
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

April 1992

Control of Discrete Event Systems Control of Discrete Event Systems

Jana Košecká
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Jana Košecká, "Control of Discrete Event Systems", . April 1992.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-35.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/523
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/523
mailto:repository@pobox.upenn.edu

Control of Discrete Event Systems Control of Discrete Event Systems

Abstract Abstract
Discrete Event Systems (DES) are a special type of dynamic systems. The "state" of these systems
changes only at discrete instants of time and the term "event" is used to represent the occurrence of
discontinuous changes (at possibly unknown intervals). Different Discrete Event Systems models are
currently used for specification, verification, synthesis as well as for analysis and evaluation of different
qualitative and quantitative properties of existing physical systems.

The main focus of this paper is the presentation of the automata and formal language model for DES
introduced by Raniadge and Wonham in 1985. This model is suitable for the examination of some
important control theoretic issues, such as controllability and observability from the qualitative point of
view, and provides a good basis for modular synthesis of controllers. We will also discuss an Extended
State Machine and Real-Time Temporal Logic model introduced by Ostroff and Wonham in [OW87]. It
incorporates an explicit notion of time and means for specification and verification of discrete event
systems using a temporal logic approach. An attempt is made to compare this model of DES with other
ones.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-92-35.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/523

https://repository.upenn.edu/cis_reports/523

Control of Discrete Event Systems

MS-CIS-92-35

GRASP LAB 313

Jana Koseckd

University of Pennsylvania

School of Engineering and Applied Science
Computer and Information Science Department

Philadelphia, PA 19104-6389

April 1992

Control of Discrete Event Systems

Jana KoBeckii

Department of Computer and Information Science

University of Pennsylvania

April 26, 1992

Special Area Exam

Advisor: Ruzena Bajcsy

Contents

1 Introduction 2

1.1 DES Characteristics . 2

1.2 Modelling of DES . 3

Automata Model for DES 5

2.1 Definitions . 5

2.2 Controlled DES . 6

2.3 Supervisory control . 7

2.4 Example . 9

2.5 Controllability . 11

2.6 Efficient supervisor . 12

2.7 Example . 14

2.8 Observability . 17

3 Real-Time Issues 2 1

3.1 ESM and RTTL Frameworli . 22

3.2 Example . 22

3.3 Legal Trajectories . 25

3.4 RTTL Specifications . 25

3.5 Controllers . 27

4 Conclusions 29

A Appendix 3 1

List of Figures

1 Controldiagram . 4

2 A simple generator . C = (a.P.7). Q = {IDLE. REQUEST. WORKING). Q , =

{IDLE}. qo = I D L E . 6

3 Supervised DES diagram . 9

4 The generator over the alphabet C = (a.@. 7). Q, = {qo). C. = {p) 9

The supervisor X , = {xo) . The supervisor disables event /5' (c = 0 in x2) immedi-

ately after the occurreilce of the event y . and therefore certain strings from L, (G)

are excluded . 10

Supervised DES . 10

Two users of a resource . 14

Shuffle product of and Gz . 15

Recognizer for L, legal behavior . 16

Quotient supervisor . 17

P-normal language (squares correspond to the cosets of ker P in L.) 19

a) nondeterministic transition. b) deterministic transition 20

Extended state machine for the i-th train . 23

Extended sta.te rnachi~le for the pump . 24

The controller composed from two ESM's (CONIC tasks) K1. I<2 28

List of Tables

1 Feedbacks for S . So and projection .rr for example on Figure 7 16

Abs t r ac t

Discrete Event Systems (DES) are a special type of dynamic systems. The "state" of these

systems changes only at discrete instants of time and the term "event" is used to represent the

occurrence of discontinuous changes (at possibly unknown intervals). Different Discrete Event

Systems models are currently used for specification, verification, synthesis as well as for analysis

and evaluation of different qualitative and quantitative properties of existing physical systems.

The main focus of this paper is the presentation of the automata and formal language model

for DES introduced by Raniadge and Wonham in 1985. This model is suitable for the exami-

nation of some important control theoretic issues, such as controllability and observability from

the qualitative point of view, and provides a good basis for modular synthesis of controllers. We

will also discuss an Extended State Machine and Real-Time Temporal Logic model introduced

by Ostroff and Wonham in [OW87]. It incorporates an explicit notion of time and means for

specification and verification of discrete event systems using a temporal logic approach. An

attempt is made to compare this model of DES with other ones.

1 Introduction

Before starting the discussion on the different modeling approaches for DES, we will give an intuitive

definition of a dynamic system; a more formal description can be found in Appendix A.

Systems in general can be seen as compositions of elements, whose relations and interactions

are governed by known laws (e.g. a mechanical system governed by Newton's laws). A system call

be described as dynamic when some external forces act on it. The effect of an external force on the

system causes a change of the system state, which can be expressed in terms of internal parameters

of the system, not necessarily observable (measurable), but causing possibly a t a later time the

change of output parameters. Based on the characteristics of the system's components and their

interactions, systems can be classified as discrete or continuous, time-invariant or time-varying,

linear or nonlinear, deterministic or nondeterministic etc.

The familiar class of dynamic systems are so called Coiltinuous Variable Dynamic Systems

(CVDS), where the physical world is described by differential equations, and the state of the

system changes continuously. In case of DES the state changes a t discrete instants of time. Due

to the different nature of DES, so far there is no general method for modeling such systems, which

would eventually serve as a analog of differential equations for CVDS. Different ~hara~cteristics of

DES which give rise to va.rious modeling methods are described in the following two sections.

1.1 DES Characteristics

Discrete Event Systems (which a.re the focus of this paper) are mostly man-made systems arising

in the domains of manufacturing, robotics, organization and delivery services, vehicular traffic, and

computer and communication networks. Events in these systems may correspond, for example, to

the transmission of a packet in communication systems, completion of a task or machine failure in

manufacturing, etc. The behavior of these systems is truly nonlinear and they have time-vary iny

parameters. Due to the non-terminating interaction with the environment these systems are often

affected by unexpected interventions, which means that they are discoiztiizu.ous. Moreover, they

often demonstrate uncertain beha.vior, caused by the fact that available measurements and inputs

are often disturbed by noise. Therefore, the future evolution of the system may be unpredictable

(nondeterministic). The interactions between particular components are complex and no longer

governed by known physical laws describable by differential equations. Due t o the complex structure

and interactions of t.hese systems, there is a need to model and analyze them at different lzierarchicul

levels. Because of the special nature of these syste~ns, in the past different formal inethods were

proposed for their modeling, emphasizing different aspects of the system design and analysis. The

main objective of these efforts was to assure the appropriate behavior of the system and its full

functionality in the given environment, by means of appropriate control.

1.2 Modelling of DES

Several attempts have been made to model DES analytically, but there is still no unified theory

that supports all the features that one would desire of a full theory of DES. The main distinction

can be made between logical DES models and timed or performance DES models. In the former

ones the concept of time is implicit and the time events occur is ignored and only the order in

which they occur is considered. In the latter time is incorporated as a part of the model.

Logical models have been successfully used to study different qualitative properties of DES. The

behavior of the system using logical nlodels is expressed in terms of system trajectories, i.e. listings

of events that occur along the sample path. Typically the set of possible trajectories is specified

first. This can be done using some form of transition structure (automata, Petri nets) or by means

of algebraic equations (CSP, finitely recursive processes), or by logical calculus (temporal logic).

Further, some constraints can be imposed on the system specifying it's desired behavior (expressed

in terms of all admissible trajectories). The trajectories are then investigated whether they satisfy

the desired properties expressed by the constraints. Properties of interest may include stability,

convergence, correct use of resources, correct event ordering, deadlock, liveness etc. The need for

examining these different qualitative properties has resulted in the development of a large variety

of tools employed in such areas as sema,ntics of concurrent programs, communicating sequential

processes, synchronization issues in operating systems, communication protocols in networking and

logical analysis of digital circuits. Logical models may be used as a basis of verification and synthesis

of DES.

Timed models on the other hand are more suitable for answering perfornlance related questions.

These models can be further classified according to whether the timing of events is known a priori as

nonstochastic (e.g. timed Petri nets, min-ma-algebra) or whether the event timing is modeled by

making some statistical assumptions as stochastic (e.g. Ma+kov chains, queueing networks) models.

Since the time is inherently continuous variable, performance nieasures are often formulated in terms

of continuous variables and these models often rely on smoothiilg properties of the "expecta,tionsn

or on the "average" operator. In stocha,stic models it is usually not that hard to specify the set of

admissible trajectories, but very often the a.na.lytic solutions a.re very complex, if not infea.sihle. This

disturbances

(PLANT 1-4 CONTROLLER h
feedback control

Figure 1: Control diagram

if not infeasible. This has led to the use of simulation as a tool for quantitative analysis. Namely

perturbation analysis methods [Ho87] for estimating gradients of performance measures can provide

some answers to the questions dealing with quantitative properties of DES. Typical performance

criteria of interest are: average throughput, flow or wait time, work in progress etc.

In order to describe the systems under investigation in a uniform way, we adopt the terminology

of control theory. The system together with the environment in which it is located can be referred

to as a plant (i.e., subject of control). Its correct behavior is achieved by designing the controller

that will interact with the plant. The control diagram representing this situation is shown in

Figure 1. Since the open loop behavior of the plant is often unsatisfactory, the role of the feedback

after determining the current state of the plant is to take corrective action by issuing appropriate

control commands. It is of fundamental importance to take into account the environment in which

our system operates in order to deal with unknown disturbances caused by the environment. These

disturbances can have disastrous consequences when they are not taken into account.

Paper Organization The focus of the second section will be the introduction of the automata

and formal language model for discrete event systems proposed by Ramadge and Wonham in

[RW87b] and the presentation of its suitability for dealing with control-theoretic issues. Notions of

supervisory control, controllability and observability are defined and discussed.

The third section deals with an Extended State Ma.chine model with an explicit notion of time

and problems of specification and verification of discrete event systems using a temporal logic

approach.

We conclude by presenting the foremost characteristics that models provide and mention some

ideas for the future work in this area.

2 Automata Model for DES

2.1 Definitions

In this section an automata and formal languages model [RW87b] is introduced and its applicability

is demonstrated on some simple examples from operating systems and manufacturing. Different

components of the model are recognized and their interaction is investigated. The notion of super-

visory control is also introduced.

One can think of modeling the DES as a nondeterministic finite (finiteness is not required)

automaton, where transitions between states are labeled by events. In the case of the logical model

which we are about to investigate, the overall behavior of the system is specified by possible event

trajectories. An event trajectory is specified by listing the events that occur during a particu1a.r

path. Adopting the notation from formal language theory [HU79], event trajectories can be thought

of a,s strings over the fixed alphabet, where particular elements of the alphabet denote events. Let.

C denote the set of events that the system can generate. Then C* denotes the set of all strings

of elements C, including the einpty string E . The empty string represents no event. The subset of

all possible event trajectories is L C C* . The subset L represents all event trajectories which are

possible for the system a.nd fully characterize its behavior. Futher the characteristic lnizguage L is

required to be prefix closed. A language L is prefix closed if

L = { u : uv E L f o r some v E C*).

The characteristic language L can be described in terms of a machine which generates all strings

from L. We define a generator 6 to be a 5-tuple

Q - is the set of all possible sta,t,es,

C - is the set of all possible events

S - is the transition function S : C x Q + Q ,

qo - is the initial state,

Q , - is the subset of states called marker state, Q , c Q .

Marking states are used to distinguish a subset L,(G) of strings from L(G) that may be "marked"

or recorded, perhaps representing completed tasks carried out by the DES.

IDLE

Figure 2: A simple generator. C = {a ,P ,y) , Q = {IDLE, REQUEST, W O R K I N G), Q , =

{IDLE), qo = IDLE

The language generated by G is

L (6) = {w : w E C* and S(w, qo) is defined).

The language rncc.rked by 5' is

L,,(G) = {w : ,w E L C L T L ~ ~ (, W , Q O) E Q,,,}.

State transitions are considered to occur spontaneously, asynchronously, and instantaneously, and

their occurrence is signaled (to an observer) by their label a. A generator G may have more than

one event available for selection at a given state, however, distinct events a t a given state always

carry distinct labels. A simple example of a generator G is shown in Figure 2.

The closed behavior of L in Figure 2. can be expressed using regular espressioils notation, as

The marked behavior for the example in Figure 2. is

2.2 Controlled DES

In order t o adjoin a means of control, two classes of events have t o be distinguished. The events

in the firts class are called control lable events , i.e. events which can be prevented from occur-

ring. These events call be enabled (allowed to occur) or disabled (prevented from occurring) at

pa,rticular instances of time during the system's evolution. The events in the second class denote

the uncontrol lable even t s . Over these the controller does not have any influence, i.e., they are

always enabled. Thus the set of events can be partitioned as C = C, U C,, where events in C, are

coiltrollable and events in C, are uncontrollable. Examples of uncontrollable events are machine

breakdown in manufacturing applications, loss of packets in communication systems, malfunction

of some part of a robot, etc.

The enabling and disabling of a certain event in a particular state is determined by a control

pattern for that state. Let

r : {o, i}Cc

be the set of all binary assignments to the elements of C,. Each assignment y E r, i.e. each function

is a con t ro l p a t t e r n (i.e., event a is enabled when y (a) = 1). By introducing the notion of

controlled events we call modify the transition function 6 of our original genera.tor 6 to 6,

where

For each fixed control pattern y a. generator G(y) can be obtained from G by deleting those

events a which have y(a) = 0, i.e., those that the control pa.ttern disables. The control action

consists of suitably switching patterns y , y', y", ... in I'.

Formally the generator G, = (Q, r x C, S,, qo, Q m) is called Cont ro l l ed Disc re te Even t

S y s t e m (CDES).

So far we have illustrated the expressiveness of the formalism and associated the notions of

control with particular events. By doing so we recognized relevant states of the system and charac-

terized its behavior by the language L(G). The language L (6) characterizes an open-loop behavior

of the system.

2.3 Supervisory control

Since the open-loop behavior of the system is often unsa.tisfactory, our next main objective is to

design a controller for a plant in such a way that the plant behaves in accordance to the specified

constraints. Such a controller is called supervisor . In another words, the proper supervisor1

'The proper supervisor has some additional properties, namely it is nonblocking and no~lrejecting

has to generate a sequence of control patterns y, y', y", ..., in response to previously observed

events in such a way that the correct behavior of the plant will be ensured. A supervisor can be

thought of as the map

f : L + r

specifying for each possible string from our language L the control input f (w) in r t o be applied

at that point. This mapping can be also realized by a pair

where S is an automatoll

S = (X,C,F,Xo,Xm)

where

6, : X -+ 2' s.t. for each w E L(G), f(w) = +(E(.ro,zo)).

Thus a clear distinction can be made between the subject of control, "plant", and the agent

doing the co~~trolling, "supervisor". The function 4 determines what events will be enabled and

what events will be disabled in the next state, and plays the role of the feedback control.

Transitions between states of the supervisor do not occur freely but are driven by strings s E C*

generated by the plant. By coupliilg 6 aad S into a feedback loop we obtain the closed loop system

S / G called the Supervised Discrete Event System (SDES) (see Figure 3). The controllable

discrete events of G , a,re now constrained by the control determined by the sta,tes of S . More

formally :

S / G c = (-y x Q,C,F x Sc.(z~:qo),Qnx)

where transition map is:

[x S , : E x X x Q + X x Q .

where

We will present an example of SDES at the end of this section to demonstrate how the plant and

the supervisor operate together.

Let us now examine the class of languages generated by SDES. The language controlled by S

in 6 of a closed-loop system SDES L,(S/G) is defined as follows:

control Y

G

Figure 3: Supervised DES diagram

where L,(G) is the ma,rked la,nguage representing all event trajectories which correspond to the

marked (completed) tasks and L(S/G') is the restriction on this language imposed by supervision.

I11 other words L,(S/G) represents all event trajectories corresponding to those strings of the

uncontrolled process which are marked and "survive" under supervision. By introducing the coiztrol

feedba.ck certain events are disabled in particular states and therefore certain strings from L,(G)

are excluded from L,(S/G) .

enabled
S

event o

2.4 Example

v

The followillg example illustrates how the plant (Figure 4) and the supervisor (Figure .5) operate

together. The languages L,, L(S/G), L,(S/G) defined in the previous section are described in the

context of this example.

Figure 4: The generator over the alphabet C = (a ,@, y), Q , = {qo } , C c = { P)

The correspo~ldillg lna,rked 1a.ngua.ge is

Figure 5: The supervisor X , = {so). The supervisor disa.bles event P (c = 0 in s2) immediately

after the occurrence of the event y , and therefore certain strings from L,(G) are excluded.

It ca.n be seen tha,t

L (S / G) = (cr13)*(1+ cry*)

thus, the language controlled by S in G is

Figure 6: Supervised DES

10

2.5 Controllability

In the previous section the concept of a supervised discrete event system was introduced. The main

objective of the supervisor is to modify the open-loop behavior of the plant so that it satisfies some

specified constraints. Having described the plant by a generator 6 and specifying a supervisor by an

automaton S , the behavior of SDES L,(S/G) determined by coupling S and G together is defined

as the subset of possible event trajectories which survive under the supervision and correspond to

the marked tasks. The la,aguage L,(S/G) represents the desired behavior of our system.

In this section we will address the problem of the existence of a supervisor. Namely, given a

desired behavior of the plant represented by language I{, we will investigate under which circum-

stances we can find an appropriate feedback control to obtain this behavior.

The problem of obtaining the gemrator G which represents the desired behavior Ii' of the plant

is not addressed here. One possible way of approa.ching this problem is by specifying a set of

strings which can be excluded from the language L representing all possible trajectories, which can

be found in [RamSS].

The existence of a supervisor for a given plant, i.e. the existence of appropriate feedback control,

is very closely related to the concept of controllability. This concept first introduced by Kalman,

plays an important role in tlleoretical and practical aspects of modern control theory.

A system is said to be controllable when based on the information about the current state of

the system and by means of appropriate control we can reach any desired state of the system. Within

the automata and formal language framework of discrete event systems the concept of controllability

is defined in various ways. The a.uthors of [RW87b] adopt the concept of controllability in terms of

events. This concept can be forlllulated formally as follows.

Suppose that Ii' C C* is the language representing the desired behavior of the plant and 77 is it

prefix closure as defined on page 6. Let language L c C* be representing all possible trajectories.

We say that the language K is controllable if

-
KE, n L c li.

In other words, this condition requires that for any prefix of a string in li, i.e., any w E li, if

w is followed by an uncontrolled event a E C, in L, then it must be also a prefix of I<. In a more

intuitive way, since the u~lcontrollable events cannot be prevented from occurring, it is clear that

if such a.n event occurs, the11 the pa,th along which that event occurred must remain in K in order

for Ii' to be controllable (feasible closed loop behavior). If the plant's desirable behavior can be

described by language Ii', and I< is controllable and prefix closed, then the existence of a supervisor

is guaranteed by Theorem 6.1 in [RW87b]. This claim also holds in the opposite direction, namely

if there exists a proper supervisor for language I<, then Ii is controllable. Moreover the proof

is constructive (see Propositioil 5.1. in [RW87b]) so the realizatio~l of supervisor (S, 4) can be

obtained from the generator of K. Supervisor construction is illustrated by the example at the end

of this section.

The whole class C (K) of controllable sublanguages of I(can be obtained. C (K) characterizes

all possible behaviors which can be achieved by means of control. The authors in [RW87b] proved

also that this class is a partially ordered set under subset inclusion, and is closed under union

(Proposition 7.1 in [RW87b]). In the case when the language I< specifyilig the desired behavior of

the plant is not controlla.ble, given a, set C(I i) of a,ll coatrolla.ble sublailgua,ges of Ii', we ca,n find a

natural approximation of K , I<' c Ii', which is controllable. This approximation will correspond to

the supremum of the partia.11~ ordered set of all controllable sublangua,ges C (K) . This problem is

stated and elaborated in great detail in [WR87]. The above mentioned closure property of the class

C'(Ii') also suggests some a.pproa.ches on how to deal with the modular design of the supervisory

control problem [RW-87a].

2.6 Efficient supervisor

The supervisor for a given plant might not be unique. The relation between different supervisors

was established, in terms of the projection n. A total function n : X i is a projection from S

to s provided that:

1. n is surjective,

3. (o (idc x .rr)(a, s) = n o [(a, x) for all (a, x) where [(a, x) is defined,

The projection is displayed in the following diagram:

where s is being referred to as a quot ient of S under n

After constructing the proper supervisor S such that

we can define an equivalence relation on C*. Two strings are control-equivalent s N s' if for

all a E C,, sa E i' iff s'u E I;;. Namely, two strings are control-equivalent if the control action

immediately following either one is the same for every a E C.

Recall from automaton theory that the equivalence relation e on C* is a right congruence if,

whenever s,s' E C* and s sl(mod e), then for all t E C*, st - sft(mod e).

In general the control-equivalence relation is not necessarily a congruence relation, because after

an occurrence of event a even though the strings so and s'o will end up having the same relation

with respect to the membership in i, they may not be anymore control-equivalent.

We can think of the control-equivalence relation N , as a partition of the state space X of

the supervisor automaton S, where two states are control-equivalent when they generate the same

control pattern. The initial realization of the supervisor night not be efficient. By finer partitioning

the state space of S (i.e. getting finer and finer equivalence relations on states) we will be looking

for the coarsest coilgruence relation on the state set of S . This coilgruence relation states that,

for any two strings s , s' which are control-equivalent, if they are followed by any event a E C ,

su and s'a will again be control-equivalent. Let us denote the coarsest right congruence which is

finer then N, by the symbol z and for s E C* let [s] be the equivalence class of s mod Z. Then

-
x = {[s] : s E Z), To = [I]

is the automaton of the efficient supervisor , where the state space f? is a quotient structure

of the original state space X under z. Here efficiency characterizes the minimal number of states.

Furthermore, the authors in [RW87b, Section 101 showed, that the efficient supervisor can

be obtained by projection from a supervisor directly obtained from the recognizer of the legal

language L g . This implies the main result of the Quot ien t s t r u c t u r e t h e o r e m [RW87b], which

states intuitively that every efficiently constructed supervisor is a quotient (high-level or lumped

model) of the desired cbsed-loop behavior. This result is similar in spirit to the Internal Model

Principle of Regulator Theory.

2.7 Example

The followillg example illustrates ho1v to construct a supervisor S given the desired behavior of

the system. An alternative supervisor for the system is described to demonstrate that the super-

visor might not be unique. Finally a quotient supervisor is constructed for the given problem,

representing an efficient supervisor.

In this example we consider two users of a single resource modeled by the generators GI, G2

(Figure 7.), to the left and to the right respectively.

IDLE IDLE

REQUEST

P i c *

Figure 7: Two users of a resource

The objective of a supervisory control is to manipulate controls cl and cz in order to satisfy the

following synchronization requirements:

2The Internal Model Principle of Regulator Theory is expresses the approach by which the appropriate feedback

control can be obtained only from the description of the syst,em. Thus having a knowledge of the nature of relations

between particular elements of the system is crucial for designing a n appropriate feedback control.

Figure S: Shuffle product of GI and G2.

1. Mutual exclusion: GI, G2 never simultaneously occupy their USE states.

2. Fair usage: The U S E states of GI , G2 are occupied on a first-come-first-served basis.

We model the joint operation of and G2 by the shufle product 6 = 411152. This DES is

determined by the concurrent actions of G1 and G2 under the assumption that these actions are

asynchronous and independent. The shuffle product rules out the silnultaneous occurrence of ail

event in GI with an event in G2 but otherwise places no constraint on their joint beha,vior.

The state transition diagram is shown in Figure 8. L,(G) consist of all words over the alphabet

C = { ~ l , P l r ~ 1 , ~ 2 , P 2 , ~ 2) .

The problem of formalizing the conditions of our system is not addressed here and it is assumed

that the legal behavior of the system L , c L,(G) is explicitly determined by the automaton on

Figure 9. It can he shown that the language L, is controllable and L,-closed. Therefore, by

Theorein 6.1. in [RW87b] the proper supervisor S = (S, 4) exists. The state diagram for Ly can

serve as a state diagram for S and the feedback map 4 is defined as

1 if an edge labeled P1 issues from x
4(x)(c1) =

O otherwise

Table 1 provides a complete description of the state feedback 4. The supervisor might not be

unique, so in the second row of the Table 1 there is a feedback 4, for an alternative supervisor So

Figure 9: Recognizer for L, legal behavior

Table 1: Feedbacks for S , So and projection T for example on Figure 7.

State

determining the same language as S , i.e.

From So one can construct a new supervisor S' by the projection T : S, + S' described in the

last row of Table 1. The new supervisor in Figure 10 has only 5 states and is actually representing

a queue that stores events a in the order of occurrence and which are popped by the corresponding

events y.

so XI x4 xz 25 23 26 x7 x8

2.8 Observability

The crucial part of the design of an appropriate feedback control for the plant is the amount of

information which we can observe ~nonitoring the plant's behaviour. Then ba,sed on our observatiol~s

we can then determine the state of the system and subsequently issue a correct control pattern.

Not in all cases all of the events generated by the controlled discrete event system can be ob-

served by a supervisor. The fact that some of the events might not be observable to the supervising

agent has to be taken into account while desiglzing the supervisor. In order to incorporate this case

in our model the additional alphabet C, is recognized, such that C, c C and all events in C, are

observable. With the alphabet C, a projection P is associated such that

where P is given by

The mapping P defines an equivalence relation kerP on C* such that (s, sf) E kerP iff P (s) = ~ (s ') .

Thus for a given language L c C*, the projection P defines an observable language P (L) C C:.

In the following section the problem of the existence of a supervisor for partially observable system

is addressed.

The question to be answered in the following paragraph is: Given the language li C L repre-

senting the desired behavior, does there exist a supervisor S such that L , (S / G) = Ii, taking into

account that not all events can be observed by the supervisor? The existence of such a supervisor is

closely related to the concept of observability, widely studied in classical control theory. There

the question can also be stated a little bit differently, namely: Is the information observed by the

supervisor through the certain period of time suficient to determine the state of the system (and

therefore to be able to issue an appropriate feedback)?

The system is said to be observable if all it states are observable. Before defining the concept

of observability in terms of event trajectories as adopted in [LW88c] some definitions have to be

introduced.

Let's define a binary relation a c t ~ c such that for s , s' E K, (s , s t) E act^ if there does not exist

a E C such that either

sa E I< and s'a E L(G) - li or sa E L(G) - K and s'o E K

namely, all one step continuations of s and s' that remain in L(G) (i.e. that are possible) will yield

the same result with respect to membership of Ii'. More formally, with each string .3 E C* we can

associate an active set AIc(s) and an inactive set I A K (s) defined in the following way:

Then we call say that (s , s') E actr,- iff

AIC(s) n I A K (s t) = 0 = A K (s 1) n IArc(s) .

The language K is said to be observable iff

i.e., for any s, s1 E C* if P(s) = P(sr) then (s , sl) E ac tx . In order for a system to be observable the

projection P has to retain sufficient information for a supervisor to decide whether after the enabling

or disabling of a particular event the resultant string will be in K. The notion of observability is

essential for the existence of appropriate feedback control.

Having the projection mask P on alphabet C determining the observable events, the P-supervisor

(supervisor under the projection P) exists iff language K is controllable and observable (see The-

orem 2.1 in [LW88c]).

When the language Ii does not satisfy the previous conditio~l there is again the possibility to

approximate I{ as it was possible when the language Ii was uncontrollable. However, in this case

a unique maximal controllable and observable sublanguage of K need not exist. In order to look

for an observable approximation of Ii the class of so called P-normal languages is examined.

Language I{ C L (G) is P-normal when

P-I is a lnappii~g which for each string s E C* will return all strings which are equivalent to s

under ker P. Language K is normal when it is uniquely determined by it projectioil P.

In other words, it means that Ir' has to be composed from the union of the cosets of ker P

which are in L. This situation is represented graphically in Figure 11.

Figure 11: P-normal langua,ge (squares correspond to the cosets of lcer P in L.)

Normality is a stronger condition than observability, i.e., if language li is P-normal then I< is

also observable.

Figure 12: a) nondeterministic transition, b) deterministic transition

The notion of the unobservable events also suggests a way for dealing with nondeterministic

"noisy" behavior of the plant. A ~londeterministic transition cu (e.g. Figure 12a.) can be modeled

by introducing new uilobservable events al , a;! (see Figure 12b.)

Now from the supervisors point of view a is still nondeterministic, but the formal description

is now deterministic.

The idea of partial observations determined by the mapping P can be used nicely in a decen-

tralized supervisory control [LW88b]. Local agents can simultaneously supervise DES 6 where each

of them has some local information (observable by them) and controls associated with them.

3 Real-Time Issues

The main focus of the previous sections was the understanding of basic control-theoretic issues

such as controllability and observability in the framework introduced by Ramadge and Wonham in

[RW87b], [LW88c]. While doing so a lot of idealizing assumptions were introduced:

1) communicatio~~s between plant G and supervisor S took place with zero time delay and

2) in case the plant is defined as the shufRe product of component generators GI, G2, ..., G k , events

in Gi occur in interleaving fashion so that the true concurrency of events is ruled out,

3) it was assumed that he correct behavior of the system is given by language L, and the problem

of obtaining this correct behavjor was not addressed.

The fact that the framework has no means to deal with timeout or delays which in real-life

situations can not be ignored may have serious consequences. For example, consider a lnoving

robot which has to stop or turn within a certain amount of time before colliding with another

object in the environment.

In this section we will present another representative from the class of logical DES models,

namely the Extended State Machine (ESM) and Real-Time Temporal Logic (RTTL) model intro-

duced by Ostroff and Wonham in [OW87]. This model has not only suitable means for investigating

whether system trajectories satisfy desired properties, but can be also used for verification and

synthesis of DES and incorporates implicit notion of time. The motivation for desiring of above

characteristics is outlined below.

Due to the high complexity of discrete event dynamic systems obtaining the model representing

the correct behavior of the systern is very difficult. The correctness is playing an important role

here because mistakes made in tlze design may have undesirable consequences during operation.

The notion of a system's correctness is closely related that of verification. In other words having a

model of the system under investigation, we would like to be able to verify (prove) it correctness

with respect to the expected legal behavior of the system (plant and controller) fulfilling certain

requirements. Since most of the real-life syste~lis are subject to real-time constraints, the absolute

tinling informa.tion is essential in certain applications where certa,in events have to occur within some

time interval after entering a, particular state. The main focus of the methods that are addressing

these problems, is to provide rigorous computational models and semantically precise specification

languages for expressing the requirements imposed on the system behavior and representing plants

and controllers. In addition to that some satisfaction relation (or the proof system) is needed in

order to reason whether the system satisfies the specified requirements as well as some decision

procedures for verification. The proof system then should be proved to be sound with respect to

the semantics so that no incorrect program can be proven correct. The completeness of the proof

system plays an important role as well, assuring that every correct program can be proven to be

correct.

3.1 ESM and RTTL Framework

The approach proposed by Ostroff and Wonham in [OW871 uses the Extended State Machines

(ESM) for describing the system and Real-Time Temporal Logic (RTTL) for specifying the required

plant behavior and for verifying whether the system satisfies the specifications. The expressive

power of EMS is illustrated on the shared track example below.

3.2 Example

Suppose that the plant under investigation collsists of two trains which share a colnnlon section of

the tra.ck. 011 the shared section is a diesel pump for refueling the trains. The train fuel tank ca,n

hold up to 1000 gallons of diesel. In order to prevent the two trains from entering the shared tra.ck

simultaaeously, two traffic lights ha,ve been installed. The ESM model for the train system can be

described as a parallel cornposition of the plant and the controller.

trni~zSystenz = plant 1 1 controller

plant = train1 11 train2 11 pump

The extended state machine (EMS) for i-tll train is or1 Figure 13. The EMS consists of the

following components:

ACTIVITIES. A set of activity variables where X = {tmvel, wait, sharedTrack, pumpConnect,

punzpDisconnect)

V A R I A B L E S . A dutu variable y;. Where yi represents the level of diesel in the tank of the i-th

train,

CHANNELS. A set of communication chun~zels 6' = {ci , mi, n ;) where c; is an input channel

and mi, n; are output, channels for the i-th train (e.g. channel ci is used to receive commands

from the controller and m; and n; are channels for sending messages to the controller).

/ pump- \
\ connect I

Figure 13: Extended state machine for the i-th train

TRANSITIONS. The activities represents the states of the system and the tra~zsitio~zs between

states represents events. The events are of the forlll (guard + operation). The guards are

boolean valued expressions in the data variables y;. If tlze value of the guard is true then

the operation is enabled. At a certain sta,te more than one operation can be enabled which

allows for nondeterminism. In addition each transition has a lower time bound I and an upper

time bound u associated with i t . The event is in fact a 3-tuple (L1,guard + operation, L2) ,

where L1 is the exit activity and L2 is the source activity. By setting the upper time bound

to infinity, we can represent so-called spon taneous even t s , which are never forced to occur.

These events may represent the unpredictable interactions with the plant. On the other hand,

by setting the upper time bound t,o a certain finite value, the event is forced to occur within

some time interval. These types of forced even t s are suitable for preventing undesirable

situations by changing the state of the system.

Figure 14: Extended state machine for the pump

In addition to the above mentioned variables of the system, two special variables have to be

distinguished. The next tmnsition variable n whose type is the set of all transitions and the clock

variable t representing the time and used for asserting lower and upper timebounds on transitions.

By looking at the ESM model of the trainSystem different types of transitions can be recognized.

The transition y; > 0 - r ; [y ; : y i - 11 is an example of a local event changiilg the variable

y; of the i-th train only.

The transition y; < 100 9 & [y , : y; + 11 is an example of a shared t ransi t ion between the

pump and the train. In general shared transition together with time bounds can also serve

as a meails of control of one ESM's over another. Suppose for example shared transition

T between ESM's M I and M2. M1 could impose a control over a transition r in M2, by

setting particular finite upper bound therefore forcing the transition r to occur, whenever

both transitions are enabled. Similarly by setting up the upper time bound to infinity for a

shared transition in MI, we can observe the transition of M2 by ESM M I .

The ci?mi is a communicat ing t ransi t ion, in which the plant receives a message from

channel c; . In addition to messages also conlmands can be sent, where receiving a command

is followed by it's execution. (e.g. c;?cri means receive a command from the controller to

enter the shared tra.ck or nzi!xi sends the current activity variable to the controller). Send

and receive a,re events which define communicating transition. The upper time bound for this

transition is taking into account time for guard evaluation, transition and also the time to

do the handshaking. The colllmunicating transition a; constitutes an example of an forced

event, i.e., event which may not be enabled for infinitely many clock ticks.

ESM's provide a designer with a visually simple state transition diagram of the system together

with the representational advantages of programming la,nguages (e.g., data variables, assignments,

sends, receives, guarded commands).

3.3 Legal Trajectories

One of the main objectives of using formal methods for modeling DES is to assure the desired

behavior of the system by means of a.ppropriate control. The behavior of tlre system can be

expressed in terms of the possible state trajectories. The state trajectory is an infinite sequence of

states, together with transitions between them. Due to the constraints on the behavior of the system

determined by a particular ESM not every path in the state space is possible. The subset of all

trajectories determined by the ESM structure which characterizes the actual behavior of the system

is called a set of legal trajectories. Legal trajectories are formed from initialized trajectories

(i.e., trajectories which satisfy an initial condition of the system) and their suffixes. Perceiving

ESM's of a system as the syntactic structure, legal trajectories provide both the lneaning (formal

operational semantics) fully describing its behavior and a basis for deducing system properties. .4

detailed definition of legal trajectories can be found in [OW87].

3.4 RTTL Specificatio~ls

The legal trajectories provide, also the semantics for Real-Time Temporal Logic (RTTL), which is

the assertion language for specifying constraints imposed on the systems behavior.

The basis for the RTTL specificatioil and verification language is linear time tenlporal logic,

introduced by Manila and Pnueli in [MPSS], with additional proof rules for rea.1-time properties.

RTTL formulas a,re first-order predicate formulas (state formu1a.s) on systems va.riables (activity

or data variables) together with some temporal operators (e.g. 0 - next, U- until, 0 - eventually,

etc.) RTTL formulas are evaluated in a sequence of states as opposed to state formulas which are

being evaluated single state. So the fa.ct that a state formula c,h is satisfied in state so is denoted by

so(4) = true. The satisfaction relation for a RTTL formula is defined inductively in terms of legal

tra.jectories as follows.

Satisfaction. The satisfaction relation is defined for an arbitrary trajectory a = soSls2 ..., where

O k is given by a k = SkSk+lSk+2... .

u

If w is a state formula then 1 w iff so(w) = true.

u 0 1

/= O w iff b w. OW may be paraphrased: w will be true in the next state.

u 0 k 01

~ w l U w 2 i f f 3 k > _ O s u c h that , E w 2 a n d V i , O < i < k,)= wl.

wlUw2 can be paraphrased as: eventually w2 will hold and until then wl holds coatinuously.

The other tenlporal operators may be defined in terms of 0 and U as follows:

Ow stands for (trueU w), i.e. eventually w will hold true in some state.

Ow stands for ~ (O (i w)) , i.e. henceforth, w holds true in all states.

w1Pw2 stands for (1((7wl) U wz)), i.e if wz eventually occurs, then wl must precede w2.

So if S is a tempora.1 formula specifying the required behavior of the system to be ensured by

the controller, and C,, is the set of legal trajectories of the system, specification S is C,-valid if

it satisfies all legal traljectories.

An example of temporal logic specifications for the shared track example described previously

is given below:

(S l) Safety. o(xl E {travel,wait} V .2'2 E {travel,wait)), specifying the safety property saying

that both tra.ins may not sinlultaneously use the shared track, i.e either the first train is

traveling or waiting or the second train must be traveling or waiting.

(S2) Priority. If one of the trains has been allowed to use the shared track, the currently waiting

train must have first priority to use the shared track once the track is vacated:

1. (n = a1 A 2 2 = wait) - O (n = a 2 P n = ail).

2. (n = a 2 A 21 = tonit) i O(n = alPn = a a) .

(S3) Real-time response. For each train i,

1. (n = a; A t = T) + (00(x; # st A t 5 T + 2r)) A (n # p;U t > T + r) , i.e., no trains should

be allowed on a shared tra.cli longer than 2r ticks of the clock. However, the train should not

be ejected before r ticks of the clock. T is a global variable and r is a constant corresponding

to the required response time.

2. (n = wi A yi = Y A t = T) + O(x3 = pump; A z = 1000 - Y A t < T + 2r). Within 2r ticks

of the occurrence of the shared event w; the pump must be instructed t o fill the fuel tank of

the train. The activity variable of the pump is x3 and has one da ta variable z corresponding

to the fuel remaining to be pumped to the train. Y is a global variable.

The specifications (Sl) , (S2), (S3) refer olzly to activities and variables of the plant, nothing

about the controller is mentioned. This allows to analyze the open loop behavior of the system

with respect to the given specifications prior to the synthesis of the controller. This analysis may

provide some information about different control policies can and possibly be used for the controller

synthesis [Ost89].

3.5 Controllers

Controllers can be implemented in real-time distributed programming languages with constructs

for timeout and delays. Since the program is just a sequence of statements (assignments and

communications) which are updating the values of data and activity variables, each state of the

systeni can be thought of as a certain relation between variables. These relations are deterlnillilzg

the truth values of the guards, i.e., deternzining which operations will be enabled or disabled. The

evolution of the systerrl is deter~llined by the program flow of the controller. The authors in [OW901

chose for implerne~lting a controller distributed real-time programming language CONIC'. They also

showed that a CONIC task can be represented as an ESM where the transformation between these

two represelltatiolzs is straightforward and can be automatized. This provides further evidence

for expressive power of ESM's as well as a way in which plant and colztroller can be treated in a

uniform manner. A detailed descriptioil of the controller can be found in [OW901 together with it

state machine. A schematic description is depicted in Figure 15.

Given an ESM's clzaracterizilzg the traznSystem and given a RTTL specification of the system

behavior, there is a way to check whether the closed-loop system is valid, namely whether all

specifications are satisfied by all legal trajectories. The decision procedures for checkillg the system

validity of a certain property have been developed and automatized for a small class of real-time

Figure 1.5: The controller composed from two ESM's (CONIC tasks) K1, K2.

C 1

properties, e.g. safety and liveness. In general safety property is defined as making sure that bad

things don't happen and liveness has been defined as insuring that the good things eventually occur.

These two properties caa be successfully verified for the finite state machines, using antomated

decision procedures. For infinite state systems heuristics have been developed to guide the designer

in searching for correctness proofs.

1 train
1

k1 ,Vl, 01

C

- Pump

5 2 7 ~ 2 9 w2

1

K1

4 4 " 2
m ?

c 2 -

b2

train
2

-

K 2

4 Conclusions

The authors in both approaches provided a framework for modeling DES which is suitable for

investigating qualitative properties of these system. In both cases the system under investigation

was decomposed to a plant and a controller, where the main goal of the controller was to assure the

desired behavior of the plant. This decomposition allows to investigate open-loop and closed-loop

behaviors of the system separately.

The framework introduced by Ramadge and Wonham successfully addresses the control-theoretic

problems and concepts of discrete event dynamic systems and introduces new techniques from

automata and formal language theory. The closure properties of regular languages suggest ways of

dealing with the n1odula.r synthesis of supervisors by defining a.n algebra of supervisors [RW87a] and

investigating concepts of controllability, observability and supervision. The concept of a controllable

language allows illvestigation of the entire class of controllable language, which can be achieved by

supervision. The problem of the distributed and hierarchical control can be nicely addressed using

this framework. The suitability of this framework for investigating control-theoretic issues lies in

the fact that open-loop behavior of the system is clearly separated from the feedback control. Even

though some attempts were made to take into account comn~unication delays [LW88a] they did not

provide any means to express real-time constraints explicitly.

The notion of controllability and observability are in their nature similar to the safety and liveiless

properties which are defined in concurrency theory. The safety criterion expresses the need to make

sure that bad things will not happen in the system. This call be achieved by making sure that by

observing the events in the system we can determine it's state and issue an appropriate feedback

control to prevent bad things from happening. In case of the liveness property, we want to make

sure that good things will happen in our system, or in control-theoretic terms we have to make

sure that by meails of an a,ppropria.te control we ca.n rea.ch the desired sta,te of the system.

In the ESM/RTTL fra.mework authors Ostroff and Wonham demonstrated the significant expres-

sive power of ESM framework as well as its suitability to handle specification and verification

problems of DES. Moreover, they showed that even though temporal logic approaches so far ha.ve

not been adequate for the qualitative analysis of real-time systems due to the interleaved model

of concurrency computation, timing requirements can be formulated and verified satisfactorily by

introducing lower and upper bounds on transitions. More recent work in the area concentrates

mostly on investigating methods for automatic design of controllers as well as better and more

automated decision procedures for infinite state systems. The introduction of the time as a special

variable raises the question of the appropriateness of the global clock approach, which may cause

some problems in the real-life systems. The authors also did not touch upon the scheduling issues

of DES and probably assumed some kind of scheduling algorithm which was incorporated implicitly

in the model.

The applicability of the proposed frameworks to real-life systenls presents some limitations. One of

the important characteristics of DES is that they often exhibit uncertain properties due to the fact

that inputs and measurements are often disturbed by noise. None of the models provide the means

to accouilt for the uncertaiilty. Even though the models allow a possibility for nondeterministic be-

havior, they do not have a meails to represent and propagate the probabilistic information of events

and take this information into an account while iilvestigating systems properties. Furthermore, the

models sl~ould be able to capture the dyaa.mic and transients aspects of systems behavior as kno~vn

from continuous variable dynamic systems, as opposed t o concentrating only on the output analysis.

The most difficult part of system design, which remains largely unaddressed is the mapping

from real-world environments (e.g. robots, sensors, pumps, trains) to fornlal mathematical models

(e.g. events, states, time bounds).

A Appendix

A dynamic system [Son901 can be described as a quadruple

c = (7 , x, u, 4)

where

7 - is a time set, where 7 is a subgroup of (R, $). In most cases 7 is either 3? or ,7 (real or integer

numbers),

X - is a set called state space of C (output functions),

U - is a nonempty set called control-value or input-value space of C,

4 - is a map, D4 -+ X, called transitioll inap which is defined on subset D4 of set

D4 - is the domain of transition function 4 and can be thought of as the set of all possible

evolutions of the systems. Choosing a particular one will bring the system to the next state.

w - is a map from the time interval [a, r) into U and can be thought of as a restriction of control

input v(.)

The formal description expresses the intuitive notion of a system that evolves in time according

to the transition rules specified by 4. At each instant of time T, the state x suinma.rizes a.11

information needed in order to describe the future evolution of the system.

In the most general case the following notation is usually adopted:

This can be read as the state at time r resulting from the starting time a and state s applying

the functioil w. When the parameters o and T are clear from context a simpler notation is often

adopted, namely:

References

[Gi176] W. J. Gilbert. Modern Algebra with Applications. John Wiley and Sons, 1976.

[Hot371 Yu-Chi Ho. Performance evaluation and perturbation analysis of discrete event systems.

Transactions on Automatic Control, AC-32(7):563-572, 1987.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

[LW88a] Y. Li and W. M. Wonhanl. On supervisory control of real-time discrete-event systems.

Information sciences, 46:159-183, 1988.

[LW88b] F. Lin and W. M. Wonham. Decentralized supervisory control of discrete-event systems.

Iizfornzation Sciences, 44: 199-224, 1988.

[LW88c] F. Lin and % I . M. Wonham. On observability of discrete event systems. Information

Sciences, 44:173-199, 1988.

[MP83] Z. Manna. and A. Pnueli. How to cook a temporal proof system for your pet 1a.nguage.

Proc. ,Symp. Princil3le.s Progrrimnziny Languages, 141-154, Ja.nuary 1983.

[Ost89] J. S. Ostroff. Synthesis of controllers for real-time discrete event systems. Proceedings of

27th IEEE C'onf. Decision and Control, 138-144, December 1989.

[OW871 J .S. Ostroff a,nd M.7ili. Wonham. State machines, temporal logic a,nd cont,rol: a. framework

for discrete event systems. Proceedings on 26th Conference on Decision a,nd C'orzt~ol~ Los

Angeles, CA, 681-686, December 1987.

[OW901 J. S. Ostroff and W. M. Wonham. A framework for real-time discrete event control. IEEE

Transactions on Automatic Control, 35(4):386-397, a.pri1 1990.

[Ram891 P. J. Ramadge. Solne tra.cta.ble supervisory control proble~ns for discrete-event systems

modeled by Bilchi automata. IEEE Transactions on Autonzatic C'o~ztrol, 34(1):10-19,

January 1989.

[RW87a] P. J. Ramadge and W. M. Wonham. Modular feedback logic for discrete event systems.

SIAM J. Contr. Optinzizc~tion, 25(5):1202-1218, January 1987.

[RW87b] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event pro-

cesses. SIAM J. Contr. Ol~tinzisatioiz, 25(1):206-230, 1987.

[Son901 E.D. Sonntag. Mathematical Control Theory. Deterministic Finite Dirnen.siona1 ,Systems.

Texts in Appliecl Mathematics 6 , Springer-Verla,g, 1990.

[WR87] W.M. Wonham and P.J. Ramadge. On supremable controllable subla,nguage of a given

language. SIAM J. Control and Optimization, 25(3):637-639, 1987.

	Control of Discrete Event Systems
	Recommended Citation

	Control of Discrete Event Systems
	Abstract
	Comments

	tmp.1187707405.pdf.hpFI3

