
Control of Dynamic Gaits for a Quadrupedal Robot

Christian Gehring∗†, Stelian Coros†, Marco Hutter∗,

Michael Bloesch∗, Markus A. Hoepflinger∗ and Roland Siegwart∗

∗Autonomous Systems Laboratory, ETH Zurich, Switzerland, gehrinch@ethz.ch
†Disney Research Zurich, Switzerland

Abstract—Quadrupedal animals move through their environ-
ments with unmatched agility and grace. An important part of
this is the ability to choose between different gaits in order
to travel optimally at a certain speed or to robustly deal
with unanticipated perturbations. In this paper, we present a
control framework for a quadrupedal robot that is capable of
locomoting using several gaits. We demonstrate the flexibility
of the algorithm by performing experiments on StarlETH, a
recently-developed quadrupedal robot. We implement controllers
for a static walk, a walking trot, and a running trot, and show
that smooth transitions between them can be performed. Using
this control strategy, StarlETH is able to trot unassisted in 3D
space with speeds of up to 0.7m/s, it can dynamically navigate
over unperceived 5-cm high obstacles and it can recover from
significant external pushes.

I. INTRODUCTION

Legged robots are better suited for rough terrain locomotion

than their wheeled or tracked counterparts. As a result, they

have the potential of being used for a wider variety of tasks.

The drawback of multi-legged systems, however, is that they

are more complex, inherently unstable and therefore more

difficult to control. In addition, appropriate control meth-

ods need to be robust to unplanned disturbances because

the environments, in general, are only partially observable.

Statically stable solutions for this problem rely on position

control algorithms and have been studied extensively [1], [2].

However, they have not yet been shown to produce motions

that are as agile as the motions observed in nature [3].

To date, considerable progress has been made towards bridg-

ing the gap between the skill sets of legged robotic systems

and that of real animals. In constrast to Boston Dynamic’s

LittleDog [4], which is only capable of static walking, its

larger counterpart, BigDog [5], looks more agile and life-like

and is capable of a variety of locomotion behaviors: standing

up, squatting down, walking, trotting and bounding. Stable and

robust locomotion has been demonstrated on this platform, but

the exact details of the employed control algorithms are not

known. More information is available regarding the control

scheme of the IIT’s HyQ [6], another hydraulically actuated

quadruped, which was recently shown trotting robustly by

employing a simple virtual model control approach for each

leg [7].

Recent progress has also been made in simulation, where it

is possible to decouple the control laws from the limitations

of specific hardware platforms. For instance, Coros et al. [8]

This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Research Robotics.

low-level
controller

motion
generator

position
control

torque
control

,

d d

j j
q q&

d
τ

d
I , , ,q q cτ&

d

F
r

,

d d

b b
q q&

, ,

d d d

x y
v v &ψ

motion controller

Fig. 1. The control framework (blue) computes the desired joint positions,
velocities, and torques based on the desired walking speed and direction,
whereas the low-level controller (green) generates the desired motor current
from these outputs.

described a control framework that was successfully used to

control a broad range of dynamic gaits for a dog-like simulated

quadruped, and Krasny and Orin [9] developed a control

algorithm for galloping quadrupeds.

At a high level, successful control strategies are based

on the observations noted by Raibert [10], who showed the

importance of two essential ingredients: control of the body

through the stance hips and foot placement control for balance

recovery.

For this work we use a set of conceptually similar ideas

in order to control StarlETH (Springy Tetrapod with Articu-

lated Robotic Legs), a recently developed, electrically driven

quadruped robot [11]. StarlETH’s weight of 23kg and leg

length of 0.4m correspond to the dimensions of a medium

sized dog, and it uses an actuation scheme based on highly

compliant series-elastic actuators that enable torque control.

Our aim is to increase StarlETH’s repertoire of motions to

include faster, more life-like dynamic gaits. To this end we

build on the framework described by Coros et al. [8]. The

control scheme combines several simple building blocks. An

inverted pendulum model computes desired foot fall locations,

PD controllers regulate the motions of the legs and virtual

forces are used to continuously modulate the position and

orientation of the main body. In addition to discussing the

changes needed to apply the control scheme to StarlETH, we

describe an improved method for distributing virtual forces to

the stance legs. We demonstrate the flexibility of the described

framework by generating walking and trotting controllers that

are robust to pushes and significant, unanticipated variations in

the terrain. In addition, we show that our method can produce

smooth gait transitions that depend on the walking speed,

resulting in increased agility.

II. CONTROL FRAMEWORK

The goal of our control framework is to provide quadruped

robots with the ability to move through their environments



while robustly dealing with perturbations due to external

pushes or unperceived variations in the terrain. In order to

allow the robots to be steered, the desired forward speed vdx ,

lateral speed vdy or turning rate ψ̇d are treated as high-level

parameters that can be modified at any time.

Figure 1 shows the different building blocks of our control

system. Our control framework (blue) computes desired joint

positions qd and torques τ d that are passed to the low-level

controller (green). The latter considers the dynamics of the

actuators and regulates the motor currents Id. The motion

generator and motion controller modules shown in Fig. 1

illustrate the two core questions addressed by our method:

how do we generate appropriate motion objectives for the

whole-body system (Section II-B), and how do we best achieve

them (Section II-C)? Before we discuss in detail these two

components, we first describe the characteristics of the plant.

A. The Plant

Our quadruped robot, StarlETH, has four articulated legs

with three actuated degrees-of-freedom (DoF) each: hip abduc-

tion/adduction (HAA), hip flexion/extension (HFE), and knee

flexion/extension (KFE). The mechanical system therefore has

12 actuated DoFs and 18 DoFs in total. The controller has

access to all joint angles qj ∈ R
12, joint velocities q̇j , as well

as to the pose qb ∈ R
6 and velocities q̇b of the main body,

which are estimated by an Extended Kalman filter that fuses

IMU data and leg kinematics [12]. The minimal coordinates

of the free-floating robot are thus given by q = [qb, qj ]
T .

Additionally, pressure sensors in the feet indicate whether

the legs are in contact with the ground. By thresholding

the pressure readings, a boolean contact flag for each leg

(cflag ∈ {0, 1}) is available for the control algorithm.

The control framework described in this paper outputs

desired joint angles qd
j for the swing legs and desired joint

torques τ d for the stance legs, as the series-elastic actuators

employed by StarlETH enable torque control. The high com-

pliance of the system, however, requires sophisticated low-

level torque and position controllers in order to cope with the

resulting low control bandwidth. We therefore use the low-

level control system described by Hutter et al. [13] to generate

desirable motor currents.

B. Motion Generation

The motions of the legs and the main body are described in

our framework either in the inertial (world) frame I or in the

body frame B that is located at the center of the main body,

namely in the center of the HAA joints. The main frame’s

x-axis is aligned with the robot’s heading direction, which we

also refer to as the sagittal direction. The vertical direction is

collinear with the z-axis of the inertial frame. The y-axis of

the main frame denotes the robot’s coronal direction.

1) Terrain: To plan the locations of the footholds, it is

essential to know where the ground is located in the inertial

frame. Since the estimated vertical position of the robot can

drift, and we restrict ourselves from using any external sensors,

we estimate the ground height hg by filtering the vertical

0 0.25 0.5 0.75 1
RH
RF
LF
LH

φ

Fig. 2. Gait graph for a walking trot: the black bar defines the stance phase
of the left hind (LH), left front (LF), right front (RF), and right hind (RH)
leg, respectively.

position of the stance feet, IrF,z, expressed in the inertial

frame:

hg(t) =

N=4∑

i=0

cflagi(IrFi,z · α+ hg(t−∆t) · (1− α)), (1)

where α = 0.2 is the parameter of a first order filter.

2) Timing: Quadruped gaits are to a large extent defined

by the foot fall pattern and the duration of the gait cycle Ts.

In our implementation, this is controlled by the Gait Pattern,

which explicitly defines the role of each leg at any moment

in time. Legs that are in swing mode need to safely reach the

next foothold location in order to ensure that the robot can

move at the desired speed or that it can recover balance. In

contrast, the legs that are in stance mode must help satisfy the

motion objectives of the main body in a coordinated way.

The Gait Pattern defines the sequence of swing and stance

modes for each leg with respect to the time-normalized stride

phase φ ∈ [0, 1], as illustrated in Figure 2. The white areas

indicate the fraction of the stride when a leg is in swing phase,

which is characterized by the relative timing of the lift-off and

touch-down events. The dark areas indicate that a leg is in

stance mode. In addition to informing the controller of whether

a leg is in swing or stance, the gait pattern is used to estimate

the amount of time left before a leg should transition to the

next mode. This information is useful as it helps the controller

anticipate how the support polygon will change in the near

future and plan accordingly.

The stance phase φst ∈ [0, 1] of a leg indicates the time

normalized progress made during the stance mode. The swing

phase of a leg, φsw, determines the amount of time left before

the next foot touch-down event, and it is set to −1 if the stance

phase φst > 0. We define the rule used to determine if a leg

is in stance mode ιst ∈ {0, 1} as:

ιst =

{
1 if cflag ∧ (φsw > 0.9)
φsw < 0 otherwise

(2)

The first case employed in the equation above ensures that legs

are free to transition to stance mode earlier than predicted in

order to support the main body, if early contacts are detected.

The swing mode ιsw ∈ {0, 1} is defined as ιsw = ¬ιst.
We introduce another variable, the grounded flag gflag =

ιst ∧ cflag ∈ {0, 1}, to select the appropriate low-level con-

troller. The flag is only true if the leg is, and should be, in

contact with the ground. In this case it is safe to apply torque

control at all the joints of the leg, including the knee.

3) Swing Leg Configuration: Appropriate foot placement

control for the swing legs can provide the robot with the ability

to recover balance when it is pushed, or when it encounters



unanticipated variations in the terrain. Our foot placement

algorithm currently considers each leg independently of the

others. At every control cycle we calculate, for each swing

leg, an appropriate foothold position. Subsequently, we plan a

trajectory for the foot in order to ensure that the target stepping

location is reached safely. This results in desired swing foot

positions at every moment moment in time.

The target foothold location IrF is computed relative to the

HAA joint IrH:

IrHF = Ir
fb
HF + Ir

ff
HF, (3)

where Ir
fb
HF is a feedback term predicted by an inverted

pendulum model [14], and Ir
ff
HF is a feedforward step length

that depends on the robot’s desired speed. This formulation is

similar to the one described in [15].

We use a slightly modified version of the inverted pendulum

prediction in order to compute the feedback component of the

stepping location:

Ir
fb
HF = η(Ivref − Iv

d)

√

h

g
, (4)

where h = IrH,z − hg is the current height of the hip with

respect to the ground, Iv
d = Iv

d
x+Iv

d
y is the desired velocity,

g is the gravitational acceleration, and Ivref is an estimated

reference linear velocity, and η is a scaling parameter that

was set to 1.2 for all our experiments. This particular form of

the feedback term ensures that, when moving at the desired

speed, only the feedforward component of the step location

is used. Consequently, only differences between the current

speed and the desired speed are taken into account by the

feedback component. In practice we noticed that the feedback

component of the step can be too large when the robot

is mostly rotating about the yaw axis. For this reason, we

compute the estimated reference velocity used in the equation

above as the average between the leg’s hip velocity and that

of the body’s COM:

Ivref =
1

2
(IvH + IvCoM). (5)

The feedforward component of the stepping location is

computed as half the distance the CoM is expected to travel

during the stance duration ∆tst that is defined by the Gait

Pattern:

Ir
ff
HF =

1

2
Iv

d∆tst. (6)

We can optionally add an additional offset, Br
d
HF, to the

feedforward stepping location in order to control the width of

the steps that are taken. This is particularly useful for slower

gaits such as the static walk.

The stepping offset IrHF constitutes the final desired lo-

cation for foot placement. However, we need to provide the

robot with a continuous trajectory that ensures that the final

foot location can be reached safely. We therefore linearly

interpolate between the initial location of the foot at the

beginning of the swing phase, and this final target location.

To provide enough ground clearance for the foot, we use a

pre-defined height trajectory that varies as a function of the

swing phase, as shown in Fig. 3a. This trajectory is defined

by a spline, and all values are relative to the estimated ground

height hg .

4) Stance Leg Configuration: In case a leg is in stance

mode according to the Gait Pattern, but loses contact with

the ground (gflag = 1), we compute a desired foot target that

is 1cm lower than the leg’s current position, in order to re-

gain contact with the ground as soon as possible. Otherwise,

because there are no kinematic redundancies in the mechanical

design, we do not need to actively control the pose of the

stance legs.

5) Main Body Configuration: The pose qb and velocity q̇b

of the main body need to be controlled in order to increase

robustness, i.e. prevent the robot from tumbling over, and to

meet the desired velocity commands. By default, the desired

orientation of the main body is defined by zero roll and pitch

angles, whereas the yaw angle is unconstrained. The desired

height of the body relative to the estimated ground height,

hH , is specified by a spline as a function of the stride phase,

and it can be used, for instance, to propel the body upwards

at the right moment in time in anticipation of a flight phase.

The desired position of the body along the sagittal and coronal

directions is computed relative to the positions of the feet:

Ir
d
B =

∑N

i=1 wi(φ)IrFi

∑N

i=1 wi(φ)
, (7)

where the leg weights wi depend on the stride phase φ as

illustrated in Fig. 3b. We compute the desired position based

not only on the grounded legs, but also based on the swing

legs, in order to get smooth trajectories for the desired position

of the body. With the strategy we implemented, as a grounded

leg approaches the end of the stance phase (φst = φst,0), the

body can start shifting away from it. Similarly, the body starts

shifting towards a swing leg, as it reaches the end of the

swing phase (φsw = φsw,0) and prepares for landing. This

anticipatory behavior is flexible enough to control traditional

static gaits, and it allows us to also implement dynamic gaits

that are increasingly more agile. The minimal weight wmin

depends on the gait and is found experimentally.

The generalized desired position of the main body is given

by qd
b = (Ir

d
Bx
, Ir

d
By
, hg +hH(φ), 0, 0, 0)T , while its desired

velocity is q̇
d
b = (vdx, v

d
y, 0, 0, 0, ψ̇

d)T .

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

h
ei

g
h

t 
o

f 
fo

o
t 

a
b

o
v

e 
g

ro
u

n
d

 [
m

]

φ

(a) Swing foot trajectory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w
i

φ
 

 

stance mode

swing mode

φ
st0

φ
sw0

w
min

(b) Weights for balance control

Fig. 3. Most of the motion characteristics are described with respect to the
stride phase φ.



C. Motion Control

We use low level position controllers in order to get fast and

precise tracking of the swing leg joint trajectories [13]. For

the legs that are in stance mode, we make use of virtual force

control, as it is an intuitive and effective method. However,

due to the particular mechanical setup of the knee joint, we

cannot apply torque control to the knee joints of the stance

legs unless the knee spring is under tension. In practice, we

detect ground contacts, or lack thereof, at a fast enough rate to

employ a hybrid control approach, using torque control for the

stance legs that are in contact with the ground, and position

control otherwise.

1) Position Control: We use position control whenever a

leg is not, or should not be (gflag = 0), in contact with the

ground. The desired joint angles qd
j are obtained from the

desired foot positions through inverse kinematics, and are then

passed directly to the low level controller.

2) Torque Control: The joint torques that need to be applied

through the stance legs are computed in three steps. We first

compute virtual forces and torques that should ideally act on

the main body in order to control the robot’s posture. These

are then optimally distributed to the stance legs given the

current kinematic configuration of the robot. Lastly, we map

the virtual leg forces F leg to the joint torques by applying

Jacobian transpose control: τ = JTF leg.

The desired forces and torques that should act on the main

body are computed based on the desired pose qd
b , the current

pose qb and their derivatives, as:

[

BF
d
B

BT
d
B

]

= kp(q
d
b − qb) + kd(q̇

d
b − q̇b) + kff











vdx
vdy
mg
0
0

ψ̇d











(8)

where kp, kd, and kff are the proportional, derivative and

feed-forward gains, respectively and m is the total mass of

the robot. The feed-forward gains improve tracking the desired

velocities and compensate for gravity.

The desired net virtual force BF
d
B and torque BT

d
B that

should be applied to the main body are bounded before being

distributed to the stance legs, in order to ensure that the robot

does not apply excessively large forces through the stance

legs. In the framework described in [8], BF
d
B and BT

d
B are

equally distributed to the stance legs. This strategy did not

work for our static walking gait. Instead, at each control step,

we solve a convex optimization problem with linear constraints

in order to compute desirable contact and friction forces to be

applied through the stance feet. More formally, the problem

formulation is as follows:

minimize (Ax− b)TS(Ax− b) + xTWx (9)

subject to Fn
leg,i ≥ Fn

min, (10)

− µFn
leg,i ≤ F t

leg,i ≤ µFn
leg,i (11)

where x = [F T
leg,0, · · · ,F

T
leg,i, · · ·F

T
leg,m]

T , F T
leg,i represents

the net force to be applied through the ith stance leg and m is

the number of legs that are and should be grounded (gflag = 1).

In order to ensure that the forces applied through the stance

legs result in a net force and torque that are as close as possible

to the desired values, we compute A and b using:

[
I I · · · I

r0× r1× · · · rm×

]

︸ ︷︷ ︸

A








F leg,0

F leg,1

...

F leg,m








︸ ︷︷ ︸

x

=

(
F d

B

T d
B

)

︸ ︷︷ ︸

b

, (12)

where ri is the vector between the CoM and the location of

the foot of stance leg i. The weighting matrix S trades off

the degree to which we want to match the net resulting torque

over the net resulting force, and the term xTWx acts as a

regularizer that discourages the use of large virtual forces.

The constraints applied ensure that the normal component

of the force applied through each leg, Fn
leg,i, is strictly positive

(no pulling on the ground). In practice we found that requiring

a minimal force Fn
min = 2N to always be applied results in

fewer instances where the feet slip. We also restrict the tangen-

tial component F t
leg,i to remain within an approximate friction

cone defined by the assumed friction coefficient µ = 0.8 in

order to avoid slipping.

D. Gait Transitions

Gaits are mainly characterized by the gait pattern and the

stride duration, but several parameters in our ontrol framework

have to be adjusted specifically for each gait in order to

increase performance. Fortunately, we have observed that

smooth transitions between gaits can be generated by lineary

interpolating the individual parameter sets. As long as the gait

patterns are compatible (there is no smooth transition between

trot and gallop, but there is one between walking to trotting,

for instance), this approach seems to work well and does not

require additional parameter tuning. However, it is likely that

the resulting transitions may be suboptimal. We define a time

horizon for the interpolation procedure, and the gait transitions

are either initiated manually by an operator, or as a function

of the desired speed.

III. RESULTS

Before conducting any experiments on StarlETH, we veri-

fied the control framework in simulation. Here we only discuss

the results obtained by running the control strategy on the

physical robot. Our results are best seen in the accompanying

video. For more information about the simulation environment

and the software package we refer the interested reader to

Hutter et al. [11].

StarlETH was able to move freely in 3D during all our

experiments, and was not aided by any support structures.

A static walk, a walking trot, and a running trot (with

flight phase) were successfully implemented on StarlETH. The

walking trot reached a top speed of 0.7m/s on a treadmill



TABLE I
PARAMETER SETS FOR DIFFERENT GAITS

Parameter Symbol Static Walk Walking Trot Running Trot

gait graph

stride duration Ts[s] 1.5 0.8 0.7

min. leg weight for support polygon wmin 0.35 0.15 0.15

start of increasing the weight of a swing
leg for support polygon

φsw,0 0.7 0.7 0.7

start of decreasing the weight of the
stance leg for support polygon

φst,0 0.7 0.7 0.7

default left front swing leg offset Br
d
HF

[m] [0,−0.01, 0]T [0, 0, 0]T [0, 0, 0]T

default left hind swing leg offset Br
d
HF

[m] [0, 0.14, 0]T [0, 0, 0]T [0, 0, 0]T

height of middle of hip AA joints hH [m] 0.39 0.44 0.44

virt. force proportional gain kp [500, 640, 600, 400, 200, 0]T [0, 640, 600, 400, 200, 0]T [0, 640, 2600, 400, 200, 0]T

virt. force derivative gain kd [150, 100, 120, 6, 9, 0]T [150, 100, 120, 6, 9, 0]T [90, 60, 120, 6, 9, 0]T

virt. force feed-forward gain kff [25, 0, 1, 0, 0, 0]T [60, 0, 1, 0, 0, 0]T [25, 0, 1, 0, 0, 0]T

weights for matching the des. virt. forces S diag(1, 1, 1, 10, 10, 5) diag(1, 1, 0.2, 20, 20, 5) diag(1, 1, 0.2, 20, 20, 5)
weights for reducing joint torques W diag(0.00001 . . . ) diag(0.00001 . . . ) diag(0.00001 . . . )

whose speed was set to match that of the robot, as measured

by a motion capture system.

A. Parameter Sets

We tuned the initial gains of the virtual force controller

while perturbing the robot as it tried to stand in place. We

then adjusted the parameters for the different gaits while

the robot was walking or trotting. We found this process to

be intuitive, because a large range of parameters result in

successful motions, and the parameters are largely orthogonal

as they affect different aspects of the motion objectives or

motion control components. The parameters we used for the

static walk, walking trot, and running trot are summarized in

Table I.

B. Robustness

The robustness of the control system was examined by

asking the robot to walk and trot on flat ground, while

introducing unanticipated obstacles up to 5cm high (an eighth

of the leg length) as shown in Fig. 5. In addition, we tested

the ability of the robot to recover from external pushes. While

the duration of the push, the current phase in the locomotion

cycle and the push direction can affect the ability of the

robot to reject perturbations, we noticed that significant pushes

are generally handled well (as shown in the supplementary

video). The foot placement strategy, in conjunction with the

appropriate distribution of virtual forces to the stance legs

allowed the robot to successfully recover from various such

scenarios. When the robot failed to recover balance, this was

typically due to the HAA joints reaching their joint limits

while the legs were in stance mode.

Figure 4 presents some relevant data from one of the push

experiments we performed. As seen in the supplementary

video, StarlETH was pushed in the sagittal direction for a

duration of roughly 0.2s (indicated by the gray area). The first

sub-plot in Fig. 4 shows the sagittal position. The robot moves

forward during the push and soon thereafter steps in order to

recover balance. The second plot shows the coronal position,

where a slight lateral drift is visualized. The following three

plots show the net virtual forces for the main body in the

sagittal and coronal directions, as well as the net torque about

the y-axis of the robot. The solid lines illustrate the desired

virtual forces, whereas the dashed lines show the sum of the

contributions of the distributed leg forces. As can be seen,

the force distribution favors matching the desired torque over

matching the desired forces, as indicated by the input weight-

ing matrix S. When all four legs are in contact with ground,

the net distributed forces begin to match both the desired

forces and the desired torques, as there are enough degrees of

freedom in the system. The influence of the unilateral contact

constraints can also be observed in these plots. When only two

legs are in contact with the ground, the errors in the distributed

coronal force result in the drift observed in the second plot.

The last plot shows the measured (solid) and desired (dashed)

joint torque in the knee joint. The swing phase can be clearly

identified by the zero joint torque.

C. Gait Transitions

StarlETH can smoothly transition from the static walk to the

walking trot if we linearly interpolate between the parameter

sets shown in Table I. The duration of the interapolation

can be chosen somewhat arbitrarily, but for the results we

showed here we used a time period of 3s. The transition

from the trot to the walk takes place over 0.5s. We noticed

that the transitions are robust with respect to the exact stride

phase when they are initiated, and we therefore do not require

them to start at a particular point in the locomotion cycle.

To transition between the walking trot and the flying trot we

similarly interpolate the parameter sets of the two gaits.

IV. CONCLUSION

The control framework described by Coros et al. [8] was

extended to enable our quadruped robot to perform a static

walk, a walking trot and a running trot. In addition to detailing

the various changes needed to apply this control framework

to a real robot, we employed a new force distribution method,

without which the robot was unable to walk.



Fig. 5. StarlETH performs a walking trot while dealing with unperceived obstacles.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

[m
]

sagittal position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.4

−0.2

0

[m
]

coronal position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

0

100

[N
]

virtual force in sagittal direction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−100

0

100

[N
]

virtual force in coronal direction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−50

0

50

[N
m

]

virtual torque for pitching

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4
number of grounded legs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

joint torque of left front knee

[N
m

]

time [s]

Fig. 4. Experimental results of a push that was applied in sagittal direction
during 0.2s as indicated by the grey area.

The main benefits of the framework that we used are that it

is highly modular, that it allows the various parameters to be

tunned in an an intuitive way, and that it results in locomotion

controllers that are robust to pushes and unexpected variations

in the terrain. As shown in simulation, the parameter space of

this control framework is rich enough to also describe other

gaits, such as a pace, bound or gallop [8]. In the future we

plan on further extending StarlETH’s repertoir of motions by

creating controllers and transitions for this new set of gaits.

We have not yet performed a quantitative evaluation of

the performance and robustness of the control system, and

this will be part of future investigations. The clean separation

of the motion generator and the motion controller modules

will enable us to also compare different control strategies.

For instance, different models can be plugged in for the foot

placement component, or the force distribution method could

be replaced by an operational space approach [16] in order to

test the relative merits of the different building blocks we use.

Last but not least, we plan to investigate a systematic way of

finding optimal parameter sets on the real system.

REFERENCES

[1] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal,
“Compliant quadruped locomotion over rough terrain,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009.
[2] P. González-de Santos, E. Garcia, and J. Estremera, Quadrupedal

locomotion: an introduction to the control of four-legged robots.
Springer, 2006.

[3] M. Hildebrand, “The Quadrupedal Gaits of Vertebrates,” BioScience,
vol. 39, no. 11, pp. 766–775, Dec. 1989.

[4] M. P. Murphy, A. Saunders, C. Moreira, A. A. Rizzi, and M. Raibert,
“The littledog robot,” The International Journal of Robotics Research,
2010.

[5] M. Raibert, “Bigdog, the rough-terrain quadruped robot,” in Proceedings

of the 17th IFAC World Congress, M. J. Chung, Ed., vol. 17, no. 1, 2008.
[6] C. Semini, N. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and

D. Caldwell, “Design of hyq–a hydraulically and electrically actuated
quadruped robot,” Proceedings of the Institution of Mechanical Engi-

neers, Part I: Journal of Systems and Control Engineering, vol. 225,
no. 6, pp. 831–849, 2011.

[7] J. B. I. Havoutis, C. Semini and D. Caldwell, “Progress in quadrupedal
trotting with active compliance,” Dynamic Walking, 2012.

[8] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne,
“Locomotion skills for simulated quadrupeds,” ACM Transactions on

Graphics, vol. 30, no. 4, 2011.
[9] D. Krasny and D. Orin, “Evolution of a 3d gallop in a quadrupedal

model with biological characteristics,” Journal of Intelligent and

Robotic Systems, vol. 60, pp. 59–82, 2010.
[10] M. H. Raibert, “Symmetry in running,” Science, vol. 231, no. 4743, pp.

pp. 1292–1294, 1986.
[11] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. Remy, and

R. Siegwart, “StarlETH: a compliant quadrupedal robot for fast, efficient,
and versatile locomotion,” in Proc. of the International Conference on

Climbing and Walking Robots (CLAWAR), 2012.
[12] M. Bloesch, M. Hutter, M. H. Hoepflinger, C. D. Remy, C. Gehring, and

R. Siegwart, “State estimation for legged robots - consistent fusion of leg
kinematics and IMU,” Proceedings of Robotics: Science and Systems,
2012.

[13] M. Hutter, C. D. Remy, M. H. Hoepflinger, and R. Siegwart, “High
compliant series elastic actuation for the robotic leg ScarlETH,” in Int.

Conference on Climbing and Walking Robots (CLAWAR), 2011.
[14] J. E. Pratt and R. Tedrake, “Velocity-based stability margins for fast

bipedal walking,” Fast Motions in Biomechanics and Robotics, vol.
340, pp. 1–27, 2006.

[15] M. H. Raibert, Legged Robot that Balance. MIT Press, 1986.
[16] M. Hutter, M. Hoepflinger, C. Gehring, M. Bloesch, C. D. Remy, and

R. Siegwart, “Hybrid operational space control for compliant legged
systems,” in Proceedings of Robotics: Science and Systems, 2012.


