
Math. Model. Nat. Phenom. 16 (2021) 40 Mathematical Modelling of Natural Phenomena
https://doi.org/10.1051/mmnp/2021031 www.mmnp-journal.org

CONTROL OF FINGERING INSTABILITY BY VIBRATIONS

Tatyana Lyubimova1,2,*, Andrey Ivantsov1,2 and Dmitry Lyubimov2

Abstract. In applications involving the injection of a fluid in a porous medium to displace another
fluid, a main objective is the maximization of the displacement efficiency. Displacement fronts moving
in porous media are subjected to hydrodynamic instability when a liquid of low viscosity displaces
a high-viscosity liquid and consequently finger-like structure forms along the interface. This finger
instability is usually undesirable in technical applications and natural filtration processes. We discuss
the external periodic forcing as one of the promising ways to control the instability and perform
numerical simulation of an initially spherical drop in a porous media under vertical vibrations. The
drop is a favorable object to study since in this case one can observe the effect of vibrations on fluid
interface domains inclined by different angles with respect to vibration axis. It is shown that under
vibrations small-scale perturbations of interface are suppressed and in the case of vibrations of large
enough intensity the drop becomes stable. The stability criterion is derived.
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1. Introduction

In the framework of the conventional Darcy model a planar displacement front in a porous medium was found
to be unstable if the displacing fluid has lower viscosity than the displaced one [2]. The instability is associated
with the development of penetrating fingers of the less viscous fluid. They grow due to the lower friction with
porous matrix. The process is virtually unimpeded by viscous momentum transfer, which is negligible in porous
media. This mechanism explains the short-wave nature of the instability.

This finger pattern is observed in different technical applications and natural filtration processes, for instance
oil and gas production [2, 9, 20], geological CO2 storage [5, 7], development of low-temperature polymerelec-
trolyte fuel cells [24], water seepage [6], and ink spreading [1]. This instability is usually undesirable and in the
present paper we analyze the use of vibrations to control the stability of fluid-fluid interface in a porous medium.
For example, the displacement of oil by water injected into an oil reservoir is unstable, which ultimately results
in the formation of retained oil pillars surrounded by water. The problem of the extraction of the retained oil is
a topical one, since the solution of this problem could noticeably increase the recovery efficiency. Another exam-
ple is the production of titanium [11], according to the technology the producing magnesium drops of molten
magnesium have to be extracted from a porous titanium sponge saturated with liquid magnesium chloride.
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In practice the displaced fluid often forms compact inclusions surrounded by the displacing fluid. In this
case one should consider displacement fronts on both sides of the inclusion. The investigation of the motion
of localized liquid inclusions in a porous medium saturated with another liquid under the action of stationary
forces is of interest for the theory of hydrodynamic stability of multiphase systems. In most problems of this
type, the equations of filtration of two-component liquid are used. However, in the initial stages of displacement
the mixing of the liquids can be ignored and the phase interface can be considered as macroscopic. Moreover,
an effective phase interface (saturation jump) may also be formed during the evolution of the mixture [2].

In the framework of the linear stability theory the dynamics of the steady settling of spherical inclusion of one
liquid in a porous medium saturated by the other liquid was studied in [11]. It was shown that monotonically
increasing perturbations are localized at the forefront of moving droplet, in agreement with the Rayleigh-
Taylor mechanism. On the other hand, a two-parameter family of eigenmodes was found, with the spectrum of
eigenvalues filling the entire complex plane.

The suppression of the finger instability might be useful to improve the efficiency and control of a number of
physical, biological, and technological processes related to the viscous fingering phenomena. The stabilization
of fluid–fluid displacements can be achieved using wettability alteration [23] or implementing the porous media
of certain structure [18]. Another promising ways to control the instability is the implementation of external
periodic forces. Vibration effect on a stability of plane displacement front in a porous medium was studied in [14].
It was found that the vibration stabilizes the plane displacement front with respect to shortwave perturbations
that usually have the highest grow rates. Numerical modeling in [8] show that moving drop can be stabilized
by the modulation of external pressure gradient.

In the present paper the numerical simulation of liquid drop dynamics in a porous medium under gravity is
performed and the effect of modulation of external forcing is analyzed. Calculations are performed using the
Level set method. The method was developed in [4, 13, 17] where interface between fluids of different properties
is represented as transition layer of finite thickness such that the fluids are considered as one medium with
sharp change of properties in the transition region. In [22] a new enhanced treatment of the Level set method
was introduced that allows to perform simulation for fluids having large density and viscosity ratios.

The paper is organized as follows. In Section 2 we formulate the problem in terms of nondimensional governing
equations and boundary conditions and introduce the nondimensional parameters. In Section 3 we present the
results of calculations of a drop dynamics in gravity field. In Sections 4 and 5 the influence of vibrations is
considered analytically and numerically. Section 6 contains the discussion and concluding remarks.

2. Problem statement

Let us consider an infinite porous medium filled with a fluid of density ρ1 and viscosity η1. In the porous
medium, a spherical drop of another fluid with density ρ2 and viscosity η2 moves under gravity. The drop on the
one hand is commonly encountered object in a porous media, on the other the study of its dynamics allow to
investigate the influence of vibrations on the fluid interface inclined by different angle with respect to vibration
axis. Certainly the conclusions about displacement front could be made only if perturbations of the drop shape
are much smaller than the drop radius. We will consider the influence of vertical vibrations on the drop dynamics
because in that case asymmetric treatment is possible. Both fluids are assumed to be incompressible.

We neglect the smearing of the phase interface and consider the processes occurring on time scales smaller
than the characteristic time of interpenetration of the fluids through the pores. Thus, following to [11, 12] it is
assumed that the miscibility of the fluids and the size of the drop are such that the interface can be considered
sharp. Furthermore, the drop is sufficiently large in comparison to the typical pore size, which allows us to use
the pore-averaged description. It is worth to note that the first and the second fluids can be either pure liquids
or homogeneous mixtures. One possible configuration which can be described by the suggested model is the
mixture of two liquids saturating the entire porous medium in the case that their saturation experiences a jump
across some surface while in all other volume the saturation is homogeneous.

It is well known that in a porous medium, capillarity leads to a diffusive front with a smooth saturation
profile as shown in Figure 1, where both phases co-exist on a microscopic scale [3, 10]. On the other hand smooth



CONTROL OF FINGERING INSTABILITY BY VIBRATIONS 3

Figure 1. Shock front for immiscible displacement with and without capillary pressure,
adapted from [3, 10].

saturation profile will only increase the front stability, as shown for example in [3, 21]. Therefore, dealing with
front stability analysis we can restrict ourselves to the situation corresponding to the most unstable configuration
when the possible effect of capillary forces is neglected.

The dynamics of a drop without vibrations is described by Darcy model and the continuity equation in each
liquid [12, 14, 16]:

∇pj +
εηj
K
~vj = ρjg~i, (2.1)

div~vj = 0, (2.2)

where pj is the pressure, ~vj is the filtration velocity defined as the velocity averaged over the volume occupied
by fluid, K and ε are the permeability and porosity coefficients, ηj is the dynamic viscosity, ρj is the liquid

density, g is the acceleration of gravity, ~i is the unit vector directed downwards, the subscript j denotes inner
“1” or outer “2” fluid.

Under vertical vibrations additional periodic force appears in Darcy equation (2.1), in addition, the inertial
term is needed to be taken into account to describe correctly the effect of vibrations of high frequency. Thus,
the governing equations describing the dynamics of a drop under vibrations read:

ρj
∂~vj
∂t

+∇pj +
εηj
K
~vj + aω2 cos(ωt)~i = ρjg~i, (2.3)

div~vj = 0, (2.4)

here a and ω are the amplitude and the angular frequency of vibrations.
At the interface the kinematic condition and the condition of continuity of the normal component of the

velocity are imposed [11, 12, 14]:

∂F

∂t
+ (~v∇)F = 0, [~vn] = 0, (2.5)

where the brackets [f ] denote the jump of function f across the interface, such that [f ] = f1−f2; F (x, y, z, t) = 0
is the equation determining the shape of the interface.
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Figure 2. Problem geometry for numerical simulations.

The assumptions made in this section are required to obtain the analytical analysis of a front and a drop
stability presented in Sections 4 and 5. The other part of the paper is devoted to numerical simulation of drop
dynamics. To simplify the comparison of analytical and numerical results the calculations were carried out using
the same assumptions as for the theoretical analysis. In particular, the sharp interface approach was used.

3. Numerical modeling of a drop dynamics in gravity field

3.1. Numerical method

At the first stage we performed numerical simulations of the drop dynamics in gravity field in the absence of
vibrations. A steady-state regime of gravity-induced drop settlement was studied in [11] where in the framework
of linear stability analysis it was shown that the monotonously growing perturbations are localized at the leading
front of the moving drop and the oscillatory perturbations have the form of waves traveling along the surface.

Obviously numerical modeling should be performed in the domain of finite size. Therefore the calculations
were carried out in a cylindrical cavity of height H and radius R bounded by the vertical rigid wall (see Fig. 2).
At upper and bottom boundaries the conditions of zero normal derivative of velocity were set while at rigid
boundary the condition of impermeability is imposed. We suppose here that the droplet is small enough, so
the influence of boundaries on the drop dynamics (and especially its stability) is small. The choice of rigid wall
boundary condition is caused by quick numerical convergence.

Numerical modeling of the liquid droplet motion is performed using the Level set method [22]. The basic
idea of the method is the introduction of the distance function - an auxiliary function, which has different signs
in different phases, and zero value of this function corresponds to the interface location. At the same time the
interface is treated as the transition layer with sharply varying parameters. As a result, a two-phase system is
described as a single medium with the parameters (density, viscosity) depending on the distance function.

In accordance with the idea of the Level Set method, the governing equations should be supplemented with
the transport equation for the distance function

dψ

dt
=
∂ψ

∂t
+ ~v∇ψ = 0. (3.1)

The fluid density and dynamic viscosity are calculated using

ρ (ψ) = ρ1 + (ρ2 − ρ1)H (ψ) , (3.2)
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η (ψ) = η1 + (η2 − η1)H (ψ) , (3.3)

where H (φ) is Heaviside function defined by the expression

H (ψ) =


0 ψ < −ε,
1
2

[
1 + ψ

ε + 1
π sin (πψ/ε)

]
− ε ≤ ψ ≤ ε,

1 ψ > ε,

(3.4)

where ε is half-thickness of the transition layer. We assumed that ε = n∆x, ∆x is the distance between the
nodes of computational mesh, n = 3 is the number of nodes located in the half-thickness of the transition layer.

As the scales of the problem, we chose R for the length, Kg (ρ2 − ρ1) /ε (η2 + 0.5η1) for the velocity, ρ2gR
for the pressure, ρ2 for the density and η2 for the viscosity. Note, that the chosen scale of the velocity corre-
sponds to known analytical formula for the velocity of steady motion of spherical droplet in porous medium
under vibrations [11]. Performing the standard nondimensionalization procedure of the equations (2.1)–(2.2),
(2.5)–(3.4) we obtain

η~v = A (ρ~γ −∇p) , (3.5)

div~v = 0, (3.6)

∂ψ

∂t
+ ~v∇ψ = 0, (3.7)

ρ (ψ) = λ+ (1− λ)H, (3.8)

η (ψ) = µ+ (1− µ)H. (3.9)

The problem contains the following dimensionless parameters: λ = ρ1/ρ2 is the ratio of liquid densities, µ = η1/η2
is the ratio of viscosities, A = µ+ 0.5/(λ− 1) is the dimensionless viscosity, ς = H/R is the height of the cavity,
and rd = r/R is the drop radius.

The Level Set method requires high accuracy treatment near the interface of the drop where the parameters
of medium sharply change. Taking this into account we implemented the adaptive mesh refinement algorithm
that allows maintaining fine enough mesh near the interface during all time of calculations. The algorithm is
realized using Paramesh libraries [15] that supports parallel computing based on Message-Passing Interface and
dynamic load balancing procedure for distributing the workloads across multiple computing resources. Thus,
the mesh is automatically changed to minimize diffusion of the grid near the interface (see Fig. 4). In addition,
at each time step, the corrections of the position of the interface is performed such that the thickness of the
transition layer is kept constant [22]. As the result, the variation of the drop mass during calculations did not
exceed 1%.

We introduced the stream function to describe incompressible flow with axial symmetry. Poisson equation
for the stream function was solved implicitly by Generalized minimal residual method [19]. The time derivative
was approximated by the second-order scheme. An approximation of the spatial derivatives was carried out by
finite volume method based on the integral form of the conservation equations.
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Figure 3. Drop shape and stream lines for A = 12.5, λ = 1.2, µ = 2, dimensionless time
moments are (a) t = 0.5, (b) t = 1, (c) t = 1.5 and (d) t = 2.

Figure 4. The drop shape for A = 5, λ = 1.2, µ = 0.5, dimensionless time moments are (a),
(c) t = 0.5 and (b), (d) t = 1. The figure also demonstrates the structure of the computational
mesh blocks. Each block consist of 16x16 nodes, so numbers of mesh nodes per unit of length
near the interface equal 128 for (a), (b) and 256 for (c), (d).

3.2. Calculation results

Calculations were performed for cavity with ς = 4 and the droplet radius rd = 0.4. The initial coordinate of
the drop mass center is zd = 3ς/4. In Figure 3 the dynamic of more viscous drop and flow structure are shown.
As one can see the flow inside the drop is almost uniform. The interface in unstable in the bottom part of the
drop, where the finger like instability develops. The similar behaviour demonstrates less viscous drop, see 4,
though, in this case, the perturbations on the interface grow faster.
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Calculations performed for different viscosity ratios of settling and rising drop show that the droplet is
unstable and instability develops at the forefront of moving drops regardless of the ratio of fluids viscosities
and densities. The results of numerical simulations are in good agreement with the conclusions made in [11].
However, the amplitude of the oscillatory perturbations forecasted in [11] is apparently small because waves
traveling along the surface were not observed in numerical modeling.

It would seem worth to note that the drop is unstable with respect to perturbations with the arbitrarily
large wavenumbers and the growth rate of small-scale perturbations is the greatest [2, 8, 14] therefore the result
of numerical simulation depends on the parameters of computational mesh. With the increase of the mesh
resolution the perturbations of smaller scale become capable to be resolved. The rate of their growth is larger
then growth rate of other perturbations so the evolution of the drop shape changes significantly. This effect is
illustrated in Figure 4.

4. Front stability under vibrations

Effect of linearly polarized vibration on the stability of plane displacement front in a porous medium was
studied in [14]. Following this paper let us consider the problem of the stability of the motion of a plane
displacement front traveling at a uniform velocity U under the action of harmonic vibrations with amplitude a
and frequency ω. The front motion could be caused by pressure gradient, gravity, other volumetric force or just
inertia. In the framework of considered problem the reason of the front motion is not important.

The flow of each fluid through the porous medium can be described by Darcy equations with the additional
term describing vibrations. Let us combine the origin with the displacement front, the z axis being directed
perpendicular to the front and the x axis along it. In a traveling coordinate system moving together with the
displacement front the governing equations read

ρj
∂~vj
∂t

+∇pj +
εηj
K

(~vj + U) + aω2 cos(ωt)~i = 0, (4.1)

div~vj = 0, (4.2)

here U is the velocity of the front motion.
From the equation (4.1) one can see that the vorticity (curl~vj) can only damp with time therefore we can

introduce the velocity potential (~vj = ∇φj) and the governing equations (4.1), (4.2) take the form

ρj
∂φj
∂t

+ pj +
εηj
K

(φj + Uz) + aω2 cos(ωt)z = 0 (4.3)

∇2φj = 0. (4.4)

Boundary conditions (2.5) should be rewrote as

[p] = 0,

[
∂φ

∂z

]
= 0,

∂ζ

∂t
=

1

ε

∂φ

∂z
(4.5)

The Laplace equation has the following solutions damped at infinity:

φ1 = Aeikxekz, φ2 = −Aeikxe−kz (4.6)
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Table 1. Physical parameters of a water-oil system saturating a clay soil [2, 14].

Fluid η, g/cm · s ρ, g/cm3 a, cm ω, 1/s U, cm/s K, cm2 ε

Water
Oil

0.010
0.015

1.0
0.8

0.2 100 0.05 10−5 0.3

Kinematic condition gives

∂ζ

∂t
= Ḃeikxekz, Ḃ =

k

ε
A (4.7)

Here, the dot is the derivative with respect to time. Substituting these equations into governing equations, we
obtain the Mathieu equation for B

B̈ +
η1 + η2

K(ρ1 + ρ2)
εḂ + kB

(
U

K

η1 − η2
ρ1 + ρ2

+ aω2 ρ1 − ρ2
ρ1 + ρ2

cos(ωt)

)
= 0 (4.8)

In the dimensionless form it reads

B̈ + σḂ −W (1 +A cos(t))B = 0 (4.9)

where

σ =
(η1 + η2)ε

K(ρ1 + ρ2)ω
, A =

aω2(ρ1 − ρ2)K

U(η1 − η2)
, W =

U(η2 − η1)k

K(ρ1 + ρ2)ω2
(4.10)

In high-frequency limit, applying the standard averaging procedure to equation (4.9), we obtain the following
expression for perturbation growth rate [14]

γ =
W

σ
− W 2A2

2σ(1 + σ2)
(4.11)

In the dimensional form this expression becomes

γ = −U
ε

η1 − η2
η1 + η2

k − 2a2ω2K(ρ1 + ρ2)(ρ1 − ρ2)2

ε(η1 + η2) [ (ρ1 + ρ2)2 + ε2(η1 + η2)2K−2ω−2]
k2 (4.12)

In the absence of vibrations the second term in expression (4.12) vanishes and the stability of the displace-
ment front depends only on viscosity ratio. One can see that under vibrations short-wave perturbations of the
displacement front are suspended. Consequently, when a lower viscosity fluid displaces a fluid of higher viscosity,
only shortwave perturbations can be stabilized by vibrations and the critical wavenumber of this vibrational
stabilization is

kcr =
U(η2 + η1)

[
(ρ1 + ρ2)2 + ε2(η1 + η2)2K−2ω−2

]
2a2ω2K(ρ1 + ρ2)(ρ1 − ρ2)2

(4.13)

In the case of vibrations with finite frequencies the equation (4.9) should be solved numerically. The numerical
calculation were carried out for the parameters of a water-oil system saturating a clay soil (see Tab. 1). In
Figure 5 the dependence of perturbations growth rate on dimensionless wavenumber is described. The results
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Figure 5. Dependence of the front deviations increment λ on the dimensionless wavenumber
W for A = 947.5 and σ = 0.7. Green line corresponds to the case of the drop settling without
vibrations, red line is the high-frequency limit given by (4.11) and black line is the results of
numerical solution of Mathieu equation (4.9) for vibrations of finite frequency (see Tab. 1).

obtained numerically for finite frequencies are in a good agreement with the formula (4.11) derived using high
frequency assumption. Numerical solution shows that vibrations of finite frequency also stabilize the short wave
perturbation of the displacement front.

For a drop of small enough size one could expect that the vibrations are able to stabilize the drop completely.

5. Numerical modeling of a drop dynamics under vibrations

The numerical simulations of drop settling under vertical vibrations was performed using the approach and
the algorithm described in the Section 3 for the parameter of oil-water system (see Tab. 1). The influence of
vibrations was taken into account by introduction of inertial force in the Darcy equation. The time step was
taken more then 100 times smaller than the period of vibrations. Calculations were performed using a fine mesh
with numbers of mesh nodes per unit of length near the interface equal 256.

Calculations confirmed the results of linear stability analysis of front displacement. The small-scale perturba-
tions of interface are suppressed by vibrations and only large-scale perturbations develop (see Fig. 6a). With the
increase of amplitude or frequency of vibrations the intensification of the stabilizing effect is observed (Fig. 6b).
For large enough intensity of vibrations the drop becomes stable (Fig. 6c). It should be noted here that we
neglect capillarity in our analysis while for oil-water mixture it is important. However, as is it was mentioned
in Section 2 in a porous medium, capillarity increases effective diffusivity of the front as shown in Figure 1
[3, 10] and smooth saturation profile will only increase the front stability [3, 21]. Therefore, the stability criteria
without capillarity is more strict when it should be for realistic oil-water mixture.

The criterion of the suppression of viscous fingering and the drop stabilization can be obtained using the
expression for critical wavenumber (4.13). If the size of perturbations which are suppressed by vibrations is
greater than the drop diameter then we can expect stabilization of the drop. Thus, we can state that the drop
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Figure 6. Dynamics of water drop (with radius r = 0.4 cm) surrounded by oil under vibrations
of angular frequency ω = 100 1/s and amplitudes are (a) a = 0.5 cm, (b) a = 0.6 cm, (c)
a = 0.7 cm.

Figure 7. Stability curve for water drop of radius r = 0.4 cm. Points show the stability
boundary obtained by numerical simulations, red solid line corresponds to the stability criterion
(5.3).

diameter should be less than the perturbation wavelength, therefore

kcr =
2π

2r
=
π

r
(5.1)
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As it was mention above, the velocity of spherical drop of one fluid surrounded by the other fluid in porous
media can be calculated using [11, 12]

U =
Kg (ρ2 − ρ1)

ε (η2 + 0.5η1)
(5.2)

Substituting equations (5.1), (5.2) in (4.13) we obtain the following expression for critical vibration amplitude
needed to stabilize the drop

acr =

√
gρ1ρ2(η2 − η1) [(ρ1 + ρ2)2 + ε2(η1 + η2)2K−2ω−2]

ω2K(ρ1η2 + 2ρ2η1)(ρ21 − ρ22)
(5.3)

The stability boundary calculated during numerical simulation and the stability criterion (5.3) are plotted
in Figure 7. One can see that for high frequency vibrations results of direct numerical simulations are in good
agreement with the equation (5.3). For the case of low frequency our criterion slightly underestimate the critical
vibration amplitude.

It is worth noting that for the case of stable drop results of calculation do not depend on calculation mesh.
It is evident, that the settling rate increases in the case of stable inclusions. The similar results were obtained
for rising drop which density is less than the density of outer liquid.

6. Conclusion

Numerical modeling of the liquid drop dynamics in porous medium saturated by the other liquid under
gravity has been carried out. Simulations showed that the droplet is unstable and regardless of the ratio of
liquid viscosities, the finger instability develops at the forefront of moving drop. Vibration effect on the plane
displacement front in a porous medium has been analyzed in the framework of linear stability analysis and
it is shown that the vibrations stabilizes the plane displacement front with respect to perturbation of short
enough wavelength. Numerical modeling of vibration effect on the drop dynamics has demonstrated that the
drop can be completely stabilized by vibrations of high intensity. The results of numerical modeling are in a
good agreement with the obtained analytical criterion of the drop stability.

Acknowledgements. The work was carried out under financial support of the Russian Foundation for Basic Research
(grant 18-01-00782).
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