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Although the control of multistability has already been reported, the one with preselection of the desired attractor is still
uncovered in systems with more than two coexisting attractors. ,is work reports the control of coexisting attractors with
preselection of the survived attractors in paradigmatic Chua’s system with smooth cubic nonlinearity. Techniques of linear
augmentation combined to system invariant parameters like equilibrium points are used to choose the desired surviving attractors
among the coexisting ones. Nonlinear dynamical tools including bifurcation diagrams, standard Lyapunov exponents, phase
portraits, and cross section of initial conditions are exploited to reveal the selection scenarios of the survived attractor in the
multistability control process of Chua’s system. ,e main crisis towards annihilation of multistability in Chua’s system when
varying the coupling strength is interior crisis and border collision. ,eoretical and numerical results obtained are further
validated with PSpice analysis.

1. Introduction

In the study of nonlinear dynamic systems, the simultaneous
existence of attractors (finite or infinite), also known as
multistability [1–13], extreme multistability [14–16], or
megastability [17], is now in the forefront. Recall that the
famous Chua’s circuit is among the widely studied electronic
circuits capable to display chaos [18]. When Professor Leon
Chua introduced that circuit, it was intentionally built in
such a way that three equilibria of the model were unstable.
Based on the local stability of each point, the circuit was able
to exhibit a double-scroll chaotic attractor [18]. During the

investigation of this oscillator, the main challenge was to
design the nonlinear part called Chua’s diode. Using op-
amps [19], diodes [20], transistors [21], current feedback op-
amps [22], and inductor free CNN (cellular neural network)
cells [23], many experimental results were reported on the
realization of Chua’s diode. Finally, by exploiting two-stage
op-amp-based negative impedance converters (NICs) in
parallel, a usual implementation of Chua’s diode was pro-
posed and accepted as a standard [19]. Also in [24], Bao and
collaborators, during their investigation, found that, with an
unstable zero saddle point and two symmetric stable non-
zero node-foci, improved Chua’s circuit can also generate a
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self-excited chaotic attractor. Very recently, exponential
sampled-data control for T-S fuzzy systems with application
to Chua’s circuit has been explored [25]. Of particular in-
terest, Chua had also presented the ability to display the
coexistence of multiple attractors for the same set of system
parameters but using different initial conditions [24]. ,is
coexistence of attractors is sometimes undesirable and needs
to be avoided; hence, the investigation was carried out in this
work.

Remark that these coexisting solutions in a given non-
linear dynamics system can be self-excited or hidden. Recall
that an attractor is called a self-excited attractor if its basin of
attraction intersects with any open neighborhood of an
unstable fixed point. Otherwise, it is called a hidden attractor
[26]. On the contrary, hidden solutions have attraction basin
which does not overlap with the neighborhood of an
equilibrium point, and thus may be difficult to find nu-
merically [11, 27–34]. However, the localization of the latter
was made possible using an algorithm proposed by Leonov
et al. [35]. Such system types (with hidden attractors) can be
potentially dangerous and very unpredictable (unrelated to
butterfly effect). ,e multistability of the nonlinear system
means that the system is able to exhibit different types of
coexisting stable states and different forms of attraction
basin for an identical set of system parameters but using
different initial conditions [2–4, 8, 14, 36, 37]. Since the
coexistence of attractors has been commonly used in image
processing [16, 38], it becomes very urgent to control this
phenomenon when, sometimes, periodic and chaotic orbits
exist simultaneously. Up to date, the prominent methods
reported in the relevant literature which enable to turn a
multistable system to a monostable system are the noise
selection [39], pseudo-forcing [12], short pulses [40], har-
monic perturbation [41], intermittent feedback [42], tem-
poral feedback [43], and linear augmentation [2, 3, 44–50].
Except for the temporal feedback and linear augmentation
methods, in almost all other existing methods, the control is
applied to one parameter of the system to remove on the
attractors for all initial points. ,us, external control such as
the temporal feedback or linear augmentation method
would be preferred. Recall that, in many bistable dynamical
systems, only one of the stable states is desired to track
certain system performance. In this regard, Sharma et al.
[47] presented control of some bistable systems with an-
nihilation and selection of attractors using the linear aug-
mentation scheme.,is work has been carried out using two
well-known paradigmatic systems that are the autonomous
Chua oscillator and a neuronal system. Furthermore, the
linear augmentation method has been successfully used in
[46] to control the bistability property exhibited by the
Lorenz–Rössler system. In 2015, the same research team [45]
exploited the linear control scheme to stabilize a system to a
fixed-point state even when the original system did not have
any fixed point. Recently, in [43], the authors proposed the
method of temporal feedback in autonomous as well as
nonautonomous systems to target the coexisting attractor.
,e experimental realization of the introduced method was
also addressed. However, all these results were based only on
bistable systems.

Very recently, Fonzin Fozin et al. [2] investigated the
annihilation of the coexistence of multiple stable states in a
self-excited memristive hyperchaotic oscillator based on the
linear augmentation method. Exploiting nonlinear analysis
tools such as bifurcation diagrams, Lyapunov exponent
spectrum, phase portraits, basins of attraction, and relative
basin sizes, the authors show that when increasing the
control parameter, the bifurcation routes followed by each of
the three coexisting attractors were progressively merged in
order to give a unique diagram. ,e results of the authors
show that, for higher values of the control parameter, the
multistable system with up to three coexisting attractors
becomes a monostable one with only one surviving attractor.
,e same result was found when the same research team was
addressing the control of multistability (involving three
disconnected attractors) in simplified canonical Chua’s
oscillator with smooth hyperbolic sine nonlinearity using the
linear augmentation scheme [3, 44]. Much recently, Tabe-
koueng Njitacke et al. [50] investigated the coexistence of
firing patterns and their control in two neurons coupled
through an asymmetric electrical synapse. ,eir numerical
results show the effectiveness of the control strategy through
annihilation of the periodic coexisting firing pattern. ,ey
found that, for higher values of the coupling strength, only a
chaotic firing pattern survives. From these results, it can be
seen that intensive works have been done on the multi-
stability control of the nonlinear oscillators based on the
linear augmentation method. Remark that all these suc-
cessful results on the control of multistability were per-
formed so far only on systems with unique equilibrium point
[2, 3, 44, 50]. ,is unique equilibrium point excludes the
possibility to target/select a desired attractor during the
multistability control process. Henceforth, we propose in
this work the following:

(a) To exploit the linear augmentation method to track
and select one attractor among the four coexisting
attractors using each of the three equilibrium points
of the model

(b) To design an analog electronic circuit of controlled
Chua’s oscillator to further support the numerical
investigation

,e layout of the paper is as follows: in Section 2, we
recall some basic properties of Chua’s oscillator with a
smooth nonlinearity. In Section 3, numerical tracking of the
coexisting attractors using usual nonlinear dynamics tools is
addressed. In Section 4, the linear augmentation scheme is
exploited to track each of the three coexisting attractors
which survive around each of the three equilibriums points.
,e circuit realization of the investigated model is provided
in Section 5. In Section 6, some conclusions are summarized.

2. Description of Chua’s Oscillator with
Smooth Nonlinearity

Chua’s oscillator with smooth cubic nonlinearity in which
multistability is controlled in this work is given by di-
mensionless equation (1) as follows [5, 51]:
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dx

dt
� kα(y − x − f(x)),

dy

dt
� k(x − y + z),

dz

dt
� k(− βy − cz),



(1)

where the nonlinear function f(·) is defined as

f(x) � ax3 + bx. (2)

,e parameter values used in this work are the ones of
the model studied in [5] and are set as c � − 0.75087096,
a � − 0.0375582129, b � − 0.8415410391, and k � − 1 with β
and α being tunable. As it can be seen in equation (1), the
model remains identical under the substitution
(x, y, z)⇔(− x, − y, − z). ,e stable state generated by the
model will appear in symmetric pairs in (x, y, z) to re-es-
tablish the real symmetry of the model. If not, the stable
states produced will remain symmetric if the real symmetry
of the attractors has already been re-established. ,is ap-
proach has been widely exploited recently to find coexisting
attractors in symmetrical systems such as jerk [6, 8, 52–56],
hyperchaotic and chaotic Chua’s oscillators [3, 44, 57–59],
Hopfield neural networks [10, 36, 60, 61], and Duffing os-
cillator [9], just to name a few. In addition, it is easy to show
that the model processes three equilibrium points given by
the following expression: S0 � 0 0 0( ), and S1,2 �
( ± x1, ( ± xc/c + β), ((∓xβ)/(c + β))), in which x is given

by x �
��������������������
(1/a)((c/β + c) − 1 − b)

√
.

3. Selection of Coexisting Attractors:
A Numerical Approach

3.1. Computational Method. In this section, we will use
traditional nonlinear analysis tools such as bifurcation di-
agrams, graph of maximum Lyapunov exponent, phase
portraits, two-parameter diagrams, standard Lyapunov
stability diagrams, and attraction basins to hunt down
windows in which controlled Chua’s oscillator with a
smooth nonlinearity exhibits either hysteretic dynamics of
parallel bifurcation branches. ,ese various tools are
computed using the Runge–Kutta formula in Turbo Pascal
software with variables and constants chosen in the extended
precision mode. In this contribution, we use a constant time
grid of Δt � 0.002, and investigations are carried out for a
very long time. In this way, the transient behavior is sup-
pressed. Some bifurcation diagrams in this work are com-
puted either by increasing the control parameter stating
from different initial conditions or using an upward and
backward continuation technique. ,ese methods are the
best for finding windows in which the model displays the
coexistence of bifurcations. Graph of Lyapunov exponent is
calculated using the algorithm proposed by Wolf et al. [62].
Two-parameter diagrams and standard Lyapunov stability
diagrams are computed by varying simultaneously two
system parameters with making up of suitable colorful

diagrams. ,ese previous diagrams, as well as the basins of
attraction, are obtained by numerically computing the
maximum Lyapunov exponent on a grid of 350× 350 values
of the chosen space parameters.

3.2. Parallel Bifurcation Branches and Coexistence of Multiple
Attractors. In the study of nonlinear dynamical systems, the
coexistence of attractors for the same set of system pa-
rameters but using different initial conditions is known as
multistability. Two curious and striking manifestations of
such behavior are extreme or hidden extreme multistability
[63, 64] and megastability phenomenon [17]. ,is phe-
nomenon of multistability has already been found in several
nonlinear systems including the memristor-based oscillator
[8, 16, 57], jerk/hyperjerk systems [55, 56, 65], and hyper-
chaotic Chua’s oscillator [3, 4], just to name a few.

Figure 1 represents a bifurcation obtained when varying
the control parameter in the range 51≤ β≤ 54.5. Two sets of
data with their corresponding graph of maximum Lyapunov
exponent are superimposed. A large window of coexisting
bifurcations which are related with parallel bifurcation
branches is presented. As a result, this superposition of the
bifurcations is the coexistence of multiple attractors for the
same sets of system parameters. For example, when β � 53.6,
Chua’s circuit displays the coexistence of a symmetric pair of
period-4 limit cycles (black and blue) and a symmetric pair
of chaotic attractors (green and red), using different initial
conditions, as depicted on the three-dimensional (3D)
projection of the attractors in Figure 2(a). ,e set of initial
conditions which enable to obtain each of the previous
attractors is provided in Figure 2(b).

For this same value of the control parameter, the
equilibrium points of the oscillator and their stability are
checked as follows: S0 � 0 0 0( ) with eigenvalues given by
λ1 � 31.0920 and λ2,3 � − 0.1366 ± 7.2349i and
S1,2 � (±2.1441,∓0.0305,∓2.1746) with eigenvalues given
by λ1 � 22.6638 and λ2,3 � − 0.2219 + 7.1926i. Since the ei-
genvalues of the investigated model around the fixed points
are unstable for the set of the parameter used for the study
and its basin of attraction intersects with any open neigh-
borhood of an unstable fixed point, we conclude that the
coexisting attractors found are self-excited [26]. When
β � 53.8, Chua’s circuit displays the coexistence of a sym-
metric pair of period-2 limit cycles (black and blue) and a
symmetric pair of chaotic attractors (green and red), using
different initial conditions, as depicted on the three-di-
mensional (3D) projection of the attractors in Figure 3(a).
,e basin of attraction associated to each coexisting attractor
is provided in Figure 3(b). ,e equilibrium points of the
model as well as the eigenvalues for that discrete value of the
control parameter are given as S0 � 0 0 0( ) with eigen-
values given by λ1 � 31.0919 and λ2,3 � − 0.1366 ± 7.2485i
and S1,2 � (±2.1438,∓0.0303,∓2.1741) with eigenvalues
given by λ1 � 22.6662 and λ2,3 � − 0.2218 + 7.2061i, which
further supported the unstable nature of the equilibria. From
this attraction basin of Figures 2(b) and 3(b), it can be
observed that each attractor has its set of initial conditions
which intercepts with the one of its direct neighbor. For each
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basin of attraction, zones of unbounded motion are marked
with yellow color, whereas the pair of coexisting attractors is
painted in red and green, while the pair of periodic attractors
is painted in blue and black.

4. Control of Coexisting Attractors Using the
Linear Augmentation Method

4.1. Description of the Control Method. From the already
published works [45–49], the theory of the linear aug-
mentation control method consists of coupling the

nonlinear system displaying multistable behavior with a
linear system (V) as depicted by equation (3). Remark that
the choice of scalar control was guided by recent results of
control and synchronization on chaotic systems [66, 67].
Indeed, it has been demonstrated that control and syn-
chronization of the chaotic system using scalars offer great
flexibility than vectors. In fact, the drawback of using vector
than scalar for control or synchronization is that the full
states of the systems are involved in the process. When these
full states of the systems are used, the energy and resource
consumption are high.
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Figure 1: Bifurcation diagram (a) showing local maxima of coordinate x versus β and the corresponding graph (b) of the largest Lyapunov
exponent (λmax) plotted in the range 51≤ β≤ 54.5. Two sets of data are superimposed. ,e diagram in black is obtained when the control
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Figure 2: ,ree-dimensional projections of the coexisting attractors in the (x(0), x, y) plane. (a) Coexistence of four different attractors (a
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_X � F(X) + δV,
_V � − ηV − δ(X − E).

 (3)

In this equation, _X � F(X) represents a standard form
of a nonlinear dynamical system, X is an m-dimensional
vector of the system variable, and F(X) is the vector field
on which it is associated. Parameter δ represents the
connection weight which enables to link the nonlinear
system and the linear one. Vector V stands for the dy-
namics of the linear system _V � − ηV, where η represents
its decay parameter. When the controller is off, i.e., δ � 0,
the linear system tends to zero with an exponential fol-
lowing a decay rate δ.

E represents another key parameter of controlled
Chua’s oscillator which will be used to track the wished
stable state. It is generally selected at the neighborhood of
the equilibria of the uncontrolled system [47]. ,ese stable
states, which can originate from unstable equilibria, are
checked by certain sets of invariants, i.e., coexisting
attractors and existing fixed points. ,e fixed points are
found either in the center of the coexisting attractors or
lying on the boundary separating the basins of attraction
of the stable state. ,en, by considering vector E identical
with one of the unstable fixed points, one can obtain the
death of some of the coexisting stable states through
merging crises when increasing coupling/connection
weight between the coupled oscillators. For superior
values of the connection weight, only one surviving
attractor is obtained which enables the system for chosen
parameter sets to turn from multistable to a monostable
one. ,e controlled scheme presented above is now used
for Chua’s oscillator. Coupling is applied along the x
variable with the coupling strength δ as depicted in the
following equation:

dx

dt
� kα y − x − ax3 − bx( ) + δv,

dy

dt
� k(x − y + z),

dz

dt
� k(− βy − cz),

dv

dt
� − ηv − δ(x − ε).



(4)

,e equilibrium points of controlled Chua’s oscillator
are obtained by solving the following equation:

kα y − x − ax3 − bx( ) + δv � 0,

k(x − y + z) � 0,

k(− βy − cz) � 0,

− ηv − δ(x − ε) � 0.


(5)

After some algebraic manipulations, we obtain the ex-
pression of the equilibrium points as follows:

E1,2,3 � x,
xc

c + β,
− xβ
c + β, −

δ

η
(x − ε)( ), (6)

where x is obtained by solving the following equation:

x3 + x
a

1 + b + δ2

kαn
− c

c + β( ) − δ2ε

akαn
� 0. (7)

Considering p � (1/a)(1 + b + (δ2/kαn) − (c/c + β))
and q � − (δ2ε/akαn), equation (7) becomes

x3 + xp + q � 0. (8)
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Figure 3: ,ree-dimensional projections of the coexisting attractors in the (x(0), x, y) plane. (a) Coexistence of four different attractors (a
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,e roots of (8) can be derived using the Carda-
no–Tartaglia method. According to the Cardano discrimi-
nant [68, 69], if Δ> 0, there is a real root and two complex
roots. Since the fixed point cannot be a complex number,
one equilibrium point exists.

x0 �
− 1 + i

�
3

√

2
×

��������
− q
2
+

��
Δ

√
3

√
+ − 1 − i

�
3

√

2
×

��������
− q
2
−

��
Δ

√
3

√
,

(9)

x1 �
��������
− q
2
+

��
Δ

√
3

√
+

��������
− q
2
−

��
Δ

√
3

√
, (10)

x2 �
− 1 − i

�
3

√

2
×

��������
− q
2
+

��
Δ

√
3

√
+ − 1 + i

�
3

√

2
×

��������
− q
2
−

��
Δ

√
3

√
,

(11)
where Δ � (q/2)2 + (p/3)3.

If Δ � 0, equation (8) would have two real roots. Finally,
if Δ< 0, there are three real roots in equation (8), which
manifests that controlled Chua’s oscillator has three
equilibrium points and can be obtained from equations
(9)–(11). ,e rest of the circuit parameters are the same as
those used in Figure 3. ,e stability of controlled Chua’s
oscillator is provided in Table 1. As it can be seen from
Table 1, for some discrete values of the controller coeffi-
cient, controlled Chua’s oscillator, under the consideration,
conserves its stability, hence its ability to generate self-
excited attractors because of the unstable nature of its
equilibria. It is found that when the coupling strength is
null, there are three values of x, among which the origin S0
and a symmetric pair S1,2. When the coupling strength is
increased, S1 remains uniform, while S0 and S2 are attracted
by decreasing (resp. increasing) the value of the equilib-
rium points S0 and S2.

4.2. Control of Multistability in Chua’s Oscillator. An illus-
trative example of the linear control method is shown in
Figure 4 using the two-parameter diagram and corre-
sponding standard Lyapunov stability diagram in the pa-
rameter space (δ, β). ,e integration method adopted here is
identical with the one used in the previous section. Cyan
color is tied to periodic oscillations, while magenta color is
tied with chaotic motions. Good accordance is observed
between two-parameter diagrams (left) and corresponding
standard Lyapunov stability diagrams (right).,e diagrams
are obtained by sweeping upward (Figure 4(a)) and
downward (Figure 4(b)) both control parameters. From a
general point of view, it can be seen that, on both diagrams,
four regions, namely, (R1), (R2), (R3), and (R4), can be
observed. Regions (R1), (R2), and (R3) correspond to the
set of parameters for which the model displays hysteretic
dynamics which gives birth to the phenomenon of coex-
istence of multiple stable states, whereas (R4) represents
the set of parameters in which the model displays
monostable dynamics, in other words, absence of multi-
stability. ,ese diagrams are very important since they
enable the engineer to have a general overview on the

dynamics of the multistable oscillator when the bifurcation
parameter and the controller coupling strength are both
varying.

Since coupling is introduced along the “x” variable, we
fix ε � 2.1438 which is one among the two nontrivial
equilibrium points. When increasing the control param-
eter δ in the range [0⟶ 0.5] as it can be seen in
Figure 5(a), four sets of data are superimposed in the
bifurcation diagram. Each set of data (marked by red,
black, blue, and green colors) corresponds to the route
followed by each attractor during the control mechanism.
As depicted in Figure 5(a), three crises enable all the
plotted routes to merge along the one in black for higher
values of the coupling strength. In region (D1) of Figure 6
and for very small values of δ (i.e., δ ≈ 0.05), four attractors
coexist including two chaotic attractors (red color and
green color) with two periodic attractors (black color and
blue color).

At the upper boundary of (D1), the diagram in red
(chaotic one) undergoes a merging crisis (first crisis) and
blends with the diagram in blue. In region (D2), because of
the previous merging crisis, there are only three distinct
diagrams that follow their bifurcation sequences (see region
(D2)). For a discrete value δ � 0.15, we have the coexistence
of three disconnected attractors, involving a period-2, pe-
riod-3, and period-4 limit cycle as presented in Figure 6(a).
,e demarcation region of each coexisting attractor in re-
gion (D2) is provided in Figure 6(b). As it can be observed
from Figure 6(b), the basin in blue has already absorbed the
one in red, while the basin in black has started to absorb the
one in green. At the upper boundary of (D2), a crisis (second
crisis) enables the diagram in green displaying period-3 limit
cycle to merge with the diagram in black. In region (D3), we
observe the superposition of two diagrams including a pe-
riodic and chaotic one.

In this region for a discrete value δ � 0.3, Chua’s os-
cillator displays coexistence of a period-2 limit cycle with an
asymmetric chaotic attractor (see Figure 7(a)). ,e basin of
attraction associated with each coexisting attractor is
computed and plotted in Figure 7(b). From this basin of
attraction, it can be observed that the basin in black has
already absorbed the one in green. At the upper boundary of
(D3), a crisis (third crisis) enables the diagram in blue
displaying chaotic behavior to merge with the diagram in
black. In region (D4), when the critical value δ ≈ 0.34, all the
diagrams have already merged with the black one, and the
control goal is achieved as depicted in region (D4) when “ε”
is fixed as ε � 2.1438. We can say that the route followed by
the black diagram (see Figure 7(b)) is a magnetized route
that attracts towards it all the other routes as the control
parameter is increased.

As it can be observed in Figure 5(b), only two crises
enable the control of the multistability around the origin
(ε � 0). At the upper boundary of (D1), the first crisis
enables the diagram in green to merge with the diagram in
black. At the same time, the diagram in red merges with the
one in blue. As presented in (D2), only a symmetrical pair of
attractors coexists. At the upper boundary of (D2), the two
coexisting diagrams undergo a symmetric restoring crisis

6 Complexity



54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

β

0 0.1 0.2 0.3 0.4 0.5

δ

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

0 0.1 0.2 0.3 0.4 0.5

β

δ

(a)

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

β

0 0.1 0.2 0.3 0.4 0.5

δ

54.5

54

53.5

53

52.5

52

51.5

51

50.5

50

β

0 0.1 0.2 0.3 0.4 0.5

δ

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

(b)

Figure 4: Two-parameter diagram (left) and the corresponding standard Lyapunov stability diagram (right) in the (δ, β) plane when
increasing (a) and decreasing (b) both control parameters. Both diagrams show the effectiveness of the controller in the coexisting region for
ε � 2.1438. Other parameters are those of Figure 1.

Table 1: Equilibrium points of controlled Chua’s oscillator, the corresponding eigenvalues, and their stability for some discrete values of the
control parameter.

Control parameter Equilibria Eigenvalues and stability

δ � 0
S0 � (0, 0, 0, 0) 31.0919, − 0.1366 ± 7.2485i, and − 1.0 (unstable saddle focus (USF))

S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6662, − 0.2218 ± 7.2061i, and − 1.0 (unstable saddle focus (USF))
S2 � (− 2.1438,+0.0303,+2.1741, 0) 22.6662, − 0.2218 ± 7.2061i, and − 1.0 (unstable saddle focus (USF))

δ � 0.2
S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6645, − 0.2218 ± 7.2062i, and − 0.9983 (unstable saddle focus (USF))

S0 � (− 0.0304, 4.3e − 04, 0.0308, 0.4348) 31.089, − 0.1366 ± 7.2485i, and − 0.9987 (unstable saddle focus (USF))
S2 � (− 2.1134, 0.0299, 2.1433, 0.8514) 22.9005, − 0.2188 ± 7.2081i, and − 0.9983 (unstable saddle focus (USF))

δ � 0.4
S1 � (2.1438, − 0.0303, − 2.1741, 0) 22.6596, − 0.2220 ± 7.2064i, and − 0.9930 (unstable saddle focus (USF))

S0 � (− 0.1273 , 0.0018, 0.1291, 0.9084) 31.0571, − 0.1369 ± 7.2485i, and − 0.9949 (unstable saddle focus (USF))
S2 � (− 2.0165, 0.0285, 2.0450, 1.6641) 23.6260, − 0.2098 ± 7.2136i, and − 0.9933(unstable saddle focus (USF))
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Figure 5: Bifurcation diagrams showing local maxima of the state variable x versus the control strength δ in the range 0 0.5[ ] of the
controlled system (see equation (4)) showing multistability control with selection of attractors for different values of ε. Four separated
diagrams are superimposed when increasing the coupling strength δ for four different initial conditions. Red is obtained with
(− 0.56; 0; 0; 0), the one in black is obtained for (1.6; 0; 0; 0), blue is obtained with (− 1.6; 0; 0; 0), and the one in green is obtained for
(0.56; 0; 0; 0). (a) For ε � 2.1438, (b) for ε � 0, and (c) for ε � − 2.1438. For these diagrams, η � 1 and β � 53.8. Other parameters are those of
Figure 1.

0.8

0.5

0

–0.5

–0.8

y

2

1

0

–1

–2

x 1.6
0.24

–1.6 x (0)

(a)

1

0.5

0

–0.5

–1

y 
(0
)

–5 0 5

x (0)

(b)

Figure 6: (a) Coexistence of three asymmetric periodic attractors showing multistability phenomenon with the basin of attraction (b) in the
plane (x(0), y(0)) when δ � 0.15.
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and give birth to a unique diagram as depicted in region
(D3).

Now, when tacking the other nontrivial equilibrium
point (ε � − 2.1438), the surviving attractor, when moni-
toring the control parameter, is obtained after three crises.
,ese crises enable all the diagrams to finally merge with the
diagram in blue. ,e details of this control process through
merging of the diagrams are not provided for the sake of
brevity. However, in Figure 8, we have provided some basins
of attraction to illustrate merging of the basins of attraction.
In Figure 8(a), the black diagram of Figure 5(c) has already
merged with the green one. For that same value, the diagram
in blue starts to absorb the one in red. In Figure 8(b), the

diagram in blue has already completely merged with the red
one, and only two coexisting attractors remain.

For δ � 0.5, we have provided the unique attractors
which have survived through the control scheme exhibited
by Figures 5(a)–5(c) in Figure 9(a) and their corresponding
basin of attraction in Figure 9(b). It is found that when the
control, the techniques described in Figure 5(a), is exploited,
the attractor in black is selected. When the control, the
techniques described in Figure 5(c), is used, the attractor in
blue is selected, and the control method displays by Figure
5(b) is used, the attractor in magenta is selected. ,ese
results clearly demonstrate that it is possible to target
attractors based on steady points of the uncoupled system.
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Figure 7: (a) Coexistence of an asymmetric chaotic attractor with a asymmetric periodic-2 limit cycle showing multistability phenomenon
with the basin of attraction (b) in the plane (x(0), y(0)) when δ � 0.3.
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Figure 8: Basin of attractions in the plane (x(0), y(0)) for δ � 0.15 (resp. δ � 0.3) showingmagnetization toward a unique stable state when
the coupling strength is increased according to Figure 5(c).
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Also, it is worth to emphasize here that the result of the
multistability control of up to four coexisting attractors in
Chua’s system addressed in this work has never been pre-
sented before and thus merit to be shared.

5. The Circuit Implementation

In this part of our work, the aim is to be able to set up an
analog circuit that will allow us to make a comparison
between the theoretical/numerical results obtained previ-
ously and the experimental results [8, 10, 27, 61, 70, 71]. ,e
circuit diagram that allows us to perform various simula-
tions in PSpice software is presented in Figure 10.,e circuit
of controlled Chua’s oscillator is designed using four ca-
pacitors C1, C2, C3, and C4, several resistors, eight op-amp
TL082CD, a constant DC source, and two multipliers, which
can be implemented practically using AD633JN versions of
the AD633 four-quadrant voltage multiplier chips used to
implement the nonlinear terms of our model.,e signal (W)
at the output is related to those at inputs X1(+), X2(− ),
Y1(+), Y2(− ), and Z(W � ((X1 − X2)(Y1 − Y2)/10) + Z).
,e circuit equation using Kirchhoff’s electrical circuit laws
can be obtained as

C1

dX

dt
� 1

Rα
− Y + 1

Ra
X3 + 1

Rb+1
X( ) + 1

Rδ
V,

C2

dY

dt
� 1

R
(− X + Y − Z),

C3

dZ

dt
� 1

Rβ
Y + 1

Rc

Z( ),

C4

dV

dt
� − 1

Rη
V − 1

Rδ
X − Vε( ).



(12)

Setting C1 � C2 � C3 � C4 � C � 5 nF, R � Ri � 100KΩ
except Rα, Rb+1, Rc, Rβ, Ra, and Rδ and adopting the rescale
of time t � τRC and variables, X � 1V × x, Y � 1V × y,
Z � 1V × z, andV � 1V × v, system (12) is the same with the
one given in equation (4) with the following expression of
parameters:

Rα �
R

α
� 6.024KΩ,

Rc �
R

c
� 133.178KΩ,

Rβ �
R

β
� 1.85KΩ,

Ra �
R

a
� 2662.533KΩ,

Rb+1 �
R

− b + 1
� 631.078KΩ,

Rη �
R

η
� 100KΩ,

Vε � 1V × ε,

Rδ �
R

δ
.

(13)

When the controller is OFF (Rδ⟶∞ or δ � 0), the
circuit implementation of controlled Chua’s oscillator dis-
plays the phenomenon of the coexistence of up to four
disconnected attractors as depicted in Figure 11. ,us, this
result enables to support the fact that the previous obtained
results on the coexistence of attractors in Chua’s oscillator
were not artifacts. When the controller is ON for
Rδ � 180KΩ, selection of the attractor in controlled Chua’s
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Figure 9: (a),ree-dimensional projections of the surviving stable states in the plane (ε, x, y) for the typical value of the coupling δ � 0.5 for three
distinct values of the equilibriumpoints, namely, S0 and S1,2. (b) Cross sections of the basin of attraction for z(0) � 0, corresponding to the domain
of initial conditions which enable to obtain each attractor of Figure 9(a) in magenta color. Yellow regions correspond to unbounded motion.
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Figure 10: Schematic of Chua’s oscillator coupled with the linear dynamical system.
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Figure 11: Continued.
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Figure 11: Phase portraits showing the coexistence of four different attractors using PSpice simulation (a pair of periodic and a pair of
chaotic) for Rc � 133.178KΩ; initial conditions are (±4.3V, ±0.11V, 0V) for the chaotic pair and (±4.3V, ±0V, ±0V) for periodic
attractors.

V (C1:2)

–2.0V 0V 2.0V 4.0V

V (C2:2)

–1.0V

0V

1.0V

V (C2:2)

Frequency

0Hz 2.5KHz 5.0KHz 7.5KHz

100µV

1.0V

(a)

Figure 12: Continued.

12 Complexity



oscillator occurs. For example, when Rδ � 180KΩ and
Vε � 2.1438V, the attractor in Figure 12(a) is selected.When
Rδ � 180KΩ and Vε � − 2.1438V, the attractor in
Figure 12(b) is selected. Finally, when Rδ � 180KΩ and
Vε � 0V, the pair of the symmetric attractors of
Figures 12(a) and 12(b) merges and gives the double-band
chaotic attractor of Figure 12(c). Besides each selected
attractor, its corresponding frequency spectrum is provided
to further support the nature of the attractor.

6. Conclusion

,is paper focused on selection of the coexisting attractor in
multistable Chua’s oscillator with a smooth nonlinearity.
,e choice of paradigmatic Chua’s oscillator system within

this work is based on the fact that it possesses three equi-
librium points and thus opens the possibility to target or
select a specific coexisting attractor located around unstable
equilibria. Remark that the previous studies which focused
on the multistability control were done on the system having
three, four, and five coexisting attractors and only one
equilibrium point [2, 3, 44, 50]. Based on linear augmen-
tation, the unique equilibrium point excludes the possibility
to target a coexisting attractor. ,is is why based on usual
nonlinear techniques exploiting bifurcation diagrams,
standard Lyapunov exponents, phase portraits, and cross-
section basin of initial conditions, we show the possibility to
control multistable Chua’s oscillator (with three equilibria)
towards three monostable states depending on the choice of
the equilibrium point used during the linear augmentation.
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Figure 12: Phase portraits showing the unique surviving asymmetric and symmetric attractors for different values of the equilibrium points
of the uncontrolled oscillator using PSpice simulation: (a) for Vε � 2.1438V, (b) for Vε � − 2.1438V, and (c) for Vε � 0V. Parameter
Rδ � 180KΩ, with initial conditions (4.3V0V, 0V, 0V).
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,ese results clearly demonstrate that it is possible to select a
coexisting attractor based on steady points of the uncoupled
system such as predicted by Sharma et al. [47], where only
bistable systems were investigated.
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