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Control of energy homeostasis and insulin action by adipocyte
hormones: leptin, acylation stimulating protein, and adiponectin
Peter J. Havel

Adipose tissue performs complex metabolic and endocrine

functions. This review will focus on the recent literature on the

biology and actions of three adipocyte hormones involved in the

control of energy homeostasis and insulin action, leptin,

acylation-stimulating protein, and adiponectin, and mechanisms

regulating their production. Results from studies of individuals

with absolute leptin deficiency (or receptor defects), and more

recently partial leptin deficiency, reveal leptin's critical role in the

normal regulation of appetite and body adiposity in humans. The

primary biological role of leptin appears to be adaptation to low

energy intake rather than a brake on overconsumption and

obesity. Leptin production is mainly regulated by insulin-induced

changes of adipocyte metabolism. Consumption of fat and

fructose, which do not initiate insulin secretion, results in lower

circulating leptin levels, a consequence which may lead to

overeating and weight gain in individuals or populations

consuming diets high in energy derived from these

macronutrients. Acylation-stimulating protein acts as a paracrine

signal to increase the efficiency of triacylglycerol synthesis in

adipocytes, an action that results in more rapid postprandial

lipid clearance. Genetic knockout of acylation-stimulating

protein leads to reduced body fat, obesity resistance and

improved insulin sensitivity in mice. The primary regulator of

acylation-stimulating protein production appears to be

circulating dietary lipid packaged as chylomicrons. Adiponectin

increases insulin sensitivity, perhaps by increasing tissue fat

oxidation resulting in reduced circulating fatty acid levels and

reduced intramyocellular or liver triglyceride content.

Adiponectin and leptin together normalize insulin action in

severely insulin-resistant animals that have very low levels of

adiponectin and leptin due to lipoatrophy. Leptin also improves

insulin resistance and reduces hyperlipidemia in lipoatrophic

humans. Adiponectin production is stimulated by agonists of

peroxisome proliferator-activated receptor-gamma; an action

may contribute to the insulin-sensitizing effects of this class of

compounds. The production of all three hormones is influenced

by nutritional status. These adipocyte hormones, the pathways

controlling their production, and their receptors represent

promising targets for managing obesity, hyperlipidemia, and

insulin resistance. Curr Opin Lipidol 13:51±59. # 2002 Lippincott Williams &

Wilkins.
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Introduction
In the 7 years since the discovery of leptin it has become
abundantly clear that adipose tissue, long considered to
be a generally passive repository for stored triglycerides,
carries out a large number of intricate metabolic,
paracrine, and endocrine functions. Moreover, there is
an increasing body of evidence that adipose tissue has a
pivotal role, in concert with central nervous system
(CNS) mechanisms [1,2..], not only in the regulation of
energy homeostasis, but also of whole-body insulin
action. Recent experiments, in which a number of non-
secreted adipocyte proteins are either knocked out or
overexpressed in mice, have demonstrated that glucose
transporters (GLUT4 [3]), key metabolic enzymes
(diacylglycerol acyltransferase [4], acetyl-CoA carboxy-
lase [5], hormone sensitive lipase [6]), protein coating
lipid droplets (perilipin [7,8]), and transcription factors
(Hmgic [9], FOXC2 [10]) are involved in the regulation
of energy metabolism, body adiposity, and insulin
sensitivity.

Hormones and cytokines produced by adipose tissue
have wide-ranging effects on food intake, energy
expenditure, and carbohydrate and lipid metabolism.
These secreted factors include tumor necrosis factor-
alpha (TNFa), interleukin-6, plasminogen activator
inhibitor 1, angiotensin II, leptin, acylation stimulating
protein (ASP), and adiponectin (also known as Acrp30,
AdipoQ, apM1) (see [11,12]). One novel adipocyte
hormone, resistin, is postulated to be a key factor
connecting obesity with insulin resistance since its
expression and circulating levels are increased in obese,
insulin-resistant mice and inhibited by insulin-sensitiz-
ing peroxisome proliferator-activated receptor (PPAR)
agonists [13]. Although some subsequent reports exam-
ining resistin gene expression in rodents [14] and
humans [15] have questioned its importance, it is
nonetheless evident that substances produced by
adipose tissue are required for normal body weight
regulation and glucose homeostasis. For example,
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humans and animals that lack adipose tissue due to
congenital or acquired lipoatrophy are severely insulin
resistant [16,17], a condition that can be reversed in a
dose-dependent manner by transplantation of adipose
tissue in fat-de®cient animals [18]. Replacing leptin in
either lipoatrophic patients or mouse models reduces
insulin resistance, but does not fully restore normal
insulin sensitivity [19..,20]. Similarly, administering
leptin to leptin-de®cient ob/ob mice acutely reduces
their hyperglycemia beyond the reduction observed in
pair-fed animals, but does not normalize circulating
insulin levels [21]. Thus while leptin clearly has a role in
insulin resistance in this model, factor(s) other than
leptin are also involved in coupling insulin resistance to
the obese state. This review will focus primarily on the
literature investigating the biology of leptin and two
other adipocyte hormones, ASP and adiponectin, that
have recently been implicated in regulating energy
homeostasis and insulin action. Emphasis will be given
to the nutritional regulation of these hormones, the
known and likely mechanisms controlling their produc-
tion, and their roles in glucose homeostasis.

Role of leptin in energy homeostasis
A large body of evidence indicates that leptin, along with
insulin, has actions within the central nervous system to
inhibit food intake and activate thermogenesis [12,22 .].
Leptin and insulin function as critical signals to the brain
in the long-term regulation of energy homeostasis and
body adiposity, and do so in part by interacting with
short-term signals of satiety emanating from the gastro-
intestinal tract such as cholecystokinin [23,24 .]. Inter-
estingly, the CNS effects of insulin and leptin to inhibit
food intake may share a common signaling pathway
through phosphatidylinositol 3-kinase [25 ..]. Leptin also
has signi®cant effects on hepatic insulin action and
peripheral glucose utilization that appear, for the most
part, to be mediated through CNS mechanisms [26,27].
Humans and animals with mutations that result in an
absolute de®ciency in the ability to produce leptin [28]
or with genetic defects in the leptin receptor [29] are
markedly hyperphagic and morbidly obese. The admin-
istration of low doses of leptin to individuals with genetic
leptin de®ciency diminishes hyperphagia and induces
weight loss that consists primarily of excess body fat [30].
In contrast, administration of long-acting forms of leptin
to humans without leptin de®ciency induces only
modest and variable weight loss [31] or no weight loss
[32]. In other recent clinical studies, leptin administra-
tion improved insulin resistance and hyperlipidemia in
patients with lipoatrophy [20], produced a moderate
suppression of appetite in obese volunteers [33], but did
not affect cardiovascular or autonomic parameters in lean
volunteers [34]. The observation that leptin levels are
elevated in proportion to body adiposity in nearly all
obese individuals has led to the generally accepted idea

that most obese individuals are leptin resistant [35].
Resistance to the actions of leptin could be caused by
decreased leptin transport into the CNS [36,37] or to
reduced signaling distal to the leptin receptor [38,39]. It
has also been suggested that apparent resistance to
leptin in obese individuals may re¯ect a primary
biological role of leptin, when decreased, to serve as a
signal of reduced energy intake and lowered body fat
stores [24 .,40]. In contrast, excess leptin appears to have
less physiological signi®cance. In agreement with this
hypothesis, a relative de®cit in the ability to produce
leptin has a biologically signi®cant impact in humans. It
was recently reported that the heterozygous relatives of
patients with absolute leptin de®ciency have a high rate
of obesity (body mass index, BMI430 kg/m2), relatively
low leptin levels for their BMI, and a greater degree of
body adiposity (% body fat) than would be predicted by
their BMI compared with matched controls or their
homozygous wild-type relatives [41..]. This particular
subset of obese individuals may be more responsive to
leptin therapy than unselected obese individuals.

Although fasting leptin levels are, in general, propor-
tional to body fat mass, circulating leptin concentration
decreases acutely in response to fasting or restriction of
energy intake to a much larger extent than would be
expected for smaller reductions of adiposity [12]. This
adiposity-independent decline of leptin would presum-
ably help to ensure that increased energy intake is
triggered well before body energy stores are compro-
mised. Accordingly, the physiological and behavioral
consequences of changes in circulating leptin concentra-
tions are more pronounced when leptin levels are
declining than when they are elevated. In animal
studies, decreases in leptin mediate changes in food
intake [42,43], food-seeking behavior [44], energy
expenditure [45] and neuroendocrine function [46],
whereas increases in leptin associated with overfeeding
or obesity appear to have substantially less of a biological
impact. In humans, the reduction in plasma leptin levels
during prolonged consumption of a moderately energy-
restricted diet are correlated with increased sensations of
hunger [47], suggesting a role for leptin in the regulation
of appetite in humans when leptin production is
decreased. Thus, the major role of leptin in regulating
food intake and energy expenditure appears to be in the
adaptation to reduced energy intake and body fat stores
rather than as a restraint to limit energy intake and
obesity [24 .,40,46].

Nutritional regulation of leptin production
As discussed above, circulating leptin is regulated
independently of changes in body adiposity by recent
energy intake. There are considerable data to support
the idea that changes in insulin and glucose are the
major mediators of the effects of energy intake on leptin
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production by adipose [12,24 .]. Results from in-vitro
experiments in isolated adipocytes demonstrate that the
effect of insulin to increase glucose metabolism, rather
than activation of insulin signal transduction per se,
mediates the stimulatory effects of insulin on leptin gene
expression and leptin secretion [48]. Increased glucose
metabolism also mediates the effects of insulin to

stimulate the transcriptional activity of the leptin
promoter [49]. Recent data suggest that increased
glucose metabolism mediates the effects of glucose and
insulin infusion to increase circulating leptin concentra-
tions in humans [50 .]. Other studies indicate that
anaerobic glucose utilization is insuf®cient to increase
leptin secretion [51] and suggest that oxidative mito-
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Figure 1. Actions of leptin, acylation stimulating protein and adiponectin

Leptin acts within the central nervous system (CNS) to inhibit food intake and increase energy expenditure, perhaps via its effects to activate the
sympathetic nervous system (SNS). Leptin also increases insulin sensitivity, an effect that may be largely mediated via CNS mechanisms. Leptin
receptors are also found in numerous peripheral tissues where it exerts diverse effects. Leptin secretion is primarily mediated by changes in adipocyte
glucose metabolism driven by increases or decreases in meal-induced insulin secretion. Catecholamines and thiazolidenediones (TZDs) have been
reported to inhibit leptin production, however the physiological role of these mechanisms has not been definitively established. Acylation stimulating
protein (ASP) increases triglyceride (TG) synthesis by increasing adipocyte glucose uptake, activating diacylglycerol acyltransferase (DGAT), and
inhibiting hormone sensitive lipase (HSL). ASP deficiency results in obesity resistance and increased insulin sensitivity. ASP production is stimulated
by insulin and by the presence of chylomicrons/VLDL following meals. Adiponectin increases insulin sensitivity and lowers glucose levels, possibly by
decreasing hepatic production (HGP) and increasing fatty acid oxidation (FAOx) and lowering intramyocellular lipid content. Adiponectin could effect
insulin action via CNS mechanisms. Adiponectin production is stimulated by TZDs (via peroxisome proliferator-activated receptor gamma, PPARg) and
inhibited by catecholamines, glucocorticoids, and TNFa.
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chondrial metabolism to CO2 is necessary to increase
leptin production [52]. Accordingly, the effects of fasting
and feeding to regulate circulating leptin concentrations,
independently of changes in body adiposity, are
probably secondary to changes of aerobic glucose
metabolism in adipose tissue attributable to transitional
changes of ambient glucose and insulin levels.

In humans consuming meals on a regular schedule,
circulating leptin concentrations display a diurnal
rhythm, with a nocturnal peak shortly after midnight
and a mid-morning trough typically seen between
10.00 am and 12.00 noon [53]. The timing of the diurnal
pattern is contingent on the times that meals are
consumed [54]. In fasting individuals, circulating leptin
levels decline and remain low [55,56] until 4±6 h after a
meal is eaten [54] or glucose and insulin are infused [56].
Thus, the diurnal pattern of circulating leptin concentra-
tions is not an actual circadian rhythm, as are the diurnal
rhythms of plasma cortisol and growth hormone levels,
but is a consequence of the dynamics of daily energy
intake. Although administration of exogenous glucocor-
ticoids can increase circulating leptin concentrations,
endogenous glucocorticoids are not likely to have more
than a modulatory role in the regulation of leptin
production because during energy restriction, when
leptin levels are markedly decreased, cortisol levels are
increased [57]. In addition, the diurnal pattern of
circulating leptin is present in patients with adrenal
insuf®ciency (Addison's disease) and its timing is not
affected by altering the diurnal cortisol rhythm [58,59].

Since insulin and its effects on adipocyte glucose
metabolism appear to regulate leptin production, we
hypothesized that alterations in dietary macronutrient
intake and its effects on postprandial glycemic responses
and insulin secretion would have a major in¯uence on
leptin and its diurnal pattern. This hypothesis was
supported by the results of a study comparing circulating
leptin concentrations during consumption of high fat/low
carbohydrate versus high carbohydrate/low fat meals.
When high fat meals were consumed, both the
amplitude of the nocturnal leptin peak and 24 h
circulating leptin levels were reduced, with the largest
differences (40±60%) observed 4±6 h after each meal
[60]. In contrast to glucose, another major source of
dietary carbohydrate, fructose, does not directly stimu-
late insulin secretion. In a recent study postprandial
glucose and insulin responses were reduced and
circulating leptin levels were lowered by 30% over a
24 h period in human volunteers following consumption
of fructose-sweetened beverages, compared with iso-
caloric glucose-sweetened beverages, with three meals
[61]. The reductions in leptin production after dietary fat
or fructose consumption, along with reduced insulin
secretion, could contribute to the recognized effects of

high fat diets to promote increased food intake, weight
gain, and obesity, and suggest that diets containing a
high percentage of energy derived from fructose could
have similar effects.

Acylation stimulating protein
ASP is produced by adipocytes as a result of an
interaction of complement factor C3, factor B, and
adipsin (factor D) resulting in the formation of the C3
derivative, C3a-des-Arg or ASP. ASP increases the
ef®ciency of triacylglycerol synthesis in adipocytes via
its paracrine/autocrine actions to stimulate adipocyte
glucose uptake, activate diacylglycerol acyltransferase
(DGAT), and inhibit the activity of hormone sensitive
lipase [62,63.]. Mice that are genetically de®cient in C3,
and therefore unable to synthesize ASP, have delayed
postprandial lipid clearance [64] and exogenous ASP
administration increases triglyceride and free fatty acid
clearance in normal and obese mice [65,66], suggesting a
role in postprandial lipid disposition. Evidence that ASP
may be involved in regulating human lipid metabolism is
provided by a recent report that circulating ASP levels
are in¯uenced by genes that also affect total cholesterol,
LDL, and triglycerides [67]. ASP de®ciency, however,
may also have a major impact on energy homeostasis and
insulin action. ASP/C3 knockout mice, when compared
with wild-type animals, are hyperphagic, yet have
signi®cantly reduced adipose tissue depots and are
resistant to weight gain induced by feeding a high fat
diet [68 ..]. Recent data indicate that these animals have
elevated energy expenditure [69]. C3/ASP knockout
animals also have reduced fasting insulin levels and
improved glucose tolerance [60,64]. In humans, circulat-
ing ASP levels were inversely correlated with glucose
disposal during a euglycemic clamp [70] and C3 was
shown to be inversely related to insulin sensitivity as
assessed by a clamp or by fasting insulin concentrations,
independently of body adiposity [71]. Interestingly,
mice de®cient in DGAT, another adipocyte protein
involved in triacylglycerol synthesis that is regulated by
ASP, have a similar lean, obesity-resistant phenotype [4].
In summary, ASP promotes storage of energy as fat
whereas interfering with ASP (or DGAT) production
attenuates lipid storage and leads to obesity resistance
and improved insulin sensitivity.

Regulation of acylation stimulating
protein production
Levels of ASP, and its precursor, C3, are increased in
obese humans [63 .,72] and are reduced after fasting or
weight loss [73]. Plasma ASP concentrations were
recently shown to increase in patients with type-2
diabetes following sulfonylurea treatment to improve
glycemic control [74]. Although systemic circulating ASP
does not change after an oral fat administration in
humans [70], increased postprandial ASP release can be
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measured in venous plasma from subcutaneous adipose
tissue with peak release 4±5 h after meals [75].
Interestingly, this time period is similar to that for peak
increases in circulating leptin after meals, which are
known to be regulated by meal-induced insulin secretion
(see above). The changes in ASP production in response
to fasting and food ingestion could be mediated by
insulin, which has been shown to increase ASP secretion
in isolated adipocytes at fairly high concentrations [76].
An effect of circulating lipids to stimulate postprandial
ASP production, however, is likely to be more important,
since incubation of isolated human adipocytes with
chylomicrons potently stimulates ASP release [76,77], an
effect that appears to require de-novo protein synthesis
[78]. Retinoic acid has also recently been reported to
increase ASP production from adipocytes in vitro [78].
Additional work is needed to more fully understand the
nutritional regulation of ASP production and its under-
lying mechanisms.

Adiponectin/ACRP30/adipoQ
Another adipocyte protein that is of considerable interest
with regard to the regulation of energy balance and
insulin action is adiponectin. This large molecular
weight protein, which is structurally related to collagen
and TNFa, was identi®ed by several laboratories in the
mid-1990s and hence has multiple names (complement-
related protein 30 (ACRP30) [79], adipose most abun-
dant gene transcript (apM1), adiponectin [80], adipoQ
[81], and gelatin-binding protein (gdp28) [82]). For the
purpose of simplicity and because the majority of the
papers cited refer to the protein as adiponectin, this
designation will be used here. Circulating adiponectin
concentrations are decreased in obese individuals [83]
and the reduction was proposed to have a role in the
pathogenesis of atherosclerosis and cardiovascular dis-
ease associated with obesity and other components of
the metabolic syndrome [84,85]. This idea is supported
by reports that adiponectin has effects considered to be
protective against cardiovascular disease [86,87] and that
genes in¯uencing circulating adiponectin concentrations
exhibit pleiotropic genetic effects on serum HDL and
triglyceride levels [88 .].

Recent evidence has also suggested an important role for
adiponectin in the regulation of insulin action and energy
homeostasis and low levels of adiponectin have been
proposed to be a critical link between obesity and insulin
resistance [89]. Circulating adiponectin levels [90] and
adiponectin gene expression in adipose tissue [91] are
reduced in patients with type 2 diabetes. Circulating
adiponectin levels in humans are negatively correlated
with fasting insulin concentrations and positively corre-
lated with insulin sensitivity, as assessed by glucose
disposal during euglycemic, hyperinsulinemic clamps
and the relationship between adiponectin and insulin

action is independent of body adiposity [92..]. Further-
more, a decline in circulating adiponectin levels coin-
cides with the onset of insulin resistance and the
development of type 2 diabetes levels in obese rhesus
monkeys [93..], a model of adult-onset obesity that
exhibits a similar progression of the insulin resistance
syndrome observed in humans [94]. Lastly, a genome-
wide scan examining the loci in¯uencing six traits
associated with obesity and insulin resistance reported a
quantitative trait locus on chromosome 3 in the region of
the adiponectin gene with LOD scores of 2.4±3.5 [95 ..].

Actions of adiponectin
Administration of the globular region of adiponectin,
gAcrp30, to mice has a number of interesting actions
including induction of weight loss in animals consuming
a high fat, high sucrose diet without decreasing food
intake, an effect that was associated with reductions in
circulating fatty acids and increased fatty acid oxidation
in muscle [96 ..]. Recombinant adiponectin reduces
serum glucose in normal mice and in mouse models of
diabetes, without stimulating insulin secretion, although
in contrast to the aforementioned study, the full-length
protein was required to lower glucose [97 ..]. Adiponec-
tin also enhances insulin suppression of glucose produc-
tion by isolated hepatocytes, suggesting it may lower
glucose by acting directly on the liver. In addition,
adiponectin improves glucose tolerance in insulin-
resistant db/db mice and reduces insulin resistance
associated with low adiponectin levels in mice with
either lipoatrophy or obesity-induced insulin resistance,
although complete reversal of insulin resistance in
lipoatrophic animals required co-administration of leptin
[19..]. The improvements in insulin sensitivity were
associated with decreased triglyceride content of muscle
and liver and increased fatty acid oxidation in muscle,
and accompanied by increased expression of genes for
proteins involved in fatty acid transport and utilization
[19..]. Although the site and mechanism of adiponectin's
actions on whole-body glucose metabolism remain
unknown, and the receptor(s) has not been identi®ed
to date, available data suggest that adiponectin reduces
hepatic glucose production and increases muscle glucose
utilization, perhaps by increasing fat oxidation [96 ..] and
thereby reducing circulating free fatty acid (FFA) levels
and intramyocellular lipid accumulation [98]. Additional
effects in the CNS cannot be excluded since the CNS
has been shown to have a signi®cant role in the
regulation of insulin sensitivity [1,2..].

Regulation of adiponectin
As discussed above, circulating adiponectin concentra-
tions are reduced in obese mice [19 ..,82] humans
[84,92 ..] and rhesus monkeys [93 ..]. This observation
is in marked contrast to the increased levels of many
other adipocyte derived hormones (such as leptin, TNFa,
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plasminogen activator inhibitor 1, and ASP) in obese
animals and humans. Conversely, weight loss increases
circulating adiponectin concentrations in nondiabetic
and diabetic humans [90,94]. Serum adiponectin levels
also increase during fasting in mice [96..]. Similar to
leptin [57,99], circulating adiponectin concentrations are
higher in women than in men, and there is a signi®cant
gender difference in the adiposity-independent response
of circulating adiponectin during acute energy restriction
(P.J. Havel, unpublished observation).

Although there is little information available on the
mechanisms regulating adiponectin production, several
studies have reported that thiazolidenedione agonists of
PPARg increase both adiponectin gene expression and
circulating adiponectin levels in animals, humans, and in
vitro [19 ..,96..,100..]. This effect of PPARg agonists
suggests that increased adiponectin production is a
mechanism by which this class of compounds acts in
adipose tissue to increase whole-body insulin sensitivity
[101]. Interestingly, subjects with severe insulin resistant
diabetes due to dominant negative mutations that
inactivate PPARg are not obese [102], but have very
low circulating adiponectin levels (S.R. O'Rahilly,
personal communication).

Adiponectin expression is increased with markers of
adipocyte differentiation and its secretion is enhanced by
the calcium ionophore, ionomycin, and inhibited by
cAMP analogs [103]. b-Adrenergic agonists, activators of
adenylate cyclase [104], TNFa [100 ..,103], and gluco-
corticoids [105] are also reported to inhibit adiponectin
gene expression and secretion, suggesting that decreased
adiponectin production could play a role in catechola-
mine, TNFa, or glucocortcoid-induced insulin resis-
tance. Clearly, additional work is needed to understand
the physiological mechanisms involved in regulating the
production of this potentially very important adipocyte
hormone and its paradoxical reduction in obesity, which
appears to lead to insulin resistance and type 2 diabetes.
For example, the role of body fat distribution is of
interest, since centrally distributed, intra-abdominal
body fat is more closely associated with insulin resistance
than subcutaneous fat [106], suggesting that there may
be fat depot-speci®c differences in adiponectin produc-
tion.

Conclusions
A large number of proteins produced by adipose tissue,
both intracellular and secreted, function in concert with
the CNS, liver, and muscle in the coordination of energy
homeostasis and fuel metabolism. Among these proteins,
alterations in the production of the hormones, leptin,
ASP, and adiponectin appear to have substantial effects
on both body adiposity and insulin sensitivity. The
processes involved in regulating energy homeostasis and

intermediary lipid and carbohydrate metabolism are
inextricably linked by common neuroendocrine media-
tors, including leptin, ASP, and adiponectin. The
production of all three adipocyte hormones appears to
be regulated by nutritional status, that is, feeding,
fasting, and weight loss. A more complete understanding
of the molecular and biochemical pathways regulating
the biosynthesis of these hormones and their precise
mechanisms of action is likely to lead to new approaches
for managing obesity, insulin resistance, and type 2
diabetes.
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