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Abstract

The fluxes of radicals and ions to the wafer during plasma processing of microelectronics

devices determine the quality of the etch or deposition. These fluxes are largely controlled by

controlling the electron energy distribution function f (ε) which determines the dissociation

patterns of feedstock gases. In quasi-steady state operation, an equilibrium condition for f (ε)

results from a real time balance between electron sources and sinks. Using pulsed power,

electron sources and sinks do not need to instantaneously balance—they only need to balance

over the longer pulse period. This provides additional leverage to customize f (ε). In this

paper, the f (ε) in a two-frequency, pulsed capacitively coupled plasma sustained in Ar and

Ar/CF4/O2 mixtures are discussed with results from a two-dimensional plasma hydrodynamics

model. The f (ε) are obtained from a Monte Carlo simulation which includes electron–electron

collisions. We found that the f (ε) and rate coefficients can be controlled by pulse repetition

frequency (PRF) and duty cycle (DC) of the pulsed power in a manner not otherwise easily

attainable using continuous excitation. The tail of the f (ε) is enhanced with smaller PRF and

DC in order to compensate for the electron losses during the power-off portion of the cycle.

(Some figures may appear in colour only in the online journal)

1. Introduction

In capacitively coupled radio frequency (rf) discharges, as

used in plasma processing of semiconductors, controlling the

electron energy distribution, f (ε), is important to controlling

the flux of radicals and ions to the substrate [1]. f (ε) of

electrons in plasma sources as typically used in materials

processing have been extensively investigated [2, 3] and, given

electric fields and gas mixtures, are generally predictable.

However, there are emerging needs for better controlling f (ε)

in order to, for example, optimize the production of a particular

radical. There have been several attempts at controllingf (ε),

including tuning the gas pressure [4], adding an external

ionization sources such as an electron beam [5], using magnetic

fields [6], using an augmenting direct current bias on an rf

electrode [7] and varying the frequency [8].

An additional parameter that may be used to customize

f (ε) is using pulsed power [9]. In quasi-steady state operation,

an equilibrium condition for f (ε) requires an instantaneous

(or rf cycle average) balance between electron sources and

sinks. As such, for a given geometry, pressure and frequency

of operation, there is little latitude in customizing f (ε). Using

pulsed power, electron sources and sinks do not need to

instantaneously balance—they only need to balance averaged

over the longer pulsed period. This provides additional

leverage to control f (ε). By pulsing, one may be able to

modulate f (ε) to produce shapes or access energies that are

not otherwise (or easily) attainable using continuous wave

0963-0252/12/055028+17$33.00 1 © 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0963-0252/21/5/055028
mailto: mjkush@umich.edu
http://stacks.iop.org/PSST/21/055028


Plasma Sources Sci. Technol. 21 (2012) 055028 S-H Song and M J Kushner

(CW) excitation. For example, f (ε) may be produced that
has both a high-energy tail and a large thermal component.
These f (ε) will produce different dissociation patterns of the
feedstock gases and so produce different ratios of fluxes to
the substrate for a given time average power. This strategy
of customizing fluxes using pulsed power has been applied in
inductively coupled plasmas (ICPs) [10].

For example, during the power-off period of a pulsed
cycle, high-energy electrons may quickly thermalize due to
inelastic collisions and be lost by rapid diffusion to the wall.
At the beginning of the power-on portion of the pulsed cycle,
high-energy electrons are generated due to an overshoot of
E/N (electric field/gas number density) above the value that
can be sustained in the steady state. This overshoot is due to the
initially lower conductivity of the plasma following electron
losses during the power-off period. In such systems, f (ε) can
be controlled through choice of the pulse repetition frequency
(PRF) and duty cycle (DC). (DC is the fraction of the pulsed
period that power is applied.) These determine the relative
roles of both electron acceleration during the power-on portion
of the cycle and thermalization during the power-off portion.
These concepts have been demonstrated in pulsed ICPs to
produce ion–ion plasmas during the power-off period, and so
provide a means for negative ion acceleration into trenches to
remediate charge damage [11]. Pulsed capacitively coupled
plasmas (CCPs) are a more recent development [12].

In this paper, we build on these prior works using results
from a computational investigations to discuss strategies for
controlling f (ε) of electrons by varying the PRF and DC
in CCPs. We found that the tail of f (ε) is more enhanced
when operating with a lower PRF in order to compensate for
the losses of electrons incurred during the longer afterglow
period. For this reason, the overshoot of the tail of f (ε) at
the beginning of the power-on period is particularly prominent
in Ar/CF4/O2 gas mixtures compared with Ar mixtures due to
the larger electron losses during the power-off period. Due
to the transient nature of pulsed CCPs in which the electron
temperature cycles from above the steady-state value to below,
the relative rate of attachment is particularly high in these
mixtures during the power-off period. Secondary electrons
emitted from surfaces and accelerated in the sheath provide
the additional ionization required to sustain the plasma in
electronegative gas mixtures where electron attachment and
dissociative recombination dominate at low energies. Varying
the rate of secondary-electron emission then provides an
additional means for controlling f (ε).

The model used in this study is described in section 2 with
emphasis on the computation of f (ε). The f (ε) in pulsed dual
frequency capacitively coupled plasma (DF-CCP) sustained in
Ar are discussed in section 3, and sustained in Ar/CF4/O2 are
discussed in section 4. A comparison of ionization and loss
rates between Ar and Ar/CF4/O2 is presented in section 5. Our
concluding remarks are in section 6.

2. Description of the model and gas phase reaction
mechanism

The model used in this investigation is a two-dimensional
fluid hydrodynamics simulation in which the electron energy

distributions of bulk and secondary electrons are obtained

using an electron Monte Carlo simulation (eMCS). The

model is described in detail in [13]. Briefly, continuity,

momentum and energy equations for neutrals and ions,

continuity equations for electrons and Poisson’s equation

for the electric potential are integrated in time to obtain a

periodic steady state. The computational module in which

these calculations are performed is the fluid kinetics simulation

(FKS). The resulting electric fields and ion fluxes to surfaces

are periodically transferred to the eMCS where the electron

energy transport of bulk and secondary electrons emitted from

surfaces is addressed. Electron-impact source functions and

sources of secondary-electron current are derived from these

distribution functions and are returned to the fluid model. The

process is iterated to convergence.

The electron energy distributions as a function of position,

f (ε, r), are obtained using the eMCS, which is a statistical,

kinetic solution of Boltzmann’s equation. The eMCS,

including our algorithms for electron–electron collisions, is

described in detail in [14]. The description here is an update

and summary of that discussed in [14].

The eMCS is a 3v–3d (3 velocity components, 3

dimensions) model which integrates electron trajectories in

electric fields obtained from the fluid modules of the model,

and employs Monte Carlo techniques for collisions with heavy

particles and with other electrons. In the fluid portion of the

model, charge densities and Poisson’s equation are integrated

as a function of time over many rf cycles. Over the last cycle of

integration prior to calling the eMCS, the vector components

of the electric field are recorded as a function of position and

phase during the rf cycle, �E(�r, φ). These recordings typically

contain 200 phase points during the lower frequency rf cycle

and are recorded on the same spatial mesh as the fluid portion

of the model is performed. The cycle-averaged densities of all

charged and neutral species, Ni(�r), are also recorded. These

electric fields and densities are transferred to the eMCS. In

the eMCS, two simulations are performed—for bulk and for

secondary beam electrons.

For the computation of the distribution function of bulk

electrons, fb(ε, �r), at the beginning of the first call to the eMCS,

electrons are initially given a Maxwellian velocity distribution

and placed in the reactor using a distribution weighted by the

local electron density obtained from the fluid simulation. On

subsequent calls to the eMCS, the trajectories are restarted

from their coordinates at the end of the previous call to the

eMCS. The trajectories of pseudoparticles are advanced using

a second-order Euler method. For integration of the trajectory

(location �r and velocity �v) of a pseudoparticle from t to t+�t,

�r ′(t + �t) = �r(t) + �v(t)�t,

�v′(t + �t) = �v(t) +
q �E(�r(t), φ(t))

me

�t,

�r(t + �t) = �r(t) +
�t

2
(�v(t) + �v′(t + �t)), (1)

�v(t + �t) = �v(t) +
q�t

2me

( �E(�r(t), φ(t))

+ �E(�r ′(t + �t), φ(t + �t))),
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where �E(�r(t), φ(t)) at an arbitrary position and time is

obtained from a second-order interpolation of the record of
�E(�r, φ) on the numerical mesh at fixed phase points. In

this investigation, the calculation of densities and solution

of Poisson’s equation in the fluid portion of the model are

performed in cylindrical coordinates with azimuthal symmetry,

(r, z). For computational convenience to more easily facilitate

the collision operator, the integration of trajectories in the

eMCS is performed in 3D Cartesian coordinates. The

cylindrical vector components of �E(r, z, φ) are transformed

to Cartesian vector components �E(x, y, z, φ) based on the

instantaneous position of each particle.

Since Poisson’s equation is not being solved in the eMCS,

the particles do not need to be at the same time unless

statistics are being collected. Therefore, the time step �t

for each particle is independently chosen as the minimum

of the following: a specified fraction of the rf cycle, the

time to cross half of the computational mesh in any direction,

the time to the next collision, the time for the particle to be

decelerated to zero speed, or the time to when statistics are

being collected when all particles should be at the same time,

Tf . Once a particle has reached Tf , its trajectory is no longer

integrated until other particles reach Tf . This is carried out

in a computational efficient manner by stenciling out particles

having already reached Tf and shuffling the arrays containing

particle information so that there is a (nearly) continuous

array of particles whose trajectories are being integrated. This

enables more efficient pipelining of the numerical operations.

After recording statistics, the trajectories are restarted. (In

the case of two-frequency excitation with the lower frequency

being 10 MHz and the higher frequency being 40 MHz, the

time step is limited to be no greater than 0.5% of the low-

frequency (LF) cycle and 2% of the high-frequency (HF)

cycle.)

Statistics and collision frequencies are discretely collected

or calculated on an energy grid. Energy bins have constant

widths over a specified energy range to simplify gathering

statistical data while resolving the structure in electron-impact

cross sections. In this work, 500 total bins were used with

energy ranges (100 bins/range) 0–5, 5–12, 12–50, 50–300 and

300–1000 eV. (The extended range in energy is used to cover

the energy of sheath accelerated secondary electrons.) Within

energy bin i, the total collision frequency, νi , is computed by

summing all the possible collisions with heavy particles,

νi =

(

2εi

me

)1/2
∑

j,k

σijkNj , (2)

where εi is the average energy within the bin, σijk is the cross

section at energy i, for species j and collision process k, and

Nj is the number density of species j . As this point, νi does not

account for the frequency of electron–electron (e–e) collisions

since this frequency depends on the relative velocity of the

collision partners and, therefore, depends on the dynamics of

these trajectories during the simulation.

Separate null collision cross sections are used in each

energy range to provide a constant collision frequency. This

is accomplished by adding an additional fictitious process

referred to as a null collision such that all electrons within a

given energy range appear to have the same collision frequency

[15]. The null collisional frequency at energy εi in energy

range j is νnij = νmj − νi , where νmj is the maximum

collision frequency in energy range j based on both electron

energy and density of collision partners. The separate null

collision frequency in each energy range is used to minimize

the occurrence of null collisions since over the range of

expected electron energies, the total collision frequency can

vary by more than an order of magnitude. The time between

collisions is obtained from �t = − ln(r1)/νmj , where r1 is a

random number distributed on (0,1). There is an inconsistency

in choosing �t if, between collisions, the particle crosses

the boundary between energy ranges and νmj varies between

ranges. However, the frequency of these occurrences is small.

The type of collision is determined by generating a series of

random numbers. If r2 � νnij/νmj , then the collision is null

and the electron trajectory continues unhindered. For a real

collision, we find the particular electron collision j which

satisfies

1

νmj

n−1
∑

k=1

νk < r3 �
1

νmj

n
∑

k=1

νk (3)

where all collision frequencies are computed based on the

maximum density of the collision partner in the entire reactor

for process n, Nmn. A second level of null collision is then used

to determine if based on the local density of the collision partner

a real or null collision has occurred. If r4 � Nn(�r)/Nmn, where

Nn(�r) is the actual local density of the collision partner, then

a real collision occurs. Otherwise, the collision is considered

null and the trajectory proceeds unhindered.

After determining the final type of collision, the electron

energy is reduced according to the inelastic or elastic nature

of the collision (or increased in the case of a superelastic

collision), and the trajectory is scattered. The final velocity

following a collision is determined by applying the scattering

matrix,

vx = v · (cos β · cos α · sin θ · cos φ + cos β · sin α · cos θ

− sin β · sin θ · sin φ)

vy = v · (sin β · cos α · sin θ · cos φ + sin β · sin α · cos θ

+ cos β · sin θ · sin φ) (4)

vz = v · (− sin α · sin θ · cos φ + cos α · cos θ),

where α and β are the polar and azimuthal Eulerian angles

of the electron velocity prior to the collision; θ and φ are the

polar and azimuthal scattering angles, and v is the electron

speed after the collision. Assuming azimuthal symmetry

for the collision, φ is randomly chosen from the interval

(0,2π). Unless experimental data are available, θ is chosen by

specifying a scattering parameter χ where the polar scattering

probability is proportional to cosχ (θ /2). χ = 0 provides for

isotropic scattering and χ ≫ 1 provides for forward scattering.

The randomly selected scattering angle is then

θ = 2[cos−1(1 − r5)]
(1/(2+χ)). (5)

In the absence of experimental data, we used χ = 0–0.1 for

elastic collisions derived from momentum transfer collision

cross sections. For inelastic collisions, χ = 2–3.

3
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Following an ionizing collision, a secondary electron
is added to the simulation at the same location as the
primary particle and with a randomly chosen isotropic angular
distribution. The distribution of secondary energies, fsec(ε),
produced by an ionizing collision with species j by primary
electron with energy εp is randomly chosen from [16]:

fsec(ε) ∼

(

1 +

(

ε

ε̄j

)2
)−1

,

ε = ε̄j tan

(

r6 · tan

(

εp − Ej

ε̄j

)−1
)

, (6)

where ε̄j is a semi-empirical parameter for species j having
ionization potential Ej .

Statistics for fb(ε) are collected for every particle on every
time step. The particles are binned by energy and location
with a weighting proportional to the product of the number of
electrons each pseudoparticle represents, w, and the time spent
in the spatial mesh cell, �t . Finite particle size techniques are
used to distribute the particle weighting to its own cell and to
neighboring cells in proportion to the fraction of the volume
of the finite particle size that resides in the neighboring cell, η.
The particle size and volume are equal to that of the numerical
mesh. So for a particle in spatial bin j and energy bin i, the
running sum of statistics is

∑

j ′=j,neighbors

[Fij ′ → Fij ′ + w�tηjj ′ ]. (7)

When modeling transients, the time spent in the FKS between
calls to the eMCS is relatively short so that there is frequent
feedback from the eMCS to the fluid modules and vice
versa. The relative change in voltage or power should be
small between calls to the eMCS. To maintain the eMCS in
lockstep with the fluid simulations, in this study trajectories
are computed for 5 rf LF cycles for each call of the eMCS
(which at 10 MHz is 0.5 µs). Statistics are typically gathered
for only the latter two or three of those cycles to allow for
artificial transients which may occur at the beginning of each
iteration to dampen out. An average of 50 000 pseudoparticles
are used, with particles added for ionizations and removed for
losses by attachment, recombination or leaving the volume.
If the particle number exceeds a maximum value (typically
150 000), then the particle number is reduced by randomly
removing particles. If the particle number is reduced below
a minimum value (typically 40 000), particles are randomly
seeded in the plasma. When a particle is removed from the
simulation, its indice in arrays for location and velocity is
stenciled out—the location is termed empty. A record is kept
of the empty locations and new particles are first placed into
the empty locations while keeping track of the highest indice
in the array that is occupied. If the fraction of empty locations
exceeds a specified value (which may be computer dependent),
the empties are removed by compressing the stack of arrays so
that pipelining can be more efficiently performed.

At the end of a given call to the eMCS, the fb(ε, �r) at each
spatial location is obtained by normalizing the statistics such
that

∑

i

Fij =
∑

i

fbijε
1/2
i �εi = 1, (8)

where fbij (eV−3/2) is the fb(εi, �r) at �r , and �εi is the width

of the energy bin.

e–e collisions are accounted for using a particle mesh

technique where the electrons collide with an energy-resolved

electron fluid. This is accomplished using spatially dependent

fb(ε, �r) recorded during the previous call to the eMCS. The

incident pseudoparticle in the e–e collision begins with a

velocity �v0. The velocity of an electron collision partner

for the incident pseudoparticle is randomly chosen from

the distribution function at that location, fb(ε, �r), that was

computed on the previous call to the eMCS. As only the

energy distribution fb(ε, �r) is retained from the previous

iteration, as opposed to the electron velocity distribution, we

assume that the chosen target electron has an isotropic angular

distribution. The probability of selecting a collision partner

having an energy ε′ for a pseudoparticle in the j th spatial bin

is determined with a cumulative probability. With,

Pj (ε
′) = fj (ε

′)ε′1/2�ε′
/

(

∑

i

fj (ε
′
i)ε

′1/2
i �ε′

)

, (9)

where fj (ε
′) is fb(ε, �r) in the j th spatial bin, and the

summation is over the entire energy range, the cumulative

probability is

�j (ε
′
i) =

i
∑

k=1

Pj (ε
′
k)/

∑

k

Pj (ε
′
k), (10)

where the summation in the numerator is over lower energies,

so that
∑

i �j (ε
′
i) = 1. The energy of the target electron ε′

i is

that which satisfies

�j (ε
′
i−1) < r7 � �j (ε

′
i). (11)

Once the velocity of the collision partner, �v′, is chosen, the

impact parameter for a 90◦ scattering, b0, is determined as [17]

b0 = e2/(2πε0meg
2), (12)

where me is the mass of electron, �g = �v0 − �v′ is the velocity

between the collision partners, g is the speed and ε0 is the

vacuum permittivity. If cos(θ) < b0/λD, where θ is the

angle between velocity of the pseudo-electron and its collision

partner and λD is the local Debye length, the collision event

is ignored. Although scattering through very small angles

may not be well represented by this approach, such scattering

does not appreciably affect fb(ε) at energies which determine

inelastic rate coefficients. Otherwise, the probability of an e–e

collision during the current time step �t is determined from

Pee(g, �t) = njσee(g)g�t, (13)

where nj is the density of electrons in the j th spatial bin

obtained from the FKS, and the momentum transfer Coulomb

cross section, σee(g), is [18]

σee(g) = 4πb2
0[1 + ln(λD/b0)

2]1/2. (14)

This procedure is justified if, for the conditions of interest,

Pee(g, �t) ≪ 1, which is the case for virtually all conditions of
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this study. The collision event takes place if Pee(g, �t) � r8.

If a collision occurs, then a post-collision relative velocity, �g′,

is randomly determined such that [19]

g′
z = ±|�g|r9, g′

x = |�g|

√

1 − r2
9 cos(2πr10),

g′
y = |�g|

√

1 − r2
9 sin(2πr10), (15)

where g′
z is positive or negative if gz is positive or negative.

The final velocity of the incident pseudoparticle, �vf , is updated

with

�vf = �vR + 0.5�g′ �vR = 0.5(�v′ + �v0). (16)

At the end of a call to the eMCS, fb(ε, �r) are used to

compute electron-impact rate coefficients kj (�r) for collision

process j ,

kj (�r)(cm3 s−1) =
∑

i=1

fbi(�r)σj (εi)

(

2εi

me

)1/2

�εi . (17)

The values of kj (�r) are held constant in the FKS until the

next call to the eMCS. The source function resulting from the

rate coefficient in the fluid modules is then Sj (�r)(cm−3 s−1) =
ne(�r)kj (�r)Nj (�r), for electron density ne and heavy particle

collision partner Nj .

A similar process is followed to obtain the electron energy

distributions of secondary electrons that are first emitted from

surfaces and accelerated by sheaths, fs(ε, �r). Instead of

seeding electrons in the bulk plasma, the flux of energetic

particles (ions, photons, excited states) of type j striking

surfaces, φj (�r) is obtained from the FKS. The total rate of

secondary-electron emission, RS, (s−1) is obtain from

RS =
∑

k

RSk, RSk =
∑

j

γjφj (�rk)Ak (18)

where the summation is over species j having secondary-

electron emission coefficient γj and surface locations k

having surface areas Ak . A preselected number of secondary

electrons, typically 25 000–50 000 per call to the eMCS, are

then randomly launched perpendicularly to the surface with

an energy of 4 eV from spatial location k in proportion to

RSk/RS with initial times randomly distributed in the LF

rf cycle. The statistical weighting of the particle, w, has

units of current or particles/s. Particle trajectories are then

tracked and statistics collected to producefs(ε, �r) is the same

manner as for the bulk fb(ε, �r). Since the weightings w

of the secondary-electron pseudoparticles are particles/s, the

distribution functions fs(ε, �r) are normalized,

∑

j

Fij =
∑

i,j

fsijε
1/2
i �εi�Vj, (19)

where �Vj is the volume of the cell at location j and

fsij = fs(εi). With this normalization, fs(ε, �r) has units of

electrons/cm3 eV s.

The trajectories of pseudoparticles are followed until

the particle strikes a surface or falls below a specified

energy, which is typically the lowest electronic excitation

threshold, εT. At that time, the pseudoparticle is removed

from the simulation. The weighting of originally emitted

pseudoparticles falling below εT is summed into a current
source, Qe(�r) (C cm−3 s−1),

∑

j ′=j,neighbors

[

Qj ′ → Qj ′ +
qwηjj ′

�Vj ′

]

, (20)

where Qj is the current source for location j having volume
�Vj . Secondary electrons emitted from surfaces represent a
source of electrons for the electron continuity equation in the
fluid simulation. This source is provided by Qe(�r). Since
this source does not also appear in a positive ion continuity
equation, it appears as net charge injection in solution of
Poisson’s equation through the change in electron density.
Secondary electrons striking surfaces are similarly summed
into a rate of surface charging Qse(�r) (C cm−2 s−1) which is
then included in the continuity equation for surface charging
in the fluid modules.

Since fs(ε, �r) is ultimately normalized to the magnitude of
the secondary-electron current, RS, instead of rate coefficients
being transferred back to the fluid modules, electron-impact
source functions due to secondary electrons are returned to
the FKS,

Sej (�r)(cm−3 s−1) = Nj (�r)
∑

i=1

fsi(�r)σj (εi)

(

2εi

me

)1/2

�εi .

(21)

The values of Sej (�r) are held constant until the next call to
the eMCS.

This hybrid method of obtaining and utilizing fb(ε, �r) and
fs(ε, �r) is sometimes referred to as time slicing, as a slice of
time is separately addressed by each module. For any given call
to the eMCS or FKS, the time integration within that module
does capture transient behavior. For example, the time step in
the FKS for update of species densities and between solutions
of Poisson’s equation is about 10−11 s with consideration of
the Courant limit and resolution of the rf cycles. The time step
within the eMCS is similarly small. However, the ability to
represent transients truly consistently with changes in f (ε, �r)
in the FKS, and with changes in densities within the eMCS, is
determined by the frequency with which there is information
exchange between the FKS and the eMCS. In this work,
the eMCS is called every 0.5 µs, which is also the time of
integration of pseudoparticle trajectories in the eMCS. With a
PRF of 50 kHz (20 µs), there are 40 updates of f (ε) during
one pulse period, which might be considered a lower limit of
time resolution. The effective time resolution of transients is
finer than that due to the finer integration within each module.

The reaction mechanisms for the Ar and Ar/CF4/O2

mixtures used in this investigation are discussed in [20]. For
Ar, the species included in the model are metastable and
radiative states of Ar(4s), Ar(4p) and Ar+. For Ar/CF4/O2,
the additional species are CF4, C2F6, C2F4, CF3, CF2, CF, C,
F, F2, CF+

3 , CF+
2 , CF+, C+, F+

2 , F+, CF−
3 , F−, O2, O2(

1�), O+
2 , O,

O(1D), O+, O−, COF, COF2, CO2, FO, SiF4, SiF3 and SiF2. For
the operating conditions in this work, the dominant ions and
neutral radicals are CF+

3 , CF3, CF2, CF, C, F and O. Vibrational
excitation collisions of all molecular species are included in
solving for f (ε). In particular for the feedstock gases, we
include CF4(v1,3), CF4(v2,4) and O2(v1 to v6). Threshold
energies for these processes are listed in [20]. Although

5
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Figure 1. Operating conditions for this investigation. (a) Geometry
of the DF-CCP chamber. The LF (10 MHz) is applied on the lower
electrode in CW mode, and the HF (40 MHz) is applied on the upper
electrode in pulse mode with a few tens of kHz PRF. The dots show
where f (ε) will be plotted. (b) Pulsed operation is determined by
the DC and PRF. The power is turned on during the fraction of the
total period designated by the DC. PRF is how many times per
second the pulse waveform repeats.

electron energy losses for exciting these vibrational states are

included in the eMCS, the vibrational states are not explicitly

included in the continuity equations. The consequence of

this approach is that superelastic relaxation and gas heating

resulting from electron and heavy particle V –T collisions

with these states are not captured. The secondary-electron

emission coefficient for all ions is γ = 0.15. The voltage

is specified for each frequency and applied to the electrode.

A blocking capacitor is in series with the LF electrode and

a time dependent dc bias is computed based on the value of

the blocking capacitor and integral of collected current. The

voltages on the electrodes are adjusted to provide a specified

pulsed-cycle averaged power, P̄ . This is accomplished by

computing for each electrode

P̄ = νrf

∫∫ (

V (t)

(

j (�r, t) + ε
dE(�r, t)

dt

)

dt dA

)

, (22)

where V is the voltage on the electrode, j is the conduction

current density to the electrode, ε is the permittivity, E is the

electric field at the surface of the electrode and the integral

is over the area of the electrode and the rf cycle having

frequency νrf .

3. Plasma properties of pulse powered DF-CCP
sustained in Ar

The two-dimensional, cylindrically symmetric reactor used

in the model is schematically shown in figure 1. The lower

electrode serves as the substrate which is powered at a LF,

10 MHz, through a blocking capacitor (1 µF). A conductive Si

wafer (ε/ε0 = 12.0, σ = 0.01 �−1 cm−1), 30 cm in diameter,

sits in electrical contact with the substrate which is surrounded

by a dielectric (ε/ε0 = 8.0, σ = 10−6 �−1 cm−1). The upper

electrode, 36 cm in diameter, is powered at a HF, 40 MHz. The

HF electrode also serves as the shower head through which

gas is injected at 200 sccm. The HF electrode is surrounded

by the same dielectric as the LF electrode. The gap between

the two electrodes is 4 cm. All other surfaces in the reactor are

grounded metal including the annular pump port. LF power is

delivered in CW operation and HF power is delivered in either

CW or pulsed format. The pulse operation was characterized

by the PRF which is the number of times per second the

waveform is repeated and the DC, which is the fraction of the

total time of power-on stage, as shown in figure 1(b). The rise

(or decay) time of the power-on (or -off) period is 500 ns. The

voltage on the electrodes is periodically adjusted so that the

power through each electrode averaged over the pulse period

is the specified amount.

The base case operating conditions are 40 mTorr of Ar

with the LF (10 MHz) delivering 500 W on a CW basis and the

HF (40 MHz) delivering an average of 500 W in a pulse power

format. The PRF is 50 kHz (pulse period 20 µs) and DC is

25%. The PRF was varied from 50 to 250 kHz and the DC was

varied from 25% to 50%.

As a point of reference, the electron density (ne), electron

temperature (Te) and electron-impact ionization sources are

shown in figure 2(a) for CW operation of both the LF and HF.

The adjusted voltage amplitude is 112 V for LF and 95 V for HF

for both to deliver 500 W. The resulting dc bias is −50 V. The

peak electron density is 9.7 × 1011 cm−3 and the bulk electron

temperature is Te ≈ 1.7 eV. Te adjacent to the electrodes

is higher (2.0 eV) than in the bulk due to the stochastic

heating produced by the oscillating sheath boundary. The

electron-impact ionization sources by bulk, Sb, and secondary

e-beam, Ss, have maximum values of 3.1 × 1016 cm3 s−1 and

6.5 × 1015 cm3 s−1, respectively. Sb is a factor of ten larger

than Ss due to the continuous electron heating at the LF and

HF sheath boundaries.

The electron energy distributions, f (ε), at different

heights in the reactor (heights are noted in figure 1) are shown

in figure 2(b). Due to the relatively high electron density and so

high thermal conductivity, the f (ε) are essentially Maxwellian

at low energies and nearly indistinguishable as a function of

height. However, as expected from the trends of Te, the tails

of f (ε) are raised adjacent to electrodes and more so near the

HF electrode due to the more efficient stochastic heating at the

higher frequency [21]. To compensate for the increased tail

portion of f (ε), the low-energy portion decreases.

ne and Te are shown in figure 3 and electron-impact

ionization sources are shown in figure 4 at different times

during the pulse period for a pulsed discharge in Ar for the

base case conditions. The CW amplitude of the LF to deliver

500 W is 206 V. Due to the varying amount of current that

is collected during the pulsed period and the finite size of

the blocking capacitor (1 µF) the dc bias oscillates during the

pulse period, here between −124 and −157 V. This variation

in dc bias during a pulse period has been noted in [22]. The

pulsed HF voltage amplitude to deliver 500 W averaged over

the pulsed cycle is 251 V. At the beginning of the pulse period,
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Figure 2. Plasma properties for CW operation in Ar (40 mTorr,
200 sccm, 500 W at 10 MHz, 500 W at 40 MHz). (a) Electron
density, temperature and electron ionization sources by bulk electron
and secondary electrons. (b) Electron energy distribution at selected
heights in the reactor (locations indicated in figure 1). The inset
shows an enlargement of the low-energy portion of the distribution.

the maximum value of ne is 2.5 × 1011 cm−3 and the bulk

Te ≈ 2.0 eV. There is some heating of the bulk electrons by the

LF bias (to about 1.0 eV); however, at this high electron density,

the heating by the LF is nominal. When the power is turned on,

the maximum electron density increases to 3.2 × 1011 cm−3.

Figure 3. Electron density and temperature in Ar for the base case
conditions (40 mTorr, 200 sccm, 500 W at 10 MHz CW, 500 W at
40 MHz in pulse mode—50 kHz PRF with 25% DC) at different
times during the pulsed cycle (as indicated in the lower figure). The
electron density does not change significantly over the pulse period,
whereas the electron temperature shows instantaneous changes as
the power toggles on and off, especially near the sheaths due to
enhanced stochastic heating.

The more efficient stochastic electron heating by the HF raises

Te to 2.0 eV in the bulk and to 4.2 eV in the sheaths. E/N

(electric field/gas number density, 1 Td = 10−17 V cm2) near

the HF sheath increases from 500 Td to 2000 Td during the

pulse power rise time before settling to 1400 Td during the rest

of the power-on stage. With Te = (2/3)〈ε〉 being proportional

to the distribution average energy, its value is heavily weighted

toward the more numerous low-energy bulk electrons. Due

to the non-Maxwellian nature of fb(�r) at high energies, the

dynamics of Te are a poor measure of ionization rates. (See

the discussion below.) When the HF power is turned off after

a 25% DC (5 µs in this case), Te falls to the off-period value

of 1.2 eV in about 8.5 µs. The PRF (50 kHz) is high enough

that the plasma density does not significantly change over the

pulse period.

The electron-impact ionization sources by bulk electrons,

Sb, and secondary beam electrons, Ss, are shown in figure 4. Ss

has a continuous background value of about 5 × 1014 cm3 s−1

due to continuous secondary-electron emission from the LF

electrode. As the pulse power is toggled on and off, the ion
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Figure 4. Ionization source by (left) bulk electrons and (right)
secondary electrons in Ar for the base case conditions (40 mTorr,
500 W at 10 MHz CW, 500 W at 40 MHz in pulse mode—50 kHz
PRF with 25% DC) at different times during the pulsed cycle
(as indicated in the lower figure).

density and so ion flux to surfaces do not significantly change,

so this source of ionization is fairly constant. With an inelastic

mean-free-path of ≈4 cm at 300 eV, the secondary electrons

accelerated in the sheath cross the gap and produce a fairly

spatially uniform ionization source. The delay in the peak of

the ionization source is due, in part, to a time lag in increasing

the secondary-electron yield due to transport of ions across the

sheath from the bulk plasma.

Note that Ss increases during the pulse on period. This is

due to a small decrease in the dc bias (becoming less negative)

which reduces the energy of the secondary electrons which

also decreases the energy relaxation length. More ionization

occurs in the gap with there being less likelihood for secondary

electrons to be collected by the opposite electrode. (Since

during the power-off period, the HF electrode is held at ground

and there is approximately a −150 V dc bias on the substrate,

the majority of secondary electrons that cross the gap are

collected by the HF electrode.) At the other extreme, there

are also increasing contributions to Ss by secondary electrons

emitted from the now powered HF electrode.

During the power-off period Sb is not important. Prior

to turning the HF power on, there are statistically only a few

electrons produced by stochastic heating by the LF sheath that

have high enough energy to produce significant ionization.

During the power-on portion of the cycle the additional

ionization by sheath accelerated secondary electrons from the

HF electrode increases Ss to 5×1015 cm3 s−1, a factor of nearly

ten greater than that from the LF alone. Coincident to the

increase in Te during the pulse-on period is an increase in Sb,

to 1017 cm3 s−1, so that bulk electrons dominate ionization.

The decrease in Sb to background levels occurs in about 8.5 µs

after the HF power is terminated.

f (ε) have dynamic behavior during the pulse period. For

example, f (ε) are shown in figure 5 adjacent to the HF sheath,

mid-gap and adjacent to the LF sheath at different times during

the pulse period. (See figure 1 for these locations.) The low-

energy component (ε < 2–3 eV) varies little during the pulse

period and appears Maxwellian-like, which explains the small

variation in Te during the pulse period. (This small variation

in Te cannot explain the large change in ionization rates.) This

nearly invariant part of f (ε) is largely due to the thermalizing

influence of electron–electron collisions. The tail of the f (ε)

raises and lowers nearly coincidently with the application and

termination of the HF power. At its maximum extent, the tail of

f (ε) reaches to energies in excess of 60 eV with only a nominal

change in the low-energy portion of f (ε). Although there is

a HF component oscillation at the LF sheath, the amplitude of

this oscillation is smaller than at the HF sheath, and the tail

of f (ε) extends to only 50 eV. In the middle of the gap, the

extension is to 40 eV.

The pulsed period-averaged (PPA) f (ε) compared with

CW operation for the same average powers at different heights

in the reactor are also shown in figure 5. The PPA f (ε) adjacent

to the HF electrode appear more bi-Maxwellian than with CW

power due to the rapid and enhanced electron heating from

the HF power during the power-on stage and the rapid cooling

during the power-off stage. Although the PPA and CW f (ε)

do not show dramatic differences, the temporal dynamics of

f (ε) have the tail of the distribution extending to significantly

higher energies than the CW case. This extension produces

instantaneous sources for inelastic collision processes with

high threshold energies that are significantly greater than either

the PPA or CW distribution functions.

4. Plasma properties in Ar/CF4/O2

There is an interest in plasma materials processing, and

plasma etching in particular, to have additional control over

the production of radicals and ions to the substrate. In this

section we discuss results from the model for a DF-CCP

sustained in a Ar/CF4/O2 = 75/20/5 gas mixture at 40 mTorr

to explore such control strategies. With this plasma being

sustained in a molecular and electronegative gas mixture, there

are additional volumetric electron loss processes—dissociative

attachment and dissociative recombination. Although the rate

coefficient for dissociative recombination scales with T −0.5
e

and so increases with decreasing E/N and average energy, the

dissociative attachment cross sections for CF4 and O2 have

threshold energies of 3.0 and 5.0 eV respectively [23, 24]. As

a result, the rate coefficient for attachment processes increase
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Figure 5. Electron energy distribution functions in Ar for the base
case conditions (40 mTorr, 500 W at 10 MHz CW, 500 W at 40 MHz
in pulse mode—50 kHz PRF with 25% DC) at different times during
the pulse cycle (as indicated in the lower figure) for (a) near the HF
sheath, (b) in the bulk plasma and (c) near the LF sheath (locations
indicated in figure 1). Comparisons of f (ε) averaged over the pulse
period and with CW excitation are in the right column. The
enhanced tail of f (ε) is most prominent at the leading edge of the
pulse-on period.

with increasing E/N up to about 100 Td. This markedly

differs from thermal attaching gases with as Cl2 and F2 whose

cross sections for dissociative attachment peak at energies

of <0.1 eV and so their rate coefficients for electron loss

generally decrease with increasing E/N in the same manner

as dissociative recombination.

As a point of reference, ne, Te, Sb and Ss are shown

in figure 6 for CW operation for both LF and HF. Results

are shown for secondary-electron emission coefficients by ion

Figure 6. Electron density, temperature and electron ionization
sources by bulk electron and secondary electrons in
Ar/CF4/O2 = 75/20/5 for CW excitation with different
secondary-electron emission coefficients, γ . (a) 0.02, (b) 0.10, (c)
0.15 and (d) 0.25.

impact of γ = 0.02, 0.10, 0.15 and 0.25. With γ = 0.02, the

voltage amplitudes are LF = 256 V and HF = 155 V with a dc

bias of –71 V. With γ = 0.15, LF = 259 V, HF = 149 V and

Vdc = −75 V. The peak electron densities are 1.0 × 1011 cm−3

for γ = 0.02 and 0.15, and Te ≈ 0.9 eV and 0.6 eV for

γ = 0.02 and 0.15. Te is significantly higher adjacent to

the electrodes (2.3 eV) than in the bulk due to the stochastic

heating by the oscillating sheath boundary. The larger disparity

between Te near the sheath and in the bulk compared with Ar

discharge results from the shorter energy relaxation length in

the molecular gas mixture. The estimated energy relaxation

length in Ar/CF4/O2 = 75/20/5 at a few eV is only 10%
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that in pure argon due to low threshold energy vibrational and

electronic excitation collisions with CF4 and O2. Note that

the larger bulk electron-impact ionization occurs adjacent to

the HF electrode due to the more efficient heating by the HF

sheath. The maximum secondary electron-impact ionization

source leans toward the LF electrode due to the dc bias on the

substrate which provides a higher average secondary energy.

While varying the secondary emission coefficient γ , the

power delivered by the LF and HF remains constant. Since

only a small fraction of the power deposition is by acceleration

of secondary electrons, the electron (and ion) densities do not

significantly change, moderately increasing with increasing γ .

(Other methods of power deposition—Joule heating, stochastic

and ion acceleration—are proportional to the electron or ion

density.) The small increase in electron density with increasing

γ reflects the decrease in voltage amplitudes. What does

change with the variation of γ is the apportioning of ionization

between bulk electrons, Sb, and secondary electrons, Ss. With

increasing γ , Ss increases due to the larger flux of secondary

electrons (in spite of the small decrease in sheath voltages).

Sb decreases with increasing γ to net negative values (more

attachment and recombination than ionization) with γ = 0.25.

The values of ne, Te, Sb and Ss are ultimately determined

by a balance between electron sources by ionization (or

injection) and losses (by attachment, recombination and

diffusion) that provides the current that delivers the desired

power. Since Ss increases by virtue of the larger γ the

plasma responds by allowing more electron loss, which is

achieved by lowering Te and Sb. This is, in fact, the principle

behind externally sustained plasmas, such as electron beam

sustained discharges (EBSDs) [25]. In these devices, Te in the

bulk plasma is controlled by the power deposition from the

electron beam. If the externally supplied ionization provides

the majority of the ionization, the applied electric fields which

heat electrons and determines Te can be lower. For example,

in EBSD excited CO(v) and CO2(v) lasers, Te is lowered so

that rates of vibrational excitation are optimized [26, 27]. In

our system, with γ = 0.02, the ionization sources from Ss are

insufficient to offset electron losses, and so Sb must be positive

to deliver the desired power. With γ = 0.25, the ionization

sources Ss exceed that which is required to deliver the desired

power, and so Sb is negative to compensate. So similar to an

EBSD, varying γ provides a means to control the bulk plasma

properties. As an aside, another feature of relying on Ss for

ionization is that the plasma is more uniform since the energy

relaxation distance of the higher energy electrons is greater

than for bulk electrons.

The f (ε) near the HF sheath and in the center of the gap

for γ = 0.02, 0.10, 0.15 and 0.25 are shown in figure 7.

Near the HF sheath where electron transport is dominated by

stochastic heating and which is little affected by changes in

γ , f (ε) are essentially unchanged with γ . In the center of

the plasma where collisional Joule heating is more important

in determining f (ε), the tail of the distribution rises with

decreasing γ and the low-energy portion of the distribution

increases with increasing γ .

In the steady state and in the absence of external

ionization sources, the self-sustaining E/N or Te (that is,

Figure 7. Electron energy distributions in Ar/CF4/O2 with CW
excitation for different secondary-electron emission coefficients, γ
for base case conditions. (a) Near the HF sheath and (b) at the center
of the plasma. With increasing rates of ionization by secondary
electrons with increasing γ , the tail of the f (ε) decreases.

shape of f (ε)) occurs where the volume-averaged ionization

sources are balanced by losses by diffusion, attachment and

recombination. In gases where volumetric losses uniformly

decrease with increasing E/N or Te while ionization sources

uniformly increase with increasing E/N or Te, the self-

sustaining value is well defined—it is the value of E/N or

Te where these two curves having slopes of different sign
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intersect. In the case where both volumetric losses and

ionization increase over a range of increasing E/N or Te,

the self-sustaining values are less clear and may, in fact, have

multiple values.

In EBSDs, an external source (the injected electron beam)

provides a source of ionization which is independent of the

local E/N or Te (shape of f (ε)) [28]. By varying the

magnitude of the external ionization provided by the electron

beam by changing the beam voltage or current, the value

of E/N or Te that balances ionization and losses can be

tuned. This is the effect that we see in the Ar/CF4/O2 gas

mixture. If γ is large, the ‘external’ source of ionization

provided by ionization by secondary electrons is large enough

to sustain the plasma and, in fact, may be larger than what is

required to deliver the desired power. In those cases, the net

ionization by bulk electrons is negative, and the tail of f (ε)

is depressed. (That is, the impedance of the plasma is small,

producing a small E/N and so reduced collisional heating.)

If γ is small, the ‘external’ source of ionization provided by

secondary electrons cannot sustain the plasma, and so the tail

of f (ε) is raised to provide the required ionization. (That is,

the impedance of the plasma is large, producing a large E/N

and increased collisional heating.) To some degree, the bulk

f (ε) can be tuned by varying the amount of external ionization

provided by the secondary electrons by varying the secondary-

electron emission coefficient.

The conditions for pulsed operation of the Ar/CF4/O2

mixture are the same as for the base case in argon (40 mTorr,

200 sccm, LF delivering 500 W at 10 MHz, HF delivering

500 W at 40 MHz, PRF = 50 kHz, DC = 25%). The

amplitude of the LF to deliver 500 W is 202 V with a dc bias

varying between −54 and −93 V during the pulse period. ne

and Te at selected times over the pulse period are shown in

figure 8 with γ = 0.15. E/N near the HF sheath is shown

in figure 9. Electron-impact ionization sources by bulk and

secondary electrons are shown in figure 10. The dynamic

range of change in these properties is greater than for the pure

argon case due to the higher collisionality and higher rate of

volumetric electron loss due to recombination and attachment.

Prior to the application of the pulse power, Te in the bulk

plasma is as low as 0.4 eV and only 0.8 eV adjacent to the

sheaths. This value of Te is enabled, in part, by the continuous

background value of Ss due to the LF bias. When the HF

power is turned on, Te increases within 0.5 µs from 0.8 to

4.7 eV adjacent to the HF sheath, and to 1.9 eV in the bulk

plasma. This is accompanied by an increase in the maximum

ne from 1.3×1011 to 1.7×1011 cm−3. These values of Te relax

during the power-on period, to 2.1 eV adjacent to the sheaths

and 0.8 eV in the bulk, before returning to their pre-pulse value

at the termination of the HF power. The increase in Te at the

beginning of the power-on stage is due to an overshoot of E/N

above the quasi-steady state during the pulse. Although not

as severe, such overshoot is common in pulsed ICPs [29]. In

pulsed ICPs, the overshoot is due to the larger power dissipation

into a smaller density of surviving electrons at the end of the

afterglow. At the boundary of HF sheath, the E/N changes

from 200 Td to 2500 Td during the pulse rise before settling

down to 1400 Td for the power-on stage, as shown in figure 9.

Figure 8. Plasma properties with pulsed excitation in
Ar/CF4/O2 = 75/20/5—(left) electron density and (right) electron
temperature for the base case conditions (40 mTorr, 500 W at
10 MHz CW and 500 W at 40 MHz in pulse mode—50 kHz PRF
with 25% DC) at different times during the pulsed cycle (as
indicated in the lower figure).

As in the CW cases for high values of γ , the net ionization

by bulk electrons, Sb, averaged over the pulse period is

negative. During the power-off period, Sb is as large (negative)

as −3.5 × 1015 cm3 s−1, which is primarily due to attachment

(as opposed to recombination). Although the cross section for

dissociative electron attachment to CF4 and O2 with few eV

electrons is 3 orders of magnitude smaller than the cross section

for the recombination of CF+
3 and O+

2 , the number density of

CF4 and O2 is 4 to 6 orders larger than the CF+
3 and O+

2 . At the

leading edge of the pulsed power, an increase in Te produces a

momentary positive increase in Sb to 9 × 1016 cm3 s−1 during

the overshoot in E/N and remains net positive during the

rest of the power-on pulse. During the pulse-off period,

Sb is negative. The ionization balance is provided by the

secondary electrons. As with the Ar discharge, there is a

background Ss due to the LF bias of 3 × 1014 cm3 s−1. This

ionization source is not large enough to balance attachment

on a CW basis—the increase in Ss during the pulse-on period

to 2 × 1015 cm3 s−1 coupled with the momentary increase in

Sb provides the pulse-averaged ionization balance. Due to

the resonant dissociative attachment cross sections, there is
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Figure 9. E/N over the pulsed cycle with Ar and
Ar/CF4/O2 = 75/20/5 for base case conditions (40 mTorr, 500 W at
10 MHz CW and 500 W at 40 MHz in pulse mode—50 kHz PRF
with 25% DC). The overshoot is more severe in the Ar/CF4/O2

mixture due to the lower electron density at the beginning of the
pulse.

essentially no volumetric electron loss for energies greater

than 15–20 eV. Since the majority of the secondary-electron

energies considerably exceed 15–20 eV, they make a negligible

contribution to volumetric losses.

f (ε) near the sheaths and in the bulk plasmas (locations

shown in figure 1(a)) at different times during the pulse period

are shown in figure 11 for the base case conditions. As the

pulsed power is toggled on and off, the high-energy electron

population in the tail of the f (ε) is modulated to high and low

values. This modulation is more extreme in this gas mixture

compared with the pure argon case. The tail of f (ε) at the

HF sheath extends to over 120 eV at the leading edge of the

power-on period due to the overshoot of E/N at the leading

edge of the pulse-on period above the steady-state value. The

f (ε) then adjusts quickly to the power-on value after the local

enhancement in E/N diminishes. The enhancement in the tail

of f (ε) at the LF sheath is to 60 eV, and in the bulk plasma to

50 eV. The rate at which the high-energy tail f (ε) collisionally

relaxes is greater than in the argon case due to the lower energy

inelastic thresholds in this gas mixture. The PPA f (ε) are

also compared with the CW f (ε) in figure 11. The disparity

between the PPA and CW distributions is most acute near the

HF sheath where the PPA f (ε) is both more thermal (larger

low-energy component) and has a more extensive high-energy

tail. This results from thermalization during the power-off

period (enhancing the low-energy component) and stochastic

heating at the leading edge of the power-on period (enhancing

the high-energy tail).

The distribution and mole fraction-averaged rate

coefficient for all electron-impact ionization processes and

for all electron loss processes due to bulk electrons in the

middle of the reactor are shown in figure 12 for the base

case conditions in pure argon and Ar/CF4/O2. In Ar, the

Figure 10. Ionization source by (left) bulk electrons and (right)
secondary electrons in Ar/CF4/O2 = 75/20/5 for the base case
conditions (40 mTorr, 500 W at 10 MHz CW and 500 W at 40 MHz
in pulse mode—50 kHz PRF with 25% DC) at different times during
the pulsed cycle (as indicated in the lower figure). The ionization
source by bulk electrons is largest at the beginning of the power-on
stage due to the expansion of the sheath with the application of
voltage.

only measurable volumetric loss is a radiative recombination

(k ≈ 10−13/Te (eV)0.5 cm3 s−1), and whose contribution is

negligible for these conditions. The modulation in ionization

rate coefficient is a factor of 40 during the pulse cycle (nearly

140 when considering the overshoot at the beginning of the

power-on). The finite ionization rate coefficient during the

power-off period results from the continuous heating from LF

power on the substrate. Although the superelastic relaxation

of Ar metastable states produces some amount of electron

heating, the contribution of the superelastic relaxation during

the pulse-off period is small and equivalent to E/N = 0.65 Td.

In Ar/CF4/O2 mixtures, the average bulk rate coefficient for

ionization increases by ≈100 during the pulse period (nearly

2000 when considering the overshoot at the beginning of the

power-on). In this mixture, there is significant collisional loss

of electrons, which results in a net collisional loss during

the power-off period which exceeds ionization. The rapid

quenching of Ar metastable states reduces significant sources

of superelastic heating during the power-off period. Note that

the electron loss rate coefficient increases during the power-on
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Figure 11. Electron energy distribution functions in
Ar/CF4/O2 = 75/20/5 for the base case conditions (40 mTorr, 500 W
at 10 MHz CW and 500 W at 40 MHz in pulse mode—50 kHz PRF
with 25% DC) at different times during the pulsed cycle (as
indicated in the lower figure). (a) Near the HF sheath, (b) in the
bulk plasma and (c) near the LF sheath (locations indicated in
figure 1). Comparisons of f (ε) averaged over the pulse period and
with CW excitation are in the right column.

period due to the resonant cross sections for attachment which

increase with increasing E/N (at low E/N ).

The source and loss rate coefficients at different heights

in the reactor are shown in figure 13. The electron source

rate coefficient is dependent on the tail of f (ε) and so is most

sensitive to local sources of electron heating. The ionization

rate coefficient is largest near the HF electrode due to the

higher efficiency of stochastic heating, next highest near the

LF electrode and lowest in the bulk plasma. The absolute

Figure 12. Mole fraction weighted rate coefficients for
electron-impact ionization sources and electron-impact loss
reactions during the pulsed cycle for the base case conditions.
(a) Ar and (b) Ar/CF4/O2 = 75/20/5. In Ar, the electron loss rate
coefficient is negligible, whereas in Ar/CF4/O2 the loss rate
coefficient is finite through the pulsed cycle.

value of the source rate coefficients is larger in Ar/CF4/O2

than in Ar in order to compensate for the volumetric electron

losses.

There are two electron heating mechanisms—stochastic

heating due to the oscillating sheath boundary and Ohmic

heating due to the resistivity of the plasma in the bulk. The

relative overshoot of the ionization rate coefficient at the

beginning of the pulse-on period is largest in the center of

the plasma. This is a consequence of long-mean-free path

transport of electrons which were accelerated by stochastic

heating in the sheaths but which have ionizing collisions

in the middle of the plasma—the local value of E/N is

not high enough to support the local increase in ionization

by Ohmic heating. The electron loss rate coefficients for

Ar/CF4/O2 behave similarly to the ionization rates, though over

a smaller dynamic range. Due to the resonant cross sections

for attachment having non-zero threshold energies, the electron

loss rates increase during the power-on period—more so near

the HF and LF sheaths.
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Figure 13. Mole fraction weighted rate coefficients for the
electron-impact ionization sources and electron-impact loss
reactions during the pulsed cycle at different heights in the reactor
for the base case conditions. (a) Ar ionization, sources, (b)
Ar/CF4/O2 ionization sources and (c) Ar/CF4/O2 losses. The loss
rate coefficients respond to the overshoot in E/N due to the
resonant cross sections for attachment. The locations for heights are
shown in figure 1.

5. Pulse repetition rate and DC

The f (ε) at the beginning of the power-on stage near the HF

sheath for different PRFs of 50 and 250 kHz, and for CW

excitation sustained in argon and Ar/CF4/O2 are shown in

figure 14. In both argon and Ar/CF4/O2 mixtures, the tail of

f (ε) reaches higher energies with lower PRF. With the lower

PRF and longer interpulse period, electron losses are larger

and so the conductivity of the plasma is lower at the time

the pulse power is applied. This affects collisional heating

by there being a larger E/N in the bulk plasma and affects

stochastic heating by increasing the sheath width and hence

the sheath speed. f (ε) in Ar/CF4/O2 are more distinctly bi-

Maxwellian compared with Ar due to the generation of high-

energy electrons during the enhanced overshoot in E/N and

the more rapid rate of collisional energy loss (and attachment)

in the molecular gas mixture at energies <12 eV (inelastic

threshold for ground state Ar). As the tail is enhanced, the

low-energy portion of f (ε) is more depleted with smaller PRF.

The overshoot of the average electron source rate

coefficient at the beginning of the power-on stage is observed

in both argon and Ar/CF4/O2. However, the relative amount

of overshoot decreases with increasing PRF, approaching CW,

as shown in figure 15. For a given DC, with increasing PRF,

there is less electron loss during the pulse-off period and so

a higher conductivity at the start of the next power-on period.

The higher conductivity results in a lower E/N .

The same logic produces a dependence off (ε)on DC. The

f (ε) at the leading edge of the pulse power near the HF sheath

for DCs of 25%, 50% and CW (PRF = 50 kHz) for argon and

Ar/CF4/O2 are shown in figure 16. Corresponding ionization

coefficients are in figure 17. With decreasing DC and longer

interpulse period, there is greater loss of electrons and so

smaller conductivity at the start of the power-on period. As

a result, the overshoot in E/N is greater and so the tail of f (ε)

extends to higher energy. For a PRF of 50 kHz in argon, the

overshoot effect already diminishes with a 50% DC, whereas,

for Ar/CF4/O2, the overshoot effect starts to diminish with a DC

of 90%, since the electron density is still small compared with

argon discharge. The low-energy portion of f (ε) is enhanced

with increasing DC, as shown in the insets of figure 16, as the

tail of f (ε) decreases. The ionization source rate coefficients

reflect two trends with decreasing DC—increasing overshoot

in E/N and the increase in power during the power-on portion

of the cycle to keep the cycle-averaged HF power constant

at 500 W. Note that the ionization rate coefficient increases

during the power-on period with argon, but is constant or

slightly decreasing with Ar/CF4/O2. This is due in part to

the accumulation of Ar metastable states during the power-

on pulse that provides more efficient ionization by multistep

processes, a process that is of less importance in Ar/CF4/O2.

6. Concluding remarks

The properties of f (ε) in pulse powered DF-CCP sources

sustained in Ar and Ar/CF4/O2 mixtures have been

computationally investigated using results from a 2D plasma

hydrodynamic model having an electron Monte Carlo
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Figure 14. Electron energy distribution functions near the HF
sheath for the base case conditions (40 mTorr, 500 W at 10 MHz
CW, 500 W at 40 MHz in pulse mode, 25% DC) for different PRFs.
(a) Argon and (b) Ar/CF4/O2. The insets show enlargements of the
low-energy portion of f (ε).

simulation including electron–electron collisions. The PPA

f (ε) obtained when pulsing the HF power differ from that

obtained with CW excitation and have a shape that arguably

would be difficult to replicate under CW conditions. The

Figure 15. Mole fraction weighted electron-impact ionization rate
coefficients in the middle of the gap with different PRFs (40 mTorr,
500 W at 10 MHz in CW mode and 500 W at 40 MHz in pulse mode
with 25% DC). (a) Ar and (b) Ar/CF4/O2 = 75/20/5. The relative
overshoot of the electron-impact ionization rate coefficient is larger
with smaller PRF.

PPA f (ε) poorly represent the dynamics of f (ε) during the

pulsed period, where the tail of f (ε) can extend to energies in

excess of 100 eV at the leading edge of the pulse-on period.

The properties of f (ε) are differentiated between the HF

and LF sheaths, and the bulk plasma. When the power is

turned on, the electrons are quickly heated due to the increase

in sheath voltage and so sheath width which provides an

impulsive acceleration through stochastic heating. The heating

is also more prominent at the leading edge of the pulse due

to an overshoot of E/N above the quasi-steady state during

the pulse-on period. The overshoot is more prominent in

Ar/CF4/O2 mixtures due to the greater fractional decrease in

electron density during the power-off stage. Also, the shorter

energy relaxation length in Ar/CF4/O2 mixture produces more

dynamic changes in the plasma properties near the sheath

as the pulse power is toggled on and off. We found that

the plasma properties including f (ε) can be controlled with

different PRFs and DCs. Lower PRF and smaller DC produce

larger excursions of the tail of f (ε) and so larger ionization
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Figure 16. Electron energy distribution functions near the HF
sheath for the base case conditions (40 mTorr, 500 W at 10 MHz
CW, 500 W at 40 MHz in pulse mode, 50 kHz) for different DCs.
(a) Argon and (b) Ar/CF4/O2. The insets show enlargements of the
low-energy portion of f (ε).

sources in both Ar and Ar/CF4/O2 mixtures. These results are

sensitive to the electron emitting boundary conditions. With

lower values of γ , more ionization must be provided by bulk

electron collisions and so the tail of the f (ε) is raised. This

Figure 17. Mole fraction weighted electron-impact ionization rate
coefficients in the middle of the gap with different DCs (40 mTorr,
500 W at 10 MHz in CW mode and 500 W at 40 MHz in pulse mode,
50 kHz). (a) Ar and (b) Ar/CF4/O2 = 75/20/5. The relative
overshoot of the electron-impact ionization rate coefficient scales
inversely with DC.

gives some opportunity to customize f (ε) in CCPs by varying

the electron emitting boundary condition.
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