(t) and Fig. 5.33 shows a close

comparison between the transmitted information i(t) and the recovered

information represented by the control action u1(t).

In the second experiment an information signal i(t) with a more com-

plex behavior is considered. This information signal is the summation of

a sinusoidal signal (0.4 Hz), a square signal (1.0Hz) and a sawtooth signal

(1.5Hz). All signals have the same amplitude, that is, 0.12mA.

Figure 5.34 shows the transmitted signal ym(t). The synchronization

error ε(t) signal and the control signal u1(t) are depicted in Fig. 5.35 and

Fig. 5.36, respectively. In Fig. 5.37, it can be readily noticed that the

information from 75 sec to 95 sec is recovered via ITVC principle.
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Fig. 5.32. [E1] Control signal: component u1(t)

5.4.4. Nonlinear State Feedback

In this section, two different control structures will be used to control and

synchronize connected Chua circuits, in order to send information from the

master to the slave oscillator, similarly to what was presented in Sec. 5.4.3.2.

However, in this section the control action will be restricted to the first

equation in Eq. (5.60); i.e. u2(t) = u3(t) = 0; such that







C∗
1

dvC∗

1
(t)

dt
=

vC∗

2
(t)−vC∗

1
(t)

R∗
− id(vC∗

1
(t)) + u(t)

C∗
2

dvC∗

2
(t)

dt
=

vC∗

1
(t)−vC∗

2
(t)

R∗
+ i∗L(t)

L∗ di∗L(t)
dt

= −vC∗

2
(t) − r∗Li∗L(t)

id(vC∗

1
) = m∗

0vC∗

1
+

(m∗

1−m∗

0)(|vC∗

1
+B∗

p |−|vC∗

1
−B∗

p |)

2

ys(t) = vC∗

1
(t)

(5.64)

where C∗
1 , C∗

2 , L∗, R∗, rL∗, m∗
0, m∗

1 e B∗
p are the slave system parameters;

u(t) is a scalar control signal, and ys(t) is the receiver output measured sig-

nal. The objective is to synchronize both oscillators; the master Eq. (5.59),

page 146, and the slave Eq. (5.64), by means of the scalar control signal

u(t) at the receiver, and to recover the original information signal i(t) as a

byproduct of the synchronization process.

The design of the following control structures will highlight the tradeoff

between control energy, control objective, and controller complexity, as

briefly presented in Sec. 5.4.1, and detailed in [12].
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(a) Information signal i(t) - black; Control signal u1(t) - blue
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(b) Information signal i(t) - black; Control signal filtered u1(t) - red

Fig. 5.33. [E1] Recovered information without filtering (a) and with filtering (b) (But-
terworth filter: 2th order; fc = 2Hz)

5.4.4.1. Low Energy Adaptive Proportional Controller

In this section a nonlinear controller designed with no prior knowledge of

the system dynamics is presented. The only consideration is that, from the

results obtained in the previous Sec. 5.4.2 and Sec. 5.4.3, it is known that

a low energy controller should be implemented (see also Sec. 5.4.1).

The proposed controller structure is quite general, as can be verified by

the following set of equations:

eT(t) = ys(t) − vC∗

1
(t),

kp(t) = k1
p + k2

p

(

1 − 1

1 + δpe2
T(t)

)

, (5.65)

u(t) = kp (eT) eT(t),

where k1
p, k2

p and δp are parameters of this adaptive proportional controller,
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Fig. 5.34. [E2] Transmitted signal
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Fig. 5.35. [E2] Error signal: e(t) = ym(t) − ys(t) V

for which the static characteristic curve is shown in Fig. 5.38.

The rationale for the control law Eq. (5.65) is that, when the circuits

are almost synchronized, the slave oscillator is following a trajectory that is

very close to its natural behavior, and therefore a minimum control effort

is necessary to keep the synchronization condition. At the same time, as

discussed in Sec. 5.4.1.1, a low energy controller should be used as demod-

ulator for master-slave connected nonlinear oscillators, and therefore the

proportional gain is reduced when |eT| ≈ 0 (Fig. 5.38), in order to fulfill

this requirement.

It is important to note that in Eq. (5.65) there are no assumptions about

the master oscillator structure and, at a first sight, it is far from obvious

that the control action can actually synchronize both Chua circuits, and at

the same time it will be able to approximate the original information signal

after the synchronization takes place. This shows again that the knowledge
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Fig. 5.36. [E2] Control signal: component u1(t)

of the dynamical system model is useful in designing the controllers, but its

importance is weighted by the nature of the problem under consideration.

Measured results using control Eq. (5.65) are shown in Fig. 5.39 and

Fig. 5.40. In Fig. 5.40 one can see that the filtered recovered information

signal is worse than those obtained with the H∞ state feedback controller

(Sec. 5.4.3.2), as it can be seen by comparison with the result shown in

Fig. 5.33, page 152.

The slight attenuation of the recovered signal, depicted in Fig. 5.40(b),

is mainly related to the strong nonlinear character of Eq. (5.65). Such

attenuation becomes more evident during the peaks of the recovered sig-

nal. The same phenomenon does not occur with information signals that

have smaller amplitudes. In addition, it is worth noting that the delay

time between the original and the recovered information signal observed in

Fig. 5.40(b), is due to the phase lag introduced by the low-pass Butterworth

filter.

5.4.4.2. High Energy Sliding Mode Controller

Following the approach of minimal controller complexity of the previous

section; i.e. designing a nonlinear controller for Chua’s circuit without rely-

ing on accurate knowledge of system model; a simple sliding mode controller

will be proposed that is capable of synchronizing two Chua circuits to an

arbitrary precision.

Consider the following set of equations representing a sliding mode con-
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Fig. 5.37. [E2] Recovered information without filtering (a) and with filtering (b) (But-
terworth filter: 2nd order; fc = 10Hz)

troller applied to the slave oscillator Eq. (5.64):

eT(t) = ys(t) − vC∗

1
(t),

u(t) =

{
umax, eT(t) > δs;

umin, eT(t) < −δs;
(5.66)

where umax = −umin = 0.5mA and δs > 0. Moreover, the control action is

switched according to the hysteresis behavior depicted in Fig. 5.41.

In this case, by choosing appropriately the value of δs in Eq. (5.66), it

is possible synchronize both Chua circuits with arbitrarily small synchro-

nization error. The case δs = 0.4, simulated using normalized equations

(Sec. 5.2.1, Eq. (5.4), page 100, is shown in Fig. 5.42.

What is relevant in this example is the fact that it is possible to

have both oscillators in a quasi-identical synchronization condition and

the control action will still be composed only by positive and negative
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156 L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes

−5 0 5
0

0.002

0.004

0.006

0.008

0.01

0.012

e
T
 [V]

k
p

Fig. 5.38. Adaptive proportional controller characteristic curve for k1
p = 0.0007, k2

p =
0.01, δp = 1.0.

saturation levels umax and umin, no matter the waveform of the informa-

tion/perturbation signal injected at the transmitter. And this is true even

in the case when the strong assumptions of identical vector fields and ab-

sence of noise in the transmission channel are considered to be valid.

Therefore, despite the fact that the circuit can be made to follow arbi-

trary reference signals; which includes the synchronization of Chua circuits

in master-slave configuration as a special case; the ITVC principle cannot

be realized due to the high energy nature of the sliding mode controller.

5.5. Conclusions

This chapter has focused on chaos control for Chua circuits. In order to

properly address this involved theme, an account of various published works

on Chua’s circuit implementation, data analysis, mathematical modeling,

dynamical characterization, control and synchronization was presented.

Chua’s circuit is undoubtedly a paradigmatic nonlinear oscillator that is

capable of exhibiting many interesting dynamical behaviors. In addition, it

remains as one of the most robust and easily built chaotic circuits, specially

when realized by using simulated inductors (Sec. 5.2.2). With this peculiar

construction, one is able to obtain Chua circuits that exhibit very slow

oscillations appropriate to digital analysis and control [71].

This path has been followed in the implementation of the so-called

PCChua experimental setup (Sec. 5.2.3), which comprises a complete com-

puter based system flexible enough to investigate chaos control through the
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trol action at the receiver. Controller activated at t = 15s. (c) Synchronization error
[s(t) − y1(t)].

realization of any control method that can be represented mathematically

by Eq. (5.6), page 104. As a consequence of this flexibility, the PCChua

can also be used to simulate parametric variations in Chua’s circuit, so that

the system bifurcation diagram can be easily obtained from real data, as

shown in [73].

One of the most interesting Chua’s circuit dynamical behaviors – the

chaotic regime – which is usually represented by the so-called double scroll

attractor; was thoroughly investigated in Sec. 5.3 through different at-

tempts of data analysis and mathematical modeling. As a byproduct of

such effort, many dynamical properties associated to the circuit of Chua,

and also topological characteristics of the double scroll attractor, were re-

vealed such as observability indices, symmetry, higher-order spectral coher-
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ence, etc.

Concerning the problem of controlling Chua’s circuit, in Sec. 5.4 a broad

discussion took place in order to show how intertwined are the control

of nonlinear dynamical systems with specific properties of control meth-

ods such as control energy, control objective and control law complexity

(Sec. 5.4.1). One of the key results of such endeavor is the principle called

Information Transmission Via Control – ITVC (Sec. 5.4.1.1), that was ex-

tensively used on various control and synchronization strategies discussed

in this chapter.

Linear and nonlinear state feedback based control techniques, together

with robust control and synchronization design methods, were applied to

the master-slave configuration of two unidirectionally connected Chua cir-

cuits (Sec. 5.4.2, Sec. 5.4.3 and Sec. 5.4.4). These examples were aimed to

highlight that in the synchronization of chaotic oscillators; usually viewed

as a trajectory tracking control problem; one should consider the interesting

fact that to follow a chaotic reference, that is similar to the signal produced

by the uncontrolled nonlinear system, is easier to accomplish than following
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a simple, but unnatural, sinusoidal signal.

It is hoped that this chapter can serve as a starting point for investigat-

ing Chua’s circuit dynamical characterization, data analysis, mathematical

modeling, control and synchronization. The long list of cited references

reflects the authors desire to provide an adequate introduction to these

subjects.
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Pulse width modulation (PWM) current-mode single phase inverters are known 

to exhibit bifurcations and chaos when parameters vary or if the gain of the 

proportional controller is arbitrarily increased. Our aim in this chapter is to 

show, using control theory and numerical simulations, how to apply a method to 

stabilize the desired periodic orbit for larger values of the proportional gain. To 

accomplish this aim, a time-delayed feedback controller (TDFC) is used in 

conjunction with the proportional controller in its simple form as well as in its 

extended form (ETDFC). The main advantages of those methods are the 

robustness and ease of construction because they do not require the knowledge 

of an accurate model but only the period of the target unstable periodic orbit 

(UPO). Moreover, to improve the dynamical performances, an optimal criterion 

and an adaptive law are defined to determine the control parameters. 

6.1.   Introduction 

Power electronics is a discipline that has emerged from the need to 

convert electrical energy. Its field of application is wide and concerns 

industrial, commercial, residential and also aerospace environments. 

Power converters are basic switching circuits that are modeled by a 

number of linear differential equations corresponding to different 

topologies. The toggling between different topologies can either be done 
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naturally due to switching characteristics or done under the force of a 

feedback control system. Due to the existence of various operating 

modes and control saturations, the overall operation is compared to a 

piecewise smooth nonlinear dynamical system. Early studies by Hamill 

and coworkers [6, 11] have shown that switching power converters can 

exhibit several nonlinear phenomena. These include subharmonic 

oscillations, quasi-periodic operations, bifurcations and chaos.  

Chaos in power electronics have been observed by many researchers 

[8, 11, 19]. In fact, engineers have frequently encountered chaos in 

power electronics systems, but more often than not this phenomenon was 

considered as strange and undesirable, hence engineers usually attempted 

to avoid chaos. During the last two decades, tools of analyzing 

bifurcations and chaos have been well developed. Therefore, the 

investigation of nonlinear dynamics in power electronics has become 

popular. 

Actually, much work has focused on bifurcation and chaos due to 

parameter variations [1, 4, 7]. Recently it has been shown by [19] that 

control parameters themselves may lead to bifurcation and chaos if they 

are not properly selected. 

Since the seminal paper [15] (OGY), control of chaos has been the 

focus of a growing literature. Knowing that a chaotic attractor contains 

infinitely many UPO, the OGY methods take advantage of the great 

sensitivity of chaotic orbits to stabilize a UPO by appropriately 

perturbing an accessible parameter [9, 10]. These methods suffer from 

lack of robustness to imprecise measurements and to uncontrolled 

parameter variations. 

To overcome this deficiency, the TDFC has been proposed as an 

alternative method [16, 17]. TDFC is known for its robustness and 

simplicity of construction. Besides, the system model need not be known 

but only the length τ of the UPO to be stabilized is essential. The control 

signal is proportional to the difference between the current state and the τ 
-delayed state. Once the desired UPO is stabilized the control signal 

vanishes. This method has been successfully applied to the control of 

duffing equations [2], discrete chaotic systems [14] and to the control of 

power converters [3, 12, 20]. 
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In this chapter we propose to control a PWM current-mode H-bridge 

inverter using TDFC [13] and ETDFC methods in conjunction with the 

proportional controller. A discrete model describing the behavior of the 

converter is developed and digital controllers are designed. Using the 

Jury criteria a stability zone in the parameter space is defined. In this 

study we show the effect of the TDFC and ETDFC on the bifurcation 

diagrams and we present two-dimensional bifurcation diagrams. 

Our work will be outlined as follows. In section 6.2 we present the 

discrete model of an H-bridge converter circuit. Section 6.3 gives an 

overview on the effect of the variation of the proportional gain and 

boosting of the chaotic behavior. Sections 6.4 and 6.5 will be devoted to 

the presentation of the TDFC and ETDFC controllers and their results, 

respectively. In section 6.4 we show a two-degree of freedom design 

procedure and the resulting two-dimensional bifurcation diagram. The 

ETDFC controller presented in section 6.5 leads to a three-degrees of 

freedom design and improves the results obtained in the preceding 

sections. Section 6.6 includes results on sinusoidal output tracking. 

Finally, our conclusions and remarks are stated in section 6.7. 

6.2.   H-Bridge Model 

In order to increase dynamical performances, a growing number of 

applications in the field of electrical engineering require that they be fed 

by a precise current generator. However, all industrial power sources are 

voltage generators. It therefore follows that converters are necessary to 

adapt voltage sources to loads. Indeed, owing to the presence of many 

windings in electrical machines, most of them are naturally inductive and 

are deemed to be current sources. A convenient way to adapt sources is 

to add a current control to a voltage converter. In this section, we 

describe the converter structure and its running mode before setting up 

its sampled data model. 

With the goal to increase the efficiency of the power stages, static 

converters operate by switching the load between several voltage 

sources. There is a wide range of conversion structures, more or less 

complex, whose choice depends on many parameters. By controlling the 

switching pattern over the operating period, it is possible to vary the 
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average output voltage. This technique, called Pulse Width Modulation 

(PWM), is very widespread. 

A well-known structure, used in most variable speed drives, is the H-

Bridge. Fig. 6.1 illustrates the circuit of this voltage inverter i.e. a 

DC/AC converter. A switch is realized in this bridge by combining a 

bipolar transistor and an anti-parallel diode. The inverter is fed by a 

voltage source E and it supplies a resistive and inductive load (L, R). The 

output current is controlled by a current loop. The four equivalent 

switches, named S1, S2, S3 and S4, are shared among two pairs (S1, S2) 

and (S3, S4). Pairs are controlled by the PWM modulator in a 

complementary way. States of the switches define two distinct topologies 

of the inverter, T1 (S1, S2 on and S3, S4 off) and T2 (S1, S2 off and S3, 

S4 on), and yield to two opposite voltages across the load. For example, 

topology T1 implies that the voltage across the load v = E. 

 

 
Fig. 6.1. H-bridge. 

The PWM modulator defines the switching period T. It generates a 

high state (C = 1), centered in the period, whose duration is defined by 

the current controller acting on the duty ratio d. dn denotes the duty cycle 

on the nth functioning period. The low state (C = 0) is split into two parts 

at the beginning and the end of the period. So the normal running mode 

of the converter involves a sequence of three topologies: T2 −T1 −T2. 

Then the voltage v evolves as depicted in Fig. 6.2 and v = −(−1)CE. This 
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pattern avoids switchings and interferences at the sampling times 

because the digital controller samples current at the beginning of the 

switching period. At that point the sampling frequency is equal to the 

fundamental PWM frequency. 

Fig. 6.2 also shows different possible waveforms of the output current 

under a normal periodic operating mode. As explain before, it is 

important to reduce the current ripple within a period. For that aim (see 

the dashed curve), the inverter period is chosen much smaller than the 

electric time constant L/R. This figure assumes also that the reference 

current In is constant. In fact, it is possible to track a sinusoidal current 

reference (see section 6.6). 

Due to the sampled nature of the current controller, a nonlinear map 

will be required as a model of the converter instead of a usual linear 

averaged state space model. For the sake of generality, the current is 

scaled with respect to the maximum output current E/R and the voltage is 

scaled to E. On each interval, the one-dimensional model is described by 

a single linear differential equation. 

 

,)1(
2

1 Ci
dt

di
−+=−

δ
    (6.1) 

 

where δ = RT/2L << 1 in order to reduce the ripple current. By 

integrating on the three intervals and stacking up the solutions, the model 

becomes a nonlinear discrete time map. 

 

)),sinh()sinh(2(1 δδβα −+=+ nnn dii   (6.2) 

 

where α = e−2δ and β = 2e−δ. 
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Fig. 6.2. Centered PWM voltage and current waveform. 

 

For the sake of clarity, it is important to note that due to boundedness 

of the duty cycle d, the PWM modulator introduces saturations to limit 

too much wandering i.e. to keep the duty cycle d inside the interval [0, 

1]. Saturated running modes are characterized by a unique topology over 

T namely T1 or T2. Saturation of the modulator requires in fact a 

piecewise model and can be studied in an analytical way by the normal 

form theory. Saturations lead to the emergence of border collision 

bifurcations when controller parameters vary. These phenomena have 

been thoroughly investigated in previous works [18, 19]. Because our 

goal in this chapter is to define a new controller stabilizing the normal 

running mode over a wide range, we focus on the standard model (6.2). 

With the objective of the design of an experimental prototype, the 

constants are chosen in order to make it easier with a power that does not 

exceed a few kW and to satisfy the frequency condition presented above. 

To maintain the ripple current at a low level, we set L/R = 0.5ms and T = 

0.2ms, hence parameters were chosen as follows: 
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R = 40Ω, L = 20mH, E = 400V, 

 

leading to the following constants: 

 

δ = 0.2, α = 670.32 × 10−3, β = 1.6375. 

6.3.   Current-programmed Inverter 

Fig. 6.3 depicts an H-Bridge current-programmed single phase inverter. 

The proportional corrector is the main controller used to control the 

switching process and is given by: 

 

),( nnPnn iIk −== γγ   (6.3) 

 

where k is a proportional gain and In is the reference current. In this case, 

the PWM modulator generates the duty cycle: 
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2
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2

1
nnPnn iIkd −+=+= γ    (6.4) 

 

 
Fig. 6.3. Current-programmed single phase inverter. 
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Fig. 6.4. Bifurcation diagram with proportional corrector. 

 

With the objective of the design of an experimental prototype, the 

constants are chosen in order to make it easier with a power that does not 

exceed a few kW and to satisfy the frequency condition presented above. 

To maintain the ripple current at a low level, we set L/R = 0.5ms and T = 

0.2ms, hence parameters were chosen as follows: As a matter of fact, 

when static converters are driven by a T-periodic clock, it is important to 

have a T-periodic output current. Using the discrete-time map given by 

(6.2) and (6.4), the T-periodic output corresponds to a fixed point of 

order one. The local stability of the T-periodic mode is analyzed by 

deriving the Jacobian of the discrete-time map in the neighborhood of the 

fixed points. By solving in+1 = in we obtain the fixed point denoted by i∗  

as a function of k, and thereby we can determine the loci of the 
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eigenvalues when k varies. By combining the inverter model (6.2) and 

the proportional controller (6.4) we obtain a first-order closed loop 

iteration with a unique eigenvalue λP given by: 

 

),cosh(2 *dkP δβδαλ −=    (6.5) 

 

where d∗   is the solution of: 
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,0))sinh()sinh(2()1(

**

**

iIkd

di

n

δδβα
  (6.6) 

 

When k varies the eigenvalue crosses the unit circle at λ0 = −1 with k = 

k0. Using the fact that δd∗  <<1 it follows that cosh(δd∗ ) ≈ 1 and 
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0 =

+
≈

βδ
α

k    (6.7) 

 

Therefore, for k > k0 the T-periodic mode becomes unstable. The 

bifurcation diagram depicted in Fig. 6.4 was obtained by iterating (6.2) 

and (6.4) and the exact value of k0 = 2.52 is obtained. It has been shown 

in [19] that the fixed point of order one (corresponding to T-periodic 

orbit) continues to exist but becomes unstable. 

6.4.   Time-delayed Feedback Controller 

6.4.1.  Controller Design 

The TDFC controller is similar to a proportional corrector but referenced 

to the same state delayed by a time τ equal to the length of the UPO to be 

stabilized. The aim of this section is to stabilize the UPO of length T. 

Using the discrete-time notation, this corresponds to stabilizing the fixed 

point of order one for higher values of k thus the TDFC expression is 

given by: 
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),( 1−−= nnDn iiηγ    (6.8) 

 

where η is the TDFC gain to be adjusted. Fig. 6.5 shows the block 

diagram of the TDFC controller. The whole control signal and the duty 

cycle become: 

 

,DnPnn γγγ +=  

 

).()(
2

1
1−−+−+= nnnnn iiiIkd η   (6.9) 

 

 
Fig. 6.5. TDFC controller. 
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Fig. 6.6. Stability zone in the k-η space. 

6.4.2.  Stability Analysis 

When TDFC is applied, the discrete system defined by (6.2) and (6.8) 

becomes second order since it involves in and in−1. Let us define xn = in−1 

− i∗  and yn = in − i∗ , using xn and yn as the new state variables and 

combining (6.2) and (6.8) yields 

 

,1 nn yx =+  

)).sinh()sinh(2()1( *

1 δδβαα −+−+=+ nnn diyy  (6.10) 

 

We investigate the local stability by deriving the Jacobian evaluated at 

the origin: 
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dkJdJ
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ηη
  (6.11) 

 

Since at equilibrium we have in = in−1 then TDFC signal is null. Thus d∗  

is again the solution of (6.6) and it follows that 
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),cosh(2),( **

1 ddJ δβηδη −=  

).cosh()(2),,( **

2 dkdkJ δηβδαη −+=  

 

The characteristic equation is given by: 

 

.012

2 =−− JzJz    (6.12) 

 

The Jury criterion is used to evaluate the stability domain in terms of k 

and η. According to the Jury criterion, the system is stable if the 

following conditions are satisfied: 

 

,11 <− J      (6.13) 

,01 12 >−− JJ     (6.14) 

.01 12 >−+ JJ    (6.15) 

 

(6.13) yields to an upper limit on η 
 

,
)cosh(2

1
*dδβδ

η <    (6.16) 

 

(6.14) yields to a lower limit on k 

 

.
)cosh(2

1
*d

k
δβδ

α −
>    (6.17) 

 

We should note that α − 1 < 0, then it is sufficient to choose k > 0, in 

order to satisfy condition (6.17) as well as the positiveness of the 

proportional corrector gain. The last of Jury’s conditions (6.15) leads to 

an affine relation between η and k: 

 

.
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Using conditions (6.16)–(6.18), a stability zone in the parameters space k 

− η is defined and depicted in Fig. 6.6. 

The shaded zone has a special interest if we assume that the reference 

is constant. Indeed, (6.9) can be written in the following form: 

 

)).()(()( 1−−−−−−= nnnnnnn iIiIiIk ηγ  

 

Denote εn = In−in the steady state error, then the control signal is similar 

to a Proportional-Derivative (P.D.) controller: 

 

),( 1−−+= nnDnPn KK εεεγ  

 

where KP = k and KD = −η. Ordinarily we have KP > 0 and KD < 0, then 

the conjunction of the proportional and the TDFC controllers can be 

assimilated to a P.D. controller inside the shaded zone of Fig. 6.6. It is 

known from linear control theory that the larger the proportional gain k 

the less is the steady state error ε. In view of Fig. 6.6, k is maximized 

when η is maximized and the limit of stability is the point M which is the 

intersection of boundary lines  

 

βδ
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obtained from (6.16) and (6.18) with the approximation cosh(δd∗ )≈ 1. 

The coordinates of M are: 
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6.4.3.  Results 

The two-dimensional bifurcation diagram depicted in Fig. 6.7 indicates 

in brown the zone of the period one mode and this matches the stability 
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zone shown in Fig. 6.6. Zones of higher periods as well as chaotic zones 

are also shown as parameters k and η vary. Particularly, when η = 0 we 

observe that as k increases the output current is of period one then 

becomes period two and for a short interval of k becomes period four 

before it goes into chaotic mode. As k increases further the output 

becomes period six and finally arrives at period three mode and this 

matches very well with the one-dimensional bifurcation diagram shown 

in Fig. 6.4. We also notice that as η increases and a TDFC controller is 

acting then the period one mode extends for higher values of k as 

expected (see also Fig. 6.8). Fig. 6.8 shows that the fixed point of order 

one that was embedded in a zone of period two mode )3.35.2( ≤≤ k  

and in a chaotic attractor )0.53.3( ≤≤ k  has been stabilized by the 

application of the TDFC in conjunction with the proportional controller. 

6.4.4.  Optimality Criterion 

The main concern of the previous design was to obtain stability of the 

fixed point of order one for larger values of k which reduces the steady 

state error εn. In this section, we show that a drawback of TDFC is to 

degrade the dynamical response by increasing the settling time. Fig. 6.9 

shows the sampled and hold output current resulting from a step 

reference from In = 0 to In = 0.5 with k = 2 and different values of η. We 

note that the transient time is increased when the TDFC is applied. When 

η tends to ηmax, the transient time becomes too large. 

To overcome this problem we present an adaptive law to calculate a 

value of η that leads to a fast response for each value of k. The 

linearization of system (6.10) gives 

 

.
0

01

1

1

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

+

+

y

x
J

y

x
J

y

x
n

n

n

n

n
 

 

This implies that [5] 
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where π(n) ≥ 0 is a positive polynomial in n and σ(J) is the spectral 

radius of J. To obtain a fast response we should choose k and η that 

minimize σ(J). In case of complex eigenvalues σ(J) = √ −J1, thus η 
should be as small as possible. When η is less than or equal to a critical 

value ηc (i.e. η ≤  ηc), the eigenvalues become real and the spectral radius 

is minimum if both eigenvalues are equal, that is when the discriminant 

is equal to zero, 

 

.0),(4),,( *

1

*2

2 =+ dJdkJ cc ηη  

 

Solving for ηc we obtain 
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Fig. 6.10 shows the loci of the eigenvalues when η varies for different 

values of k. Fig. 6.11 depicts the effect of adapting the TDFC gain η 
according to the value of the proportional gain k. Indeed, for k = 4 the 

proportional gain on its own leads to a chaotic output as shown in Fig. 

6.4. However, if the TDFC is arbitrarily added (η = 1.3) the fixed point 

of order one is stabilized and the step reference is tracked with a certain 

static error. Nevertheless, the settling time equal to 50 cycles (10ms) is 

significantly long. Eventually, the adapted TDFC (η = 0.86) yields to the 

stability of the fixed point with a considerably shorter settling time equal 

to 7 cycles (1.4ms). 
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Fig. 6.7. 2-D bifurcation diagram. 
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Fig. 6.8. 1-D bifurcation diagram with TDFC controller. 
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Fig. 6.9. Dynamic responses to step with k=2. 
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Fig. 6.10. Eigenvalues loci for different values of η and k. 
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Fig. 6.11. Dynamic responses to the step with k=4. 

6.5.   Extended Time-delayed Feedback Controller 

6.5.1.  Controller Design 

The ETDFC is a generalization of the TDFC and provides the designer 

with a third parameter r hence one more degree of freedom. The ETDFC 

extends the effect of earlier states to the present output with a decaying 

weight as we go further in the past. The output signal of the ETDFC is 

given by: 
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where k, η and 0 ≤  r < 1 are control parameters to be fixed to guarantee 

stability of the fixed point of order one. We clearly notice that (6.23) is 

equivalent to (6.8) if r = 0. The block diagram realization of the ETDFC 
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is shown in Fig. 6.12. The overall control signal and the duty cycle are 

expressed as: 

 

,EnPnn γγγ +=  
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Fig. 6.12. ETDFC controller.  

6.5.2.  Stability Analysis 

To derive necessary conditions for local stability of the fixed point of 

order one, we start by finding the Jacobian matrix of the discrete-time 

map. Let us first denote 
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and notice that zn+1 = η(in − in−1) + rzn. Thus the discrete-time inverter 

model can be described as follows: 
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.)( 11 nnnn rziiz +−= −+ η   (6.25) 

 

Since at equilibrium ETDFC vanishes then again we can define xn = 

in−1−i∗  and yn = in−i∗  where i∗  and d∗  are the solutions of (6.6). Using 

xn, yn and zn as the new state variables, system (6.25) becomes 
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Hence the Jacobian matrix is 
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where 
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The characteristic equation of the linearized system is: 

 

.0)()( 13132

2

2

3 =++−−++− rJJzJJrJzrJz ηη   (6.27) 



Chaos Control for a PWM H-Bridge Inverter 187 

 

Using the system description (6.26), the aim is to stabilize the origin of 

the system hence we obtain in = in−1 = i∗  and ETDFC becomes zero. The 

Jury stability criteria yields to conditions on control parameters k, η and 

r: 
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We recall that since δ = 0.2 and 0 ≤  d∗ ≤  1 then we have cosh(δd∗ )≈ 1 

and α < 1. A proportional gain is usually considered positive, thus 

condition (6.28) reduces to k > 0. Let us now define three lines (η = L(k)) 
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We notice that L4 and L5 have the same slopes (i.e. r) therefore they are 

parallel. We further see that since r < 1 then L3 is above L5 when k > 0. 
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Thus, it follows that condition (6.31) is obviously satisfied when 

condition (6.29) is satisfied and that as r tends to 1 condition (6.31) tends 

to condition (6.29). Moreover, we notice that when r tends to zero L4 ≡ 

L1 and L3 ≡ L2. Fig. 6.13 sketches the stability zone in the parameters 

space for a fixed value of r. 

 

 
Fig. 6.13. Stability zone in the parameter space. 

6.5.3.  Results 

Figs. 6.14–6.16 show two-dimensional bifurcation diagrams. It is worth 

noting that the period one zone shown in brown in Fig. 6.14 matches the 

zone depicted in Fig. 6.13. Moreover, we see that the fixed point of order 

one can be stabilized for higher values of k when η and r increase. 

However, we notice that for large values of η and r, small values of k no 

longer lead to stability but to different other modes, this is clearly 

depicted in Fig. 6.14 as well as in Fig. 6.17. 

 



Chaos Control for a PWM H-Bridge Inverter 189 

 
Fig. 6.14. 2-D bifurcation diagram (k-η). 
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Fig. 6.15. 2-D bifurcation diagram (k-r). 
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Fig. 6.16. 2-D bifurcation diagram (η-r). 
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Fig. 6.17. 1-D bifurcation diagram with ETDFC controller. 
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Fig. 6.18. Optimal values of η for different values of k and r. 
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Fig. 6.19. Settling time shown in number of periods T. 
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Fig. 6.20. Dynamic responses to the step with k=6. 

6.5.4.  Optimality Criterion 

Similarly to the case of TDFC, the ETDFC may induce significantly 

slow dynamic response if the parameters are not properly chosen. In this 

section we present numerical simulations results to find optimal 

parameters values that lead to a fast response. The criterion considered 

herein is to find the shortest settling time to be within an interval of 5% 

around the fixed point. 

For different values of k and r, Fig. 6.18 shows the optimal value of η 
necessary to minimize the settling time. The optimum value ηopt is coded 

on the colorbar and we see that it increases when both k and r increase. 

Fig. 6.19 depicts the settling time in the number of periods. We notice 

that as we move to the boundary of the stability zone the settling time 

gets longer. Moreover, we can notice that for small values of r the 

settling time increases rapidly as we move towards the stability 

boundary, whereas for large values of r the settling time increases 

gradually. Fig. 6.20 sketches the sampled and hold output current for k = 

6. When no TDFC is applied the response is period 6 as shown in Fig. 
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6.4. When TDFC with adaptive value η is applied the response is again 

period 6. However, the ETDFC stabilizes the fixed point of order one. 

6.6.   Results on Sinusoidal Output Tracking 

When considering an industrial application, we should think of a 

sinusoidal mode functioning. In the foregoing sections we have 

considered a constant reference current for simplicity of the analysis. In 

that case, a new frequency condition has to be met: the reference 

frequency must be much smaller than the inverter’s in order to guarantee 

a variation of the current close to a sinusoid (as shown in Fig. 6.21). 

T has to be small enough for obtaining an output current close to a 

sinusoid, besides T has to be sufficiently large to allow the application of 

a digital control and to limit the losses to an acceptable level. 

Considering a reference frequency ranging from zero to 100Hz and a 

minimal switching frequency to reference frequency ratio equal to 50, 

the switching period is upper limited to T = 0.2ms. 

In Fig. 6.22 we compare in the case of k = 2 the performance of the 

proportional, TDFC and ETDFC controllers. The sampled and hold 

current is sketched, and we see that when the adaptive TDFC or ETDFC 

is applied the performance is almost unchanged. We have seen in section 

6.4 that when the proportional gain is raised to k = 4.5, TDFC should be 

applied to obtain stability of the period one mode. Although, we apply 

adaptive TDFC, Fig. 6.23 shows that the settling time can be further 

minimized with the action of ETDFC. In Fig. 6.24 we present sinusoidal 

reference tracking when k = 7.2 which can only be obtained with 

ETDFC. We note that a suitable choice of the parameters leads to faster 

settling time. In Fig. 6.25 the continuous time-domain waveform of the 

output current is depicted to show how the ripple is minimized in the 

periodic mode compared to the chaotic mode. 
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Fig. 6.21. Input reference current and controlled current in the load. 
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Fig. 6.22. Sinusoidal reference tracking with k=2. 
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Fig. 6.23. Sinusoidal reference tracking with k=4.5. 
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Fig. 6.24. Sinusoidal reference tracking with k=7.2. 
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Fig. 6.25. Time-domain waveform for sinusoidal reference tracking with 

k=7.2. 

6.7.   Conclusion 

By modeling power electronic converters using nonlinear discrete time 

maps, it is possible to predict and control chaotic behaviors. The 

Extended Time-Delayed Feedback Control is an efficient method to 

stabilize unstable periodic orbits. In this work TDFC presented in section 

6.4 and ETDFC presented in section 6.5 have been applied to stabilize a 

current-programmed PWM single phase inverter. By analyzing the 

Jacobian matrix of the map, we have determined the stability domain of 

the T-periodic running mode. For each controller, we have presented 2-D 

bifurcation diagrams (see Figs. 6.7, 6.14–6.16) corresponding to different 

control parameters. We have also presented the stability zones in the 

parameters space (see Figs. 6.6 and 6.13). It may be worthwhile to study 

the effect of the system parameters variations on these stability zones. 
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It has been found that the TDFC and ETDFC induce longer settling 

time if parameters are not appropriately chosen (see Figs. 6.9 and 6.19). 

To tackle this problem, an adaptive TDFC has been proposed [see (6.22)] 

and numerical analysis of ETDFC has been presented to give the optimal 

parameters that lead to minimum settling time (see Fig. 6.18). The range 

of the stable T-periodic mode of the inverter is widened and the 

dynamical performances are improved. Results on tracking sinusoidal 

reference have been presented (see Figs. 6.22–6.24) with the perspective 

of an experimental realization of the presented control methods. 
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Epilepsy, defined as recurrent seizures, is a pathological state of the brain that 

afflicts over one percent of the world’s population.  Seizures occur as 

populations of neurons in the brain become overly synchronized.  Although 

pharmacological agents are the primary treatment for preventing or reducing the 

incidence of these seizures, over 30% of epilepsy cases are not adequately 

helped by standard medical therapies.  Several groups are exploring the use of 

electrical stimulation to terminate or prevent epileptic seizures.  One 

experimental model used to test these algorithms is the brain slice where a select 

region of the brain is cut and kept viable in a well-oxygenated artificial 

cerebrospinal fluid.  Under certain conditions, such slices may be made to 

spontaneously and repetitively burst, thereby providing an in vitro model of 

epilepsy.  In this chapter, we discuss our efforts at applying chaos analysis and 

chaos control algorithms for manipulating this seizure-like behavior in a brain 

slice model.  These techniques may provide a nonlinear control pathway for 

terminating or potentially preventing epileptic seizures in the whole brain. 
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7.1.   Introduction 

More than 60 million people worldwide are afflicted with epilepsy, and 

over 30% of these people are not sufficiently helped by medications [1].  

Some of these patients have the option of surgically removing the 

seizure-generating part of the brain (the focus).  While surgery is often 

successful in preventing seizures, it can have serious side effects such as 

memory loss –in up to 35% of patients [2] – or speech deficits, not to 

mention adverse events such as infections and hemorrhage [3].  

Therefore, many groups are working to develop less-invasive alternatives 

to surgery for treating drug-resistant epilepsy [4].  Some currently 

available therapies use electrical stimulation of either the vagus nerve 

[5], the centromedian thalamic nucleus [6], the anterior thalamic nucleus 

[7], or the hippocampus [8] to stop seizures with modest success.  Vagus 

nerve stimulators reduce the number of seizures by 50% or more in 

approximately 35-40% of patients [9].  However, their mechanism of 

action is uncertain and they have several adverse effects [5].  These 

stimulators have only been available for a few years, so their long-term 

effects are unclear.  Long-term stimulation of the brain at a tonic high 

frequency could potentially create new epileptic foci in those areas.  

Moreover, the goal of invasive therapies is now to render patients 

seizure-free, not just reduce seizure frequency, since studies have shown 

that a reduction in seizure frequency alone does not remove their 

psychosocial issues (i.e. anxiety and depression) that come from having 

seizures.  Existing stimulators most often succeed in reducing seizure 

frequency, but do not often prevent all seizures; thus there is a great deal 

of room for improvement.  Schiff et al. [10] suggested that chaos control 

techniques might be used to prevent or stop seizures with intermittent 

electrical stimuli.  These techniques possess the advantage of requiring 

relatively infrequent stimulation of the tissue.  This would reduce the 

likelihood of inducing new epileptic seizures and decrease power 

requirements, both important considerations for an implanted device. 

However, prior to using chaos control techniques, one should first 

demonstrate that the system is indeed chaotic.    

7.2.   Searching for Evidence of Chaos in the Brain 
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A seizure is an abnormal, excessive, synchronous discharge of one or 

several groups of neurons in the brain.  One of the hallmarks of epilepsy 

is the presence of spikes in the electroencephalogram (EEG, recorded 

from the scalp) during this interictal period.  While the precise role of 

interictal spikes in epileptogenesis is not currently certain [11-13], it is 

plausible that developing a method to control them could provide a way 

to control seizure activity as well.   Complex partial seizures are the most 

common type of seizures in adults and are the most likely to be 

refractory to medical treatment.  Most complex partial seizures arise in 

the temporal lobe, particularly in the hippocampus or amygdala; thus, the 

hippocampal slice is a frequently used in vitro model for investigating 

seizures.  The hippocampus is buried deep within the temporal lobe of 

the brain and makes up part of the limbic system.  On an EEG, the period 

during which a seizure takes place is referred to as the ictal period; the 

period between seizures is thus the interictal period. Bursts are the in 

vitro analogues of these spikes and can be induced to occur 

spontaneously in the transverse rat hippocampal slice providing an in 

vitro model of epilepsy.  

Significant efforts have been made to try to characterize the system 

behavior in epilepsy.  Several studies of EEG voltage have focused on 

calculating the correlation dimension [14, 15] which can be misleading 

in practice because of the need for many assumptions and the prevalence 

of false positive results.  Some have searched for chaos by calculating 

Lyapunov exponents of EEG seizure activity [16, 17], and found 

evidence both supporting [16, 18] and contradicting [17] the existence of 

nonlinear determinism.  However, the algorithms used perform poorly in 

systems with a substantial stochastic component in addition to 

determinism, and thus have not proven very reliable in characterizing 

biological systems [17, 19].  Other measures have shown evidence either 

for the presence of determinism in experimental data, [20-23] or against 

it [24-26].  However, most of these methods rely on either very long, 

stationary time series or low noise; it is difficult to achieve either of these 

conditions in a neurophysiological system.  Our laboratory used a 

combination of new [27] and old techniques to characterize epileptiform 

behavior [28].  
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7.2.1. Transforming Brain Signals into State Space 

Our laboratory investigated epileptiform behavior in the in vitro 

hippocampal slice.  Epileptiform bursting was induced by bathing the 

slices in artificial cerebrospinal fluid (ACSF) containing either relatively 

high potassium concentration ([K+]o=10.5 mM), zero magnesium, or the 

neurotransmitter gamma-aminobutyric acid (GABAA) antagonists 

bicuculline and picrotoxin.  Fig. 7.1a shows the setup used to record and 

manipulate bursts.  A typical burst is shown in Fig. 7.1b.  Both 

morphology and burst duration were consistent for all three induction 

protocols.  

The system state variable was interburst intervals (IBIs).  IBIs were 

recorded at one point in space, thus producing a one-dimensional time 

series. Using time-delay embedding, scalar data can be converted into 

vectors which form a more complete representation of the system in state 

space and preserve the geometric and dynamical properties of the system 

[29].  IBIs were first embedded into two-dimensional vectors consisting 

of the current and next IBIs (e.g., see Fig. 7.1c).  Such IBI embeddings 

have also been shown to be sufficient to characterize most of the original 

system’s dynamical behavior [30].  
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7.2.2.  Global Measure of Chaos: Lyapunov Exponent Estimates and 

Short-time Expansion 

Exponential divergence of two nearly identical points in state space can 

be quantified by the Lyapunov exponents of a system.  If the largest 

exponent in a deterministic system is positive, this signifies exponential 

expansion and thus chaos.  For small and noisy data sets, the 

 
Fig. 7.1. Bursting in the hippocampal slice.  a) Schematic of hippocampal slice 

organization.  The recording electrode was placed in the pyramidal cell body layer (P) of 

the CA3 region. The stimulating electrode was placed in the Schaffer collateral (SC) 

axons to the CA1 region.  b) Example of a spontaneous burst recorded extracellularly in 

the CA3 pyramidal layer.  c) A return map of 1000 interburst intervals (IBIs) recorded 

during spontaneous bursting.  Fixed points lie along the identity (45o) line. 

a) 

b) 

c) 
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computation of Lyapunov exponents can be very difficult.  Most 

algorithms, in particular Kantz’ method [31], look at the expansion rates 

of small neighborhoods of points localized in state space and average 

them out as time evolves.  However, in our previous experiments, this 

method did not provide meaningful information for short time series with 

a great deal of noise or extremely rapid expansion [28].  In the case of 

short data sets recorded from in vitro bursting experiments in rat 

hippocampi, it was necessary to use larger initial neighborhoods to 

obtain enough initial points for the method to work correctly.  These 

larger neighborhoods then expanded to the size of the entire attractor so 

quickly that it was impossible to calculate an accurate average expansion 

rate.   

To overcome these obstacles, we developed a new method of 

detecting determinism, short-time expansion (STE), which measured the 

rate of spread among nearby points in state space after only one time step 

[27].  It averaged this rate of spread over the entire “attractor” (i.e., all 

the points in the data set) which reduced the effects of local noise on the 

computations. Thus, it was a global measure of the mean expansion rate 

over the entire state space.  While the resulting measure of expansion 

was not a Lyapunov exponent, it would converge to the largest Lyapunov 

exponent in a noiseless system.  The global expansion rate of the data 

was then compared with that of randomized surrogates of the data.  Since 

a deterministic system should expand at a slower rate than a stochastic 

systems (if the amplitude of the noise was comparable to the size of the 

attractor), this comparison enabled us to identify the presence of 

determinism in the data. 

For each point in the data set, a given number of nearest neighbors 

was found and was then fit to an ellipse using principal components 

analysis (PCA).  The square root of the largest principal component 

component (i.e., the standard deviation) was used as a measure of the 

initial spread between the points.  The points in the neighborhood were 

then evolved one iterate into the future.  PCA was again performed on 

the evolved neighborhood, and the square root of the ratio of the two 

largest principal components then provided a measure of the one-step 

expansion rate.  The local Lyapunov exponent could be estimated by the 
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natural logarithm of this rate.  The global expansion rate (Lave) was then 

obtained by averaging the local estimates.  That is,  
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where p0 and p1 were the largest principal components of the initial and 

iterated clouds of points, respectively; ni was the number of points in 

each box; ntotal was the total number of points; B was the number of 

boxes; and λi was the local expansion rate.  It was expected that after 

only one time step small neighborhoods of points would not spread out 

as quickly in deterministic systems as they would in strongly stochastic 

systems.  If the system contained a large stochastic component, the 

points would likely spread out over most if not all of the attractor after 

only one time step.  Also, additive (extrinsic) noise should average out in 

this calculation leaving primarily the deterministic component.  

Therefore, Lave should be smaller for a deterministic system than for a 

stochastic system.  

In order to test for determinism in the short-time expansion rate 

analysis, we generated surrogate data by randomly shuffling the order of 

the IBIs [19].  The surrogate data represented the null hypothesis that the 

experimental data could be explained by a linear stochastic process.  If 

the Lave vs. nearest neighbor (NN) curve for the original data was 

significantly different from the average curve computed for the 

surrogates, then the likelihood of determinism being present would be 

strengthened. 

This method was used to analyze 12 sets of IBI data from high-[K+]o 

and zero-[Mg2+]o experiments and 5 surrogates of each data set.  The 

curve in Fig. 7.2 shows the experiment with the biggest difference 

between data and corresponding surrogate average.  Even in this case, 

there was no noticeable flattening of the data curve; it was almost 

parallel with the surrogate mean curve.  Other data curves displayed even 

greater similarity to their surrogates’ curves.  However, the curve in this 

case was displaced from the surrogates, which may mean that it is not 

quite as disordered as the surrogates.  Thus, the results of this analysis 

suggest that globally the bursting data contain a great deal of stochastic 
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noise with no determinism detectable by our measure of the global 

expansion rate. This suggested that chaos control might be difficult to 

achieve in practice, especially if the amplitude of the noise were larger 

than the region in which control was desired. 

7.2.3.  Local Measure of Chaos: Unstable Periodic Orbits 

A chaotic attractor can be described by a skeleton of unstable periodic 

orbits (UPOs) [32].  These UPOs are periodic paths in state space to and 

from which the system recurrently approaches and recedes.  The 

presence of UPOs in a system implies the presence of determinism and 

suggests chaos.  Furthermore, the presence of UPOs strengthens the 

rationale for using chaos control techniques to manipulate bursting, since 

UPOs are the points around which control can be applied [10].  Le Van 

Quyen et al. [33] found evidence of a few period-1 orbits in epileptic 

EEG recordings from three human subjects.  So et al. [34] found several 

period-1 orbits in both the high-[K+]o in vitro model and in human 

epileptic EEG recordings as well as a few orbits of periods 2 and 3 in 

intracellular recordings from CA1 neurons in normal ACSF.  More 

 
Fig. 7.2.  Curves of Lave for one set of high-[K+]o experimental data (M) and 

corresponding surrogates (F) both decline logarithmically to zero with increasing 

NN.  No plateaus are evident which indicates that the data are stochastic. 
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recently, another group found period-1 orbits in guinea pig hippocampal 

slices induced to burst using soman and 4-aminopyridine [35].  Our 

group used the method of So et al. [13] to search for low-period orbits.  

This technique uses a transformation to concentrate data around UPOs 

thus creating peaks in the histogram of the transformed data that 

correspond to the locations of the UPOs.  The significance of these peaks 

was assessed using surrogate data.  

For period-1 orbits, the transformation was defined as  

 
$ [ ( , )] [ ( ) ( , ) ],z I S z R F z S z R z1≡ − ⋅ − ⋅−

 (7.2) 

where x was the d-dimensional time-delay vector of IBIs, I was the 

identity matrix, F(x) was a vector of the next iterate of x, and S(x,R) was 

a d×d matrix function of x and a d×d×d random tensor R given by  

 
S z R F z R F z z( , ) ( ) [ ( ) ].= ∇ + ⋅ −

 (7.3)  

Here ∇F(x) was the d×d Jacobian matrix of F(x), which was calculated 

using a least-squares fit of 3 nearest neighbors in state space.  This 

transform was applied to every point x in the set and summarized in a 

spatial distribution function of the experimental data approximated by a 

histogram with a bin size of 0.02 seconds.  The transformation shifted all 

points in the linear region of a fixed point x* even closer to x*, thus 

creating a peak in the distribution function (x̂).  Fifty surrogate data sets 

were generated and transformed, and their corresponding probability 

distributions were calculated and averaged together.  A cumulative 

histogram of the maximum deviation of each surrogate from the 

surrogate mean at each point was used to estimate the probability that 

ZW a peak in the transformed data was due to the presence of a true 

UPO at that point.  To account for nonstationarity of the data (i.e., 

drifting of the mean IBI length) due to factors such as fatigue of the 

neurons, network plasticity, or fluctuations in temperature and pressure, 

each set of data was divided into windows of 256 IBIs and then analyzed.   
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Fig. 7.3.  Detection of a period-1 orbit using the UPO transform. a) 

Histogram of the raw IBI data. b) Histogram of transformed data (solid) 

and mean of transformed surrogates (dotted).  c) A fixed point is found at 

the location of the peak (1.98 s) with p<0.04 (dashed line represents 96% 

significance line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A histogram of one window of the original (untransformed) IBIs from 

a high-[K+]o experiment is shown in Fig. 7.3a.  Note that no discernible 

peak is shown at the location of the period-1 orbit.  After the transform is 

performed on the data (Fig. 7.3b), a sharp peak in the data (solid line) is 

seen at the corresponding location of the period-1 orbit (1.98 s).  The 

dashed line shows the histogram of the mean of the transformed 

surrogates.  Note that the peak for the surrogates is much lower than that 

for the transformed IBI data.  A UPO was declared statistically 

significant if the peak in the distribution function of the data (minus the 

surrogate mean) was greater than 96% of the maximal peaks of the 

a) 

b) 

c) 
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transformed surrogates (minus the surrogate mean).  Since the peak in 

Fig. 7.3c is above the 96% significance line, it marks the location of a 

true period-1 orbit at 1.98 s.  Period-1 orbits were found in 71% of the 17 

high-[K+]o experiments, 25% of the eight zero-[Mg2+]o preparations, and 

75% of the eight GABAA blockade experiments.  Due to nonstationarity, 

period-1 orbits emerged, drifted, and disappeared over the course of an 

experiment. 

The case for chaos is made even stronger when orbits of higher 

periods are considered.  UPOs of period 2 (Fig. 7.4a) and period-3 (Fig. 

7.4b) were found in more than 35% of the high-[K+]o experiments, 50% 

of the zero-[Mg2+]o experiments, and 50% of the GABAA antagonist 

experiments.  The significance in this three-dimensional representation 

of a two-dimensional histogram is coded by color and height. Thus 

strong evidence of determinism was found using UPO analysis. While 

these results seem to present conflicting evidence, they might suggest 

that in vitro epileptiform bursting may contain local islands of 

determinism (UPO detection) within a globally stochastic sea (Lyapunov 

analysis).  It is possible that the noise level of the system was so high that 

it drowned out the determinism even using global averages. 

7.3. Chaos Control of Epileptiform Bursting  

The property of sensitive dependence on initial conditions would lead 

one to believe that chaotic systems cannot be controlled.  However, it has 

been shown [36] that it is indeed possible to control chaotic behavior – 

i.e., to move the system from a chaotic orbit to a periodic orbit.  The 

basic principle is that all saddle fixed points have at least one stable and 

one unstable manifold associated with them, and these manifolds can be 

linearly approximated within a small radius (hereafter referred to as the 

control radius).   Ott, Grebogi, and Yorke [37] showed that chaos can be 

controlled using relatively small perturbations to system parameters 

(a.k.a. OGY control).  Another, simpler method was developed by Hunt 

[38] and successfully applied to a nonlinear diode circuit.  Modifications 

to these two techniques have subsequently been developed.  Other 

control schemes using artificial neural networks have also been proposed 

[39-41].  Since then, many chaos control algorithms have been advanced 
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[42-45].  A variant of OGY called proportional perturbation feedback 

(PPF) [43] modified the system state point (viz., the interburst interval) 

instead of a system parameter.  Schiff et al. [10] were the first to control 

epileptiform bursting in the hippocampal slice using PPF.  However, 

their results did not reveal how many of the bursts were “stimulated” vs. 

how many were “spontaneous.” Thus our laboratory set out to control 

bursting using a more rigorous approach.  We used a modification of 

PPF called stable manifold placement (SMP) [46] which is simpler and 

more robust than PPF because it requires less assumptions to be made 

about system parameters. 

In this section, we explore in detail the modification of bursting 

behavior using techniques from chaos control.  Accurate fixed point 

estimation is crucial to the success of chaos control.  Therefore, in 

addition to SMP control, we implemented for the first time in a 

biological system a method of continuously refining the fixed point and 

stable manifold estimates, developed by Christini and Kaplan [47].  We 

also describe a novel protocol, state-point forcing, that helps determine 

the validity of fixed point estimates and assesses the feasibility of chaos 

control.  
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7.3.1. Slice Electrophysiology  

A real-time data acquisition processor recorded the IBIs, calculated when 

a stimulus needed to be delivered, and sent out the stimulus signal.  A 

bipolar tungsten stimulating electrode was placed in the Schaffer 

collaterals (Fig. 7.1a).  Stimuli consisted of single, 80 μs square-wave 

current pulses with amplitudes 0.1-0.3 mA.  The host computer ran the 

control software that performed fixed point detection (using the 

algorithm described above [34, 38] with 10 surrogates used for 

significance testing), adaptive control techniques, data storage and 

display, and enabled changes to system parameters and control 

techniques in real time. 

7.3.2. SMP Control 

In SMP control, instead of moving the stable manifold to the state point, 

the state point was moved onto the stable manifold.  Thus, when the state 

 
Fig. 7.4. Period-2 and period-3 orbits in 3-D representations of 2-D state space. a) 

Significance plot of a period-2 orbit (red peaks) in a high-[ K+]o. Significance is shown by 

the color bar at right and by the height.  b) Two period-3 orbits from a zero-[Mg2+]o 

model.  The two sets of three red peaks (circled in green and blue) manifest the three 

points along two period-3 orbits. A fixed point is circled in orange.

a) 

b) 
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point fell outside of the control radius, a stimulus was sent to the slice to 

trigger a burst at the exact time needed to shift the state point onto the 

stable manifold. The advantage of using SMP was that the calculation of 

the desired IBI did not require estimation of the next “natural” IBI (as 

PPF does); instead, it was obtained through simple algebra.  That is, the 

desired IBI value was given by 

 xn+1= λs (xn - x
*
) + x

*
,  (7.4) 

where xn was the current IBI, x* was the fixed point, and λs was the 

eigenvalue (slope) of the stable manifold.  The displayed IBIs were 

marked as stimulated or unstimulated.  This assisted our assessment of 

the quality of control attained.  

Using the SMP algorithm, the variance of IBIs was reduced compared 

to uncontrolled bursting, but tight control was not achieved (Fig. 7.5). 

There were several parameters that could affect the performance of this 

algorithm, including several parameters in the UPO detection algorithm.  

The number of nearest neighbors used to fit the Jacobian matrix for the 

UPO transform was optimized to 4, the same number for the Hénon map, 

since there was no notable effect of changing it.  The control algorithm 

also had to account for the delay between the stimulus and the recorded 

burst due to finite conduction velocity in the tissue.  This stimulus-burst 

delay was varied from 15-50 ms depending on the properties of each 

slice.  It was kept constant during each experiment.   Since the linear 

approximation of the stable manifold was only accurate within a small 

distance of the fixed point, we also tried applying control only when the 

previous state point was within a set radius (RUPO) of the fixed point.  

RUPO was varied from 0.5-10 s, but there was no noticeable improvement 

in control quality.  When RUPO was small (0.5-1 s) and there were several 

long IBIs, sometimes it would take a long time before the system state 

would get close enough to the fixed point for control to resume. 
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7.3.3.  Effect of Control Radius (Rc) and Synaptic Plasticity on Control 

Efficacy  

Previous work [49] suggested that stimulating the Schaffer collaterals at 

low frequencies (~1 Hz) could sometimes cause a form of synaptic 

plasticity called long term depression (LTD), which could cause IBIs to 

lengthen over time.  To assess whether some of the nonstationarity and 

impediments to control were due to this form of synaptic plasticity, the 

NMDA-receptor antagonist AP-5 was used.  While LTD might occur 

using other receptors besides the NMDA type, AP-5 should block the 

majority of LTD via this pathway.  Slices were bathed in high-[K+]o 

ACSF for 20 minutes, and then in high-[K+]o ACSF containing 50 μM 

AP-5.  The AP-5 solution was washed in for 5 minutes before starting the 

same control sequence used above with high-[K+]o.  Rc was again 

decreased in stepwise fashion. The effect of the size of Rc on control 

efficacy was investigated both with and without AP-5.  Six experiments 

were done with high-[K+]o only, and four were done using high-[K+]o 

plus AP-5.  Fig. 7.6 shows examples of experiments in which Rc was 

varied using high-[K+]o only (Fig. 7.6a) or high-[K+]o with AP-5 (Fig. 

7.6b).  As Rc decreased, variance decreased but the proportion of IBIs 

that were stimulated increased.  This conclusion was true for both the 

standard high-[K+]o experiments and for experiments using AP-5.  This 

similarity of results suggested that synaptic plasticity does not 

 
Fig. 7.5.  SMP control in a bursting experiment.  Beginning of control and control 

radius marked by dashed lines.  IBIs were stimulated (●) vs. natural (○). Variance of 

IBIs did decrease modestly with control. 
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significantly influence the quality of control obtained.  We found that the 

control radius that optimally balanced variance vs. number of stimuli was 

usually 50-100 ms depending on the initial variance of the bursting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At extremely small control radii, nearly every IBI was stimulated (see 

inset in Fig. 7.6a).  This occurred because Rc was smaller (2 ms) than the 

precision of the stimulus-burst interval.  That is, the interval from when 

the stimulus was applied to when the burst was detected fluctuated by a 

few milliseconds from burst to burst, and therefore the estimate could be 

off by as much as 5 ms.  Thus, the control algorithm kept stimulating but 

could not get the IBI within the control region.  In this case, the system 

performed almost identically to demand pacing.  Interestingly, the results 

Fig. 7.6. Experiments varying Rc using basic SMP control. a) A high-[K+]o experiment 

varying control radius (Rc, solid lines).  As Rc decreased, the variance also decreased, 

but the ratio of stimulated (●) to unstimulated (○) IBIs increased.  The magnification 

(right) of the boxed area shows the demand pacing phenomenon: all of the IBIs after IBI 

1370 are stimulated, since the system never can get within the tiny Rc.  b) Similar results 

were found in experiments using AP-5.  Thus, there did not appear to be any effects from 

LTD. 

 

a) 

b) 
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looked very similar to those obtained by Schiff et al. [10], as well as 

Christini and Collins [44], especially if the IBIs were not designated as 

stimulated or natural.  Since their work did not make this distinction, it 

could be possible that their control algorithm was constantly stimulating 

due to a very small control radius.  This could explain why our control of 

bursting did not seem as striking as those reported earlier.  

7.3.4. Adaptive Control Techniques 

Accurate estimates of the fixed point location and stable manifold slope 

were the two key elements needed to achieve good control.  

Nonstationarity is a significant obstacle in both estimates, especially in 

fixed point location.  One way of overcoming this obstacle is to 

dynamically refine the approximation of these parameters.  This adaptive 

tracking method, adapted from Christini and Kaplan [47] fitted data to 

linear approximations of the dynamics in the neighborhood of the fixed 

point to re-estimate the fixed point and stable manifold slope.  Assuming 

that the data were in the neighborhood of a UPO, the unperturbed system 

dynamics could be approximated by the linear equation xn+1 = axn + bxn-1 

+ c, where the current state point was (xn-1, xn).  Rewritten in terms of the 

fixed point parameters, this equation became 

 
( ) ( )x x x xn s u n s u n s u s u+ −= + − + + − −1 1 1λ λ λ λ λ λ λ λ*

 (7.5) 

where x* was the fixed point and λs and λu were the stable and unstable 

eigenvalues, respectively.  When a control stimulus was applied, the 

system dynamics were described by  

   
x x x xn s n+ = − +1

$ ( $ ) $* *λ
 (7.6) 

  

where ^ signifies that λs and x* were estimates.  That is, when control 

stimuli were applied, they circumvented the normal fixed point 

dynamics.  Therefore, the natural values of λs and x* could not be 

estimated from stimulated bursts.  However, when unstimulated bursts 

occurred, the system would behave according to (7.5).  The parameters 

x*, λs, and λu could then be estimated by a least-squares fit of the data 
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triplets (xn+1, xn, xn-1).  Only “natural triplets” – those where xn+1 was an 

unstimulated IBI, but the preceding two points could be stimulated or 

unstimulated – were used.  This regression was performed after every 

new natural triplet (or, equivalently, natural IBI).   

Adaptive tracking noticeably improved control over basic SMP alone 

[48].  The algorithm successfully adjusted for the drift of the system (Fig. 

7.7a). Our refinements of the tracking algorithm and its parameters 

produced small but incremental improvements in control quality.  

Several parameters had to be carefully adjusted.  The least-squares fit 

itself had several notable caveats.  The number of natural triplets used for 

the fit (NT) varied from 4-20.  Too few triplets could cause poor fits and 

result in volatile fluctuations of the parameter values.  Too many would 

not allow the algorithm to track the system quickly enough.  Also, the fit 

would sometimes not accurately represent the natural fixed point 

dynamics.  If most of the IBIs were stimulated, and then control was 

turned off, the state point tended to jump out from the fixed point along 

the unstable manifold.  In this case, the stable manifold could not be 

estimated accurately since the state point would not approach the fixed 

point at all.  If the majority of the NT triplets behaved this way, the fit 

would be very poor. Therefore, singular value decomposition (SVD) was 

used to perform the least-squares fit.  If the ratio between the fit’s largest 

and smallest singular values were very large (>106), then the fit would be 

poor (ill-conditioned).  In that case, the parameter estimates would not be 

adjusted. 

In all of the later experiments, NT was set to 10, but the fixed point 

estimates still often fluctuated.  Therefore, we limited the distance by 

which the fixed point estimate could change from the current estimate in 

any one fit.  This parameter, called the fixed point adjustment maximum 

(FAM), was optimized and normally set in the range of 0.5-1s, in 

proportion to the initial variance of the system.  This adjustment reduced 

variability substantially, but if FAM was set too small, the algorithm 

wouldn’t adapt well.  Another modification allowed the algorithm to 

remove outliers by including only natural triplets in the fit if the natural 

IBIs were within a certain radius (RNT) of the current fixed point location.  

Improving the fit also reduced fluctuations in the fixed point estimates.  

The optimal range for RNT was about 0.4-1 s, depending on the variance 
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of all the data.  While the results using this technique were not dramatic, 

they were a definite improvement over basic SMP control.  At first, the 

tracking algorithm produced some fluctuations in the fixed point 

estimates which inhibited control.  After adding regulating parameters 

such as the FAM and RNT, the fixed point estimate tracked with the 

system smoothly over time.  Even with these modifications, triplet 

regression would still occasionally make “illogical” adjustments to the 

fixed point location.  For example, when all the natural IBIs were greater 

than the fixed point, the new fixed point estimate would still sometimes 

be set smaller than the current estimate.  We therefore required that the 

new estimate move in the same direction as most of the natural IBIs are 

located relative to the current fixed point.  This modification helped 

stabilize control. 

On several occasions in tracking experiments, the system briefly 

remained in a period-2 or period-3 orbit for approximately 6-12 IBIs, as 

seen in Fig. 7.7b. We also observed a few shorter encounters where the 

system stayed in a period-1 orbit (i.e., extremely close to the fixed point) 

for a few IBIs.  These encounters provided tantalizing hints that control 

was indeed possible, at least for short periods of time.  These “close 

encounters” were seen in different experiments, but recurrence to the 

same period-2 orbit later in the experiment was not usually seen probably 

due to nonstationarity.  The fact that higher-period orbits were attained 

more often than period-1 orbits suggests that the fixed point estimate was 

close but still not accurate enough. 
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Fig. 7.7. Adaptive tracking control of bursting.  A) An example of a tracking 

experiment.  The fixed point estimate and control region (solid lines) tracks along 

well with the system.  Variance is relatively low, but a large amount of stimulated 

IBIs (●) are still needed.  b) Two brief encounters with possible period-2 orbits in one 

experiment, shown in the dashed boxes near IBIs 375 and 920. 

a) 

b) 
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7.4.   Feasibility of Control and Fixed Point Detection by State-point 

Forcing 

To help ascertain exactly what were the obstacles to control, we 

developed a novel control protocol called state point forcing.  Previously, 

the control algorithm only applied a single stimulus that placed the state 

point on the stable manifold estimate and let the system drift in to the 

fixed point on its own.  In contrast, the new approach kept stimulating 

until the state point was on (or very close to) the fixed point in two 

dimensions.  (Due to limitations in stimulus-burst interval precision, the 

state point could not always be forced exactly onto the fixed point, so it 

merely had to be within 40 ms of the fixed point.)  The stable manifold 

slope estimate was set to zero to minimize the amount of stimuli needed.  

If the fixed point estimate were accurate, then the state point should 

remain close to the fixed point on the next iterate.  However, if the fixed 

point estimate were not accurate (or no fixed point existed at that time) 

then the state point could end up anywhere on the next iterate.  We 

therefore hypothesized that if we first forced the state point onto the 

fixed point and then forced it onto some other arbitrary point in the 

system attractor, the subsequent iterates should in general stay closer to 

the fixed point than to the arbitrary point.  If there were a significant 

difference between the two cases, it would imply that the fixed point 

estimate was relatively accurate.   

To quantify these differences, we used the change in the center of 

mass (ΔXcm) of the cluster of points around the forced point and after an 

iterate   If the system state were forced onto a true fixed point, then  

ΔXcm should be small, while if it were forced onto an arbitrary point (or 

an inaccurate fixed point estimate), then ΔXcm should be relatively big.  

When a significant fixed point was found, the state point was alternately 

forced onto the fixed point or the arbitrary point for 30-40 IBIs each,.  

The forcing point switched between the fixed point and the arbitrary 

point several times, until the fixed point seemed to be drifting due to 

nonstationarity.   
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At this point, state-point forcing was turned off and the fixed point 

was relocated using adaptive tracking .  If a suitable fixed point estimate 

was found (i.e., tracking seemed to be working and had stabilized at one 

location after a while), then tracking was turned off, λs was set to 0, and 

state-point forcing resumed.  An example of a state-point forcing 

experiment is shown in Fig. 7.8. 

The value of ΔXcm was computed for each fixed point and its 

corresponding arbitrary forcing point.  The fixed point trials were evenly 

split (51 each) between those detected with the UPO transform (UPOT) 

and those found with the adaptive tracking algorithm (AT).  Statistical 

comparisons of ΔXcm were made with the paired t-test or the Wilcoxon 

signed rank test.  The data were first compared for both UPO types 

 
Fig. 7.8. State point forcing in a bursting hippocampal slice experiment.  Forcing 

alternated between the fixed point and arbitrary points 4 times (counted as 4 fixed 

point trials in analysis).  Then tracking was turned on (at n~700) until a new fixed 

point was found at n=820.  Tracking was then turned off and forcing turned back on.  

Natural IBIs stayed closer to fixed points than to arbitrary points.
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combined, and ΔXcm was significantly smaller when forcing to the fixed 

points than to the arbitrary points (median values 0.258 s vs. 0.404 s, 

P<0.004, signed rank test).  The UPOT fixed points alone did not show a 

significant difference in ΔXcm, but the AT fixed points did have 

significantly smaller ΔXcm when forcing to the fixed vs. arbitrary point. 

We designed the state-point forcing protocol to ascertain whether 

control was at all feasible and to help identify the obstacles in detail.  

Specifically, we sought to verify that our fixed point estimates were valid.  

Also, if the system state would not stay close to the fixed point for a few 

iterates even when placed directly onto the fixed point, then no control 

short of pacing (tonic stimulation) would have much chance of working.  

The results of the forcing experiments suggested that the fixed point 

estimates were indeed valid, since forcing onto the fixed points produced 

significantly less divergence in the subsequent iterate than did forcing 

onto the arbitrary points. 

More detailed analysis revealed that forcing to fixed points found 

with adaptive tracking (AT) produced significant results whereas those 

found with the UPO transform (UPOT) did not.  This suggested that 

perhaps the adaptive tracking algorithm provided better estimates of the 

fixed point than did the UPO transform algorithm.  When the UPO 

transform was applied offline (using 50 surrogates to test significance) to 

state-point forcing data, only 23% of the fixed points detected online 

(using 10 surrogates) were found to be statistically significant offline.  

This could be the reason that the forcing protocol did not produce 

significant results for UPO-transformed fixed points.  Moreover, it is 

possible that much of the difficulty we had with control was due to 

inaccurate or false fixed point estimates.  Another notable result was that 

when the arbitrary forcing point was shorter than the fixed point, the 

difference in ΔXcm was strongly significant (P<0.0001), whereas when 

the arbitrary forcing point was longer than the fixed point, the difference 

in ΔXcm was not significant (P=0.8).  This result could be explained in 

two ways.  The first is artifactual:  when the arbitrary point was shifted 

up, the neurons often burst spontaneously before stimuli could be applied, 

and thus there were fewer points that could be used in the calculation of 

ΔXcm.  Alternatively, when the arbitrary point was shifted down, the 

stimuli would be occurring more quickly, thus giving the neurons less 
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time to recover, and therefore the next spontaneous bursts could have 

been longer simply because the neurons were refractory.  We tried to 

avert this second possibility by shifting the arbitrary point by different 

amounts, in a range from 0.1 s to 0.4 s.  

7.5.   Obstacles to Chaos Control 

The implications of these results for the feasibility of control were not as 

clear.  The next IBIs (after a stimulated burst) stayed relatively close to 

the fixed points, although not as close as would be required to obtain 

tight control.  This may have been due to the high levels of stochastic 

dynamical noise that were also present in the system.  A high level of 

noise certainly would have hindered attempts to control the system – 

especially if the amplitude were on the order of the control radius – since 

the system state would often bounce out of the control region as soon as 

it was placed within it.  It would have also impaired the fixed point and 

stable manifold estimates.  Unfortunately, there was no way of 

empirically determining the level of noise in the system, so we could not 

determine whether noise was the biggest impediment to control. 

Estimation of the stable manifold was itself a very difficult task.  

Even with a low-noise system, the method of fitting local neighbors of 

the fixed point using a linear least-squares algorithm was a simplification.  

It is far from certain that the manifolds were linear, so any linear 

approximation would only be accurate within a very small radius of the 

fixed point.  It is possible (due to small sample size) that the four 

neighbors used for the Jacobian were often outside of this linear region.  

With the addition of high-level noise, fitting the stable manifold could 

become problematic because there are too few natural triplets that 

approach the fixed point. 

Several necessary assumptions were made that may have had an 

effect on the quality of control achieved.  The use of IBIs as the state 

variable was somewhat arbitrary; mainly made to stay consistent with 

prior studies [10, 44].  The use of IBIs may have contributed to noise and 

nonstationarity since they vary on a long time scale and thus many 

factors can change in between each measurement.  Perhaps using a 

variable such as the raw extracellular voltage could have improved the 
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results.  However, it would have been extremely difficult to precisely 

control extracellular voltage levels using a point-source electrode.  Also, 

a two-dimensional embedding may have been too small to capture the 

entire system’s dynamics.  We used it because it greatly simplified the 

calculations and because it was the same dimension used as previously 

reported by Schiff et al.[10]. Moreover, all of these studies [10, 43, 44, 

48] have used only one spatial dimension; it is possible that increasing 

the spatial dimensionality of the state variable may help control the 

system.  All of these assumptions were necessary to make but also could 

have compromised control efficacy if they were inaccurate. 

Finally, the phenomenon of nonstationarity was a large obstacle to 

control.  There were many potential sources for drift of IBI values.  

Fluctuations in flow rate and temperature could easily have altered the 

system behavior by system metabolism.  There also could have been 

intrinsic nonstationarity in the bursting itself.  Synaptic plasticity did not 

appear to have a significant effect, but it is possible that the slice became 

“fatigued” or refractory.  We attempted to control for fatigue by ensuring 

that burst amplitudes remained constant throughout the experiment, since 

burst amplitude is an indicator of neurotransmitter supply [49].  

7.6.  Conclusion 

Chaos control techniques showed modest success at controlling 

spontaneous epileptiform bursting.  Adaptive tracking noticeably 

improved control over non-adaptive methods and seemed to counter 

nonstationarity, but intrinsic randomness may have prevented us from 

obtaining precise control.  The process of slicing the hippocampus itself 

severs many regulatory connections, both extrinsic and intrinsic.  It is 

possible that the intact brain could be less noisy or more stationary than 

the in vitro hippocampal slice, and hence easier to control. 

It is still not known whether controlling interictal bursts or spikes (or 

anticontrolling, i.e., making them more disordered [50]) could prevent a 

seizure.  Nor is it known how tightly the spikes would have to be 

controlled to be successful.  However, if one could maneuver the system 

from a chaotic to a periodic state, then it is likely that one could also 

convert it from a periodic to a chaotic one.  Once the ability to 
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manipulate the system is established, one could then determine whether a 

chaotic or periodic rhythm would be desirable to stop or prevent seizure 

activity.  Thus, continued exploration, and extension of analysis 

algorithms into multiple spatiotemporal dimensions, should help reveal 

whether chaos control is a practical solution for preventing epileptic 

seizures. 
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Previous study showed that a third-order phase locked loop (PLL) with 

sinusoidal phase detector characteristics experienced a Hopf bifurcation 

point as well as chaotic behavior. As a result, this behavior drives the 

PLL to the out-of-lock (unstable) state. The analysis was based on a 

modern nonlinear theory such as bifurcation and chaos. The main goal 

of this chapter is to control this chaotic behavior. A nonlinear controller 

based on the theory of backstepping is designed. The study showed the 

effectiveness of the designed nonlinear controller in controlling the 

undesirable unstable behavior and pulling the PLL back to the in-lock 

state. 

8.1.   Introduction 

8.1.1.  The Concept of Phased Lock Loop 

Phase locked loops (PLLs) are an important part of modern electronic 

communication and control systems due to its accuracy, controllability, 

and capability of providing high power and frequency [1, 2]. They play a 

major role in electronic synchronization circuits. Its ability on tracking 

phase-varying signal makes it very attractive to be used in systems where 
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it is necessary to estimate the phase of a received signal. Also, they are 

used extensively in applications requiring the synthesis of highly stable 

sinusoidal signals. In such systems, it is often necessary to estimate the 

instantaneous phase of a received signal which has been contaminated by 

random noise/or other type of interference. Often, one is supplied with a 

sinusoidal reference voltage, and it is necessary to produce a second 

sinusoidal voltage having a frequency which is an integer multiple of the 

reference’s frequency. PLLs offer a practical method of performing these 

tasks. The basic configuration of a PLL is shown in Fig. 8.1. It consists 

of three building blocks; a phase detector, a time-invariant loop filter and 

a voltage controlled oscillator (VCO) [3]. The PLL is considered to be 

phase locked when the loop's phase error is constant φo and the loop is in 

stable equilibrium state [4, 5]. This means that small perturbation from 

φo, in the phase error will eventually dampen out as a result of the closed 

loop dynamic. Equivalently, φo is an asymptotically stable solution of the 

autonomous, nonlinear differential equation describing the closed loop 

phase error. The PLL can be false locked [4-7] where a periodic orbit 

exists for a certain loop parameter. It is known that the PLL under 

consideration exhibits a chaotic behavior preceded by a series of period 

doubling for the periodic orbit associated with false lock state of the 

PLL. 

Chaos in phase-locked loops has been investigated by many 

researchers for at least two decades. Phase locked loops like many 

chaotic systems such as Chua’s circuit family [8], Josephson junctions [9] 

and Van der Pol oscillator [10] have been studied extensively in the 

literature. Recently, research on chaos in phase-locked loop has extended 

beyond analysis of chaotic behavior. The idea of chaos synchronization 

was utilized to build communication systems to ensure the security of 

information been transmitted [11]. 

The PLL under consideration is considered as a chaos generator for 

such systems. This kind of response is undesirable for other 

communication systems. For example, when the PLL is used to 

demodulate an FM signals, the output of the VCO may become chaotic 

for certain loop parameters. This behavior drives the PLL to the out-of-

lock state [12]. In both cases, chaos prediction and controlling (when it is 

undesirable) are of a great importance for the designer. 
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Endo and Watada [13] determined the bifurcation sets of the 

Shilinkov-type homoclinic orbits for a third-order autonomous PLL with 

a symmetric periodic triangular phase detector having a second order 

loop filter. It was shown that this kind of PLL has a chaotic attractor. 

Harb and Harb [14] showed that a third order PLL with sinusoidal phase 

detector characteristics experienced chaos through Hopf bifurcation. In 

other word, the PLL is unlocked after the Hopf bifurcation point. The 

analysis was based on modern nonlinear theory such as bifurcation and 

chaos theory. The method of multiple scales, perturbation method, has 

been used to find the normal form at the vicinity of the Hopf bifurcation 

point. The point was found to be supercritical one. That means, a small 

periodic solutions, limit cycles, are borned at the Hopf bifurcation point. 

As the control parameter was increased, the limit cycles deformed and at 

the end culminating to chaos. 

Recently, great attention is been paid to chaos and bifurcation control. 

Bifurcation control deals with using a control input to modify the 

characteristics of a parameterized nonlinear system. The control can thus 

be static or dynamic feedback control, or open loop control. The 

objective can be stabilization and reduction of the amplitude of 

bifurcation orbital solutions, optimization of a performance index near 

bifurcation, reshaping of the bifurcation diagram or a combination of 

these. 

Bifurcation control are used in [15], these controllers are designed to 

control the bifurcation route that leads to chaos. Many researchers are 

proposed other methods to control chaos, Ott [16] and Ott et. al.[17]. In 

Hubler [18], Hubler and Luscher [19], and Jackson [20] the methods are 

based on classical control. Abed et. al. [21] and Nayfeh and 

Balachandran [15] designed  state feedback nonlinear controllers. 

Ikhouane [22], Harb et. al. [23], and Zaher et. al. [24-27] used the 

backstepping recursive nonlinear controller. Calvo and Cartwright [28], 

and Mann et. al. [29] introduced the use of fuzzy theory control in 

chaotic systems. Harb and Abdel-Jabbar [30] introduced a model-based 

control strategy based on global state feedback linearization (GLC) to 

control the chaotic behavior in a power system.  In this chapter, a 

controlling scheme is proposed to stabilize the chaotic behavior and drive 

the PLL under consideration to the steady state (in-lock-state).  A 
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nonlinear controller based on backstepping recursive theory is designed 

to control the chaotic oscillation in a third order PLL. 

8.2.   Mathematical Model 

After Harb and Harb [14], the basic configuration of a PLL is shown in 

Fig. 8.1. It consists of three building blocks; a phase detector, a time-

invariant loop filter and a voltage controlled oscillator (VCO). The 

VCO's instantaneous frequency is given by 

 tek
dt

d
vo

v (+= ω
θ

)    rad/sec, (8.1) 

where ωo is called the VCO quiescent or center frequency and kv is the 

VCO gain which has units of (rad/sec-volt). The output of the phase 

detector is given by 

 [ ])sin()sin()( 1 viviktx θθθθ ++−= . (8.2) 

The term sin(θi+θv) contains higher fundamental frequency components 

which are eliminated by the loop filter. Then, the output of the loop filter 

becomes 
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o )()()()(
0

∫ −+= , 0≥t , (8.3) 

where f(t) is the impulse response of the filter, and eo(t) is the filter's 

zero-input response which depends only on the initial conditions existing 

in the filter at t = 0. If the filter is stable, eo(t) → 0 as t → ∞ for any set 

of initial conditions. The loop filter which will be considered in this 

chapter has the form 
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where F1(s) and F2(s) are two cascade lag-lead filters. Equations (8.1), 

(8.2), and (8.3) can be combined to obtain 
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Define the closed loop phase error as 

 vi θθφ −≡ , (8.6) 

and the closed loop gain as 

 vkkk 1= . (8.7) 

The results which follow are simplified by defining 

 toi ωθθ −=1 , (8.8) 

and 

 tov ωθθ −=2 . (8.9) 

These quantities can be used with equations (8.5), (8.6) and (8.7) to write 

 ( )∫ −−=
t

duuutfAk
dt

d

dt

d

0

1 )(sin)( φθφ
 for 0≥t . (8.10) 

The differential equation that describes the closed loop phase error in the 

PLL is given by 
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where τp1 , τp2 , τz1,  and  τz2   are the loop filters time constants. After 

simplifications, the above equation becomes 
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If the input frequency is constant, then 

 θ1(t) = (ωi-ωo) t + θo, (8.13) 

and by normalizing the time variable using t' = (k/τp1τp2)
1/3 t, equation 

(8.12) becomes 

δφφφφφφφφφφ =+−++++ )sin()sin()cos()cos( 2&&&&&&&&&& edcba ,(8.14) 
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where 
.

=d/dt' , s = (k/τp1τp2)
1/3 , a = ( ) kspp /2

21 ττ +  ,  b = τz1τz2 s
2, c = 

s/k , d = (τz1 + τz2 ) s  , e = τz1 τz2 s
2 ,  δ = ωos / k  and ωos = ωi - ωo. The 

above equation can be written as: 

 x=φ& , (8.15a) 

 yx =& , (8.15b) 

and 

 δφφφφ +−+−−−−= )sin()sin()cos()cos( 2xexdcxybayy& .(8.15c) 

8.3.   Equilibrium Solution 

The equilibrium solution of the system of equations (8.15a)-(8.15c) 

corresponding to 0=== φφφ &&&&&& . Setting the right hand sides of 

equations (8.15a)-(8.15c) equal to zero, we end up with a nonlinear 

algebraic equation. The solution of this equation as a function of one of 

the control parameters are defined by using a continuation scheme. The 

stability of an equilibrium solution depends on the eigenvalues of the 

Jacobian matrix of equations (8.15a)-(8.15c) evaluated at the equilibrium 

point. In this chapter we write our own program for calculating the fixed 

points and their bifurcations rather than use an available bifurcation 

software package, such as BIFOR2 and AUTO94. 

To this end, we follow Watada, Endo and Seishi [13] and consider the 

case of the sinusoidal phase detector. In Fig. 8.2, we show the bifurcation 

diagram, which is the variation of the control parameter K with the state 

variableφ& . The solid line denotes stable nodes, while the dashed line 

denotes unstable foci. There is only one Hopf bifurcation point H at Ko = 

7299.01. Using the normal form near the Hopf bifurcation point H, we 

find that H is a supercritical point. So, as K was increased above 7299.01, 

a sequence of deformed (asymmetric) periodic solutions was observed, 

leading to chaos at the control parameter K= 85299 as shown in Fig. 8.3. 

8.4.   Backstepping Recursive Nonlinear Controller 
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Appendix 8A gives more details about the methodology of backstepping 

control theory. First, let ,, 21 xxx == φ and yx =3 . Second, a designed 

control signal u is added to equation (8.15c). Therefore, one can rewrite 

the system as follows 

 21 xx =& , (8.16) 

 32 xx =& , (8.17) 

and 

uxxExxDxCxxBxAxx ++−+−−−−= δ)sin()sin()cos()cos( 11

2

21221333
& .(8.18) 

Design Methods. Let 

 )(sin 1

11 δ−+= xe , (8.19a) 

 112222 ecxxxe
des

−=−= , (8.19b) 

and 

 23123333 ececxxxe
des

−−=−= . (8.19c) 

Thus, 

 2111 eece +=& , (8.20a) 

 )( 1121231232 ececececee +−++=& , (8.20b) 
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Let 
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then 
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Substituting equations (8.16)-(8.21) into equation (8.22), and 

1- choose ci and ki such that the first and second terms in V& are 

equal to zero,  i=1,2,3. 

2- For 1 and ,00 ,0 0 321321 ======== kkkccc , choose u 

such that: 

δδδ

δδ

−−+−−

−++−+−=
−−

−−

))(sinsin())(sinsin(      

))(sincos())(sincos(

1

1

1

1

2

2

1

122

1

133

eeEe

eDeCeeBeeu
,(8.23) 

to make sure that the system is stable. Substituting the control signal 

equation (8.23) into the original system of equations (8.15a, 8.15b, and 

8.15c), and integrate the new system, one obtain the simulation results as 

shown in Fig. 8.4. But the system without any control action is 

experiencing chaotic behavior via Hopf bifurcation. Fig. 8.3 shows the 

uncontrolled system. It so clear that, for the value of control parameter 

Ko = 85299, the chaotic oscillations appear via period doubling rout to 

chaos. As a result, the PLL is driven to the out-of-lock state and it will 

not achieve phase lock (stable equilibrium state). As we mentioned, the 

main objective of this chapter is control and to get red of the chaotic 

behavior. So, by comparing the uncontrolled system shown in Fig. 8.3 

(Figs. 8.3a and 8.3b) to the controlled system shown in Fig. 8.4 (Figs. 

8.4a and 8.4b), on can see that the system is recovered from its chaotic 

behavior and exhibits a stable equilibrium solution. This means that the 

phase locked-loop is (in-lock-state).  Fig. 8.5 (Figs. 8.5a and 8.5b) show 

the error signals e2 and e3. In order to see the effectiveness of the 

designed controller, we apply the designed control signal after 50 second 

of the integration time. Fig. 8.6 (Figs. 8.6a and 8.6b) show how the 

controller brings the system to the equilibrium solution or in-lock-state. 

The results were achieved by using one control signal. 

8.4.   Conclusions 

In the existing literature, it was showed that a third-order phase locked 

loop (PLL) with sinusoidal phase detector characteristics experienced a 

Hopf bifurcation point as well as chaotic behavior. This behavior drives 

the PLL to the out-of-lock (unstable) state. In this chapter, a nonlinear 

controller based on the theory of backstepping has been designed to 

control this chaotic behavior. The study showed the effectiveness of the 

designed nonlinear controller in controlling the undesirable unstable 
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(chaotic) behavior and pulling the PLL back to the in-lock state, i.e, it 

drives the chaotic oscillation into an equilibrium constant behavior 

(phase lock state). 

Appendix 8A―Methodology of Backstepping 

To explain the methodology of the backstepping controller, let me start 

from a special case that has been taken from Khalil’s book [31]. It is the 

integrator backstepping, as shown in Fig. 8.7a. Let 

 ξηηη )()( gf +=& , (8.A1) 

and 

 u=ξ& , (8.A2) 

where η and ξ are the state variables and u is the control signal. If the 

component of equation (8.A1) can be stabilized by a smooth state 

feedback control law )(ηφξ = , with 0)0( =φ , then, the origin of 

)()()( ηφηηη gf +=& , is asymptotically stable.  Suppose that we know 

a smooth and positive definite Lyapunov function V(η) that satisfies the 

inequality 

 )()]()()([ ηηφηη
η

Wgf
V

−≤+
∂
∂

, (8.A3) 

where W(η) is positive definite. Adding and subtracting g(η)φ(η) on the 

right hand side of equation (8.A1), one obtain the equivalent 

representation shown in Fig. 8.7b and Fig. 8.7c and mathematically as 

follows: 

 )]()[()]()()([ ηφξηηφηηη −++= ggf& , (8.A4) 

and 

 u=ξ& , (8.A5) 

or 

 zggf )()]()()([ ηηφηηη ++=& , (8.A6) 

and 

 vz =& , (8.A7) 
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where )(ηφξ −=z and φ&−= uv . Equations (8.A4) and (8.A5) are 

similar to equations (8.A1) and (8.A2), except that now the first 

component has an asymptotically stable origin when the input is zero. 

This feature will be exploited in the design of v to stabilize the overall 

system. Using the following Lyapunov function as 

 
2

2
1)(),( zVVc += ηξη , (8.A8) 

then 
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& .(8.A9) 

Choosing ,)( kzg
V

v −
∂
∂

−= η
η

 where k>0, one obtain, 

2)( kzWVc −−≤ η& , which shows that the origin (η=0, z=0) is 

asymptotically stable. Since ,0)0( =φ  so, the origin (η=0, ξ=0) is also 

asymptotically stable.  Substituting for v, z, and φ& , one obtain the state 

feedback control law 

 )]([)(])()([ ηφξη
η

ξηη
η
φ

−−
∂
∂

−+
∂
∂

= kg
V

gfu . (8.A10) 

If all the assumptions hold globally, and )(ηV is radial unbounded, we 

can conclude that the origin is globally asymptotically stable. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.1.   Block diagram of a phase-locked loop with second-order loop 

filter. 
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Fig. 8.2. Bifurcation diagram (Variation of state variable versus the 

control parameter K). 
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Fig. 8.3. Uncontrolled simulations, a) The chaotic time response and b) 

state-plane of the state variables X2 and X3  at Ko = 85299. 

a) 
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Fig. 8.4.  Controlled simulations: a) Time history and b) state-plane of 

the state variables X2 and X3 , at Ko = 85299. 
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Fig. 8.7. a) The block diagram of the system, b) Introducing φ(η), c) 

backstepping -φ(η) through the integrator. 
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In this chapter, a fuzzy impulsive control strategy is applied to high 

order interpolative lowpass sigma delta modulators. The state vectors 

that the impulsive controller resets to are determined so that the state 

vectors of interpolative lowpass sigma delta modulators (SDMs) are 

bounded within any arbitrary nonempty region no matter what the input 

step size, the initial condition and the filter parameters are, the 

occurrence of limit cycle behaviors and the effect of audio clicks are 

minimized, as well as the state vectors are close to the invariant set if it 

exists. To work on this problem, first, the local stability criterion and 

the condition for the occurrence of limit cycle behaviors are derived. 

Second, based on the derived conditions, as well as a practical 

consideration based on the boundedness of the state variables and a 

heuristic measure on the strength of audio clicks, fuzzy membership 

functions and a fuzzy impulsive control law are formulated. The 

controlled state vectors are then determined by solving the fuzzy 

impulsive control law. One of the advantages of the fuzzy impulsive 

control strategy over the existing linear control strategies is the 
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robustness to the input signal, the initial condition and the filter 

parameters, and that over the existing nonlinear control strategy are the 

efficiency and the effectiveness in terms of lower frequency of 

applying the control force and higher signal-to-noise ratio (SNR) 

performance. 

9.1.   Introduction 

Because of the advance in electronic technology, the implementation cost 

of sigma delta modulators (SDMs) could be very low [2] and nowadays 

SDMs are very popular in analog-to-digital (A/D) and digital-to-analog 

(D/A) conversions [1]. Many systems, such as in the consumer and 

professional audio processing systems [2], communication systems [3], 

and precision measurement devices [4], etc, employ SDMs in their A/D 

and D/A conversions. 

The working principles of sigma delta modulation are based on the 

oversampling and the noise shaping techniques. It is well known that 

when the input signals are critically sampled, that is, the signals are 

sampled with the frequencies equal to twice of their bandwidths, then the 

signals can be perfectly reconstructed and the signals are spread over the 

whole frequency band. When the input signals are oversampled, that is, 

the signals are sampled with the frequencies greater than twice of their 

bandwidths, then the signal bands are decreased and the bandwidths of 

the signals are inversely proportional to the oversampling ratios. By 

applying simple lowpass filtering, noises outside the signal bands are 

filtered and good signal-to-noise ratios (SNR) could be achieved. Noise 

shaping technique is further to shape the noise in the signal band to the 

noise band by applying a negative feedback. By a proper design of a loop 

filter, the magnitudes of the signal transfer function in the signal band 

and in the noise band are approximately equal to one and zero, 

respectively, and that of the noise transfer function in the signal band and 

in the noise band are approximately equal to zero and one, respectively. 

Hence, signals and noises are separated and better SNR could be further 

achieved. 

However, in order to achieve good noise shaping characteristics, 

SDMs are suffered from instability problems. This is because the 

magnitude of the loop filter response at the signal band has to be tended 

to an infinity in order to achieve the magnitude of the signal transfer 

function equal to one and that of the noise transfer function equal to zero. 
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This implies that the loop filter is unstable or marginally stable. 
Consequently, control is required. Although there are many existing 
linear control strategies for stabilizing interpolative SDMs, such as 
variable structure compensation (sliding mode control strategy) [5] and 
time delay feedback control strategy [6], etc, these linear control 
strategies stabilize the loop filter by changing the effective poles of the 
loop filter. Since the loop filter is usually designed to have a very noise 
shaping characteristics, it is not guaranteed that the SNR of the 
controlled SDMs is still maintained or even improved if the effective 
poles of the loop filter are changed. Moreover, the parameters in the 
controller depend on the loop filter parameters, so it is not guaranteed 
that a particular class of controllers can stabilize all types of interpolative 
SDMs. Furthermore, the controlled SDMs may still be unstable when the 
magnitude of the input signal is increased. In addition, it cannot be 
guaranteed that the controlled SDMs are stable for all initial conditions 
in the state space. 

In order to control the SDMs without changing the effective poles of 
the loop filter, nonlinear control strategy, such as the clipping control 
strategy, was employed [2]. For the clipping control strategy, as the state 
variables are always reset to the same values, periodic output sequences 
may result and this periodic behavior is known as limit cycle behavior. 
This situation is found very frequently when the input signal is very slow 
time varying or the clipped level is set at very low value. For audio 
applications [2], the occurrence of limit cycle behaviors results to the 
annoying audio tones, which should be avoided. Besides, there may be a 
large jump between the unclipped and clipped state levels. As a result, 
audio clicks may be observed, which should also be avoided. 
Furthermore, as the set of the state vectors under the clipping control 
strategy is usually not the same as the invariant set, the clipping force 
may be applied very frequently. 

In order to solve these problems, an impulsive control strategy is 
discussed in this chapter, in which it is to reset the state vectors to 
different positions in the state space whenever the control force is 
applied. Hence, the occurrence of limit cycle behaviors and the effect of 
audio clicks can be minimized with the guarantee of the bounded state 
variables. Moreover, if the invariant set exists, then we only need to reset 
the state variables of the loop filter once and the state vectors of the 
SDMs are guaranteed to be within the invariant set forever if the effects 
of limit cycle behaviors and audio clicks do not consider. As there are 
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usually an infinite number of state vectors in the invariant set, this 
chapter suggests a method to determine the state vectors that the 
impulsive controller resets to. Since the SDMs consist of a quantizer, 
nonlinear behaviors, such as fractal and chaotic behaviors, combined 
with the practical consideration on the boundedness of the state variables 
and a heuristic measure on the strength of audio clicks, cause a difficulty 
to solve the state vectors analytically. To solve this problem, a fuzzy 
approach is employed because employing fuzzy approach can simplify 
the complicated problems and can capture heuristic knowledge in the 
system in an easy manner. 

The outline of this chapter is as follows. In Section 9.2, we introduce 
the notations which appear throughout this chapter. In Section 9.3, the 
conditions for the occurrence of limit cycle behaviors and the local 
stability criterion of the SDMs are derived, which are used for the 
formulation of fuzzy membership functions and fuzzy impulsive control 
law. In Section 9.4, a fuzzy impulsive control strategy is discussed. In 
Section 9.5, some simulation results are presented to illustrate the 
effectiveness of the fuzzy impulsive control strategy. Finally, a 
conclusion is summarized in Section 9.6. 

9.2.   Notations 

The block diagram of an interpolative SDM is shown in Fig. 9.1. The 
input to the SDM and the output of the loop filter are denoted as, 

respectively, ( )ku  and ( )ky . We assume that the loop filter is a single 

input single output real system and the input is also real, that is, 

( ) ℜ∈ku , so ( ) ℜ∈ky . The transfer function of the loop filter is denoted 

as ( )zF . ( )zF  is assumed to be causal, rational and proper with the order 

of the polynomial of 1−
z  in the numerator being equal to that in the 

denominator and there is a delay in the numerator. We make those 
assumptions because this type of SDMs is commonly used in the 
industry [2]. Denote the coefficients in the denominator and numerator of 

( )zF  as, respectively, 
ia  for Ni ,,1,0 L=  and 

jb  for Nj ,,1L= , where 

N  is the order of the loop filter. Then 
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Since this chapter is based on the feedforward structure of the SDMs, 
without loss of generality, we assume that the loop filter is realized via 
the direct form because the expressions will be much simplified. For 
other minimal realizations, they can be converted to the direct form 
realization using simple transformations. Hence, the SDMs can be 
described by the following state space equation: 

 ( ) ( ) ( ) ( )( )kkkk suBAxx −+=+1  (9.2) 

for 0≥k , where 

 ( ) ( ) ( )[ ] ( ) ( )[ ]TT

N kyNkykxkxk 1,,,,1 −−≡≡ LLx  (9.3) 

is the state vector of the SDMs, 

 ( ) ( ) ( )[ ]TkuNkuk 1,, −−≡ Lu , (9.4) 

 ( ) ( ) ( )[ ] ( )( ) ( )( )[ ]TT

N kyQNkyQksksk 1,,,,1 −−≡≡ LLs , (9.5) 
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in which Q  is a one bit quantizer defined as follows: 

 ( )
⎩
⎨
⎧
−

≥
≡

otherwise

y
yQ

1

01
. (9.7) 

 
 
 
 
 

 
Fig. 9.1. The block diagram of an interpolative SDM. 
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Since the oversampling ratio of the SDM is usually very high, the 
input can be approximated as a step signal. Hence, we further assume 
that ( ) uu =k  for 0≥k . 

In many practical situations, the magnitude of the state variables of 
the SDM should not be larger than certain values. For the direct form 
realization, since all the state variables are the delay versions of the 
output of the loop filter, we denote the desired bound on the state 

variables as 
ccV . That is, ( ) ccVkxi <  for Ni ,,2,1 L=  and 0≥k . 

Otherwise, the SDM is guaranteed to yield an unwanted behavior. 
Denote 

oB  as the set of the desired state vectors. That is, 

{ }NiVxB io ,,2,1for: cc L=<≡ x . 

9.3.   Conditions for Occurrence of Limit Cycle Behaviors and Local 

Stability Criterion 

As discussed in Section 9.1, limit cycle behaviors should be avoided. 
Hence, before we suggest the fuzzy impulsive control strategy, the 
conditions for exhibiting limit cycle behavior are discussed below. This 
is essential for formulating a fuzzy membership function for avoiding the 
occurrence of limit cycle behavior. 

Suppose the eigen decomposition of matrix A  exists. That is, there 
exists a full rank matrix T  and a diagonal matrix D  which consist of the 
eigenvectors and eigenvalues of matrix A , respectively, such that 

1−= TDTA . We make this assumption because it is satisfied for most of 
SDMs employed in the industry [2]. Denote 

iλ  and 
iξ  for Ni ,,2,1 L=  

be the eigenvalues and the corresponding eigenvectors of the matrix A . 
Let 

dn  be the number of eigenvalues of matrix A  on the unit circle with 

their phases are integer multiples of 
P

π2
, that is, P

kj

nNi

i

d
e

π

λ
2

=−+  for 

Zki ∈  and 
dni ,,2,1 L= . Denote 

iL  for Ni ,,2,1 L=  be the ith row of 

 ( ) ( )( )∑
−

=

−− +−+
1

0

00

1
P

j

jP
jkjk suBA , (9.8) 

where +∈ ZP  and 00 ≥k . Let 
jr  for Nj ,,2,1 L=  be the j

th row of 

PAI − , where I  is an NN ×  identity matrix. Denote 

 ( ) ( ){ }diiP nNiLk −==≡Ψ ,,2,1 for :0 0 Lxrx . (9.9) 
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Lemma 9.1. The number of linearly independent rows in the matrix 
P

AI −  is 
dnN − , that is, ℜ∈∃ nic ,

 for 
dnNi −= ,,2,1 L  and 

dnn ,,2,1 L=  such that 
nnN

nN

i

ini d

d

c +−

−

=

=∑ rr
1

,
. If ≠ΨP

Ø, where Ø denotes the 

empty set, and 
nnN

nN

i

ini d

d

LLc +−

−

=

=∑
1

,
 for 

dnn ,,2,1 L= , then the SDMs 

exhibit limit cycle behavior with period P , and 
PΨ  is the corresponding 

nonempty set of initial condition. If =ΨP
Ø or { }

dnn ,,2,1 L∈∃  such that 

nnN

nN

i

ini d

d

LLc +−

−

=

≠∑
1

,
, then there will not exist any fixed point or periodic 

state sequence. 

Proof. Denote P
AIQ −≡ . Since 1−= TDTA  and P

kj

nNi

i

d
e

π

λ
2

=−+  for 

Zki ∈  and 
dni ,,2,1 L= , we have: 

 ( ) ( )[ ]00ξξQT ,,,1,,1 11 LL
dd nN

P

nN

P

−−−−= λλ  (9.10) 

and 

 ( ) ( ) ( )[ ]( )00ξξQT ,,,1,,1 11 LL
dd nN

P

nN

P
rankrank −−−−= λλ .(9.11) 

Since T  is a full rank matrix, { }
dnN −ξξ ,,1 L  are linearly independent. As 

01 ≠− P

iλ  for 
dnNi −= ,,2,1 L , ( ) dnNrank −=QT . However, 

( ) ( )QQT rankrank ≤ . Hence, ( ) dnNrank −≥Q . Since 

 ( ) ( )[ ] 1

11 ,,,1,,1 −
−−−−= T00ξξQ LL

dd nN

P

nN

P λλ , (9.12) 

( ) dnNrank −≤Q . Hence, ( ) dnNrank −=Q . As a result, the number of 

linearly independent rows in the matrix P
AI −  is 

dnN − . 

Since ≠ΨP
Ø, ( ) Nℜ∈∃ 0x  such that ( ) ii Lk =0xr  for 

dnNi −= ,,2,1 L . 

As 
nnN

nN

i

ini d

d

LLc +−

−

=

=∑
1

,
 for 

dnn ,,2,1 L= , ( ) nnN

nN

i

ini d

d

Lkc +−

−

=

=∑
1

0, xr  for 

dnn ,,2,1 L= . Since 
nnN

nN

i

ini d

d

c +−

−

=

=∑ rr
1

,
 for 

dnn ,,2,1 L= , 

( ) nnNnnN dd
Lk +−+− =0xr  for 

dnn ,,2,1 L= . Hence, ( ) ii Lk =0xr  for 

Nn ,,2,1 L= . This implies that 
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 ( ) ( ) ( ) ( )( )∑
−

=

−− +−+=−
1

0

00
1

0

P

j

jPP jkjkk suBAxAI . (9.13) 

As a result, we have ( ) ( )Pkk += 00 xx . Hence, the SDMs exist limit cycle 

behaviors with period P  for 
0kk ≥ . Obviously, 

PΨ  is the corresponding 

nonempty set of initial condition. 

When =ΨP
Ø or { }

dnn ,,2,1 L∈∃  such that 
nnN

nN

i

ini d

d

LLc +−

−

=

≠∑
1

,
, then 

there does not exist ( )0x  such that ( ) ( )00 kPk xx =+ . Hence, there will 

not exist any fixed point or periodic state sequence, and this completes 
the proof.  

The importance of this Lemma is to characterize the set of initial 
condition that corresponds to the limit cycle behaviors with period P  for 

0kk ≥ . This set of initial condition will be used for the formulation of 

fuzzy rules shown in Section 9.4. 
This result is a generalization of [2]. In [2], it mainly considers the 

DC pole cases, that is 0=ik  for 
dni ,,2,1 L= . However, we reveal that 

even though there is not DC pole, but if there exist some poles on the 

unit circle with their phases are nonzero integer multiple of 
P

π2
, then the 

matrix Q  will also drop rank. Besides, when there are more than one DC 

poles in the loop filter transfer function, if the degeneracy is equal to the 
multiplicity of the eigenvalues of matrix A , then the eigen 
decomposition of matrix A  exists and Lemma 9.1 is still applied. 

As discussed in Section 9.1 and 9.2, stability is an important issue. 
Hence, the stability analysis is performed before the fuzzy impulsive 
control strategy is suggested. Although the global stability of the SDMs 
is usually preferred because global stability implies local stability, 
sometimes global stability cannot be achieved. Only local stability can be 
achieved and local stability may be enough for some applications, such 
as for audio applications [2]. 

The local stability is discussed as follows. Define the forward 
dynamics and one of the possible backward dynamics of the system as 

NN ℜ→ℜℵ :f
 and NN ℜ→ℜℵ :b

, respectively. That is: 

 ( ) ( )( )kk xx f1 ℵ≡+  in which ( ) ( ) ( )( )( )kQkk xuBAxx −+=+1  (9.14) 

and 

 ( ) ( )( )kk xx b1 ℵ≡−  in which ( ) ( ) ( )( )( )11 −−+−= kQkk xuBAxx ,(9.15) 
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respectively. Denote 

 ( ) ( )( )( ) ( )∑∑
=
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and 
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N
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k ⎥
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⎢
⎣
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If ( ) Nbkx >′ , then 

 ( ) ( )( )( ) ( )( )kxQbakxQkxQ NN
′=′−′ . (9.19) 

Hence, 

 ( )( ) ( ) ( )( ) ( )( ) ( )( ) 0=′−′=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′

NN

N

NN
N akxQakxQ

a

bakxQkx
QakxQ (9.20) 

and 

 ( ) ( )( )( ) ( ) ( )[ ] ( )kkxkxkQk
T

N xxuBxA ==−+ ,,ˆˆ
1 L . (9.21) 

If ( ) Nbkx <′ , then 

 ( ) ( )( )( ) ( )( ) ( )NNNN bQakxQbakxQkxQ ′−=′−′  (9.22) 

and 

 ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )NNNN

N

NN
N baQakxQakxQ

a

bakxQkx
QakxQ ′+′=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′ .(9.23) 

If ( ) 1−=NNbaQ , then 

 ( )( ) ( ) ( )( )
0=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′−′
−′

N

NN
N

a

bakxQkx
QakxQ  (9.24) 

and 
 ( ) ( )( )( ) ( )kkQk xxuBxA =−+ ˆˆ . (9.25) 

Hence, if ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , then the one of 

the possible backward dynamics of the SDMs can be defined as 

 ( )( ) ( ) ( )( ) ( ) ( )
T

N

N

NN kxkx
a

bakxQkx
k ⎥

⎦

⎤
⎢
⎣

⎡ ′−′
=ℵ −11b ,,, Lx . (9.26) 
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Suppose the above conditions are satisfied Zk ∈∀ . Denote 

 ( ) ( )( ) ( )( ){ }0for and,0for :0 bf ≤℘∈ℵ≥℘∈ℵ≡℘ kkkk xxx (9.27) 

and a map ℘→℘ℑ :  such that 

 ( ) ( )( )xuBAxx Q−+≡ℑ . (9.28) 

Lemma 9.2. If ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , then ℘ is 

an invariant set under ℑ . That is, ( ) ℘=℘ℑ . Hence, if Zk ∈∃ 0
 such that 

( ) ℘∈0kx , then ( ) ℘∈kx  Zk ∈∀ . 

Proof. The result follows directly from the definition.  

Although it was reported in [7] that if the invariant set exists and 
there exists an initial condition in the invariant set, then the local stability 
is guaranteed. However, the conditions on the existence of the invariant 
map are not explored and this relationship is explored in Lemma 9.2. 

It is worth noting that if Zk ∈∃ 0
 such that ( ) ℘ℜ∈ \0

N
kx , then 

( ) ℘ℜ∈ \N
kx  Zk ∈∀ , and ( )kx  may diverge. Hence, it is not sufficient 

to conclude the global stability of the SDMs. 
The importance of Lemma 9.2 is that it provides information for 

formulating a fuzzy membership function to achieve local stability. 

9.4.   Fuzzy Impulsive Control Strategy 

9.4.1.  Fuzzy Impulsive Control Strategy 

Fig. 9.2 shows the block diagram of how the fuzzy impulsive controller 
influenced the SDMs. As discussed in Section 9.1, the fuzzy impulsive 
controller determines the controlled state vectors and reset the state 
variables of the loop filter to the controlled state variables via a reset 
circuit. To determine the controlled state vectors, two step procedures are 
employed. The first step of the procedure is the training phase in which 
the invariant set and the set of state vectors that exhibits limit cycle 
behaviors are learnt through training. By generating a set of DC signals 
inputted to the system with different initial condition, the state vectors 
are tested if they form an invariant set and exhibit limit cycle behaviors 
or not. The second step of the procedure is the control phase in which the 
controlled state vectors are determined and the state variables are reset to 
the corresponding values. The details are discussed in below. 
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+  
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As discussed in Section 9.1, we want to minimize the effect of audio 
clicks. To achieve this goal, we want to minimize the distance between 
the original state vectors ( )10 +kx  and the controlled state vectors 

( )10 +kcx . However, ( )10 +kx  may be outside the desired bounded region 

0B , so we define a vector 
0Br ∈x  such that ( )

20 1 r
k xx −+  is minimum 

and our goal is to minimize the distance between ( )10 +kcx  and r
x  via a 

triangular fuzzy membership function as follows: 

 ( )( ) ( )( ) NN

i

rc

i

c
kfk

1

1

00continuous ,11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≡+ ∏

=

xxxμ , (9.29) 

where 
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⎪
⎪

⎨
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otherwise0

1
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1
1

,1 0cc
0

cc0
0

0

r
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c

i

cc

r

i

cc

c

i

c

i

r

i

cc

r

i

cc

c

i

rc

i xkxV
Vx

Vkx

Vkxx
Vx

Vkx

kf xx
. (9.30) 

Since a triangular fuzzy membership function is employed and 
0Br ∈x , 

( )( ) 110continuous =+kcxμ  when ( ) rc k xx =+10
, ( )( ) 010continuous =+k

c
xμ  

when ( ) 00 \1 Bk Nc ℜ∈+x , and ( )( ) 110 0continuous ≤+≤ kcxμ  

( ) Nc
k ℜ∈+∀ 10x . Hence, ( )( )10continuous +kcxμ  force the new state vectors 

( )10 +k
c

x  to be within 
0B . Note that if ( ) 00 1 Bk ∈+x , then ( )10 += k

r
xx  

 

 

 

 

 

 

Fig. 9.2. The block diagram of the interpolative SDM under the fuzzy 
impulsive control strategy. 

)(ky
)(zF  )(ku  

Fuzzy impulsive controller

Q  
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and there will be no audio click effect by setting ( ) rc k xx =+10
. Since 

( )( )10continuous +k
c

xμ  captures the knowledge on the closeness between 

( )10 +kcx  and r
x , and the effect of audio clicks is minimized if ( )10 +kcx  

is closed to r
x , this fuzzy membership function can minimize the effect 

of audio clicks. 
As discussed in Section 9.1 and 9.2, the local stability criterion is an 

important issue. According to Lemma 9.2, if ( ) Nbkx >′  or ( ) Nbkx <′  

and ( ) 1−=NNbaQ , then ( ) ℘∈kx  Zk ∈∀  if Zk ∈∃ 0
 such that ( ) ℘∈0kx . 

However, the trajectory may not be inside 
0B  because ℘ is usually not 

equal to 
0B . In order to guarantee that the trajectory is bounded within 

0B , we want the controlled state vectors to be inside 
0BI℘ , that is, 

( ) 00 1 Bkc I℘∈+x . Supposing that ≠℘ 0BI Ø. This implies that there 

exist state vectors that achieve local stability within the set of the desired 

bounded state variables. Denote 
0B

p I℘∈x  such that ( )
20 1 pk xx −+  is 

minimum. If ≠℘ 0BI Ø, ( ) Nbkx >′  or ( ) Nbkx <′  and ( ) 1−=NNbaQ , 

then we define the following triangular fuzzy membership function: 

 ( )( ) ( )( ) NN

i

pc

i

c
kfk

1

1

00stable ,11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≡+ ∏

=

xxxμ . (9.31) 

Since a triangular fuzzy membership function is employed and 
0B

p ∈x , 

( )( ) 010stable =+kcxμ  when ( ) 00 \1 Bk Nc ℜ∈+x , ( )( ) 110stable =+kcxμ  when 

( ) pc
k xx =+10

 and ( )( ) 110 0stable ≤+≤ k
c

xμ  ( ) Nc
k ℜ∈+∀ 10x . Hence, 

( )( )10stable +kcxμ  force the new state vectors ( )10 +kcx  to be within 
0B . If 

( ) 00 1 Bk I℘∈+x , then ( )10 += kp xx . By setting ( ) pc
k xx =+10

, the local 

stability criterion is satisfied. Since ( )( )10stable +k
c

xμ  captures the 

knowledge on the closeness between ( )10 +kcx  and px , which also 

reflects the closeness between ( )10 +k
c

x  and the set of state vectors that 

achieved local stability within the desired bounded region, this fuzzy 
membership function can capture the local stability criterion into the 
system. 
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However, if =℘ 0BI Ø, then px  does not exist. Or if Zk ∈′∃  such 

that ( ) Nbkx <′  and ( ) 1=NNbaQ , then the local stability criterion is not 

guaranteed. In this case, the SDM may suffer from an instability 
problem. In order to avoid this case to be happened, if =℘ 0BI Ø, or if 

Zk ∈′∃  such that ( ) Nbkx <′  and ( ) 1=NNbaQ , then we define 

 ( )( ) ( )
( )⎩

⎨
⎧

ℜ∈+
∈+

≡+
00

00stable
0stable

\10

1
1

Bk

Bk
k

Nc

c

c

x

x
x

δ
μ , (9.32) 

where 01 stable >≥ δ  and 
stableδ  is very closed to zero. The reasons why 

small value of 
stableδ  can avoid the instability problem are discussed in 

Section 9.4.2. Since the fuzzy membership value of the state vectors 
outside 

0B  is exactly equal to zero, this fuzzy membership function will 

force the new state vectors ( )10 +kcx  to be within 
0B . 

As discussing in Section 9.1, the occurrence of limit cycle behaviors 
should be avoided. Since U

0>∀

Ψ
P

P
 is the set of state vectors that exhibiting 

limit cycle behavior, we do not want to move the new state vectors 

( )10 +k
c

x  into U
0>∀

Ψ
P

P
. Moreover, we do not want to move ( )10 +k

c
x  into 

( ){ }U
0kk

k
≤∀

x  too. This is because after a certain number of iterations, the 

state vectors may go to the same points in the state space and cause limit 
cycle behaviors to occur. Define 

 ( ) ( ){ }⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ≡

≤∀>∀
UU U

00

0

kkP

P kkPER x . (9.33) 

If ( ) 000 BBkPER =I , then all the state vectors in 
0B  may result limit 

cycle behaviors and this situation should be avoided. On the other hand, 

if ( ) =00 BkPER I Ø, then we cannot find a state vector ( )00 kPERBq I∈x  

such that ( )
20 1 qk xx −+  is minimum. Hence, if ( ) 000 BBkPER =I  or 

( ) =00 BkPER I Ø, we define the fuzzy membership function as 

 ( )( ) ( )
( )⎩

⎨
⎧

ℜ∈+
∈+

≡+
00

00aperiodic
0aperiodic

\10

1
1

Bk

Bk
k

Nc

c

c

x

x
x

δ
μ , (9.34) 
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where 01 aperiodic >≥ δ  and 
aperiodicδ  is also very closed to zero. Similarly, 

the reason why small value of 
aperiodicδ  can avoid the occurrence of limit 

cycle behaviors is discussed in Section 9.4.2. Otherwise, we define the 
fuzzy membership function as 

 ( )( ) ( )( ) ( )

( )⎪
⎩

⎪
⎨

⎧

ℜ∈+

∈+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−≡+ ∏

=

00

00

1

1

0
0aperiodic

\10

1,111

Bk

Bkkfk

Nc

c
NN

i

qc

i
c

x

xxxxμ .(9.35) 

Since 
if  is a triangular fuzzy membership function and 

0B
q ∈x , 

( )( ) 010aperiodic =+k
c

xμ  when ( ) ( )000 1 kPERBk I∈+x  because 

( )10 += kq xx  when ( ) ( )000 1 kPERBk I∈+x , ( )( ) 010aperiodic =+kcxμ  when 

( ) 00 \1 Bk
Nc ℜ∈+x  and ( )( ) 110 0aperiodic ≤+≤ k

c
xμ  ( ) Nc k ℜ∈+∀ 10x . 

Hence, ( )( )10aperiodic +k
c

xμ  force the new state vectors ( )10 +kcx  to be 

within 
0B . Since ( )( )10aperiodic +k

c
xμ  captures the knowledge on the 

separation between ( )10 +kcx  and ( )00 kPERB I , which also reflects the 

separation between ( )10 +kcx  and the set of state vectors within the 

desired bounded region that exhibits limit cycle behaviors, 

( )( )10aperiodic +k
c

xμ  can be used to avoid the occurrence of limit cycle 

behaviors. 
Once the fuzzy membership functions are defined, we can define the 

fuzzy impulsive control law as follows: 

If ( ) ( )( )( ) 000 \ BkQk
Nℜ∈−+ xuBAx , then the fuzzy impulsive 

controller will reset the state variables of the loop filter to ( )10 +kcx  

where ( )10 +k
c

x  is the state vector such that the following function is 

maximized, 

 
( ) ( )( )

( )
( )( ) ( )( ) ( )( )( ) 3

1

0continuous0aperiodic0stable
1

01

111max

1

0

0

+++

≡+

ℜ∈+

+

kkk

k

ccc

k

c

k

Nc

c

xxx

x

x

x

μμμ

μ
.(9.36) 

Otherwise, no control force is applied to the SDMs. 

Lemma 9.3. ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) 0Bk
c ∈x  for 0>k . 
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Proof. It can be seen that ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for 

Ni ,,1,0 L= , ℜ∈∀ jb  for Nj ,,1L= , 00 ≥∀k  and ( ) 00 1 Bkc ∈+∀x , 

( )( ) 010continuous >+kcxμ  and ( )( ) 010stable >+kcxμ . If ( ) 000 BBkPER =I  or 

( ) =00 BkPER I Ø, then ( )( ) 010aperiodic >+k
c

xμ . Although 

( )( ) 010aperiodic =+kcxμ  if ( ) 000 BBkPER ≠I , ( ) ≠00 BkPER I Ø and 

( ) ( )000 1 kPERBk I∈+x , since ( ) 000 BBkPER ≠I , 

( ) ( )000 \1 kPERBk
c ∈+∃x  such that ( )( ) 010aperiodic >+kcxμ . Hence, 

( ) ( )000 \1 kPERBk
c ∈+∃x  such that ( ) ( )( ) 01010

>+
+

k
c

kc x
x

μ . As a result, if 

( ) ( )( )( ) 000 \ BkQk
Nℜ∈−+ xuBAx , then the fuzzy impulsive controller 

will reset the state vector of the loop filter to ( )10 +kcx  where 

( ) ( )000 \1 kPERBk
c ∈+x . If ( ) ( )( )( ) 000 BkQk ∈−+ xuBAx , since no 

control force is applied to the SDM, ( ) ( ) 000 11 Bkkc ∈+=+ xx . Hence, 

( ) 0Bk
c ∈x  for 

0kk > . Thus, 00 ≥∀k , ( ) 0Bkc ∈x  for 0>k . And this 

completes the proof.  

It is worth noting that different values of u , ( )0x , 
ia  for Ni ,,1,0 L=  

and 
jb  for Nj ,,1L= , will affect the existence of ℘ and U

0>∀

Ψ
P

P
. 

However, Lemma 9.3 is still applied even though =℘ Ø or 
0B=℘ , and 

=Ψ
>∀
U

0P

P
Ø or 

0

0

B
P

P =Ψ
>∀
U . Hence, Lemma 9.3 guarantees that the 

controlled trajectory is bounded within 
0B  no matter what the input step 

size, the initial condition and the filter parameters are. This is very 
important because we do not want the trajectory of the SDM to be 
unbounded if the input step size is increased, or the initial condition or 
the loop filter of the SDMs are changed. Another advantage of this fuzzy 
impulsive control strategy is that we can alter the maximum bound of the 
state variables easily by setting the value of 

ccV  appropriately, which is 

independent of the input step size, the initial condition and the filter 
parameters. 

Lemma 9.4. ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) NVk
rc

cc2
21 ≤−+ xx  for 0>k . 
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Proof. Since ℜ∈∀u , ( ) Nℜ∈∀ 0x , ℜ∈∀ ia  for Ni ,,1,0 L=  and 

ℜ∈∀ jb  for Nj ,,1L= , ( ) 0Bkc ∈x  for 0>k , the result follows 

directly.  
The importance of this Lemma is that it guarantees the norm of the 

difference between r
x  and ( )1+kcx  being bounded by NVcc2 , no 

matter what the input step size, the initial condition and the filter 
parameters are. As discussed in above, we do not want the norm of the 

difference between r
x  and ( )1+kcx  to be too large because the effect of 

audio clicks may be too large for these situations. 
Lemma 9.5. If Zk ∈∃ 0

 such that ( ) 00 BBkPER ≠I  for 
0kk ≥ , and 

( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , then 0>∃/ M  such that 

( ) ( )Mkk
cc += xx  for 

0kk > . 

Proof. The proof follows directly from Lemma 9.3.  

The importance of this Lemma is that it states the condition that limit 
cycle behaviors do not occur when the fuzzy impulsive control strategy 
is applied at once. We will show the contrast in Section 9.5 that the 
clipping control strategy usually results in the limit cycle behaviors, 
while our approach will minimize the occurrence of limit cycle 
behaviors. 

9.4.2.  Parameters in the Fuzzy Impulsive Controller 

There are only three parameters in the fuzzy impulsive control strategy. 
They are 

ccV , 
aperiodicδ  and 

stableδ . 
ccV  is the maximum allowable bound on 

each state variable and this value is determined based on the real 
situations, such as the hardware constraints and the safety specifications, 
etc. For example, if the hardware operates normally in a safe condition 
only when the state variables are bounded by V20 , then 

ccV  may be set 

accordingly. For the parameters 
aperiodicδ  and 

stableδ , the fuzzy impulsive 

controller works properly ( ]1,0aperiodic ∈∀δ  and ( ]1,0stable ∈∀δ . However, 

since 
aperiodicδ  represents the fuzzy membership value of how to avoid the 

occurrence of limit cycle at ( )10 +kcx  when ( ) 000 BBkPER =I  or 

( ) =00 BkPER I Ø, and all the state vectors in 
0B  may cause the trajectory 

to exhibit limit cycle behaviors if ( ) 000 BBkPER =I , we suggest the 
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SDM control designers to set this value as a small number closed to zero, 

such as 310− . For 
stableδ , since it represents the fuzzy membership value 

of the local stability of the SDM at ( )10 +kcx  when =℘ 0BI Ø, or if 

Zk ∈′∃  such that ( ) Nbkx <′  and ( ) 1=NN baQ , and in this case, the 

SDM may exhibit divergent behavior if the fuzzy impulsive control 
strategy is not applied, we recommend the SDM control designers to set 

this value as a small number closed to zero too, for example, 310− . 

9.4.3.  Complexity Issue 

Although more fuzzy rules and sophisticated fuzzy engine will improve 
the performance of the SDMs, this will increase the complexity of the 
system and may cause real time processing problems, particular for audio 
applications [2]. The Nyquist rate for audio signal is 44.1kHz [2], since 
the input signals are typically oversampled at 64 or 128 [2], the number 
of samples inputted to the SDM per second is 2.8224M or 5.6448M. 
Because several megasamples are needed to process per second, only 
three basic fuzzy rules are captured and only a simple fuzzy engine is 
used to reduce the complexity for processing. According to the 
simulation results shown in Section 9.5, these three basic rules and a 
simple fuzzy engine is enough for achieving the objectives. 

9.4.4. Implementation of the Fuzzy Impulsive Controller 

As discussed in the above, the fuzzy impulsive controller resets the state 

variables of the loop filter to the controlled state variables of ( )10 +kcx  if 

( ) ( )( )( ) 000 \ BkQk Nℜ∈−+ xuBAx , and ( )10 +kcx  is calculated based on 

equation (9.36). Numerical solvers, such as MATLAB or MATCAD, can 
be employed for solving equation (9.36). To reset the state variables of 
the loop filter, many existing reset circuits can be employed [8]. 

9.5.   Simulation Results 

To illustrate our results, a fifth order SDM with loop filter transfer 
function 
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is illustrated. This fifth order SDM is commonly employed in the 
industry [2]. The SDM can be implemented via the Jordan form [2] and 
can be realized as the following state space equation 

 ( ) ( ) ( ) ( )( )kykukk −+=+ BxAx
~~~

1~  (9.38) 

for 0≥k , where 

 ( ) ( )( )kQky xC~~
= , (9.39) 
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Assume that the initial condition of this SDM is zero, that is, 

( ) [ ]T0,0,0,0,00~ =x . By using a simple transformation, this SDM 

can be realized by the direct form and the corresponding initial condition 

is ( ) [ ]T9793.35,25.32,5.28,5,00 −=x  when 75.0=u . We can 

check that the trajectory of this SDM is bounded for this initial condition 

( ( ) [ ]T0,0,0,0,00~ =x ) if the input step size is approximately 

between 71.0−  and 75.0 , and may diverge if the input step size is 

outside this range. The relationship between the maximum absolute value 
of the state variables (realized in the direct form) and the input step size 
is plotted in Fig. 9.3. From the simulation result, we can see that even 
though the trajectory is bounded for this range of input step size, the 
maximum absolute value of the state variables is between 0523.20  and 

4633.59 , which may be too large for some practical applications [2]. Fig. 

9.3 also shows the plot of the maximum absolute value of the state 
variables (also realized in the direct form) for 0>k  versus the input step 

size when the fuzzy impulsive control strategy is applied at 20=ccV . 

According to Lemma 9.3, the maximum absolute value of the state 
variables of the controlled SDM is bounded by 

ccV  for 0>k  and 

ℜ∈∀u , even though 
ccVu ≥ . Hence, we can guarantee that the state 

variables are bounded by 20 . 
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This SDM is not globally stable. That means, ( ) Nℜ∈∃ 0~x  such that 

the trajectory is unbounded. For example, when 75.0=u , Fig. 9.4a and 

Fig. 9.4b show the responses of ( )kx1
 with ( ) [ ]T0,0,0,0,00~ =x  

and ( ) [ ]T0,0,0,0,001.00~ =x , respectively. It can be seen from 

Fig. 9.4a and Fig. 9.4b that even though the SDM exhibits acceptable 

behavior when ( ) [ ]T0,0,0,0,00~ =x  and the difference between 

these two initial conditions is very small, the SDM exhibits divergent 

behavior when ( ) [ ]T0,0,0,0,001.00~ =x  and the behaviors of the 

SDM for these two different initial conditions are very different. On the 
other hand, according to Lemma 9.3, the maximum absolute value of the 

state variables is always bounded by 
ccV  for 0>k  and ( ) Nℜ∈∀ 0x  if the 

fuzzy impulsive control strategy is applied. Fig. 9.4c and Fig. 9.4d show 
the corresponding state responses when the fuzzy impulsive control 
strategy is applied at 40=ccV . From the simulation result, we see that the 

 
Fig. 9.3. Plot of the maximum absolute value of the state variables 
(realized in direct form) against the input step size when 

( ) [ ]T0,0,0,0,00~ =x . 



B.W.K. Ling, C.Y.F. Ho and J.D. Reiss 271 

SDM exhibits acceptable behavior with the state variables bounded by 

ccV  for both of these two initial conditions. 

For comparison with other control strategies, consider the time delay 
feedback control strategy suggested in [6], in which the controller is in 

the form of ( )1
c 1 −−− zK . Denote 

iλ  for 6,,2,1 L=i  be the poles of the 

effective loop filter. Since 
iλ  for 6,,2,1 L=i  depends on the value of 

cK , it can be shown that 1max
6,,2,1

>
= i

i
λ

L
 ℜ∈∀ cK  and the minimum value 

of 
i

i
λ

6,,2,1
max

L=
 occurs at 0c =K . When 0c =K , it reduces to the 

uncontrolled case. By selecting a value of 
cK  which is very closed to 

 
Fig. 9.4. The response of ( )kx1

 when 75.0=u  and (a) initial condition 

( ) [ ]T0,0,0,0,00~ =x  when no control strategy is applied. (b) initial 

condition ( ) [ ]T0,0,0,0,001.00~ =x  when no control strategy is 

applied. (c) initial condition ( ) [ ]T0,0,0,0,00~ =x  when the fuzzy 

impulsive control strategy with 40=ccV  is applied. (d) initial condition 

( ) [ ]T0,0,0,0,001.00~ =x  when the fuzzy impulsive control strategy 

with 40=ccV  is applied. 
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zero, for example 5

c 102 −×=K , and setting the initial condition and the 

input step size as the previous values, that is, 

( ) [ ]T5612.39,9793.35,25.32,5.28,5,00 −=x  and 75.0=u  (the 

initial condition is determined based on zero initial condition of the 
Jordan form), it is found that the trajectory diverges as shown in Fig. 9.5. 
Hence, the time delay feedback control strategy fails to stabilize this 
SDM. 

To compare the fuzzy impulsive control strategy to the clipping 

control strategy, that is, set ( ) ( )( )kxQVkx ii cc=  if ( ) ccVkxi ≥  for 

Ni ,,2,1 L= , it is found that limit cycle behaviors may occur if the 

clipping control strategy is applied. Fig. 9.6 shows the magnitude 

response of ( )ks  when 75.0=u , ( ) [ ]T0,0,0,0,00~ =x  and the 

clipped level is set at 40 . It can be seen from Fig. 9.6 that there is an 

impulse located at 
2

π
 if the clipping control strategy is applied, which 

 
Fig. 9.5. The response of ( )kx1

 with input step size 75.0=u  and initial 

condition ( ) [ ]T5612.39,9793.35,25.32,5.28,5,00 −=x  when the time 

delay feedback control strategy with 5

c 102 −×=K  is applied. 
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demonstrates that the SDM exhibits a limit cycle with period 2. On the 
other hand, the spectrum is quite flat for the SDM when the fuzzy 
impulsive control strategy is applied with 40=ccV , which demonstrates 

that the SDM exhibits acceptable behavior and the limit cycle behavior is 
avoided. 

Fig. 9.7 shows the SNR of SDMs under the clipping control strategy 
with the clipped level set at 28 . SNR is calculated using [9], where the 

frequency of the input sinusoidal signals is 
3

2
 of the passband 

bandwidth. The oversampling ratio is 64, and initial conditions are given 

by ( ) [ ]T0,0,0,0,00~ =x . It can be seen from Fig. 9.7 that the SNR 

of both the clipping and fuzzy impulsive control strategies with the state 
variables bounded by 28  are the same when the input magnitude is less 

than 52.0 . This is because both the maximum absolute value of the state 

variables (realized in the direct form) do not exceed 28  in this input 

magnitude range. However, if the input magnitude exceeds this range, 

 
Fig. 9.6. Magnitude response of the output sequence when 75.0=u  and 

initial condition ( ) [ ]T0,0,0,0,00~ =x  for both the clipping and fuzzy 

impulsive control strategies are applied with the state variables bounded 
by 40 . 
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the SNR corresponding to the clipping control strategy may drop to less 
than 1.2562dB because of the occurrence of limit cycle behaviors. On the 
other hand, the SDM performs normally under the fuzzy impulsive 
control strategy. Hence, the SNR of the SDM under the fuzzy impulsive 
control strategy has an average of 41.8281dB improvement compared to 

the clipping control strategy for outside this input magnitude range. 

It can be seen from Fig. 9.8 that the probability of the control force to 
be applied by the fuzzy impulsive control strategy is 0.0135 for the input 
magnitude range greater than or equal to 0.52, as opposed to a 
probability of 0.6926 for the clipping control strategy. Hence, the 
number of reset action on the state variables of the loop filter is much 
reduced when applying fuzzy impulsive control strategy. This is because 
the fuzzy impulsive control strategy tends to reset the state vectors inside 
the invariant set if it exists and the state vectors will tend to stay inside 
the invariant set without applying control force again soon afterwards. 
This demonstrates that the fuzzy impulsive control strategy is more 
efficient than the clipping control strategy. 

 
Fig. 9.7. SNR of SDMs when input sinusoidal frequency is 

3

2  of the 

passband bandwidth, initial condition ( ) [ ]T0,0,0,0,00~ =x  and the 

state variables are bounded by 28. 
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To verify the independence of the filter parameters on the fuzzy 
impulsive control strategy, consider another fifth order SDM with the 
following transfer function [2] 

 
54321

54321

0023.10069.50069.100023.1051

5498.03873.29094.38630.27919.0
−−−−−

−−−−−

−+−+−
+−+−

zzzzz

zzzzz
. (9.41) 

This SDM is also widely used in the industry [2]. The trajectory of this 

SDM with 59.0=u  and ( ) [ ]T0,0,0,0,00~ =x  is shown in Fig. 

9.9a, and it can be seen from Fig. 9.9a that the trajectory diverges. On the 
other hand, when the fuzzy impulsive control strategy is applied with 

2=ccV , according to Lemma 9.3, the maximum absolute value of the 

state variables (realized in the direct form) is always bounded by 
ccV  for 

0>k , ℜ∈∀ ia  for Ni ,,1,0 L=  and ℜ∈∀ jb  for Nj ,,1L= , as shown 

in Fig. 9.9b. 

 
Fig. 9.8. Probability of control force applied to the SDM when the input 

sinusoidal frequency is 
3

2  of the passband bandwidth, initial condition 

( ) [ ]T0,0,0,0,00~ =x  and the state variables are bounded by 28. 
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9.6.   Conclusion 

In this chapter, we have suggested the fuzzy impulsive control strategy 
for the stabilization of high order interpolative SDMs in which the 
occurrence of limit cycle behaviors and the effect of audio clicks are 
minimized. Since the effective poles of the loop filter are not affected by 
the control strategy, the SNR performance of the SDMs is maintained or 
improved after control. Moreover, the controlled trajectory is guaranteed 
to be bounded no matter what the input step size, the initial condition and 
the filter parameters are. Comparisons between the fuzzy impulsive 
control strategy and some existing control strategies show that the fuzzy 
impulsive control strategy is much effective in terms of producing much 
higher SNR and efficient in terms of requiring less control force applied 
to the system. 

 
Fig. 9.9. The response of ( )kx1

 with initial condition 
( ) [ ]T0,0,0,0,00~ =x  and input step size 59.0=u  (a) when no control 

strategy is applied. (b) when the fuzzy impulsive control strategy with 
2=ccV  is applied. 
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