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Modeling and simulation of chaotic system with dynamic control have been extensively presented in the past decades. Several
control techniques have been proposed for the control of chaos. One technique that has not been su�ciently explored for the
control of nonlinear systems is the controller identi	cation technique.�is technique is based on the evaluation of controllers even
if they are not online. �is technique does not use a priori knowledge of the plant parameters. In this work, we propose a class of
controllers candidates to follow desired trajectories. Simulation results are presented for the control of chaotic systems.

1. Introduction

Phenomena which exhibit chaotic behavior appear in sev-
eral areas, attracting researchers which try to describe this
behavior through mathematical equations and to control its
dynamic.

�e search for e�cient control techniques of nonlinear
systems continues to be a challenge to researchers. Among
a variety of controllers used in dynamical systems, propor-
tional integrative derivative (PID) is the most common and
practical to be adopted by control engineers. Since the PID
controllers are commonly used in industrial control systems,
they are usually adjusted by empirical methods. On the
other hand, there are more sophisticated control techniques
involving complex theoretical developments, which impose
very restrictive hypothesis on the systems to be controlled, as
nonlinear control techniques.

�e theoretical success of robust control led many
researchers to say that control should focus on the plant
parameter estimation and its bounds. However, other re-
searchers in the control area, such as Safonov and Tsao [1],
become unsatis	ed with the robust control paradigm, which
required the control of a family of plants instead of the
control of one, which would lead to conservative results.�ey
stated that it was time to reformulate the control problem.
A 	rst formulation was the unfalsi	ed control [1, 2]. �is
control has two major characteristics: it advances from plant

parameter estimation to controller parameter estimation [3]
and it considers model falsi	cation in the sense of Popper
instead ofmodel validation [4, 5].�is was a 	rst formulation
of the controller identi	cation problem, which in general
considers a list of candidate controllers and a criterion to
judge the performance of these controllers without needing
to put them online [6].

In fact, there are few control techniques which require
minimal information on the systems to be controlled. Among
these techniques we can cite the ones based on the unfalsi	ed
control paradigm and the controller identi	cation technique
[2, 6].�e unfalsi	ed control paradigm allows us to formulate
the control problem based on experimental data [7]. �e
advantage of this technique, when compared to others, is
that it does not require a priori knowledge of the state or
physical properties of the plant.�is fact illustrates a potential
to be explored through the use of the controller identi	cation
technique, which can also be used for the control of nonlinear
dynamical systems.

�e main goal of this work is to use the controller iden-
ti	cation technique to control the trajectories of dynamical
systems with chaotic behavior.�e novelty of this approach is
that the plant is treated as a model free plant which accounts
for any model mismatches and that we try to identify a low
order controller for a complex system.

�e proposed technique will be applied to control a
Rössler [8], a Lotka–Volterra three-species system [9–11], and
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a Rössler hyperchaos model [12]. In the literature we can 	nd
several works dealing with control of chaos. We highlight
those related to the control of the Rössler system [13, 14] and
the predator-prey systems [15–17]. In general, one can observe
in these applications that the controllers used are of propor-
tional kind. In the sameway, in thisworkwe use the controller
identi	cation technique applied to the proportional case.
More precisely, given a class of candidate controllers, we
identify the ones that present the best performance. �e
proportional control parameter is periodically modi	ed.�is
update is made in order to put a better controller online.
�ere are several ways to update the control parameters, the
one chosen in this work is the step; that is, a�er a certain time,
the control parameters are updated.

Numerical simulation is presented to illustrate the e�ec-
tiveness of the proposed technique.�ese simulations regard
the systems previously cited with the requirement of follow-
ing a desired trajectory. �e controllability of each system is
calculated, which allows us to show that the proposed control
technique preserves the locally complete state controllability
of the nonlinear controlled systems.

�is paper is organized as follows. In Section 2, the tech-
nique of controller identi	cation is presented. In Section 3, a
brief explanation of local controllability is presented and the
proposed technique is applied to control the chaotic Rössler,
predator-prey, and Rössler hyperchaos systems with simula-
tions. In Section 4, some concluding remarks are given.

2. The Controller Identification Technique

A general overview of the controller identi	cation technique
can be found in [6]. According to this technique, the only
plant information used is the plant experimental data. For
the cases presented in this work, we need only the reference
functions � and the data � (from the dynamical system)
to obtain the control �. Given a desired behavior, a class
of candidate controllers is proposed. �en, a controller is
selected through the use of a performance index and the
	ctitious reference concept. In this work, we apply the
controller identi	cation to a class of proportional controllers
and the respective mathematical development follows below.

�e control law for a proportional controller is given by

� = � (� − �) (1)

and, consequently, the 	ctitious reference is given by

�� = �� + �, (2)

where� is a constant.
�e performance index is given by

� = ∫�
0
(� − 
� ∗ ��)2 �
, (3)

where ��(�) is a transfer function of desired behavior and
� is its inverse Laplace transform

� = L

−1 [�� (�)] . (4)

�eorem 1. Among the controllers of class (1), the one that

minimizes the performance index (3) is �̂ given by

�̂ = �� , (5)

where

� = ∫�
0
(� − ��) ���
, (6)

� = ∫�
0
(��)2 �
, (7)

�� = 
� ∗ �, (8)

�� = 
� ∗ �, (9)

with “∗” denoting the convolution operation.

Proof. From (1), the 	ctitious reference is given by (2), where� is a constant.
Using (8) and (9) we have that

� − 
� ∗ �� = � − 
� ∗ ( �� + �) , (10)

� = ∫�
0
(� − 
� ∗ ��)2 �
 = ∫�

0
(� − ��� − ��)2 �


= ∫�
0
(�2 + (��� )2 + �2� − 2���� − 2���

+ 2����� )�
 = � − 2 �� + ��2 ,
(11)

where

� = ∫�
0
(� − ��)2 �
,

� = ∫�
0
(� − ��) ���
,

� = ∫�
0
(��)2 �
.

(12)

�e minimization of the performance index means 	nd-
ing� that satis	es the equation:

���� = 2 ��2 − 2 ��3 = 0, (13)

which leads to our estimator for the proportional constant

�̂ = �� . (14)

One can note that �̂ = �/� is the multiplicative constant
of control functions �. In order to obtain the simulation
results, �̂ will be periodically updated. �e objective is to
minimize the di�erence between the measured � and the
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Figure 1: Block diagram for the proposed control system.

desired ��. We used a continuous time formulation for the
dynamical systems.

From (1)–(4) and�eorem presented above, we obtained

the constant �̂ that determines the proportionality constant
of the optimal control function �, given by (1). �is devel-
opment can be extended to any odd power of the control
function �. �us, if � is an odd number, we replace (1) and
(2):

� = (� (� − �))�. (15)

Isolating � produces
�√� = � (� − �) ,
�� = �√�� + �. (16)

�en (8) and (10) are rewritten as

�� = 
� ∗ �√�, (17)

� − 
� ∗ �� = � − 
� ∗ ( �√�� + �) , (18)

respectively. �e other equations are not modi	ed.
�e controller identi	cation technique can be translated

to the following procedure.

Step 1. De	ne the space-state from the dynamical system.

Step 2. Obtain the experimental data of the system �(�); that
is, de	ne �(0) = �0 and choose the desired trajectories � and
initial�.

Step 3. Integrate system (10)–(12).

Step 4. Find �̂.

Step 5. Update the input of the system �(�) with results
obtained in the previous step. Go to Step 3.

Step 6. A�er reaching the number of iterations previously

stipulated to update �̂, update it and go to Step 2.

Step 7. �e simulation ends when the number of iterations
has been reached.

Figure 1 shows a block diagram of the proposed control.

3. Control of Chaos Using
Controller Identification

Simulation results are considered for three nonlinear dynam-
ical systems: Rössler, Lotka–Volterra predator-prey for two
preys and one predator, and Rössler hyperchaos, all systems
being dimensionless. We consider independent control laws
for each equation of the system. In controlled dynamic
systems, the most common way to write the control function
u = K(r − y) is given by

�� = �� (�̃� − ��) , ! = {1, 2, . . . , �} , (19)

where � is equal to the number of system equations. �e
references are � = �̃� and the entries are � = ��. In

[13], the control laws present proportional coe�cients, but
the equation is not independent because � depends on all
variables.

�e so�ware Matlab and Runge-Kutta of fourth order
were used in the simulations. For the two systems, the
values obtained from (6)–(12) and the state � were computed
concomitantly. A vector " was created to be used in the
integration process of the Runge-Kutta function, de	ned as

" = [�1 �2 ⋅ ⋅ ⋅ �� | ��1 ��1 �1 �1 �1 ⋅ ⋅ ⋅ ��� ��� �� �� ��]� . (20)

�e initial state is given by

" (0) = "0, (21)

and the initial values�� are
�� = [�1 �2 ⋅ ⋅ ⋅ ��]� . (22)
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�e transfer function��(�) is
�� (�) = 1� + 1 . (23)

In each case below, the reference to the system, containing
the desired trajectory, will be represented by a vector �̃� as
follows:

�̃� = [�̃1 (�) �̃2 (�) ⋅ ⋅ ⋅ �̃� (�)]� . (24)

3.1. Local Controllability. Nonlinear systems can be written
using direct parameterization to bring the nonlinear dynam-
ics to the state-dependent coe�cient (SDC) form

ẋ = A (�) x + Bu, (25)

where A(�) is a state-dependent matrix. �e design proce-
dure consists of using direct parameterization of A(�) to
bring the nonlinear system to a linear structure having state-
dependent coe�cients (SDC)%(�) = A(�)x. In general,A(�)
is unique only if � is scalar. �en, many possibilities exist for
SDC parameterizations if � is not scalar.

�e proposal is to show that the pair [A(�),B] is a
controllable parameterization of the nonlinear system (25) in
a region where� is updated, such that [A(�),B] is pointwise
controllable in the linear sense.

For each update of �, we consider the local controlla-
bility of the system. �is idea is similar to locally optimal
control from the state-dependent Riccati equation control
[18, 19]. In the two cases that follow, we will show that the
control technique, proposed here for the nonlinear dynamical
systems, produces systems that are locally completely state
controllable.

3.2. Case 1: Application to the Control of the Rössler System.
Rössler system [8] is given by

�̇1 = −�2 − �3,
�̇2 = �1 + &�2,
�̇3 = & + �3 (�1 − ') .

(26)

Di�erential equations (26) de	ne a continuous time
system with chaotic behavior for & = 0.2 and ' = 5.7.
Notice that the third equation presents a nonlinearity �3�1.
An interesting aspect of this system is its complex dynamical
behavior in contrast with the simplicity of the description of
its vector 	eld. �e phase portrait of Rössler system is shown
in [8].

�e system with control can be written as [13]

�̇1 = −�2 − �3 + �1,
�̇2 = �1 + &�2 + �2,
�̇3 = & + �3 (�1 − ') + �3.

(27)

Here, the objective of control strategy �� is to drive system
(27) from any initial state ��0 to desired trajectories �̃�. �e
desired trajectories are given by

�̃� = [5 + cos (�) 1 + sin (�) 1 + sin (�)]� , (28)

which represents a limit cycle in the phase diagram.
�e initial values for �1, �2, and�3 were

�� = [10 10 10]� . (29)

In order to obtain the simulation results, the values of�1,�2, and �3 were periodically updated on each 0.5 from 0 to
100.

Figure 2 presents the desired trajectories �1, �2, �3 and the
trajectories of the controlled system (27).

One can observe convergence with a residual error in the
third component �3. Figure 3 presents the phase portrait for
the controlled Rössler system.

From Figure 3 we can notice convergence to the limit
cycle given by �̃�.

�e local controllability for the Rössler system (27) can
be obtained by rewriting the system in the state-dependent
coe�cients form (25). One possible parameterization for (27)
is

ẋ = [[[[
[

0 −1 −1
1 & 0&�1 0 �1 − '

]]]]
]
[[
[
�1�2�3
]]
]
+ [[
[
1 0 0
0 1 0
0 0 1

]]
]
[[
[
�1�2�3
]]
]
, (30)

for �1 ̸= 0.
�e rank of the controllability matrix is computed for

each update of �. It has value of 3, which means that the
nonlinear system (27) is locally completely state controllable.

3.3. Case 2: Application to the Control of the Biological
Lotka–Volterra System. �ebiological Lotka–Volterra model
describes populations in competition [11]. �e general form
of this model is given by

�̇� = ��(;� − �∑
�=1

'����) , ! = 1, 2, 3, (31)

where �� is density of the species ! at time �, � is the number
of species interacting in the system, ;� is the reproduction
or mortality rate, and '�� are predation, competition, or
conversion rates. For two preys and one predator, or the two
hosts and one parasitoid, the model becomes

�̇1 = �1 (;1 − '11�1 − '12�2 − '13�3) ,
�̇2 = �2 (;2 − '21�1 − '22�2 − '23�3) ,
�̇3 = �3 (;3 − '31�1 − '32�2 − '33�3) .

(32)



Mathematical Problems in Engineering 5

x

x1

r1

x2

r2

x3

r3

50 1000

t

50 1000

t

50 1000

t

−1

0

1

2

3

4

5

6

7

−1.5

−0.5

0

0.5

1.5

−2

0

2

4

6

8

10

12

Figure 2: Temporal trajectories of the controlled system (27) and reference (28).
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Figure 3: Phase portrait for the controlled Rössler system.

According to Gilpin [9] and Vance [10], system (32) is
nonlinear and exhibits chaotic behavior for the following
model coe�cients: ;1 = ;2 = −;3 = 1, '11 = '12 = 0.001,'22 = 0.001, '21 = 0.0015, '13 = 0.01, '23 = 0.001, '31 =−0.005, '32 = −0.0005, and '33 = 0. �e trajectories and the
strange attractor of system (31) are shown in [16].

�e controlled Lotka–Volterra system proposed is
described by

�̇1 = �1 (;1 − '11�1 − '12�2 − '13�3) + �1,
�̇2 = �2 (;2 − '21�1 − '22�2 − '23�3) + �2,
�̇3 = �3 (;3 − '31�1 − '32�2 − '33�3) + �3.

(33)

�e objective of control strategy �� is to drive system (33)
from its initial state

�� (0) = ��0, (34)

to the desired 	xed point [20], or constant trajectories

�̃� = [4 10 5]� , (35)

while minimizing performance criterion (11).
�e initial values for �1, �2, and �3 were the same as in

Case 1.�e total simulation time was of 100with�1,�2, and�3 update on each 0.5.
Figure 4 shows the time series of the controlled

Lotka–Volterra system with initial densities (2, 5, 2).
From Figure 4, one can observe that the trajectories are

practically controlled when � = 20. Figure 5 shows the phase
portrait behavior of the controlled Lotka–Volterra system
(33).

�e performance index for the controllers change of the
controlled Lotka–Volterra system is shown in Figure 6.

One can observe from Figure 6 that performance index
has minimal variation a�er 100 (or constant trajectory),
which leads us to conclude that it stabilizes at this value.
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�e local controllability for the Lotka–Volterra system
(33) can be checked by rewriting the system in the state-
dependent coe�cients form (25), parameterized by

ẋ = [[
[
;1 − '11�1 −'12�1 −'13�1−'21�2 ;2 − '22�2 −'23�2−'31�3 −'32�3 ;3 − '33�3

]]
]
[[
[
�1�2�3
]]
]

+ [[
[
1 0 0
0 1 0
0 0 1

]]
]
[[
[
�1�2�3
]]
]
.

(36)

�e rank of the controllability matrix is computed for
each update of �. It has value 3, which means that the
nonlinear system (33) is locally completely state controllable.

3.4. Case 3: Application to the Control of the Rössler Hyper-
chaos System. Rössler hyperchaos system [12] is given by

�̇1 = −�2 − �3,
�̇2 = �1 + &1�2 + �4,
�̇3 = &2 + �1�3,
�̇4 = −&3�3 + &4�4.

(37)

�e 4D di�erential equations (37) de	ne a continuous
time system with chaotic behavior for &1 = 0.27857, &2 = 3.0,&3 = 0.3, and &4 = 0.05. As in the Rössler 3D system, the third
equation presents a nonlinearity �1�3. �e phase portraits
of system (37) are shown in Figure 7, in four di�erent
combinations of coordinate axes.

�e 4D system (37) with control can be written as

�̇1 = −�2 − �3 + �1,
�̇2 = �1 + &1�2 + �4 + �2,
�̇3 = &2 + �1�3 + �3,
�̇4 = −&3�3 + &4�4 + �4.

(38)

Analogously to the previous cases, the control strategy�� drives system (38) from any initial state ��0 to desired
trajectories �̃�. �e desired trajectories are given by

�̃� = [5 + cos (�) sin (�) sin (�) 3 + sin (�)]� . (39)

�e initial values for �1, �2,�3, and�4 were
�� = [0.0001 0.0001 0.0001 0.0001]� . (40)

In order to obtain the simulation results, the values of��
were periodically updated on each 0.1 from 0 to 80.

Figure 8 presents the desired trajectories �1, �2, �3, �4 and
the trajectories of the controlled system (38).

One can observe in Figure 8 that there is convergence of
the trajectories to the desired references.

�e local controllability for the 4D Rössler system (38)
can be obtained by rewriting the system in the state-
dependent coe�cients form (25). As in the previous cases,
the rank of the controllability matrix was computed for each
update of� as having value 4, whichmeans that the nonlinear
system (38) is also locally completely state controllable.

Using the controller identi	cation technique in the sys-
tems with chaotic behavior requires particular care in the
choices of the initial conditions and the initial values of�. Although not shown in this work, several tests were
performed with di�erent choices of initial conditions and
initial �. Each change in choices generates di�erent control
performances. �erefore, it is up to the control designer to
analyze these initial data in order to better control the system.

4. Conclusions

In this paper we presented the controller identi	cation tech-
nique applied to 	nd proportional controllers for nonlin-
ear systems with chaotic behavior. Simulation results were
presented to illustrate the e�ectiveness of the technique. We
observe convergence to the desired trajectories.

From the simulation results obtained, one can note that
the controller identi	cation technique is useful for the control
of chaotic systems. Nevertheless, the results are dependent
on the initial parameters � and on the periodicity of the
updating of �, which may indicate that the technique is
not so robust in spite of its simplicity. In addition, we
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Figure 8: Temporal trajectories of the controlled system (38) and reference (39) with initial conditions (0, 0, 0, 10).

noted also that the controller for each system has its own
peculiarities, which needs to be taken into account in each
simulation. It is possible that one cannot 	nd a general proof
that the controller identi	cation technique works for any
nonlinear systems. However by the simplicity of application
of the technique, we expect that it can be successfully used
in other cases. It was shown in the simulations that the
proposed control technique controls nonlinear systems that
were locally completely state controllable.

Trying to improve the performance of the systems pre-
sented, higher order candidate controllers were used, but the
performance was not improved. �is leads us to believe that
the results for the linear case represent a good illustration of
the technique. Moreover, through the use of a simple control
law,we could present the use of the technique in an illustrative
way.
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Caótico de Lotka-Volterra,” TEMA - Tendências emMatemática
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