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Abstract—The problems and methods of control of chaos, which in the last decade was the
subject of intensive studies, were reviewed. The three historically earliest and most actively
developing directions of research such as the open-loop control based on periodic system ex-
citation, the method of Poincaré map linearization (OGY method), and the method of time-
delayed feedback (Pyragas method) were discussed in detail. The basic results obtained within
the framework of the traditional linear, nonlinear, and adaptive control, as well as the neural
network systems and fuzzy systems were presented. The open problems concerned mostly with
support of the methods were formulated. The second part of the review will be devoted to the
most interesting applications.

1. INTRODUCTION

The term control of chaos is used mostly to denote the area of studies lying at the interfaces
between the control theory and the theory of dynamic systems studying the methods of control of
deterministic systems with nonregular, chaotic behavior. In the ancient mythology and philosophy,
the word “χαωσ” (chaos) meant the disordered state of unformed matter supposed to have existed
before the ordered universe. The combination “control of chaos” assumes a paradoxical sense
arousing additional interest in the subject.

The problems of control of chaos attract attention of the researchers and engineers since the
early 1990’s. Several thousand publications have appeared over the recent decade. Statistics of
publications in Science Citation Index shows that during 1997–2001 only the reviewed journals
published annually about four hundred papers. For comparison, search by the key words “adaptive
control ” shows that within this area which is regarded as a field of very intensive research [145] at
most three hundred papers appear annually.

It seems that T. Li and J.A. Yorke were the first authors who in 1975 introduced in their paper
Period Three Implies Chaos [194] the term “chaos” or, more precisely, “deterministic chaos” which
is used widely since that. Various mathematical definitions of chaos are known, but all of them
express close characteristics of the dynamic systems that are concerned with “supersensitivity” to
the initial conditions: even arbitrarily close trajectories diverge with time at a finite distance, that
is, long-term forecasts of trajectories are impossible. At that, each trajectory remained bounded,
which contradicts the intuitive understanding of instability based on the experience gained with
the linear systems.

Nevertheless, the nonlinear deterministic dynamic systems manifesting such characteristics do
exist and are not exceptional, “pathological” cases. It also turned out that the methods describing
chaotic behavior occur in many areas of science and technology and sometimes are more suitable
1 This work was supported by the Russian Foundation for Basic Research, project no. 02-01-00765, the Scientific
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for describing nonregular oscillations and indeterminacy than the stochastic, probabilistic meth-
ods. It suffices to note that a wide class of the chaotic systems is represented by the well-known
pseudorandom-number generators that appeared much in advance of the term “chaos”.

Surprising was the possibility of substantial variation of the characteristics of a chaotic system
by a very small variation of its parameters that was discovered in 1990 by the Yorke and his
collaborators [228]. By computer-aided modeling of a discrete M. Hénon system, they demonstrated
that a sufficiently small variation in a system parameter can transform a chaotic trajectory into a
periodic one and vice versa. In the aforementioned paper, the parameter was varied with regard
for the current system state, that is, by means of the feedback. In the subsequent publications,
this effect was confirmed experimentally [104], and the fields of its possible application such as
lasers, communication systems, chemical technologies, or medical treatment of arrhythmia and
epilepsy were specified. Paradoxicalness of the conclusion that chaos cannot be forecasted, but can
be controlled gave rise to an explosive interest of the researchers and an avalanche of publications
confirming—usually, by computer-aided modeling—the possibility of substantial variation of the
characteristics of various natural and artificial chaotic systems by relatively small variations of their
parameters and external actions.

However, despite numerous publications, including several monographs, only few strict facts were
established there, and many issues remain open. In view of the wide scope of possible applications,
this area is of interest both to the theorists and the control engineers. The present review aims
to help them gain an insight into the state-of-art in this vast domain of research and its most
interesting applications.

The review consists of two parts. The present, first part presents the necessary information
and discusses the basic methods of controlling chaotic systems. The second part will consider
applications of the methods of control of chaos in the scientific and engineering fields such as
physics, mechanics, chemistry, medicine, economics, telecommunication, control of mechanical and
electronic systems, process control, and so on. The review relies on the materials of the review
presented at the 15th Triennial World Congress IFAC [123] and lectures [121, 122] and [127].

2. CHAOTIC SYSTEMS

The present section offers preliminary information about the dynamic chaotic processes. The
chaotic systems represent a class of indeterminacy models differing from the stochastic models.
Whereas with a knowledge of the current system state the deterministic model can predict the
future trajectory for an arbitrarily long period and the stochastic model cannot make a precise
forecast, generally speaking, even for an arbitrarily short time, the forecast error of the chaotic
model grows exponentially and, consequently, a forecast can be made only for a limited time
defined by the admissible forecast error. The processes in the chaotic models have the form of
nonregular oscillations where both frequency and amplitude vary or “float.”

Before the XX century, the linear differential equations were the main mathematical models
of oscillations in the mechanical, electrical, and other systems. Yet at the turn of this century
it became clear that the linear oscillation models fail to describe adequately the new physical
and engineering phenomena and processes. The fundamentals of a new mathematical apparatus,
the theory of nonlinear oscillations, were laid by A. Poincaré, B. Van der Pol, A.A. Andronov,
N.M. Krylov, and N.N. Bogolyubov. The most important notion of this theory is that of the stable
limit cycle.

Even the simplest nonlinear models enable one to describe complex oscillations such as the
relaxation, that is, close to rectangular, oscillations, take into account variations in the form of
oscillations depending on the initial conditions (systems with several limit cycles), and so on. The
linear oscillation models and the nonlinear models with limit cycles satisfied the needs of engineers
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for several decades. It was believed that they describe all possible types of oscillations of the
deterministic systems. This conviction was supported by the mathematical findings. For example,
the well-known Poincaré–Bendixson theory asserts that the equilibrium state and the limit cycle
are the only possible kinds of limited stable motions in continuous systems of the second order.

However, in the middle of the last century the mathematicians M. Cartwright, J. Littlewood,
and S. Smale established that this is not the case already for the systems of the third order: very
complex motions such as limited nonperiodic oscillations become possible in the system. In 1963,
the physicist E. Lorenz revolutionized the situation by his paper [195] demonstrating that the qual-
itative nature of atmospheric turbulence which obeys the Navier–Stokes complex partial differential
equations is representable by a simple nonlinear model of the third order (Lorenz equation):

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = −bz + xy.

(1)

For some values of the parameters (for example, σ = 10, r = 97, and b = 8/3), the solutions
of system (1) look like nonregular oscillations. The trajectories in the state (phase) space can
approach the limit set (attractor) featuring very sophisticated form. Attention of the physicists
and mathematicians, and later engineers, was attracted to these models by the work of D. Ruelle
and F. Takens [252] (1971) who called these attractors “strange” and also by the work of Li and
Yorke [194] (1975) who introduced the term “chaos” to designate the nonregular phenomena in
the deterministic systems. We note that the main result of [194] is a special case of the theorem
of a Kievan mathematician A.N. Sharkovrkii that was published in 1964, and the fundamentals
of the mathematical apparatus for studying the chaotic phenomena were laid in the 1960’s–1970’s
by the national scientific schools of A.N. Kolmogorov, D.V. Anosov, V.I. Arnol’d, Ya.G. Sinai,
V.K. Mel’nikov, Yu.I. Neimark, L.P. Shil’nikov, and their collaborators. From this time on, the
chaotic behavior was discovered in numerous systems in mechanics, laser and radio physics, chem-
istry, biology and medicine, electronic circuits, and so on [37]. The newly developed methods of
analytical and numerical study of systems demonstrated that chaos is by no means an exceptional
kind of behavior of the nonlinear system. Roughly speaking, chaotic motions arise whenever the
system trajectories are globally bounded and locally unstable. In the chaotic system, an arbi-
trarily small initial divergence of the trajectories does not remain small, but grows exponentially.
The frequency spectrum of the chaotic trajectory is continuous. In many cases such nonregular
and nonperiodic oscillations better represent the processes in physical systems. It deserves noting
that it is practically impossible to distinguish “by eye” the chaotic process from the periodic or
quasiperiodic process.

The terminology in the domain of chaotic models has not yet settled, and there are several
different definitions of the chaotic systems of which we present one of the simplest. Let us consider
the continuous-time dynamic system

ẋ = F (x), (2)

where x = x(t) ∈ Rn is the system vector, 0 ≤ t <∞.

Definition 1. The closed set Ω ⊂ Rn is called the attractor of system (2) if (a) there exists
an open set Ω0 ⊃ Ω such that all trajectories x(t) of system (2) beginning in Ω0 are definite for
all t ≥ 0 and tend to Ω for t → ∞, that is, dist(x(t),Ω) → 0 for t → ∞, if x(0) ∈ Ω0, where
dist(x,Ω) = infy∈Ω ‖x − y‖ is the distance2 from the point x to the set Ω, and (b) no eigensubset
of Ω has this property.
2 By ‖ · ‖ everywhere is meant the Euclidean norm, and by ‖ · ‖∞, the uniform norm in the spaces of vectors and

functions. The Euclidean space of the n-dimensional vectors is denoted by Rn.

AUTOMATION AND REMOTE CONTROL Vol. 64 No. 5 2003



676 ANDRIEVSKII, FRADKOV

Definition 2. An attractor is called chaotic if it is bounded and any trajectory beginning in it
is a Lyapunov-unstable trajectory.

Definition 3. A system is called chaotic if it has at least one chaotic attractor.

Lyapunov instability characterizes the main property of chaotic oscillations called the “supersen-
sitivity” or “sensitive dependence” on the initial conditions: any two arbitrarily close trajectories
necessarily move away from each other at a finite distance.

The so-called recurrence of the trajectories of chaotic processes is essential for the problems of
control: with time these trajectories hit an arbitrarily small neighborhood of their position in the
past. Let us consider this property in more detail.

Definition 4. The function x : R1 → Rn is called recurrent if for any ε > 0 there exists Tε > 0
such that for any t ≥ 0 there exists T (t, ε), 0 < T (t, ε) < Tε, such that ‖x(t + T (t, ε)) − x(t)‖ < ε.

The recurrent trajectories have two important characteristics described by the lemmas of
C.C. Pugh and Anosov.

Lemma 1 (Pugh). Let x(t), t ≥ 0, be the recurrent trajectory of system (2) having smooth right
side F (x). Then, for any ε > 0 there exists a smooth function F1(x) such that ‖F1(x)‖∞ +
‖DF1(x)‖∞ < ε and the solution x(t) of system ẋ = F (x) + F1(x) with the same initial condition
x(0) = x(0) is periodic.

Lemma 2 (Anosov). Let x(t), t ≥ 0, be the recurrent trajectory of system (2) having smooth
right side F (x). Then, for any ε > 0 there exists x∗ such that ‖x∗ − x(0)‖ < ε and the solution
x(t) of system (2) with the initial condition x(0) = x∗ is periodic.

These lemmas show that the chaotic attractor is the closure of all periodic trajectories that
are contained in it. The notion of attractor is also related with the following recurrence criterion
formulated by G. Birkhoff in 1927.

Theorem 1 (Birkhoff). Any trajectory belonging to a compact minimum invariant set is recur-
rent. Any compact invariant minimum set is the closure of some recurrent trajectory.

As follows from the theorem, any solution beginning from its ω-limit set is recurrent. If addi-
tionally the ω-limit set x(t) is an attractor, then any chaotic trajectory beginning in its ω-limit set
is recurrent.

There are other definitions of the chaotic attractors and chaos. For example, the definition
of the chaotic attractor often includes additional requirements such as existence of trajectories
(or a family of periodic trajectories) that are everywhere dense in Ω, topological transitivity, and
so on that emphasize that the trajectories are “mixed.” The recent results of G.A. Leonov [21]
indicate that instead of the lack of Lyapunov stability in the definition of the chaotic attractor it is
recommendable to require absence of the so-called Zhukovskii stability which admits different speeds
of time flow on different system trajectories. The notion of “chaotic attractor” often coincides with
that of the “strange attractor” introduced in 1971 by Ruelle and Takens as a “porous” set; in 1977 it
was named by B. Mandelbrot the “fractal” set. Strict proof of the system chaoticity is difficult even
if the simplest definition is used. For some universally recognized chaotic systems such as the Lorenz
system (1) and the Hénon systems for the standard values of parameters, the proofs of chaoticity
are awkward, if any, although there are enough numerical and experimental demonstrations of this
fact. Therefore, the numerical simulation and estimation of various characteristics remains the
main method to study the chaotic systems. We present some examples of the chaotic systems
mentioned in what follows.
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Example 2.1. Chua system (circuit). Experts in electronic circuits L. Chua and M. Matsumoto
proposed in 1984 a simple electronic circuit with one nonlinear element which is capable of gen-
erating diverse, including chaotic, oscillations. The mathematical model of the Chua circuit is as
follows: 

ẋ = p(y − f(x))
ẏ = x− y + z
ż = −qy,

(3)

where x, y, z are dimensionless variables and f(x) = M1x+0.5(M1−M0)(|x+1|−|x−1|). For p = 9,
q = 14.3, M1 = −6/7, and M0 = 5/7, the trajectories of system (3) manifest chaotic behavior.

Example 2.2. Various chaotic oscillations can be generated by feeding into the nonlinear oscil-
lators a harmonic signal, for example, by substituting the sinusoidal function z(t) = A sinω0t for
zero in the right sides of the Van der Pol equations ÿ+ ε(y2− 1)ẏ+ω2y = 0, the Duffing equations
ÿ+pẏ−qy+q0y

3 = 0, and the autooscillatory system with a relay element ÿ+pẏ+qy−sgn y = 0. For
some values of excitation frequency and amplitude, the limit cycle is “smeared” and the oscillations
in nonlinear system become chaotic.

For discrete time, the examples of chaotic systems exist for any dimensionality of the system
state, even for n = 1.

Example 2.3. The discrete system with quadratic right side xk+1 = λxk(1 − xk), xk ∈ R1

constructed using the so-called logistic map F (x) = λx(1− x) is chaotic for 3.57 < λ < 4 [37]. The
segment [0, 1] is its attractor.

Example 2.4. The system

xk+1 = {Mxk}, (4)

where {A} is the fractional part of the real number A, is chaotic for any M > 1. System (4) often
is used to generate pseudorandom numbers, which, possibly, is the first use of chaos. It is based on
the fact that for any initial condition x0 incommensurable with M the fraction of points of sequence
(4) hitting some interval lying within the segment [0, 1] is proportional to the length of this interval.
Therefore, if one regards the frequency of hitting the interval by the points as an estimate of certain
probability, then the totality of these probabilities will define a uniform distribution over [0, 1].

Example 2.5. The Hénon system is defined by the difference equations{
xk+1 = 1− αx2

k + yk
yk+1 = βxk.

(5)

Chaotic behavior of the solutions of (5) is observed, for example, for α = 1.4, β = 0.3.
The “delayed coordinates” and the Poincaré map found extensive use in the studies of chaotic

processes and solution of the problems of their control. Let only the scalar output coordinate
y(t) = h(x(t)) of system (2) be measurable. By the vector of delayed coordinates is meant the
vector function X(t) ,

[
y(t), y(t− τ), . . . , y(t− (N − 1)τ)

]T ∈ RN . The initial model of system (2)
is reduced in this vector to the form Ẋ = F (X(t)). As follows from the embedding theorems,
if N > 2n, where n is the order of the initial system (2), then in the general situation there
exists a diffeomorphism between the state space of the initial system and the state subspace of the
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transformed system such that if the initial system has an attractor of certain dimensionality, then
the transformed system also will have an attractor of the same dimensionality.

The Poincaré map is introduced on the assumption that there exists a T -periodic solution x(t)
of Eq. (2) beginning at some point x0, that is, that x(t + T ) = x(t) is satisfied for all t ≥ t0 and
x(t0) = x0. Let S be a smooth transversal surface of the trajectory at the point x0 obeying the
equation s(x) = 0, where s : Rn → R1 is a smooth scalar function transversally intersecting the
trajectory point x0, that is, s(x0) = 0,∇s(x0)TF (x) 6= 0 is satisfied. The solution beginning at the
point x ∈ S = {x : s(x) = 0} near the point x0 can be shown to intersect the surface s(x) = 0
at least once. Let τ = τ(x) be the time of the first return and x(τ) ∈ S be the point of the first
return.

Definition 5. The map P : x 7→ x(τ) is called the Poincaré or point map. It is widely used to
study the chaotic processes. In Section 4, use of the Poincaré map in control of chaos is considered.

The chaotic models can be used to describe nonperiodic oscillatory processes with nonconstant
varying characteristics (frequency and phase, for example). The existing methods enable one to
estimate these characteristics from the results of observations. At that, the oscillation frequency
becomes “fuzzy” and gives way to the spectrum which is continuous. As was already mentioned
above, the local instability, that is, scatter of the initially close trajectories, is the main criterion
for chaoticity. Correspondingly, the speed of scatter defined by the so-called senior Lyapunov index
is the main characteristic of chaoticity.

The Lyapunov indices are determined for the given “reference” trajectory x(t) of system (2) with
the initial condition x(0) = x0 for which purpose an equation in variations (a system linearized
near x(t)) is composed:

d

dt
δx = W (t)δx, (6)

where δx = x − x(t), W (t) =
∂F (x(t))

∂x
is the Jacobian matrix of system (2), that is, the matrix

of partial derivatives of the right sides, which is calculated along the solution x(t). It is assumed
that there exist partial derivatives of F (x), that is, the right sides of (2) are smooth functions. By
defining the initial deviation z = δx(0), one can calculate

α(x0, z) = lim
t→∞

1
t

ln
‖δx(t)‖
‖z‖ (7)

which characterizes the rate of exponential growth of the solutions of (6) in the direction z and is
called the characteristic index (Lyapunov exponent) in the direction z [13, 36, 37, 214].

Already A.M. Lyapunov proved that under additional minor assumptions the limit in (7) exists,
is finite for any z ∈ Rn, and independent of the initial choice of the point x0 on the trajectory x(t).
Moreover, the number of different characteristic indices is finite, they can be numerated in the
descending order α1 ≥ α2 ≥ . . . ≥ αn, and there exists a basis zi ∈ Rn, i = 1, . . . , n, for which
α(x0, zi) = αi, i = 1, . . . , n.

The senior Lyapunov index α1 is the most important one. If α1 > 0 along the bounded solu-
tion x(t) that is dense in the attractor Ω, then this solution is Lyapunov-unstable and the attractor
is strange. At that, α1 characterizes the degree of instability or, stated differently, the degree of
exponential sensitivity to the initial data. Obviously, α1 = maxi Reλi(A) for the linear system
with constant matrix ẋ = Ax and zero reference solution x(t) = 0, that is, |α1| coincides with the
usual degree of stability (or instability) of the system.
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The senior index α1 can be calculated approximately without constructing fundamental solutions
of the equations in variations

α1 =
1
t

ln
‖x(t)− x(t)‖

ε
, (8)

where x(t) is the solution of (2) with the initial condition x(0), ‖x(0) − x(0)‖ = ε, at that t is
sufficiently large and ε > 0, sufficiently small. To improve the accuracy of calculations, one can
calculate the mean value of the right sides of (8) for different initial conditions x0 taken along the
trajectory x(t). Then, there is no need to take a very great t [37].

The Lyapunov indices characterize prediction of the system trajectories. Indeed, if

T ≤ 1
α1

ln
∆
ε
, (9)

where ε is the initial error, then after the time T the trajectory x(t) is approximated with the
error ∆ by another trajectory. Therefore, a chaotic trajectory can be predicted with a given
accuracy for some time in advance. This is the basic distinction of the chaotic systems as models
of indeterminacy from the stochastic systems where, generally speaking, the prediction error can
be arbitrarily great even for an arbitrarily small prediction horizon.

3. PROBLEMS OF CONTROL OF CHAOTIC PROCESSES

The mathematical formulation of the well-known problems of controlling the chaotic processes is
preceded by presenting the basic models of the chaotic systems that are used in what follows. The
most popular mathematical models encountered in the literature on control of chaos are represented
by the systems of ordinary differential equations (state equations)

ẋ(t) = F (x, u), (10)

where x = x(t) is the n-dimensional vector of the state variables; u = u(t) is the m-dimensional
vector of inputs (controls); ẋ = dx/dt; and the vector function F (x, u) is usually assumed to be
continuous. In the presence of external perturbations, the nonstationary model

ẋ = F (x, u, t) (11)

is used. In many cases, a simpler, affine control model

ẋ = f(x) + g(x)u (12)

may be used.
We note that some publications consider the coordinate control, where external actions (forces,

moments, intensities of electrical or magnetic fields, and so on) play the part of input variables, and
the parametric control, where the input variables are variations of the physical system parameters
(for example u(t) = p−p0, where p0 is the rated value of the physical parameter p), as two basically
different problems. But if consideration is given to processes obeying the nonlinear models which
comprehend both classes, this difference in fact is not fundamental. G. Chen and Z. Liu [91] noted
that for many chaotic systems equivalence of the problems of coordinate control with linear feedback
and those of parametric control can be established only by a nonlinear change of coordinates.

The measured system output is denoted by y(t). It can be defined as a function of the current
system state:

y(t) = h
(
x(t)

)
. (13)
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If the output variables are not given explicitly, then we can assume that the entire state vector is
observable, that is, y(t) ≡ x(t).

Used also are the discrete models defined by the difference state equations

xk+1 = Fd(xk, uk), (14)

where as usual xk ∈ Rn, uk ∈ Rm, and yk ∈ Rl denote, respectively, the values of the vectors of
state, input, and output at the kth step. Such a model is defined by the map Fd. It is assumed
that for all t ≥ t0 all the aforementioned models have solutions under the given initial conditions;
it is usually assumed that t0 = 0.

Now, we proceed immediately to formulating the problems of control of chaotic processes. The
problems of stabilization of the unstable periodic solution (orbit) arise in suppression of noise
and vibrations of various constructions, elimination of harmonics in the communication systems,
electronic devices, and so on. These problems are distinguished for the fact that the controlled
plant is strongly oscillatory, that is, the eigenvalues of the matrix of the linearized system are close
to the imaginary axis. The harmful vibrations can be either regular (quasiperiodic) or chaotic.
The problems of suppressing the chaotic oscillations by reducing them to the regular oscillations
or suppressing them completely can be formalized as follows.

Let us consider a free (uncontrollable, u(t) ≡ 0) motion x∗(t) of system (10) with the initial
condition x∗(0) = x∗0. Let this motion be T -periodic, that is, x∗(t+ T ) = x∗(t) be satisfied for all
t ≥ 0. We need to stabilize it, that is, reduce the solutions x(t) of system (10) to x∗(t):

lim
t→∞

(
x(t)− x∗(t)

)
= 0 (15)

or drive the system output y(t) to the given function y∗(t):

lim
t→∞

(
y(t)− y∗(t)

)
= 0 (16)

for any solution x(t) of system (10) under the initial state x(0) = x0 ∈ Ω, where Ω is the given set
of initial conditions.

The problem lies in determining the control function either as the open-loop control action

u(t) = U(t, x0), (17)

or the state feedback

u(t) = U
(
x(t)

)
, (18)

or the output feedback

u(t) = U
(
y(t)

)
(19)

satisfying the control objective (15) or (16).
This formulation of the problem of stabilization of periodic motion is undistinguishable from

the conventional control-theoretic tracking problem. Nevertheless, there exists a fundamental dis-
tinction lying in that to control the chaotic processes, one needs to reach the objective with a
sufficiently,—in theoretic terms, arbitrarily—small level of the control action [228]. Solvability of
this problem is not evident because of instability of the chaotic trajectories x∗(t).

Stabilization of an unstable equilibrium is a special case. Let the right side of (10) satisfy
F (x∗0, 0) = 0. Then, for u(t) ≡ 0 system (10) has the equilibrium state x∗0 that should be
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stabilized in the above sense by choosing an appropriate control. This problem is characterized by
an additional requirement on “smallness” of control.

The second class includes the control problems of excitation or generation of chaotic oscillations.
These problems are also called the chaotization or anticontrol. They arise where chaotic motion is
the desired behavior of the system. The pseudorandom-number generators and sources of chaotic
signals in communication and radar systems are the classical examples. Recent information suggests
that chaotization of processes could produce an appreciable effect in the chemical and biological
technologies, as well as in handling of the loose materials. These problems are characterized by the
fact that the trajectory of the system phase vector is not predetermined, is unknown, or is of no
consequence for attaining the objective.

The formal objective of control could be represented as (16), but here the objective trajec-
tory x∗(t) is no more periodic. Moreover, it may be required that instead of motion along the given
trajectory the controlled process satisfies some formal chaoticity criterion. For example, the scalar
objective function G(x) can be given, and the aim of control can be formulated as attainment of
the limit equality

lim
t→∞

G(x(t)) = G∗ (20)

or the inequality for the lower bound G
(
x(t)

)
lim
t→∞

G(x(t)) ≥ G∗. (21)

For the chaotization problems, the senior Lyapunov index G = α1 is usually taken as the objec-
tive function, and G∗ > 0 is defined. The total energy of mechanical or electrical oscillations is
sometimes taken as G(x).

The third important class of the control objectives corresponds to the problems of synchroniza-
tion or, more precisely, controllable synchronization as opposite to the autosynchronization. Syn-
chronization finds important applications in vibration technology (synchronization of vibrational
exciters [7]), communications (synchronization of the receiver and transmitter signals) [24, 45], bi-
ology and biotechnology, and so on. Numerous publications on control of synchronization of the
chaotic processes and its application in the data transmission systems appeared in the 1990’s [5, 14,
101, 148, 231].

In the general case, by the synchronization is meant the coordinated variation of the states of two
or more systems or, possibly, coordinated variation of some of their characteristics such as oscillation
frequencies [72]. If this requirement must be satisfied only asymptotically, then synchronization
is said to be asymptotic. If without control (for u = 0) synchronization cannot arise in a system,
then one may pose the problem of determining a control law under which the closed-loop system
becomes synchronized. Therefore, synchronization can be used as the aim of control. Full or partial
coincidence of the state vectors such as the equality

x1 = x2 (22)

can be a formal expression of the synchronous motion of two subsystems with the state vectors
x1 ∈ Rn and x2 ∈ Rn. In the united state space of the interacting subsystems, equality (22)
specifies a subspace (diagonal). The requirement of asymptotic synchronization of the states x1

and x2 of the two systems can be represented as

lim
t→∞

(
x1(t)− x2(t)

)
= 0 (23)

which implies convergence of x(t) to the diagonal set {x : x1 = x2} relative to the integral state
vector x = {x1, x2} of the entire system.
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The fact that the desired behavior is not uniquely fixed and its characteristics are defined only
partially is common to the problems of control of excitation and synchronization of oscillations. In
the problem of excitation of oscillations, for example, requirements can be presented only to the
oscillation amplitude, their frequency and form being permitted to vary within certain limits. In the
synchronization problems, the main requirement often is formulated as coincidence or coordination
of the oscillations of all subsystems, whereas the characteristics of each subsystem can vary within
wide limits.

Definition of one or more desired numerical indices is a convenient mathematical expression of
the aim of control in the problems of this sort. The system energy, for example, can be used as such
an index in the problem of oscillation excitation. In the problems of synchronization, asymptotic
coincidence of the values of some index G(x) for both systems can be the aim:

lim
t→∞

(
G
(
x1(t)

)
−G

(
x2(t)

))
= 0. (24)

The aims of control (15), (16), (20), (23), or (24) often can be more conveniently rearranged in
terms of the corresponding objective function Q(x, t) in

lim
t→∞

Q
(
x(t), t

)
= 0. (25)

For example, in order to rearrange the aim of control (23) in (25), one can take Q(x) = ‖x1−x2‖2.
For (15), one can use an objective function of the form Q(x, t) =

(
x− x∗(t)

)T
Γ
(
x− x∗(t)

)
, where

Γ is a positive definite symmetrical matrix. One needs to take into account that the choice of an
appropriate objective function is an important step in the design of the control algorithm.

We note that the class of the admissible control laws (18), (19) can be extended owing to the
dynamic feedbacks that are described by the differential equations or the lag equations. We also
note that similar formulations are applicable to other classes of the aforementioned models.

An important type of problems of control of the chaotic processes is represented by the modi-
fication of the attractors, for example, transformation of the chaotic oscillations into the periodic
ones and vice versa. Development of the approaches to the problems of this kind was stimulated
by new applications in the laser and chemical technologies, in the telecommunications, biology,
and medicine [89, 127]. By introducing a weak feedback, for example, in the optical channel, one
can restore operability of a laser exhibiting the chaotic (multimode) behavior. As the result, it
becomes possible to increase its radiation power while retaining coherence. In the chemical tech-
nology, chaoticity of mixing in the reactor, on the contrary, is useful because it accelerates reaction
and improves product quality. Consequently, increased chaoticity is the reasonable aim of control
in this case. Finally, in medicine it was proposed to treat some cases of arrhythmia by means of
feedback pacers that vary the degree of nonregularity of the cardiac rhythm [78, 133] by generat-
ing stimulating pulses at appropriate time instants. Since arrhythmia can manifest itself both in
increased and reduced chaoticity of the cardiac rhythm as compared with the individual norm of a
patient, the aim of control in this case is to support the given degree of nonregularity.

4. METHODS OF CONTROL OF THE CHAOTIC PROCESSES

4.1. Open-Loop Control

The principle of control by perturbation or “control by the program signal,” that is, generation
of a control signal as some time function disregarding the values of the controlled process, is based
on varying behavior of the nonlinear system under the action of predetermined external input u(t)
which can be either a certain physical action on the system such as force or field or variation
(“modulation”) of some parameter of the controlled system. This approach has appeal owing to its
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simplicity because it does without any measurements or sensors. This is especially important for
control of superfast processes occurring, for example, at the molecular or atomic level where the
system state cannot be measured (at least in real time).

The possibility of appreciable variation of the system dynamics by periodic excitation is known
for a long time. For example, as was demonstrated in the first half of the last century [16, 263],
high-frequency excitation can stabilize a pendulum in an unstable state. This discovery laid the
foundation of the vibrational mechanics [8]. Analysis of the impact of high-frequency excitation on
the behavior of the general-form nonlinear systems was based on the Krylov–Bogolyubov method of
averaging [9]. In the control theory, the high-frequency actions and the parametric modulation were
considered within the framework of the vibrational control [69, 208] and the so-called dither control
[290]. They were also considered in the recent works of G.A. Leonov on nonstationary stabilization
[22, 23]. Yet these works considered only system stabilization either in the given equilibrium state
or relative to the given (“objective” or “reference”) trajectory.

To modify the characteristics of a system represented in the Lur’e form,3 the recent publications
[215, 216] suggested proposed to use the vibrating control with the piecewise-constant stochastic
(dither) input, which enables one to influence the form of equivalent nonlinearity, system equi-
librium, and so on (similar to harmonic and static linearization, see [39, 40]). In particular, the
aforementioned works used the heuristic criterion for chaos [134] to study the possibility of exciting
or suppressing chaotic processes in the system.

The effect of middle-frequency excitations, that is, excitations lying within the range of system
eigenfrequencies,4 was discussed in a vast literature. K. Matsumoto and I. Tsyda [204] demonstrated
the possibility of suppressing chaos in the Belousov–Zhabotinskii reaction by adding a white noise-
like perturbation. V.V. Alekseev and A.Yu. Loskutov [1–3] considered a system of the fourth order
describing the dynamics of a water ecosystem that consists of two kinds of phytoplankton and two
kinds of zooplankton. They showed that it is possible to transform chaotic oscillations into periodic
by means of a weak periodic action upon the system parameter whose value never goes outside the
domain of chaoticity. The above results are based on computer-aided modeling.

First attempts of theoretical conceptualization were made in [189, 234] where the Mel’nikov
method [34] was used to consider the so-called “Duffing–Holmes oscillator”

ϕ̈− cϕbϕ3 = −aϕ̇+ d cos(ωt). (26)

The right side of (26) was considered as a small perturbation acting on an unperturbed Hamilto-
nian system. The Mel’nikov function representing the rate of changing the distance between the
stable and unstable manifolds under small perturbations was established analytically. It allowed
one to determine the values of parameters for which the system behaves chaotically. An additional
perturbation that lies in varying the function b(1 + η cos Ωt) that replaces the nonlinearity param-
eter b was then introduced and a new Mel’nikov function was determined. Numerical studies of
this function demonstrated that the chaotic behavior can be suppressed if the frequency Ω is taken
close to that of the initial excitation ω. This effect was verified experimentally by a setup con-
sisting of two permanent magnets, electromagnetic vibrator, and optical sensor [130]. The results
obtained and the formulations of some new problems can be found in [190]. For a wider class of
nonlinear oscillators, similar results were obtained in [83, 84]. The results of [1–3] were developed
and analytically justified in [26–28].

The recent studies are aimed to improve chaos suppression with simultaneous reduction of
the required level of external action and make the system trajectories to converge to the desired
periodic orbit (limit cycle). Additionally, studies on control of the discrete-time systems (control
3 That is, as a linear dynamic subsystem with static feedback nonlinearity.
4 We note that for the nonlinear systems, their eigenfrequency depends on their amplitude.
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of maps) were carried out. For example, computer-aided modeling of the Josephson junction,
processes in liquid crystals, and experiments with a bistable mechanical system were used in [131]
to demonstrate that variations of the phase and frequency of the parametric perturbation can both
increase or reduce the threshold of occurrence of chaos.

The influence of quasiperiodic excitation was studied in [15, 68] by reducing it to a periodic
action. The Mel’nikov method was used in [62] to analyze the effect of parametric excitation,
which is a random process, on the system; and in [269] it was proposed to choose an excitation
frequency close to the resonance peak of the spectral density of one of the system variables. An
attempt to reach resonance by excitation with the frequency of the desired periodic process was
made in [212]. The required amplitude (energy) of excitation can be reduced substantially by an
appropriate choice of control because the chaotic attractor includes the trajectories of processes
close to periodic processes with different periods. This approach was illustrated in [212] as applied
to the Lorenz system (1) and a high-order system of 32 diffusion-connected Lorenz systems. The
parameter r of system (1) was excited harmonically. The possibility of stabilizing unstable periodic
trajectories under a periodic signal with frequency much lower than the characteristic system
frequency was shown in [94, 235]. Suppression of the chaotic processes of ferromagnetic resonance
in the yig films was considered in [236].

Some papers relate the choice of excitation function with the form of nonlinearity inherent in
the system. Let us consider this method in more detail. Let the plant model be as follows:

ẋ = f(x) +Bu, x ∈ Rn, u ∈ Rm. (27)

We assume that m = n and detB 6= 0. If x∗(t) is the desired trajectory of the controlled motion,
then the choice of excitation (the so-called “Hubler action”) in the form

u∗(t) = B−1 (ẋ∗(t)− f(x∗(t))) (28)

is intuitively justified [157] because the function x∗(t) satisfies the equations of motion of the excited
system. In this case, the error equation e = x − x∗(t) has the form ė = f

(
e + x∗(t)

)
− f

(
x∗(t)

)
.

Therefore, if the linearized system with the matrix A(t) = ∂f(x∗(t))/∂x is uniformly stable in the
sense that A(t)+A(t)T ≤ −λI is satisfied for some λ and all t ≥ 0,5 then all solutions of (27) and (28)
converge to x∗(t), that is, the aim of control (15) is reached. The monograph [127] gives more general
conditions for convergence. If m < n and B is a degenerate matrix, then a similar result can be
obtained by satisfying the following condition for coordination: the values of the vector function
ẋ∗(t) − f(x∗(t)) must lie within the linear subspace generated by the columns of the matrix B.
Then, the corresponding control can be taken in the form u∗(t) = B+(ẋ∗(t)− f(x∗(t)), where B+

is a matrix pseudoinverse to B. As some papers note, despite the fact that satisfaction of uniform
stability rules out the possibility of chaotic, that is, unstable, trajectories x∗, if the domains with
unstable behavior are not dominating, then local convergence to chaotic trajectories is possible. For
some examples, this approach is compared in [245] with other methods. Consideration was given to
a system of the second order describing the so-called “Murali–Lakshmanan–Chua electrical circuit”
and the FitzHugh–Nagumo equations describing passage of the nerve impulses through the neuron
membrane. The results of numerical study of different methods of program excitation of chaos in
noise can be found in [247]. Similar results were obtained for the discrete systems in [154, 210].

Analytical frequency conditions for global convergence of the solutions of the Lur’e systems to a
stable mode under the action of nonperiodic excitations were obtained in [125]. They are based on
the earlier results for the periodic input processes [20] and admit presence of instability domains
of the controlled system.
5 Here and in what follows, the matrix inequalities for the symmetrical matrices are understood in the sense of

quadratic forms: A ≥ B if the matrix A−B is positive semidefinite.
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To sum up, one can state that numerous methods of control of chaotic processes in open loop have
been developed. Their majority were studied numerically for special cases and model problems.
Yet the general problem of the conditions for excitation or suppression of chaotic oscillations by
the program still remains unsolved.

4.2. Linear and Nonlinear Control

The possibilities of using the traditional approaches and methods of automatic control to the
problems of chaos control are discussed in numerous papers. The desired aim can be reached
sometimes even by means of the simple proportional law of control and feedback. As was shown
in [163], for example, the method of combined control , which is called in the physical papers the
open-plus-closed-loop (OPCL) control, for m = n and detB 6= 0 is applicable to the systems of the
form (27). The control law was proposed in the form

u(t) = B−1 (ẋ∗(t)− f(x∗(t))−K(x− x∗(t))) , (29)

where K is the square gain matrix. The numerical results of studying this method for the chaotic
systems can be found in [49, 162]. Nonlinear variants of the method of combined control were
proposed in [270, 283]. Control with the proportional amplitude-pulse modulation was studied
in [82, 86, 87]. The feedback in an extended space (x, u), that is, the dynamic controller, was
studied in [29–32, 292] by considering the configuration of poles. In this case, one obtains space-
local results because of imprecise linearization.

The case of m = n, detB 6= 0 is trivial from the point of view of the modern control theory.
Indeed, for the solution of system (27), (29) to converge to the desired trajectory x∗(t), it suffices
that K be chosen as K = κI, where κ > sup

t
‖A(t)‖, A(t) , ∂f (x∗(t)) /∂x. This choice is

always possible if the vector function x∗(t) is bounded, in particular, for the periodic and chaotic
trajectories x∗(t).

The theory of nonlinear control developed a diversity of methods to solve more involved problems
under incomplete control and measurement. One of the most elaborate methods is the feedback
linearization [35, 161, 168] that was applied to the chaotic systems in [51, 58, 93, 288]. We explain
its concept for the affine-control systems

ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm. (30)

System (30) is called feedback linearizable in the domain Ω ⊂ Rn if there exist a smooth reversible
change of coordinates z = Φ(x), x ∈ Ω and a smooth transformation of the feedback

u = α(x) + β(x)v, x ∈ Ω, (31)

where v ∈ Rm is the new control if the closed-loop system is linear, that is, for some constant
matrices A and B its equation in the new coordinates is as follows:

ż = Az +Bv. (32)

For one-input systems (m = 1), the criterion for feedback linearizability is simple: system (30)
is feedback linearizable in the neighborhood of some point x0 ∈ Rn if and only if there exists a
scalar function h(x) such that at the point x0 the system has the degree n in the output y = h(x).
We recall that the relative degree is r if successive differentiation of the output function y = h(x)
along the trajectories of system (30) provides an expression containing input precisely at the rth
step. More formally,

LgL
k
fh(x) = 0, k = 0, 1, . . . , r − 2, LgL

r−1
f h(x) 6= 0, (33)
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where LΨΦ(x) denotes the Lie derivative of the vector function Φ(x) along the vector field Ψ :

LΨΦ(x) ,
n∑
i=1

∂Φ

∂xi
Ψi(x).

If the linearizability criterion is satisfied, then by means of the transformations

z = Φ(x) = col
(
h(x), Lfh(x), . . . , Ln−1

f h(x)
)
,

u =
1

LgL
n−1
f h(x)

(
−Lnfh(x) + v

) (34)

the system can be reduced to the so-called Brunovsky canonical form (chain of integrators).

Example. Let us consider the Lorenz system with a scalar control in the third equation:
ẋ1 = σ(x2 − x1)
ẋ2 = rx1 − x2 − x1x3

ẋ3 = −βx3 + x1x2 + u.
(35)

We choose y = x1. Then, Lfy = ẏ = ẋ1 = σ(x2 − x1), L2
fy = Lf (Lfy) = ẍ1 = σ (ẋ2 − ẋ1) =

σ ((r + 1) x1 − 2x2 + x1x3). Obviously, the relative degree r = 3 everywhere except for the plane
x1 = 0. The change of coordinates can be defined by the relations

x1 = z1,

x2 =
1
σ
z2 + z1,

x3 =
1
z1

(
1
σ
z3 − (r − 1)z1 −

2
σ
z2

)
,

that is, the system is feedback linearizable for x1 6= 0. Therefore, in each of the semispaces
{
x1 < 0

}
,{

x1 > 0
}

system (35) is equivalent to the linear system. Since the Brunovsky linear system is fully
controllable, any given dynamics of the closed-loop system can be provided using the methods of
the theory of linear systems. The fact that this solution is not global is its disadvantage. Another
essential disadvantage lies in that this approach completely disregards the eigendynamics of the
system. An arbitrary desired dynamics is obtained at the expense of high control power required for
substantial initial conditions and tracking of the rapidly varying program motion. Inapplicability
to weak controls is a typical disadvantage of many works using the traditional methods of nonlinear
and adaptive control.

The potentialities of the dynamic feedbacks can be better realized by using the observers. This
approach provides a systematic groundwork for control under incomplete system measurements.
The reader is referred to [224] for a review of the methods of designing the nonlinear observers as
applied to the problems of control of chaos. Some special methods are described also in [139, 217].
The paper [186] presents the results of applying the linear high-gain observers to control of systems
with nonlinearities satisfying the global Lipschitz condition.

We note that for the chaotic models the global Lipschitz condition is often not satisfied because
of the presence of polynomial terms such as x1x2, x2, and so on. Limitedness of the trajectories
of chaotic systems that takes place in the proper motion can be violated under the action of
control. Consequently, when choosing control one must pay special attention to limitedness of the
solutions. Otherwise, in a finite time the solution may “break loose,” that is, go to infinity, which
makes senseless any discussion of stability and convergence. The possibility that the trajectories of
nonlinear systems may break loose is often overlooked in the applied papers.

AUTOMATION AND REMOTE CONTROL Vol. 64 No. 5 2003



CONTROL OF CHAOS 687

A number of methods are based of the changes of the current value of some objective func-
tion Q(x(t), t) whose value may correspond to the distance between the system state at the given
time x(t) and the current point x∗(t) on the given trajectory—for example, Q(x, t) = ‖x−x∗(t)‖2,
where ‖x‖ is the Euclidean norm of the vector x. The distance from the current position of
system x(t) to the given objective surface h(x) = 0 such as Q(x) = ‖h(x)‖2 can be taken as
the objective function. For the continuous-time systems, Q(x) is not directly dependent (at the
same time instant) on the control u. Therefore, a new immediately appearing objective func-
tion Q̇(x) = (∂Q/∂x)F (x, u) can be used instead of Q(x), that is, the rate of change of this
function can be decreased instead of decreasing the values of the initial objective function. This is
the main idea of the method of speed gradient (SG-method) [35, 43] where the control u is changed
in the direction of the antigradient in u of the speed Q̇(x) of the original objective function. This
approach to controlling the chaotic systems was first suggested in [44]. The SG-algorithms have
some modifications. In the so-called finite form, they are generally set down as follows:

u = −Ψ
(
∇uQ̇(x, u)

)
, (36)

where Ψ(z) is some vector function whose value is directed at an acute angle to its argument z.
For the affine controlled plants ẋ = f(x) + g(x)u, algorithm (36) can be simplified as

u = −Ψ
(
g(x)T∇Q(x)

)
. (37)

The proportional SG-algorithm

u = −Γ∇uQ̇(x, u), (38)

where Γ is some positive definite matrix, as well as the relay SG-algorithm

u = −Γ sgn
(
∇uQ̇(x, u)

)
(39)

are special cases of (36). The differential form of the SG-algorithms

u̇ = −Γ∇uQ̇(x, u). (40)

is used in the adaptation problems.
The method of speed gradient is based on the Lyapunov function V decreasing along the trajec-

tories of the closed-loop system. The finite form of the SG-algorithms is obtained if the objective
function V (x) = Q(x) is itself taken as the Lyapunov function. The differential form of the
SG-algorithms corresponds to choosing V (x, u) = Q(x) + 0.5(u− u∗)TΓ−1(u−u∗), where u∗ is the
desired (“ideal”) value of the control variables.

Example (stabilization of equilibrium of the thermal convection model). Experiments carried
out in the 1980’s with thermal convection were among the first experiments demonstrating the
nonregular oscillatory motions in physical systems [36, 214]. Similar facilities were later used to
experiment with control of thermal convection [260]. The mathematical model of the controlled
process is as follows: 

ẋ = σ(y − x)
ẏ = −y − xz
ż = −z + xy − r + u,

(41)

where x is the convection velocity; y, z are the temperature differences in the horizontal and vertical
directions, respectively; σ is the Prandtl number; and r is the Rayleigh number. The deviation of the
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heating rate from the rated value r serves as the control variable u. System (41) is obtained from the
Lorenz system by substituting z for z−r under the assumption that r = const and b = 1. For u = 0
and 0 < r < 1, the system has a unique global attracting equilibrium (0, 0,−r) corresponding to
the stationary process of thermal convection. For r = 1, two new stable equilibria C+ and C− with
the coordinates x = y = ±

√
r − 1 and z = −1 appear. These equilibria in turn lose stability in the

Andronov–Hopf bifurcation for r = σ(σ+ 4)/(σ− 2); and for greater values of the parameter r, the
system has no equilibria.

S. Sinha [260] proposed a relay control law for stabilization of the system equilibrium:

u = −γ sgn (z + 1). (42)

Experiments demonstrated that upon introduction of the control law (42) into the loop, it stabilizes
convection in either—clockwise or counterclockwise—direction, which corresponds to stabilization
of one of the equilibria: C+ or C−.

One can readily see that algorithm (42) is a special case of the speed gradient algorithm (39)
for the objective function

Q(x, y, z) = (x−
√
r − 1)2/σ + (y −

√
r − 1)2 + (z + 1)2.

As was proved in [127], any trajectory of the closed-loop system tends to one of the equilibria
belonging to the set of points (x, y, z) such that{

x = y,
∣∣∣(x+

√
r − 1)(x−

√
r − 1)

∣∣∣ ≤ γ, z = −1
}
. (43)

Therefore, any solution tends to the neighborhood of either of the equilibria C+ or C−, size of the
neighborhood vanishing with decrease of the gain γ of the algorithm.

The problem of stabilizing the invariant objective manifold h(x) = 0 by a small control is solved
in [271] using the method of macrovariables proposed by Kolesnikov [18, 19].

Other methods of the modern theory of nonlinear control such as the theory of center mani-
fold [129], the backstepping procedure and the methods of iterative design [202, 203], the method
of passivity-based design [35, 127], the method of variable-structure systems (VS-system) [115, 178,
287, 289]; the theory of absolute stability [265], the H∞-optimal design [102, 264], and a combi-
nation of the direct Lyapunov method and linearization by feedback [196, 225] were used to solve
the problems of stabilization about the given state or the objective manifold. We note that the
variable-structure algorithms with the switching surface h(x) = 0 coincide with the speed gradient
algorithms (39) for which the objective function is chosen in the form Q(x) = ‖h(x)‖.

Existence of a feedback passifying , that is, making passive, the closed-loop system is the prereq-
uisite for efficiency (attainment of the objective) of the majority of the above approaches. For the
control-affine system (30), this means that there exist function V (x) and feedback (31) such that

V̇ (x) =
∂V

∂x

(
f + gα+ gβv

)
≤ yv. (44)

Omitting some details, one can state that (44) is satisfied if the output y is taken as y = LgV β.
It is nothing but the speed gradient algorithm for x 6= 0; at that, V̇

∣∣
y=0

< 0. The last condition
means that the so-called zero dynamics of the system, that is, motion on the manifold y = 0, is
asymptotically stable. This property is called the property of minimum phase [35].

A combination of the frequency approach and the methods of nonlinear control proved to be
fruitful (see [66, 136] and their references). In particular, the approximate method of harmonic
balance was used together with the precise findings of the theory of absolute stability for estimating

AUTOMATION AND REMOTE CONTROL Vol. 64 No. 5 2003



CONTROL OF CHAOS 689

and predicting the chaotic processes. An interesting result on using the selective (“washout”) filter
that damps all signals of the frequencies lying outside a narrow range (see also [211]) was obtained
within the framework of this area of research. If such a filter is introduced into the feedback of
a chaotic system and its basic frequency coincides, conventionally speaking, with the frequency
of one of the available unstable periodic solutions, then it is more likely that the system behaves
periodically, rather than chaotically. Application of this approach to control of lasers was described
in [64, 99].

Therefore, the majority of the methods of nonlinear control as applied to control of chaos can be
classified with two main approaches: the Lyapunov approach (SG method, passivity method) and
the “compensatory” approach (linearization by feedback, geometrical methods, and so on). The
relationship between these two approaches may be illustrated as follows.

Let stabilization of the zero value of some output variable y = h(x) of the affine system ẋ =
f(x)+g(x)u be the aim of control. The Lyapunov methods, including that of speed gradient, use an
objective function of the formQ(x) = ‖h(x)‖2 and reduce its derivative Q̇ according to the condition
hT∂h/∂x(f + gu) < 0 by moving along the speed gradient Q(x), that is, the antigradient Q̇,

u = −γgT(∇h)h.

Obviously, the condition for “smallness of control” can be satisfied if the gain γ > 0 is sufficiently
small.

The compensatory approach is based on defining a prescribed (desirable) dynamics either of
the entire state of the system or of some function of its state. For example, the macrovariable
α(x) = ẏ+ ρy is introduced to design a control algorithm, where ρ > 0 is a parameter whose value
is zeroed by choosing the control

u = −f
T(∇h) + ρh

gT(∇h)
.

We note that α = 0 if and only if Q̇ = −2ρQ, that is, the compensation is equivalent to defining the
decrease rate of Q(x). As the result, any desired “instantaneous” speed of the transient processes
is obtained at the expense of flexibility and smallness of control.

We conclude this section by emphasizing once more that the works using the well-developed
methods of the modern linear and nonlinear control theory often do not pay sufficient attention
to the specific characteristics of the chaotic processes, which manifests itself in the disregarded
requirement on smallness of control. On the other hand, the publications taking this requirement
in account do not use to the full the powerful arsenal of the modern control theory. Moreover, many
publications consider only examples of low-order systems and make unrealistic assumptions. For
example, some publications assume that the number of control actions is equal to the dimensionality
of the system state vector.

4.3. Adaptive Control

Many publications consider the possibility of applying the methods of adaptation to the control
of chaotic processes, which is not surprising because in many physical applications the parameters
of the controlled plant are unknown and the information about the model structure (for example,
dimensionality of the system equations or the form of the nonlinear characteristics) more often
than not is incomplete. The majority of works make use of the methods of direct or indirect
(identification-based) adaptive parametric control. The system model is, thus, parametrized , that
is, comes to

ẋ = F (x, θ, u), y = h(x), (45)
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where θ is the vector of the unknown parameters. According to (45), the control law is also set
down in the parametric form

u = U(x, ξ), (46)

where ξ = Φ(θ), that is, the vector of controller parameters is defined through the vector of
parameters of system (45). The processes obtained by measuring the system state {x(t)} or output
{y(t)} are used either online or offline to establish the estimates θ̂(t) of the unknown parameters θ(t)
or to adjust directly the controller parameters ξ(t).

A large arsenal of the existing methods of adaptation such as the methods of gradient and
speed gradient , least squares, maximum likelihood , and so on can be used to develop algorithms of
adaptive control and parametric identification. For the continuous-time systems, various adaptation
algorithms can be obtained using the differential form (40) of the SG-algorithms. The majority of
the existing results were obtained by linear parametrization of model (45) or controller (46).

These methods are well known from the literature on the control theory (see, for example, [127,
172]). Their validation is usually based on the Lyapunov functions which either are chosen quadratic
from the beginning or are rearranged in the quadratic form by some transformation of the variables.
For the problems of control of a typical chaotic systems of the second and third orders (systems of
Lorenz, Chua, Duffing, and so on), references [81, 188, 291] and many other publications that were
not included in the present review present examples making use of this approach. Similar methods
are used for higher-order systems [116, 205, 206, 282, 285]. Controller (46) is usually designed using
the reference model or the methods of linearization by feedback.

We note that different treatments of the adaptive approach can be encountered in the literature
on control of the chaotic processes. For example, [156, 246, 261] apply the term adaptive to the
simple linear integral law of control

ξ̇ = γ(y∗ − y), (47)

where y∗ is the desired value of the output variable y and γ is the gain (“stiffness”). We explain
the situation by discussing system (45), (46). Substitution of (46) into (45) provides the following
equations of the adjustable-parameter system:

ẋ = F (x,Φ(ξ),U(x, ξ)), y = h(x). (48)

It is easy to demonstrate that for the affine closed-loop system ẋ = f(x) + g(x)ξ and the
quadratic objective function Q = (y − y∗)2 algorithm (47) is a special case of SG-algorithm (40)
where ξ is substituted for u. The sign of the parameter γ must coincide with that of sgnµ(x),
where µ(x) = ∇h(x)Tg(x). Additionally, sgnµ(x) = const is the necessary condition for efficiency
of algorithm (47). In this case, the general form of SG-algorithm (40) is as follows:

ξ̇ = γ(y∗ − y)µ(x). (49)

Its convergence follows from the general conditions for stability of the SG-algorithms (see [127]).
The so-called Huberman–Lumer law generalizing (47) can be easily substantiated in a similar way.

A number of publications suggest control algorithms based on adjusting only one parameter.
Already the classical publication of E. Lorenz [195] proposed to analyze systems by using the so-
called return map yk 7→ yk+1, where yk = y(tk) is the value of some scalar variable y(t) at the time tk
of reaching the current local maximum. It is believed [36, 214] that in the strong-dissipation systems
one can confine the memory depth with sufficient precision to unity and consider the characteristics
of the original system by analyzing the function yk+1 = L(yk). For example, the transformation of
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chaotic motion into periodic corresponds to stabilization of an unstable fixed point of the map L(·)
which usually can be reached by varying one control parameter.

The publications [55, 74] propose to adjust adaptively the time intervals between the successive
process maxima. This method is applicable to laser control. The papers [95–97] proposed a
discrete algorithm of one-parameter adaptation that is close to the lms method. Its application was
illustrated by the models of treating cardiac arrhythmia and controlling the Belousov–Zhabotinskii
chemical reaction. Another method of one-parameter adaptive control based on the concept of the
“universal adaptive controller” was proposed in [273].

4.4. Linearization of the Poincaré Map (OGY-Method)

The possibility of transforming the chaotic motion into periodic by external action on the system
was discovered by Matsumoto and Tsyda [204] and Alekseev and Loskutov [1–3] as early as in the
mid-1980’s. However, only the 1990’s witnessed an explosive growth of interest to the control of
chaotic processes, which is largely due to the paper of E. Ott, C. Grebogi, and Yorke [228] where
they formulated the following two key ideas: (1) designing controller by the discrete system model
based on linearization of the Poincaré map and (2) using the property of recurrence of the chaotic
trajectories and applying the control action only at the instants when the trajectory returns to
some neighborhood of the desired state or given orbit.

The original paper described this method for the second-order discrete systems and the third-
order continuous systems. Its realization needs real-time (keeping pace with the controlled process)
calculation of the eigenvectors and eigenvalues of the Jacobian matrix for the Poincaré map. Publi-
cation of this method, which is now called the “OGY-method,” was followed by numerous extensions
and treatments. The concept of the OGY-method as represented in the recent papers [73, 141–144]
is as follows.

Let the controlled process obey the following state equations:

ẋ = F (x, u), (50)

where x ∈ Rn, u ∈ R1. By the variable u is meant [228] the changeable system parameter, rather
than the standard “input” control variable. But since the plant is nonlinear, this difference is
insignificant from the control standpoint. Let the desired (objective) trajectory x∗(t) be a solution
of (50) for u(t) ≡ 0. This trajectory can be either periodic or chaotic, but in both cases it is
recurrent. We construct the surface (so-called Poincaré section)

S = {x : s(x) = 0} (51)

passing through the given point x0 = x∗(0) transversally to the trajectory x∗(t) and consider the
map x 7→ P (x, u) where P (x, u) is the point of first return to the surface S of the solution of (50)
that begins at the point x and was obtained for the constant input u. The map x 7→ P (x, u) is
called the controllable Poincaré map. Owing to the recurrence of x∗(t), this map is defined at least
for some neighborhood of the point x0. (Strict definition of the controllable Poincaré map involves
some technicalities [12, 127]). By considering a sequence of such maps, we get the discrete system

xk+1 = P (xk, uk), (52)

where xk = x(tk), tk is the time instant of the kth intersection of the surface S and uk is the value
of control u(t) over the interval between tk and tk+1.

The next step in designing the control law lies in replacing the original system (50) by the
linearized discrete system

x̃k+1 = Ax̃k +Buk, (53)
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where x̃k = xk − x0. Stabilizing control is determined for the resulting system as, for example, the
linear state feedback uk = Cxk. The final form of the proposed control law is as follows:

uk =

{
Cx̃k if ‖x̃k‖ ≤ ∆
0, otherwise,

(54)

where ∆ > 0 is a sufficiently small parameter. The fact that control acts only in some neighborhood
of the objective trajectory, that is, an “external” deadzone is introduced into the piecewise-constant
control law, is the key characteristic of the method. This provides smallness of the control action
which, according to (54), does not exceed in norm |Cx̃k| ≤ ‖C‖∆.

To guarantee efficiency of the method, the controller parameters (matrix C) should be chosen
so that in the linear closed-loop system the error norm ‖x̃k‖ ‖(A+BC)x‖ ≤ ρ‖x‖ decreased, where
ρ < 1. Another suitable quadratic norm can be used instead of the Euclidean norm, if necessary.
Then, having once entered the ∆-neighborhood of the objective, the trajectory of the closed-loop
system will not leave it. On the other hand, the trajectory certainly will enter any ∆-neighborhood
of the objective trajectory owing to the property of recurrence.

Different authors present the results of numerical studies corroborating efficiency of this ap-
proach. They often mention low rate of process convergence, which is the cost of global stabilization
of the trajectories of the nonlinear system by a small control.

In order to use the OGY-method, one has to overcome two serious obstacles: inaccuracy of the
system model and incompleteness of the current state of the process. To eliminate the latter, it
was proposed to use instead of the original state vector x the so-called delayed coordinates vector
X(t) =

[
y(t), y(t − τ), . . . , y(t − (N − 1)τ)

]T ∈ Rn, where y = h(x) is the measured output (for
example, one of the system coordinates) and τ > 0 is the delay time (parameter). The control
law (54) then becomes

uk =

{
u′k, if |yk,i − y∗k,i| ≤ ∆y, i = 1, . . . , N − 1
0, otherwise,

(55)

where yk,i = y(tk − iτ), y∗k,i = h(x∗(tk − iτ)), ∆y is the maximum desired difference between yk,i
and y∗k,i, u

′
k = U(yk, yk,1, . . . , yk,N−1) and U is the function defining the form of the controller.

Design of the control law based on the structure of the plant model is theoretically better
substantiated. For example, if the linearized model of the controlled plant in terms of the “input–
output” variable is as follows:

yk + a1yk,1 + . . .+ aN−1yk,N−1 = b0uk + . . .+ bN−1uk−N−1, (56)

then one can resort to the standard technique of designing the linear controller from the given
(reference) equation of the closed-loop system

u′k = b−1
0

(
(a1 − g1)yk,1 + . . .+ (aN−1 − gN−1)yk,N−1 − b1uk−1 (57)

. . .− bN−1uk−N+1 + g1y
∗
k,1 + . . . + gN−1y

∗
k,N−1

)
,

where gi, i = 1, 2, . . . , N − 1, are the coefficients of the reference equation that should be chosen so
that the polynomial G(λ) = λN−1 + g1λ

N−2 + . . .+ gN−1 be stable (all roots are less than 1). In a
more compact form, (57) is as follows:

u′k = ϑTwk, (58)

where ϑ ∈ R2N−1 is the vector of parameters of controller (57) and wk = {yk,1, . . . , yk,N−1, uk−1, . . . ,
uk−N+1, g1y

∗
k,1 + . . . + gN−1y

∗
k,N−1} is the vector of delayed coordinates and controls that is often

called the regressor.
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A special case of algorithm (55), the “occasional proportional feedback” (OFP) algorithm) which
is used to stabilize the amplitude of the limit cycle was proposed in [159]. It is based on measuring
the local maxima (or minima) of the output y(t), that is, its Poincaré section is determined according
to (51), where s(x) = ∂h/∂xF (x, 0), which amounts to satisfying the condition ẏ = 0 for the free
system. If yk is the value of the kth local maximum, then the OPF-method leads to a simple
algorithm of control

uk =

{
Kỹk if |ỹk| ≤ ∆
0, otherwise,

(59)

where ỹk = yk − y∗ and y∗ = h(x0) is the required yk defining the necessary oscillation amplitude.
We note that no full justification of algorithms (57) and (59) appeared until now. The main diffi-

culty lies in estimating the accuracy of the linearized Poincaré map in the delayed coordinates (56).
To overcome the first of the aforementioned obstacles which is caused by indeterminacy of the

linearized plant model, [228] and subsequent publications [54, 73, 141, 142] suggest to estimate the
model parameters in the state Eqs. (53). However, the above papers did not present in detail a
method to estimate the parameters of model (53) from the measurements of the output process.
This problem is well known in the identification theory. It is not simple because identification in a
closed loop can provide a “bad” estimate for a “good” control.

The algorithm of the OGY-method was modified and substantiated in [4, 12, 120, 124, 127] for
the special case of yk,i = yk−i, i = 1, . . . , n where the outputs are measured and the control is
changed only at the instants of intersection with the section surface y∗k,i = y∗ = h(x0). The con-
troller was designed using the input–output model (56) that has less coefficients than model (53).
The parameters were estimated using the V.A. Yakubovich method of recurrent objective inequali-
ties which enables one to solve the problem of identification in the closed loop. It was suggested to
introduce an inner deadzone into the law of control. The control algorithm obeys conditions (55)
and the relations

µk+1 =

{
1 if |yk+1 − y∗| > ∆y and |yk−i − y(tk−i)| < ∆, i = 0, . . . , N − 1
0, otherwise,

ϑ′k+1 =

{
ϑk − γ sgn b0(yk+1 − y∗)wk/‖wk‖2 if µk+1 = 1
ϑk, otherwise,

u′k+1 = ϑT
k+1wk+1,

ϑk+1 =


ϑ′k+1 if |u′k+1| ≤ u and µk+1 = 1
ϑ′k+1 − (u′k+1 − u)/‖wk‖2 if u′k+1 > u and µk+1 = 1
ϑ′k+1 − (u′k+1 + u)/‖wk‖2 if u′k+1 < −u and µk+1 = 1
ϑk if µk+1 = 0,

(60)

where γ > 0 is the adaptation gain; u is the maximum magnitude of control; and ∆ is related to
the size of the “tube” in the state space about the basic trajectory x(t), where the input–output
model (56) is defined. Combination of this inner deadzone with an outer one which is inherent
in the OGY-method makes the identification-based control robust both to model inaccuracy and
measurement errors.

Other modifications and generalizations of the OGY-method followed. For example, [112] sug-
gested to use only the data pertinent to one period of oscillations; and [249] proposed a “quasi-
continuous” variant of the OGY-method. A multistep modification of the algorithm was discussed
in [153]. Instead of the piecewise-constant control over the intervals between the instants of return,
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[111, 113] proposed to use the nonstationary action u(t) = c(t)u where c(t) is chosen from the
condition for the minimum control energy. The works [56, 57] proposed an iterative procedure of
updating the controller that extends the domain of attraction and reduces the duration of tran-
sients. A study of the attraction domain for estimation of the initial state and the parameters can
be found in [85], and the system behavior in the transient mode was studied also in [153]. New
results provided by the computer-aided modeling and demonstrating the efficiency of the OGY-
method are described in [48] for the Kopel map, in [59] for the Bloch wall , and in [227] for the
magnetic domain-wall system. Additionally, efficiency of the method was demonstrated by physi-
cal experiments with a bronze band [257], glow discharge [80], and controllable RL-diod electrical
circuit [6]. The OPF-method was used in [258] to stabilize the frequency of infrared stripe laser
diod and realized as an electronic unit for chaos control. A modification of the OPF-method was
considered in [117].

4.5. Time-Delayed Feedback (Pyragas Method)

The recent years witnessed increase of interest to the method of time-delayed feedback proposed
in 1992 by a Lithuanian physicist K. Pyragas [241] who considered the problem of stabilizing an
unstable τ -periodic orbit of a nonlinear system (10) by a simple feedback law

u(t) = K
(
x(t)− x(t− τ)

)
, (61)

where K is the transmission coefficient and τ is the time of delay. If τ is equal to the period of the
existing periodic solution x(t) of Eq. (10) for u = 0 and the solution x(t) of the equation of the
closed-loop system (10), (61) begins on the orbit Γ = {x(t)}, then it remains in Γ for all t ≥ 0.
Interestingly, x(t) can converge to Γ even if x(0)∈Γ .

The feedback law (61) is also used to stabilize the periodic excited process in system (10) with
T -periodic right side. Then, τ must be taken equal to T . For the discrete systems, the algorithm
of this method is constructed in an obvious manner.

An extended variant of the Pyragas method was proposed in [262]. Here, the control is as
follows:

u(t) = K
M∑
k=0

rk
(
y(t− kτ)− y(t− (k + 1)τ)

)
, (62)

where y(t) = h(x(t)) ∈ R1 is the measured output and rk, k = 1, . . . , M , are the parameters of
the algorithm. For rk = rk, |r| < 1, and M →∞, algorithm (62) assumes the form

u(t) = K
(
y(t)− y(t− τ)

)
+Kru(t− τ). (63)

Despite the simple form of algorithms (61)–(63), analytical study of the closed-loop system is
a challenge. Only numerical and experimental results pertaining to the properties and area of
application of the Pyragas method were known until now.

The works [63, 65] considered stability of the excited T -periodic solution of the Lur’e system
with the “generalized Pyragas controller”

u(t) = G(p)
(
y(t)− y(t− τ)

)
, (64)

where G(p) (p = d/dt) is the filter transfer function. These works used the methods of the absolute
stability theory [183] to obtain the sufficient conditions to be satisfied by the transfer function of
the linear part of the controlled system, as well as the conditions for the slope of the nonlinear
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characteristic that must be satisfied for G(p) to be a stabilizing filter. A procedure of designing an
“optimal” controller maximizing the stability domain was proposed in [65] and extended in [66] to
the systems with a nonlinear nominal part.

A simple necessary condition for stabilizability by the Pyragas algorithm (61) was obtained
in [274] for one class of discrete systems. The fundamental matrix Φ(t) of a system linearized
in the given τ -periodic solution is introduced. This condition lies in that the number of the real
eigenvalues of the matrix Φ(t) that are greater than unity needs not to be odd. For a more general
case and for continuous-time system, the proofs were obtained independently in [165, 220]. For
the extended control law (62), the results can be found in [179, 221]. These works apply the
Floquet theory to systems linearized in the given periodic solution. Obviously, the eigenvalues of
the matrix Φ(t) (multipliers) µi, i = 1, 2, . . . , n, are related by ρi = τ−1 ln |λi| with the Lyapunov
indices ρi of the τ -periodic solution. By means of a similar approach, [166] carried out a more
detailed analysis and roughly estimated the boundaries of the feedback coefficient K that make
the periodic solution stable. In particular, the domain [165] of values of K supporting stabilization
includes arbitrarily small values of K for a small degree of instability max ρi and vanishes for a
sufficiently large max ρi. Some boundaries of the parameter K for the Lorenz system were obtained
in [259] using the Poincaré–Lindstedt method of small parameter .

As was noted in [253] for the discrete system yk+1 = f(yk, uk), the inequality λ < 1, where
λ = ∂f/∂y(0, 0), is the necessary existence condition for the discrete variant of the stabilizing
feedback (62). This result follows from the Giona theorem [135]. It was shown that the constraint
λ < 1 can be overcome by periodic modulation of the parameter K.

The Pyragas method was extended to the connected (open flow) systems in [174, 175, 177] and
modified in [221] for the systems with symmetry. Additionally, [180] proposed to generalize the
method by introducing an observer estimating the difference between the system state and the
desired unstable trajectory (or the given point).

If in (63) one takes |r| > 1, then the resulting algorithm still can be applied, although the
resulting controller becomes unstable, which allows one to relax substantially the constraints on
the plant matrix Φ(t) and, in particular, remove the “odd number” constraint [240].

We note that the problem of determining the sufficient conditions guaranteeing applicability of
the original algorithm (61) remains still unsolved despite an appreciable recent information about
the Pyragas method.

The literature mentions use of this method in stabilization of the laser coherent modes [25, 70,
222, 223] and magnetoelastic systems [147, 149], control of the heart conductivity model [79], step
oscillations [108], traffic model [176, 179], voltage transformer with pulse-width modulation [67]
excited by an oscillator described by the popular physiological FitzHugh–Nagumo model [71], or
catalytic reactions in the bubbling gas-solid fluidized bed reactors [167]. Comparison of the method
of control with time delay in the feedback and the methods of open-loop control of lasers can be
found in [137].

Sensitivity to the parameter, especially to the delay time τ , is a disadvantage of the control
law (61). Obviously, if the system is T -periodic and the aim of control is to stabilize the forced
T -periodic solution, then one necessarily has to choose τ = T . An alternative heuristic technique
lies in modeling the proper processes in the system for the initial conditions x(0) until the current
state x(t) approaches x(s) for some s < t, that is, until the condition ‖x(t)− x(s)‖ < ε is satisfied.
Then, the choice of τ = t− s provides a reasonable estimate of the period, and the vector x(t) is
the initial state from which control of the process begins. However, this approach often results in
excessive values of the period. Since the chaotic attractors have periodic solutions with different
periods, it is important to determine the least-period motion and stabilize it by a small control.
This problem is still open. Finally, the adaptive estimate of τ [171] is not always helpful, and
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study of the adaptive algorithm [171] is extremely difficult. No analytical results on the adaptive
algorithms with time-delayed feedback were obtained by now.

4.6. Discrete Systems

Some of the discrete-time algorithms were described in Section 4.4 discussing the Poincaré map-
based methods of control and in Section 4.5 discussing the methods of control with time-delayed
feedback. They may be regarded as varieties of the pulse laws of control. Many general results on
stability of the pulse feedback systems were obtained thus far. Analysis of their stability in the
context of systems with chaotic dynamics can be found in [286].

Despite the fact that many authors make use of the term “optimal control,” they mostly
propose only local-optimal solutions based on minimizing the current value of the loss function
Q(Fd(xk, u), u) in the control u, where Fd is the function in the right side of the plant model (14)
and Q(x, u) is the given objective function. For example, in [46, 47] the function Q(x, u) =
||x − x∗||2 + κ||u||2 is used. The requirement on smallness of the control action can be satis-
fied by choosing a great weight coefficient κ > 0. We note that for great κ the local-optimal control
is close to the control by the gradient uk+1 = −γ∇uQ

(
Fd(xk, u), u

)
with small γ > 0 [127].

The majority of publications on discrete-time control of chaos consider systems of lower orders.
As follows from the Poincaré–Bendixson theorem, the set of examples of discrete chaotic systems
seems to be even wider than for the continuous-time systems owing to the systems of the first
and second orders that have no continuous equivalents. Popular examples are furnished by the
systems described by the logistic map xk+1 = axk(1 − xk). They were discussed, in particular, in
[100, 114, 207, 209]. Consideration is also given to the Hénon system (5), see [146]; the tent map
(xk+1 = rxk, 0 ≤ xk < 0.5; xk+1 = r(1− xk), 0.5 ≤ xk ≤ 1), see [237]; and the standard (Chirikov)
map (vk+1 = vk +K sinϕk, ϕk+1 = ϕk + vk), see [182].

Behavior of the linear OGY-like controller with an outer deadzone of width ε and one-dimensional
quadratic map xk+1 = 1− 2(xk + uk)2 in the neighborhood of the unstable equilibrium of the free
system x = 0.5 was considered in [191]. Prior to closing the system by the controller, the plant
is identified in the open loop under the action of a random sequence uk, (k = 1, 2, . . . , N). The
paper gives recommendations on the choice of the parameters of ε and N from the requirements
on system stability and robustness.

Only a few results on higher-order discrete systems are known. They are based on the gradient
methods [46, 47, 127]; variable-structure systems [187]; and the generalized predicting control [229].

4.7. Neural Network-Based Control

There are several approaches to using the neural networks for control of chaotic processes. First,
many studies rely on the universal ability of the neural networks to control and predict behavior
of the nonlinear systems. Since the chaotic systems are basically nonlinear, the potentiality of
their neural control is not surprising. Some universal neural-like learning networks for control of
nonlinear systems were suggested in [150, 151, 239]. The structures of neural networks for control
and prediction of the processes in nonlinear chaotic systems can be found in [61, 107, 145]. The
papers [169, 245] compare the neural approach with other methods of control. It was proposed in
[192, 284] to use the genetic algorithms for learning the neural network. A numerical example is
considered, and the results of modeling are presented for it.

Second, many papers describe identification of the controlled plants by the neural networks
combined with a standard method of control of chaotic systems such as the OGY-method [132],
proportional feedback controller [170], and so on. Identification often is carried out in the closed
loop in the course of normal system operation, which leads to adaptive or learning controllers. It was
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noted that the chaotic nature of the system processes speeds up identification and learning owing
to diversification of the learning sample [92, 226, 251]. Some papers study new, nontraditional
algorithms of identification and control. For example, [110] proposes a new approach to learning
(adjustment of weights and modification of structure) of a serial neural network which lies in using
controller, chaotic neural filter, and associative memory.

The third path of research, which is concerned with the neural networks as sources of chaos
regarded as the controlled plant, is related with the psychological school of American Pragmatists—
J. Dewey, in particular,—and also some European philosophers such as Heidegger and Piaget who
considered the brain as a basically unstable and self-exciting (recreating) structure. Reasonable
behavior is then understood in connection with the chaotic images produced as the result of neural
activity. Therefore, analysis of the chaotic dynamics of neural networks and its control are of
profound interest to the psychologists and physiologists (see, for example, [128]). The neural
networks operating in the chaotic mode are used to model storage of information and pattern
recognition by the brain [173, 218, 219, 250, 267]. These networks may consist not only of artificial
neurons, but also of other nonlinear systems with controllable chaotic behavior such as chemical
oscillators [152, 160].

The main problem discussed within the framework of this field of study lies in clarifying how an
assembly of neurons behaving each chaotically and disconnectedly can generate functional chains
manifesting stable and correct behavior. These issues were studied both theoretically and exper-
imentally in [242–244]. Some other papers consider the possibility of control of chaos for some
types of neural networks [213] and establish the conditions for origination of chaos in small neural
networks [103].

4.8. Fuzzy Systems

Description of system indeterminacy in terms of fuzzy models provides specific versions of the
control algorithms. The so-called Takagi–Sugeno fuzzy systems (T–S-fuzzy systems) obeying the
set of fuzzy rules

IF z1(t) ∈ F1i AND . . .AND zp(t) ∈ F1p THEN
ẋ = Aix+Biu, y = Cix+Diu, i = 1, 2, . . . , r

(65)

are most convenient for design of control. Here, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm are, respectively,
the vectors of state, input, and output of the system; zj(t) are the variable antecedents that are the
functions of the system state, its input variables u(t), and, possibly, time; and Fji are the fuzzy sets
defined by the membership functions Fji. The matrices Ai, Bi can depend on the variables zj(t),
which enables one to describe the nonlinear systems in the form (65). The system output is
determined by means of the so-called defuzzying by the method of center of gravity

y =
r∑
i=1

hi(z)Cix, (66)

where hi(z) =
ωi(zi)
r∑
i=1

ωi(zi)
, ωi(z) =

n∏
j=1

Fji(zj), z =
(
z1, z2, . . . , zn

)
. With this representation, the

nonlinearity “hides” in the rule of defuzzying (66), which allows one to construct fuzzy models for
a wide class of dynamic, including chaotic, systems. For example, the Lorenz system

ẋ1 = σ(x2 − x1)
ẋ2 = ρx1 − x2 − x1x3

ẋ3 = βx3 + x1x2,
(67)
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is representable as (65) if one takes z1 = z2 = x1, F1(x1) = 0.5(1 + x1/d), F2(x1) = 0.5(1 + x1/d),
where d > 0 is the estimate of the system limit set:

|x1| ≤ d; A1 =

 −σ σ 0
ρ −1 −d
0 −d −β

 ; A2 =

 −σ σ 0
ρ −1 −d
0 d −β

 ; b1 = b2 = 0.

It is only natural to construct the algorithms to control the T–S-fuzzy systems as the fuzzy rules

IF z1(t) ∈ F1i AND . . . AND zp(t) ∈ F1p THEN
u = −Kiy, i = 1, 2, . . . , r,

(68)

where Ki are the matrices of the coefficients of the linear fuzzy controller. The rules of defuzzy-
ing (66) allow one to represent the closed-loop fuzzy system as

ẋ =
r∑
i=1

r∑
j=1

r∑
k=1

hi(z)hj(z)hk(z) (Ai −BiKjCk)x. (69)

One can readily see that for system (69) a diversity of the design problems can be posed by
means of the quadratic Lyapunov function V (x) = xTPx as the problems of simultaneous robust
stabilization and reduced to the linear matrix inequalities (LMI ). This approach was proposed
in [266] for stabilization and synchronization of the chaotic systems, extended to the problems of
observer-based synchronization, and applied to the information transmission systems [184, 185].

Another approach to designing the fuzzy models of chaotic systems relies on identification of
their parameters in combination with the standard methods of designing the nonlinear systems [90].
On the contrary, [268] makes use of the direct (without identification) adaptive method. A two-
frequency scheme of discrete control of the continuous fuzzy systems was proposed in [164]. In
some papers, the fuzzy models of nonlinear systems are combined with the neuron-like network
structure of controllers [98, 198].

We note that many works use the specific characteristics of the chaotic systems incompletely.
They just exemplify unstable nonlinear systems demonstrating the potentialities of the control
algorithms that can operate with a much wider class of plants. Therefore, the requirement on
smallness of control usually is disregarded.

4.9. Other Problems and Methods

In this section we give just a brush treatment to other paths of research on the control of chaotic
processes. We first note that important areas of research such as synchronization of the chaotic
systems and control of chaos in distributed (space–time) systems were left out of the scope of this
review for reasons of space. They are discussed in an extensive literature including some reviews
such as [75, 76, 105, 106, 155, 232]. The following problems and methods of control of chaos deserve
mentioning here.

Controllability. Although controllability of the nonlinear system is well studied, only few results
were obtained on the reachability of the aim of control by small control actions, see [50, 77, 88,
120, 275]. The general concept that the more “unstable” (chaotic, turbulent) the system, the
“simpler” or “cheaper” its precise or approximate controllability, was illustrated in [193].

Chaotization. The problem of system chaotization by feedback—also called the problem of
“chaos synthesis,” “chaos generation,” or “anticontrol of chaos”—lies in constructing a control al-
gorithm providing chaotic behavior of the system trajectories. At that, additional requirements can
be imposed on the system characteristics. This problem which occurs in the broadband communi-
cation systems, computer applications, and so on, is in essence that of generating pseudorandom
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numbers and processes. Studies of the methods of generation of the chaotic signals can cast light
on the mechanisms of biological systems such as the mechanisms of heart and brain activity.

This problem was first formulated in 1994 by A. Vanecek and S. Celikovsky [276] who proposed
a scenario of chaotization for the Lur’e systems with monotone odd feedback nonlinearity. The
Vanecek–Celikovsky scenario lies in choosing the poles s1, . . . , sn and zeros z1, . . . , zn−1 of the
transfer function of the linear part so that for all k, 0 < k <∞, the linear system embraced by the
feedback u = ky features the following: partial instability (presence of the poles both with positive
and negative real parts); hyperbolicity (lack of poles on the imaginary axis); dissipation (negative
sum of the real parts of the poles); and nonpotentiality (presence of poles with the zero imaginary
part). Presence of chaos is established using the Shil’nikov theorem. The approximate chaoticity
criterion [134] based on the method of harmonic balance can be used for chaotization.

In 1999, X.F. Wang and G. Chen [281] advanced a method based on the Marotto theorem [201]
which is the multidimensional counterpart of the Sharkovrkii–Li–Yorke chaoticity criterion. For
the discrete systems of the form xk+1 = f(xk) + uk, a feedback of the form uk = εg(σxk), ε > 0,
σ > 0, where the function g(x) has a sawtooth or sinusoidal form, is constructed. By choosing a
rather great σ, the stable equilibrium x = 0 is made unstable while retaining—as is required by
the Marotto theorem—convergence at least of one trajectory to the point x = 0 in a finite number
of steps. At that, the maximum value of |uk| can be made arbitrarily small by an appropriate
choice of ε. The problem of chaotization of various discrete and continuous systems was studied
by G. Chen and his collaborators [278–280] and other authors [17, 41, 181].

Other aims of control that were discussed in the literature include provision of process charac-
teristics such as the mean period of oscillations [118]; fractal dimension [248]; invariant measure
[53, 77, 138]; and Kolmogorov entropy [230]. A method of solving the problems of the so-called
tracking chaos, that is, tracking of a nonstationary unstable orbit, was proposed in [256]. It is
based on the method of continuation for solution of nonlinear equations [254]. The latest results
in this area are generalized in [255].

Identification of chaotic systems is discussed in a number of papers. Their majority makes use of
the traditional methods of identification. Presence of chaos was shown to be helpful in parameter
estimation and improvement of convergence of this process [112, 158, 205, 233, 239, 272].

Chaos in the control systems. The problems of control of chaos are distinct from the problems
of studying chaos in the control systems. Publications on this issue appeared as early as in the
1970’s. They considered the possibility of chaotic behavior in the traditional linear [197], nonlin-
ear [60], and adaptive [199] feedback control systems. Among the latest results, the conditions for
origination of chaotic modes in the nonsmooth systems of the second order [52], higher-order hys-
teresis systems [41], pulse systems with pulse-width modulation [17], and some mechanical feedback
systems [109, 140] deserve mentioning. The work [277] demonstrated that chaos can be conductive
to better control.

CONCLUSIONS

Control of chaos remains an area of intensive research. The three pioneering and most powerful
domains of study such as open-loop control (vibrational) control, linearization of the Poincaré map,
and time-delayed feedback are actively explored. Nevertheless, they face numerous unsolved prob-
lems concerned mostly with substantiation of methods. The well-developed methods of nonlinear
and adaptive control should be used carefully because of smallness of the control action. Disregard
of this requirements may produce an impression of simplicity of the problem. From the point of
view of “small control,” the methods based on passivity offer an advantage because they allow one
to attain the goal independently of the gain.
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Interestingly, even now, a decade after the appearance of this area the majority of publications
on control of chaos appear in physical journals. On the contrary, the number of papers in the
journals devoted to automation and control is small. For example, of more than 1,700 papers
presented at the 15th Triennial World Congress of IFAC (Barcelona, 2002) only ten had the word
“chaos” in their titles.

Yet the number of applied physical and engineering problems where the methods of control of
chaos can be used is steadily increasing, which allows us to predict a growth of interest to the
methods of control of chaos and their further development. The second part of the present review
will be devoted to some most interesting applications.
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