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Abstract— The article considers the optimal control for the
system of finite number of controlled connected Markov chains
(CMC). Such models come from queuing systems with many
service lines and/or from the control of resources of multiple
connected dams. The state of such CMC is represented as a
tensor of the depth d, where d is the number of controlled
chains. This tensor form is much more convenient for derivation
of the dynamic programming equation. We give a tensor form
for the control problems arising in the router control which
is aimed to the congestion avoidance with the aid of two
telecommunication lines having different properties and cost
of services.

I. INTRODUCTION

Behavior of complex systems like broadband networks,
power networks, water storage systems and even UAV, op-
erating in abruptly changing environment can be consid-
ered as the hybrid systems driven by controlled Markov
chains (MC). The controlled MC is used very often as an
approximation of the continuous state space system, those
state space is separated on a finite number of cells, and
the evolution of the systems consists in discrete change
of position at random time. The typical examples are: the
number of customers currently connected to the network,
number of customers of power network, level of storage
of some resource in the stock. In all these examples the
controls are responsible for the rate of state changes and the
random state distribution after the abrupt change of state.
In the telecommunication networks such controls are: the
intensities of incoming flows of jobs, service rates, access
probability and so on, and they can be chosen by controller
in order to achieve the best performance of the system. One
of the most effective approach to the control of MC is based
on the martingale representation and the using of stochastic
differential equations describing their evolution [7]. Basing
on this approach many problems arising in various areas
can be solved rather effectively. Some, but not exhausting
examples are: control of the network with the aid of access
and the service rate controls [13], congestion avoidance with
the aid of RED type protocols [18] based on the using of the
optimal stochastic control [10], [12], the network controls
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with different constraints [15], and control of the large dams
[1], [6], [16].

In most previous works the model of single controlled MC
is used, where the current state of the controlled MC with
d number of possible states is represented by a unit vectors
X ∈ {e1, ..., eM} of a type ei = (0, ..0, 1, 0, ..0) with the
unit at ith place, in the space RM [7].

However, the set of d connected Markov chains (CMC)
each having Mi, i = 1, ..., d possible states is represented
by the set of unit vectors Xi ∈ Si = {e1, ..., eMi

}, with
i = 1, ..., d and in general by a tensor of the order d, that
is X = {X1|X2|...|Xd}. The representation of the state of
such CMC in the form of unique joint vector, that needs to

be of dimension
d∏
i=1

Mi, is cumbersome and rather tedious,

particularly from the viewpoint of numerical analysis.
In this article our aim is to give the tensor description

of such CMC and to give a generalization of the dynamic
programming equation in tensor form. In Section II we
describe a general model of controlled CMC, give the
optimal control problem statement and introduce the tensor
form of the state and dynamic programming equation. In
Section III we introduce an active users model which provide
a feedback influencing on the users activity (the package
sending rate) through the probabilities of accept or reject the
current demand. In Section IV we give a detailed description
of this model for the case of queuing system with two
communication lines: one is the main and receives the
demands first, the second one is reserve line, which is usually
more fast, but at the same time has more expensive service
rate. The aim of the control is the congestion avoidance,
taking into account other criteria like the average time in
queue and/or the service cost.

II. MODEL OF CONTROLLED CMC, OPTIMAL CONTROL
PROBLEM STATEMENT

A. Controllable CMC model

In order to deal with the system of CMC, we make some
assumptions about the behavior of each Markov chain (MC).
We assume that each ith controllable MC has Mi possible
states and is described by the following stochastic differential
equation [7]

(Xi)t = (Xi)0 +

t∫
0

Ai(s, u(s))(Xi)sds+ (Wi)t, (1)
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where (Xi)t ∈ Si = {e1, ..., eMi
}, (Xi)0 is the initial state

of the ith MC. The (Mi×Mi) matrix Ai(t, u) is the generator
of ith MC, matrix valued function Ai is assumed to be
continuous on (t, u) ∈ [0, T ] × U, where T < ∞ and U
is a compact set in Rm.

The process (Wi)t is a square integrable martingale.
The general state of CMC X = {X1|X2|...|Xd} can be

described as tensor product of vectors X = X1⊗X2⊗ ...⊗
Xd, where Xi ∈ Si.

All processes are defined on the probability space
{Ω,F ,P}. Specifically, we define (Xi)t, i = 1, ...d, where
(Xi)t ∈ Si, t ∈ [0, T ] for T < ∞, as a controlled jump
Markov process with piecewise constant right-continuous
paths. We also make the following assumptions about the
controls u(t).

Assumption 1: Assume that the set of admissible controls,
u(·) is the set of FX

t -predictable controls taking values in
U, where X = X1 ⊗X2 ⊗ ...⊗Xd.

Remark 1: Assumption 1 ensures that if the number of
jumps of ith MC up to the current time t ∈ [0, T ] is Nt, τk
is the time of the kth jump and

(Xi)
t
0 = {(Xi)0, 0), (Xi)1, τ1), ..., ((Xi)Nt

, τNt
)}

is the set of states and jump times, then for τNt
≤ t < τNt+1

the controls u(t) = u(t,Xt
0) are measurable with respect to

t and Xt
0, where Xt

0 = (X1)t0 ⊗ ...⊗ (Xd)
t
0 [7].

B. General performance criterion

Let f0(s, p(s),Xs) be the running cost function when the
CMC is in state Xs at time s ∈ [0, T ]. Then a general
performance criterion to be minimized has the form

J [u(·),X(·)] = E

[
φ0(XT ) +

∫ T

0

f0(s, p(s),Xs)ds

]
.

(2)
Here φ0(XT ) = 〈φ0,XT 〉 and f0(s, p(s),Xs) =
〈f0(s, u(s)),Xs〉 with 〈·, ·〉 as a standard inner product, and
φ0 and f0(s, u(s)) are the tensors of the order d.

Assumption 2: For each X ∈ S = S1 ⊗S2 ⊗ ...⊗Sd, the
elements of f0(s, u)) are bounded below and continuous on
[0, T ]× U.

C. Value function and its representation

The value function of CMC is a function which gives
minimum total cost for CMC starting at time t ∈ [0, T ] and
state Xt = X ∈ S. It has the form

V (t,X) = inf
u(·)

J [u(·),X(·)|Xt = X],

J [u(·),X(·)|Xt = X] =

E

[
φ0(XT ) +

∫ T

t

f0(s, u(s),Xs)ds|Xt = X

]
.

(3)

Assumption 2 ensures that this infimum exists.

We now represent V (t,X) as V (t,X) = 〈φ(t),X〉, where
φ(t) is a tensor of the order d with measurable components.

D. Dynamic programming approach and its extension to
tensor state

Here we develop and extend to the tensor state the general
approach described in [13], Thm. 2.8 Let us consider φ̂(t)
be of the same form as φ(t), and define the dynamic
programming equation with respect to φ̂(t)

〈dφ̂(t),X〉
dt

= −min
u∈U

[
〈φ̂(t), A1(t, u)X1 ⊗X2 ⊗ ...⊗Xd+

X1 ⊗A2(t, u)X2 ⊗ ...⊗Xd + ...+

X1 ⊗X2 ⊗ ...⊗Ad(t, u)Xd〉+ 〈f0(t, u),X〉] =

−min
u∈U

H(t, φ̂(t), u,X)

(4)
with boundary condition φ̂(T ) = φ0 [5], [7], [13], [15]. Since
H(t, φ̂, u,X) is continuous in (t, u) and affine in φ̂, for any
(t,X) ∈ [0, T ]× S , H(t, φ̂,X) is Lipschitz in φ̂.

Proposition 1: With Assumption 2 held equation (4) has
a unique solution on [0, T ].

Remark 2: If we now let X =
d⊗
k=1

e(ik), k = 1, ..., d, then

we get a system of ODE’s

dφ̂i1,i2,..,id (t)
dt = −H

(
t, φ̂(t),

d⊗
k=1

e(ik)
)
,

i1 = 1, ...,M1, i2 = 1, ...,M2, ..., id = 1, ...,Md.

(5)

The simple generalization of the Thm. 2.8 [13] gives the
following characterization of the optimal control.

Theorem 1: Let φ̂(t) be the solution of the system of
equations (5), then for each (t,X) ∈ [0, T ]× S there exists
u0(t,X) ∈ U such that H(t, φ̂(t), u,X) achieves a minimum
at u0(t,X). Then

1) There exists an FX
t -predictable optimal control,

û(t,Xt
0) such that V (t,X) = J [û(·)|Xt = X] =

〈φ̂(t)X〉.
2) The optimal control can be chosen as Markovian, that

is

û(t,Xt
0) = u0(t,Xt−) = argmin

u∈U
H(t, φ̂(t), u,Xt−).

III. MODEL OF CONTROLLED QUEUING SYSTEM WITH
ACTIVE USERS

A. Model of queuing system with two connected service lines

Consider the queueing system having the possibility to use
two different lines for sending the packages and controlled
by restriction of access and by changing the service rate.
When the income flow enters the router the last one accepts
or rejects it. In first case the package queues in the buffer
of the volume M1 and waits for the sending by the first
line, if it is rejected by the first line it goes to the second
line and is either accepted or rejected completely. If it is
accepted by the second line it queues in the buffer of the
volume M2 and waits for the sending by the second line.
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The reason of the using two lines is that they could have
different characteristics and different service costs. So in the
situation of congestion one can use the second line (much
more faster, but probably more expensive). The incoming
flow of demands is a counting process with random intensity
λ(t) ≥ 0, t ∈ [0, T ] [13], which depends on time-preferences
of users and the current probability of rejection [11]. Both
service lines use the following controls: the service rates

µ = (µ1, µ2) ∈ [µ1, µ1]× [µ2, µ2]

where µ1 > 0, µ2 > 0 and the probabilities of access

u(t) = (u1(t), u2(t)) ∈ [0, 1]× [0, 1]

for the first and the second lines, respectively. Assuming
that the lines work independently, the probability to accept
a demand by the system is U(t) = U1(t) + U2(t), where

U1(t) = u1(t), and U2(t) = (1− u1(t))u2(t) (6)

are the probabilities to accept by the first and second lines,
respectively, and the probability to reject a demand by such
system is

P (t) = 1− U(t) = (1− u1(t))(1− u2(t)). (7)

Let M(t) = (M1(t),M2(t)) be the number of demands
in queues at time t. Then the general number of possible
states is (M1 + 1) ∗ (M2 + 1), and the corresponding state
of outcomes S can be represented by a the tensor product of
unit vectors X = X1 ⊗X2, where X1 ∈ S1, X2 ∈ S2. This
is the straightforward generalization of general approach to
the couple of connected Markov chains [7].

Proposition 2: Assume that the intensity of incoming
flow, access and the service rate control, that is the triple
Λ = (λ,u, µ), are FX

t -predictable process. Then the con-
trolled process is described by controlled Markov chain with
(M1+1)∗(M2+1) states with two CMC , described by two
generators A1(λ,u, µ), A2(λ,u, µ), which are represented
by the following (M1+1)×(M1+1) and (M2+1)×(M2+1)
matrices, respectively,

A1(Λ) =
−λU1 µ1 . . . 0 0
λU1 −µ1 − λU1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . −µ1 − λU1 µ1

0 0 . . . λU1 −µ1

 ,

(8)
A2(Λ) =

−λU2 µ2 . . . 0 0
λU2 −µ2 − λU2 . . . 0 0

0 λU2 . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . µ2 0
0 0 . . . −µ2 − λU2 µ2

0 0 . . . λU2 −µ2


,

(9)

where the probabilities U1, U2 are defined by relations (6).
Proof: Detailed proof can be accomplished in the same

way as in [13]. The difference is that the original income flow
of demands, which is a counting process with the random
intensity λ(t), is separated into three processes, namely:
the flow of demands accepted by the first line having the
intensity

λ(t)U1(t) = λ(t)u1(t);

the flow of demands rejected by the first line, but accepted
by the second one, having the intensity

λ(t)U2(t) = λ(t)(1− u1(t))u2(t);

the flow of demands rejected by the second line, and there-
fore, rejected at all with intensity

λ(t)(1− U(t)) = λ(t)(1− u1(t))(1− u2(t)).

The remaining proof is the same as in [13].
Remark 3: It has to be stressed that the class of FX

t

predictable controls includes all standard existing protocols
as the possible option for optimization, for example, the RED
type protocol.

B. Model of the CMC with active users

Here we use the model of active users such that each of
them tries to maximize the own utility function, taking into
account the price of traffic [4], [18], which depends on the
probability of rejection and the traffic intensity itself. As
in [11], [12] we assume the following form of the utility
function

fi(vi, t) = −ai(t)
vi

, i = 1, .., N, (10)

where N is a number of users (customers), vi ≥ 0 is the
intensity of the package sending by ith users and ai is
a seasonal coefficient, which corresponds to the seasonally
preferable sending rate of the ith user. This utility function
corresponds to the case of minimum potential delay fairness
[18]. As we underlined before [12] the real aim for ith

active user is different from the maximization of the utility
function (10) itself since its maximization leads to vi →∞.
Therefore his aim is to maximize utility function - expenses,
where the expenses depend on the probability of the package
rejection established by router. Therefore, his function to be
maximized is equal to

fi(vi, t, P ) = −ai(t)
vi
− λ0vi − λ0viP, i = 1, .., N, (11)

where λ0 is the price of traffic, and P is the probability
of the package reject, which is established by router (7)
as a predictable function of current time t and the history
of service, that is P = P (t,Xt

0). So we assume that each
rejected package is sent again and the customer pays twice
for traffic.

Remark 4: One can assume that each rejected package
may be sent as many times as necessary, since even if it
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is rejected and have been sent second time it can be rejected
again. In this case the utility function has a form [12]

fi(vi, t, P ) = −ai(t)vi −
λ0vi

1− P . (12)

We assume that the router has the information about the
utility functions of users, particularly about the seasonal
intensity of the general preferable traffic. By maximizing the
utility functions of the users we get the following dependence
of the intensity of the incoming flow upon the probability P :
for the first type of the utility function (11)

λ(t, P ) =
C(t)√

λ0(1 + P )
, (13)

and for the utility function (12)

λ(t, P ) = C(t)

√
1− P
λ0

, (14)

where

C(t) =

N∑
i=1

√
ai(t)

is a function which characterizes the seasonal preferences of
the whole set of users.

By substitution of values

U = 1− P,

λ(t, P )U1 =
C(t)u1√

λ0(1 + (1− u1)(1− u2))
,

λ(t, P )U2 =
C(t)(1− u1)u2√

λ0(1 + (1− u1)(1− u2))

(15)

into expression (8), (9) we get the representation of the
generator matrices A1(t,u, µ), A2(t,u, µ) for the case of
active users applying the utility function (11).

For the set of users applying the utility function (12) we
get

λ(t, P )U1 = C(t)u1

√
1− (1− u1)(1− u2)

λ0
,

λ(t, P )U2 = C(t)(1− u1)u2

√
1− (1− u1)(1− u2)

λ0
.

(16)

IV. DYNAMIC PROGRAMMING AND THE OPTIMAL
CONTROL FOR CMC WITH TWO LINES

A. Dynamic programming equation for two CMC

Consider the general optimal control problem with crite-
rion to be minimized

J [u(·), µ(·)] =

E


M1∑
i=1

M2∑
j=1

φi,j0 I {(X1)T = ei} I {(X2)T = ej}

+

E{
M1∑
i=1

M2∑
j=1

T∫
0

f i,j0 (s,u(s), µ(s))×

I {(X1)s = ei} I {(X2)s = ej} ds} → min
u(·),µ(·)

,

(17)
or in tensor form

J [u(·), µ(·)] = E {〈φ0, (X1)T ⊗ (X2)T 〉}+
T∫

0

〈f0(s,u(s), µ(s)), (X1)s ⊗ (X2)s〉ds

→ min
u(·),µ(·)

,

(18)
where φ0 and f0 are tensors of the order 2. For the tensor φ
of the order 2, which is represented as a (M1+1)×(M2+1)
matrix one can determine the inner product as a following
bilinear form

〈φ,X〉 = XT
1 φX2

if X1 ∈ RM1+1, X2 ∈ RM2+1.

To derive the optimality condition let define the Hamilto-
nian

H(t, φ,u, µ,X) = 〈f0(t,u, µ),X〉+

(X1)TAT1 (t,u, µ)φX2 + (X1)TφA2(t,u, µ)X2

(19)

where
X = X1 ⊗X2,

and φ and f0 are the tensors of the order 2.
Then the dynamic programming equation (4) can be

written as follows

d〈φ(t),X〉
dt

= −min
u,µ

H(t, φ(t),u, µ,X), (20)

with terminal condition

φ(T ) = φ0.

Let φ(t) is the solution of equation (20), then according
to the Theorem 1

min
u(·),µ(·)

J [u(·), µ(·)|Xt = X] = 〈φ(t),X〉.

B. Definition of the running cost function

As in our previous works [11], [12] we determine the run-
ning cost, corresponding to the minimization of the following
criterions:
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1) Average time in queue: The average time in queue in
the buffer of the volume M can be evaluated as follows

J1 = E


T∫

0

M(τ)

µ(τ)
dτ

 = E


T∫

0

〈l, Xτ 〉
µ(τ)

dτ

 ,

where M(τ) is the number of jobs in queue, and µ(t) is the
service rate, vector X(τ) corresponds to the current state of
the MC, where vector X(τ) has the unit at M(τ) place and
all other entries are zero,

l∗ = (0, 1, 2, ...,M) ∈ RM+1.

This is not exactly the expected value in queue, however,
if the service rate is still constant and equals µ, then if the
service time is exponentially distributed, the average time
in queue is equal to 1/µ, therefore, if the demand comes
when there are M(t) demands in queue, then the average
waiting time equals M(t)/µ. If µ(t) is controlled variable
this criterion gives some characterization of waiting time.
Moreover, in case of two different lines, where the first line
accepts the demand with the current probability u1(t) and
the second line with the probability (1− u1(t))u2(t), more
relevant criterion could be

J1 = E

T∫
0

{
u1(τ)

〈l1, (X1)τ 〉
µ1(τ)

+ (1− u1(τ))u2(τ)
〈l2, (X2)τ 〉
µ2(τ)

}
dτ,

(21)

where

li
∗ = (0, 1, 2, ...,Mi) ∈ RMi+1, i = 1, 2.

2) Average number of rejected demands: With two lines
the probability to reject a demand at all is the probability to
reject it by the second line, under condition that the demand
is rejected already by the first line, therefore the average
number of rejected demands is given by the following
formula [13]

J2 = E


T∫

0

(1− U2(τ)〈12, (X2)τ 〉)λ(τ)dτ

 ,

where
12
∗ = (1, 1, ..., 1, 0) ∈ RM2+1.

The substitution of expressions (13) gives

J
′

2 = E


T∫

0

C(τ)(1− U2(τ)〈12, (X2)τ 〉)√
λ0(1 + (1− u1(τ))(1− u2(τ))

dτ

 ,

and the substitution of expressions (14)

J
′′

2 = E


T∫

0

C(τ)(1− U2(τ)〈12, (X2)τ 〉)U1/2
2 (τ)√

λ0
dτ

 ,

3) Service cost: If we assume the linear dependence of
running cost upon the service rate then it gives

J3 = E

T∫
0

[u1(τ)µ1(τ)〈I1, (X1)τ+

(1− u1(τ))u2(τ)µ2(τ)〈I2, (X2)τ 〉] dτ,

(22)

where

Ii
∗ = (0, 1, ..., 1) ∈ RMi+1, i = 1, 2.

However, for the sake of simplicity one can use the
simplified formula

J3 = E


T∫

0

[µ1(τ)〈I1, (X1)τ 〉+ µ2(τ)〈I2, (X2)τ 〉] dτ

 .

(23)
Later the using of (23) permits to separate the numerical

minimization over us and µs.
4) Penalty for the router workload: The criterion J

′′

2 is
equal zero if U2 = 0, it means that such control will be
optimal since there are no jobs and no service at all in
this case. So in order to make the problem more reasonable
we add the penalty for the lines workload. This penalty is
minimal if the line is in intermediate workload and maximal
is the line is either completely congested or idle.

So we consider the following criterion which characterizes
the load of lines

J4 = E


T∫

0

〈g,Xτ 〉dτ

 = E


T∫

0

(X1)Tτ g(X2)τdτ


where gi,j is a matrix of the order (M1 + 1,M2 + 1).

5) Terminal states: Sometimes the problem is to resolve
the congestion. In this case the terminal state is rather
important and the part of criterion which is responsible for
it is given as

E {〈φ0,XT 〉} ,

where the tensor φ0 represents the set of relative weights of
the terminal states.

6) Weighted criterion: In the real problem we have to
achieve the balanced value of criteria. Moreover, as shown
in [14] the problem with constrained criteria can be solved as
the problem with weighted criterion, where the coefficients
of weighting have to be found as a solution of some maxmin
problem. So here we consider the following weighted crite-
rion

J = k1J1+k2J2+k3J3+k4J4 → min, k1, k2, k3, k4 > 0.

In our numerical example we chose different coefficients for
service cost privided by the first and the second lines, namely
k3,1 and k3,2. Therefore, the running cost in criterion for the
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case of J
′

2 has a form

f0(t,u, µ,X) =

k1

{
u1
〈l1, X1〉
µ1

+ (1− u1)u2
〈l2, X2〉
µ2

}
+

k2
C(t)(1− U2〈12, X2〉)√
λ0(1 + (1− u1)(1− u2)

+

k3,1µ1〈I1, X1〉+ k3,2µ2〈I2, X2〉+ k4X
T
1 gX2,

(24)

or for the case of J
′′

2

f0(t,u, µ,X) =

k1

{
u1
〈l1, X1〉
µ1

+ (1− u1)u2
〈l2, X2〉
µ2

}
+

k2C(t)(1− U2〈12, X2〉)
√
U2
λ0

+

k3,1µ1〈I1, X1〉+ k3,2µ2〈I2, X2〉+ k4X
T
1 gX2.

(25)

C. Dynamic programming equation for the case of two
service lines

The system of differential equations of the dynamic pro-
gramming (20) is given below for different X1 ∈ S1 and
X2 ∈ S2

min
u,µ

(X1)T ((A1(t,u, µ))Tφ(t) + φ̇(t)

+φ(t)A2(t,u, µ) + f0(t,u, µ))X2 = 0,

here

Xi
1 = ei ∈ RM1 , Xj

2 = ej ∈ RM2 , (26)

where i = 0, ...,M1 and j = 0, ...,M2.

For different values of (i, j) we get the following equations
where for the sake of brevity the dependences of φi,j and c
on t are ommited. Below the intensity of the income flow is
equal

λ =
c√
λ0

1√
1 + (1− u1)(1− u2)

(27)

for criterion (24). Moreover, we use the simplified running
cost function (23) instead of exact formula (22), where the
running cost for service jointly depends on (u1, u2) and
(µ1, µ2) and whereby simplify the realization of numerical
procedure. Below we gave some of equations of the system
(20) just to show the typical cases.

Case: (i = 0, j = 0),

since both lines are in the state i = 0 and j = 0, then both

controls µ1 = 0, µ2 = 0. Substitution of λ gives

φ̇00 = min
u1 ∈ [0, 1]
u2 ∈ [0, 1]

[
φ00(λu1 + λ(1− u1)u2)− φ10λu1

−φ01λ(1− u1)u2 − k2(1− u2)λ(1− u1)− k4g00
]

=

= min
u1 ∈ [0, 1]
u2 ∈ [0, 1]

[
c√
λ0

u1√
1 + (1− u1)(1− u2)

(φ00 − φ10)

+ c√
λ0

(1− u1)u2√
1 + (1− u1)(1− u2)

(φ00 − φ01)−

k2
c√
λ0

(1− u1)(1− u2)√
1 + (1− u1)(1− u2)

− k4g00
]
.

Case: (0 < i < M1, 0 < j < M2),

φ̇i,j = min
µ1 ∈ [µ1, µ1],
µ2 ∈ [µ2, µ2]

{
µ1(φij − φi−1,j − k3,1)+

−k1
(
i

µ1
+

j

µ2

)
+ µ2(φij − φi,j−1 − k3,2)

}
+

min
u1 ∈ [0, 1],
u2 ∈ [0, 1]

[
c√
λ0

u1√
1 + (1− u1)(1− u2)

(φij − φi+1,j)+

c√
λ0

(1− u1)u2√
1 + (1− u1)(1− u2)

(φij − φij+1)−

k2
c√
λ0

(1− u1)(1− u2)√
1 + (1− u1)(1− u2)

− k4gij
]
.

(28)

Case: (i = M1, j = M2),

since both lines are in states i = M1, j = M2, then u1 =
u2 = 0. We have

φ̇M1,M2 = min
µ1 ∈ [µ1, µ1]
µ2 ∈ [µ2, µ2]

[
µ1(φM1,M2 − φM1−1,M2 − k3,1)

−k1
(
M1

µ1
+
M2

µ2

)
+ µ2(φM1,M2 − φM1,M2−1 − k3,2)−

k2
c√
2λ0

]
.

Equations for not listed cases may be derived in a same way.
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D. Numerical analysis

Explicit solution of the minimization procedure in the
dynamic programming equation (20) is impossible for any
cases, however this minimization procedure admits the nu-
merical solution with the aid of existing packages like Maple,
MatLab or Matematika. Meanwhile, the minimization proce-
dure over µ1, µ2 admits the explicite solution like in [12], and
only the numerical minimization over u1, u2 is necessary.
Since (20) is a system of odinary differential equations, it is
rather easy for qualitative analysis and for determining of the
optimal solutions. For real problems this model needs rather
large dimension of state variables, corresponding to buffers’
capacities M1,M2, however, with the aid of the parallel
computing approach one can demonstrate the possibility
to speed up the calculation [16], [17], particularly for the
large number of states. Moreover, for practical reasons it
is not necessary to consider all possible states of buffers
and for qualitative analysis it is possible to separate their
loads just into three different states such as: ”low”, ”middle”
and ”congestion”. Below we give the result of numerical
modelling for the system with M1 = M2 = 3, and give the
value of controls u1, u2 and µ1 ∈ [1, 2], µ2 ∈ [3, 6]. The time
of the process is equal to 1, function C(t) = 5 + 4.5 sin 10t.
Coefficients are chosen as follows

k1 = 0.5, k2 = 5, k3,1 = 1.0, k3,2 = 10, k4 = 1.5, λ0 = 0.01,

g00 = 5 g01 = 5 g02 = 10 g03 = 20
g10 = 5 g11 = 5 g12 = 15 g13 = 20
g20 = 5 g21 = 5 g22 = 15 g23 = 20
g30 = 10 g31 = 10 g32 = 15 g33 = 20

One can observe that if u1 = 0 and the principal line is
closed the second line is open. It shows that model captures
the necessity to serve the input flow even if the principal
line is closed and it is necessary to use the second even
more expensive line.

Fig. 1. Solution of the system (20) for the state (i = 1, j = 2).
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