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Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing

approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupl-

ing types describing the relations between reaction activities, and develop an efficient computational framework, which

does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions

facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller

degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli,
indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles

in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory

principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and

metabolism.

[Supplemental material is available for this article.]

Understanding how cellular systems are controlled on a genome-
scale is a central issue in biology and medicine. Metabolic net-
works are at the center of systems biology approaches to unravel-
ing cellular control, because metabolism carries the life-sustaining
cellular functions shaping the molecular phenotype (Sweetlove
and Ratcliffe 2011). The steady-state principle and physico-chem-
ical constraints (e.g., mass balance and thermodynamics) have
been employed to reduce the numberof considered network states,
facilitating the prediction of genotype-phenotype relationships
and intervention strategies for biotechnological or medical purpo-
ses (McCloskey et al. 2013). In particular, flux balance analysis
and variations thereof have been successfully applied to the meta-
bolic networks of unicellular organisms to predict their metabolic
and cellular phenotypes (Varma and Palsson 1994). Yet, those ap-
proaches are biased (Lewis et al. 2012) because they restrict the flux
space to an a priori specified reference state by assuming a cellular
objective to be optimized by the organism (Schuetz et al. 2007).
While optimization of biomass yield has proven useful for unicel-
lular organisms, identification of a suitable objective for multi-
cellular organisms remains a nontrivial endeavor (Sweetlove
and Ratcliffe 2011). Other approaches, e.g., elementary fluxmodes
(Schuster and Schuster 1993) and extreme pathways analyses
(Schilling et al. 2000), do not assume a cellular objective and
hence are unbiased. However, despite extensive studies and recent
advances (Terzer and Stelling 2008), these unbiased approaches are
limited to rather small networks due to their intrinsic com-
putational complexity. We still lack an unbiased computational

approach for systematically studying the control of large-scale
metabolic networks.

Here, we develop such an approach by employing the flux
coupling between reactions (Burgard et al. 2004). The key idea is
that the activity of a reaction can be controlled by directly manip-
ulating a reaction towhich it is coupled. Themost efficient control
strategy is then given by the smallest set of driver reactions thatmust
be directly controlled for controlling the activity of all reactions
in the network. To identify the smallest set of driver reactions
offering control over the whole network, we first need to fully ex-
ploit the qualitative couplings among reactions. There are four
possible cases by which the flux of one reaction R1 can be used
to qualitatively control the flux of another reaction R2: (1) An
active flux of R1 leads to activation of R2; (2) an inactive flux of
R1 leads to deactivation of R2; (3) an inactive flux of R1 leads to
activation of R2; and (4) an active flux of R1 leads to deactivation
of R2. We find that the flux coupling types proposed and widely
used in the literature only account for cases (1) and (2), unaware
of the potential offered by cases (3) and (4). Here, we identify two
new coupling types that describe well-known biochemical princi-
ples and allow us to consider the remaining two cases. We show
that the resulting driver reactions can be determined efficiently
for large metabolic networks by solving a classical graph-theoretic
problem via integer linear programming. Our framework does not
require any a priori knowledge of the cellular objectives and hence
is unbiased.Moreover, it enables systematic analyses of the control
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principles of large-scale metabolic networks, offering mechanistic
insights into cellular regulation.

Results

Five flux coupling types enable efficient control of

metabolic networks

Formally, the structure of a metabolic network is uniquely speci-
fied by itsm × n stoichiometric matrix, S = [sij], withm rows denot-
ing metabolites and n columns representing reactions. An entry sij
represents the stoichiometry ofmetabolite i in reaction j, with neg-

ative entries denoting reactants and positive entries indicating
products. A feasible flux distribution of a metabolic network S is
defined as a flux vector v satisfying the steady-state condition
(Sv = 0) subject to lower and upper bounds (lb≤ v≤ ub). We pro-
pose an additional constraint of a nonzero exchange of matter
with the environment (i.e., the flux vi≠ 0 for at least one exchange
reaction i). This is a natural requirement for any living system,
which also allows us to introduce new flux coupling relations
(Methods). The status σi

v = |sign(vi)| of a reaction i in v is called ac-
tive, if σi

v = 1; and inactive, if σi
v = 0.

The steady-state principle implies that some reactions operate
in a concertedmanner, leading to coupling relations between rates

and, thus, statusof reactions.Torepresent
the coupling relations between reactions
in a metabolic network, we construct
the flux coupling graph (FCG) (Burgard
et al. 2004), where vertices denote reac-
tions and edges describe the coupling
types (Fig. 1A; Methods). Three types
of flux coupling have been proposed in
the literature (Burgard et al. 2004): direc-
tional, partial, and full coupling. A
reaction i is directionally coupled to j if
σi

v = 1 implies that σj
v = 1 (and equiva-

lently, σj
v = 0 implies σi

v = 0) (e.g., R1

and R3 in Fig. 1A; see “Analogy between
flux coupling and mass balance” in the
Supplemental Material on the derivation
of flux coupling relations of this small
network using mass balance equations).
Partial coupling is a special case of di-
rectional coupling: Two reactions, i and
j, are partially coupled if they have the
same status, i.e., σi

v = σj
v, in every feasible

flux distribution (e.g., R2 and R3 in Fig.
1A). Moreover, full coupling is a special
case of partial coupling: Two reactions
are fully coupled, if there is a constant,
λ≠ 0, such that vi = λvj for every feasible
flux distribution v (e.g., R4 and R5 in Fig.
1A). Thus, full and partial coupling have
equivalent implications with respect to
the status of reactions i and j, since in
both cases σi

v = 1 if and only if σj
v = 1.

Moreover, these three coupling relations
are similar in the sense that they allow a
reaction to be activated or deactivated
by imposing the same status ona reaction
towhich it is coupled(σi

v = σj
v).However,

they do not allow for activating or deacti-
vating a reaction by using reactions that
have a different status (σi

v≠ σj
v).

To consider the two remaining
cases, we introduce two new coupling
types, called anti- and inhibitive cou-
plings: Two reactions i and j are anti-
coupled, if σi

v = 0 implies σj
v = 1 (and

equivalently σj
v = 0 implies σi

v = 1) for
any feasible flux distribution v (e.g.,
R3 and R5 in Fig. 1A). In other words,
if one of the two reactions is inactive,
then a (nonzero) steady-state flux is

A

B

C

D

Figure 1. Illustration of flux coupling graph, control graph, and driver reactions. (A, left) Metabolic
network with vertices representingmetabolites, labeled A–F; hyperedges representing internal reactions,
labeled R1–R5; and exchange reactions, labeled E1–E4. (Right) Flux coupling graph of the internal reac-
tions of the metabolic network, with vertices representing reactions and labeled edges representing
the five coupling relations (represented by different colors; see legend). Here, only internal reactions
are considered for brevity (Supplemental Fig. S1 shows the flux coupling graph including exchange re-
actions). (B–D) Three activity patterns (left) describing the active (black arrows) and inactive reactions
(gray arrows). The control graphs (right) are obtained by integrating the flux coupling graph with the
activity pattern and describe which reactions can be controlled to impose the status of other reactions
in the activity pattern (Methods). The driver reactions are given by a smallest set of vertices, such that
each vertex in the control graph is either contained in the set or a direct successor of a vertex from the
set. Vertices corresponding to driver reactions are colored; one vertex of each color must be controlled
simultaneously. The required activities of the driver reactions (deactivation, activation, or maximization)
are depicted next to the vertices. For example, activity pattern 1 is achieved by the simultaneous activa-
tion of R1 and deactivation of either R4 or R5.
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only possible if the other reaction carries a nonzero flux. A reac-
tion i is inhibitively coupled to a reaction j if a maximum flux of
reaction i implies that j is inactive. Note that just an active reac-
tion cannot imply the deactivation of another reaction (see
“Flux coupling analysis” in the Supplemental Material). Inhibitive
coupling occurs when two reactions compete for the same reac-
tant or product (e.g., R4 and R1 in Fig. 1A, which share the reac-
tant A), although more complex cases are possible (e.g., the
inhibitive coupling of R5 to R1 in Fig. 1A due to full coupling
of R4 and R5). In that case, a maximum flux of one reaction im-
plies a maximum consumption (or production) of the shared
metabolite, such that a nonzero flux through the other reaction
would violate steady state. The two new coupling relations dem-
onstrate that an active or inactive flux of a reaction i can
also impose the opposite status on a reaction j (i.e., σi

v implies
σj

v with σi
v≠ σj

v).
The coupling of reactions implies that fluxes may not only

be directly controlled by the regulation of enzyme activities
and concentrations (Fell 2005) but also be implicitly controlled
by the requirement of achieving and maintaining a steady state.
This suggests that the expression of genes encoding the enzymes
of coupled reactions is coordinated in agreement with their im-
posed status. For example, the synthesis of the enzyme catalyz-
ing a reaction that is inactive due to its coupling with other
reactions would imply a waste of resources. Likewise, if a reaction
is required to be active due to the present couplings but cannot
occur based on the existing regulatory interactions, then the sys-
tem cannot operate at steady state. Thus, we hypothesize that
coupled reactions are coregulated by a common transcription
factor (TF), as this would indicate their coordinated regulation.
To test this hypothesis, we overlay the gene regulatory network
of Escherichia coli (Salgado et al. 2013) on its genome-scale meta-
bolic network (Orth et al. 2011) and determine the agreement
between reaction couplings and the coregulation of their en-
zyme-coding genes by a common TF (Methods). This approach
accounts for the transcriptional regulation of genes from the
same operon, as well as across operons. Hence, we generalize a
previous study of the operonic organization of genes associated
with fully and directionally coupled reactions (Notebaart et al.
2008). We find that coupled reactions are very likely coregulated
(hypergeometric test, P value = 3.3 × 10−290, including all types of
coupling). With respect to the individual coupling types, there is
a striking agreement between coregulation and fully coupled re-
actions (Supplemental Fig. S2): While only 24,303 (5.7%) of the
total 427,350 pairs of enzyme-catalyzed reactions are coregulated,
175 (42.9%) of the 408 fully coupled pairs are coregulated, which
is highly significant (hypergeometric test, P value = 4.2 × 10−105).
In contrast, none of the 36 partially coupled reaction pairs is co-
regulated. There is a small but significant (P value = 2.6 × 10−2)
agreement for the 2999 directionally coupled reactions, of which
196 are coregulated (6.5%). This extends the finding that genes
associated with fully and directionally coupled reactions are fre-
quently located on the same operon (Notebaart et al. 2008) and
suggests their coordinated regulation by common TFs. While
there are no anti-coupled reactions in the genome-scale metabol-
ic network of E. coli, the proposed inhibitive coupling also shows
a strong agreement with coregulation: Of the 6847 inhibitively
coupled reaction pairs, 1220 are coregulated (17.8%, P value =
7.9 × 10−278). These results demonstrate that the expression of
metabolic genes is coordinated by transcriptional regulation in
line with reaction couplings, confirming their relevance for met-
abolic regulation.

Flux coupling profiles capture phylogenetic signals

of metabolic networks

To determine if flux coupling reflects functional principles of
metabolism, we analyze 23 high-quality metabolic networks
from all kingdoms of life (Table 1). The networks vary greatly in
their sizes, tissues, subcellular compartmentalization, and uni-
or multicellular organization (Methods). For each network, we
first calculate the five coupling types over all reaction pairs. We
find that anti-coupling is rarely found in genome-scale net-
works (Supplemental Table S1), which indicates the existence of
redundant pathways operating in steady states of these networks
(see “Flux coupling analysis” in the Supplemental Material). Nev-
ertheless, anti-coupled reactions occur in four medium-size net-
works (Arabidopsis thaliana, Methanosarcina barkeri, Mycoplasma
pneumoniae, Thermotoga maritima), and the network of E. coli
carbon metabolism.

The relative frequencies of the five coupling types in a given
network define the corresponding flux coupling profile (Methods).
To determinewhether the flux coupling profiles reflect functional-
ly important features of the analyzed metabolic networks, we as-
sess their statistical significance using network randomization
under mass-balance constraints (Basler et al. 2011). We find that
the flux coupling profiles for most networks and coupling types
are significantly different from their randomized variants, suggest-
ing that they reflect evolutionary features of their metabolism
(Methods; Basler et al. 2012).

To determine the extent to which flux coupling profiles re-
flect the phylogeny of the considered biological systems, we apply
three classical clustering algorithms togetherwith threewell-estab-
lished cluster quality measures (Methods). We find that the clus-
tering of the flux coupling profiles indeed reflects the established
phylogeny and functional differences of the metabolic networks,
as demonstrated by the separation into five clusters obtained con-
sistently from the three clustering algorithms (Fig. 2): The flux cou-
pling profiles of the two nonextremophile archaea (cluster 1) are
separated from those of extremophiles (cluster 2) and the two net-
works of E. coli central metabolism (cluster 3). The flux coupling
profiles of three cancer types fall together with the profiles of the
genome-scale metabolic networks of E. coli and Mycobacterium tu-
berculosis (cluster 4). Moreover, the cancer networks (clusters 2
and 4) are clearly separated from the corresponding healthy tissues
(cluster 5), suggesting that distinct coupling patterns characterize
healthy and cancer tissues. In particular, the flux coupling profiles
of all nine considered eukaryotes form a separate branch of the
clustering tree (cluster 5) despite the apparent differences in the
size and cellular organization of the represented metabolic net-
works (cf. Table 1).

For comparison, we find that the clustering based only on the
previously studied flux coupling types, i.e., full, partial, and direc-
tional couplings, does not correspond to phylogenetic or function-
al relationships of the analyzed metabolic networks (Methods;
Supplemental Fig. S3). Instead, we observe that networks within
functionally or phylogenetically related groups, such as the net-
works of E. coli central metabolism, extremophiles, or eukaryotes,
are dispersed across clusters. Moreover, the separation of cancer
networks from their corresponding healthy tissue networks is no
longer apparent, since cancer networks are assigned to clusters to-
gether with the corresponding healthy tissue or other eukaryotic
networks. This indicates that the flux coupling profiles obtained
from the five coupling types, but not those of the previously stud-
ied coupling types, reflect the phylogeny of metabolic networks.
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Finally, we find that the clustering based only on structural deter-
minants, i.e., the cumulative distribution of singular values
(Duarte et al. 2007; Omranian et al. 2015), yields few large clusters
that are significantly different from those of the flux coupling
profiles (adjusted Rand Index of −0.06) (see Methods), and
also lacks correspondence to phylogenetic relationships. This indi-
cates that structural determinants alone are not sufficient to char-
acterize the phylogenetic or functional requirements of these
networks.

Driver reactions are obtained by integrating flux coupling

with activity patterns

Based on the five coupling relations, we propose a control frame-
work to identify the smallest sets of driver reactions. Consider a
reaction activity pattern σ = {0,1}n that describes the active (1) or in-
active (0) status of reactions in a givenmetabolic network at steady
state (Fig. 1B–D). For a given activity pattern, we determine the
driver reactions as follows. First, we construct a control graph (CG)
by integrating the FCG with the activity pattern: The CG contains
a vertex for each reaction in the metabolic network and a directed
edge (i→ j), if controlling the status of reaction i allows us to im-
pose the status of reaction j in the activity pattern. For example,
if reaction i is directionally coupled to reaction j, and σi = σj = 1 ac-
cording to the desired activity pattern, then the CG contains the
directed edge (i, j), but not ( j, i), as i can be used to activate j, but
not necessarily vice versa (e.g., R1 and R2 in Fig. 1B; Methods).
Hence, the control graph indicates which reactions control the sta-
tus of other reactions for the considered activity pattern. Then, a
smallest set of driver reactions, denoted as D(CG), which must

be directly controlled to impose the status of all reactions in the
activity pattern, is given by a smallest vertex set D in CG such
that the union ofD and its out-neighborhoodN+(D) covers all ver-
tices in CG, i.e.,

D(CG) = min|D|{D # V(CG) : D<N+(D) = V(CG)}.

In graph theory,D(CG) is called aminimum out-dominating set
(Chartrand et al. 1999) of the CG, which can be exactly solved
via an integer linear program (Methods). Although in general the
minimum out-dominating set problem is NP-hard (Garey and
Johnson 1979), we find that, even for the largest CGs constructed
in this work, we can efficiently calculate D(CG) (see “Efficient
calculation of driver reactions” in the Supplemental Material).

To quantify the difficulty of controlling metabolic networks,
we generate steady-state feasible activity patterns using two dis-
tinct sampling schemes (Methods) and calculate the average num-
ber of driver reactions over 1000 activity patterns. Inspection of
the relationship between network size and the average number
of driver reactions indicates that the complexity of control scales
linearly with the size of metabolic networks (Pearson correlation
of 0.97, P value = 3.0 × 10−14) (Supplemental Fig. S4). Moreover,
when considering the fraction of reactions in a network that are
drivers, we observe that the genome-scale metabolic networks
of most prokaryotes require smaller fractions of drivers (15.5%–

43.4%) in comparison with those of eukaryotes (35.8%–49.2%).
Specifically, the smaller networks of central metabolism have the
largest fractions of driver reactions (57.9%–81.6%) (see Fig. 3A).
This indicates that most driver reactions are part of central metab-
olism,while large parts of secondarymetabolism can be controlled

Table 1. Metabolic networks analyzed in this study

C Network n d Description Reference

1 M acetivorans iMB745 628 18.3 Genome-scale metabolic network of Methanosarcina
acetivorans

(Satish Kumar et al. 2011)

M barkeri iAF692 537 16.7 Genome-scale metabolic network of Methanosarcina
barkeri

(Feist et al. 2006)

2 N pharaonis 601 46.3 Genome-scale metabolic network of Natronomonas
pharaonis

(Gonzalez et al. 2010)

T maritima 460 15.5 Core metabolism of Thermotoga maritima (Zhang et al. 2009)
P putida iJN746 912 24.5 Genome-scale metabolic network of Pseudomonas

putida KT2440
(Nogales et al. 2008)

iUrothelialCancer1647 2302 39.9 Metabolic network of urothelial cancer cells (Gatto et al. 2014)
M pneumoniae iJW145 239 43.4 Genome-scale metabolic network of Mycoplasma

pneumoniae
(Wodke et al. 2013)

3 Ecoli Carbon 98 81.6 Carbon metabolism of Escherichia coli (Schuetz et al. 2007)
Ecoli Core 75 69.7 Central metabolism of Escherichia coli (Orth et al. 2010)

4 Ec iJO1366 2371 29.7 Genome-scale metabolic network of Escherichia coli (Orth et al. 2011)
M tuberculosis iNJ661 800 31.1 Genome-scale metabolic network of Mycobacterium

tuberculosis H37Rv
(Jamshidi and Palsson 2007)

iBreastCancer1771 2288 38.9 Metabolic network of breast cancer cells (Gatto et al. 2014)
iLungCancer1472 2065 36.1 Metabolic network of lung cancer cells (Gatto et al. 2014)
iRenalCancer1410 2186 35.1 Metabolic network of renal cancer cells (Gatto et al. 2014)

5 A niger 1018 44.1 Genome-scale metabolic network of Aspergillus niger (Andersen et al. 2008)
ArabidopsisCoreModel auto 494 21.4 Core metabolism of Arabidopsis thaliana under

autotrophic day conditions
(Arnold and Nikoloski 2014)

C reinhardtii iAM303 206 57.9 Central metabolism of Chlamydomonas reinhardtii (Manichaikul et al. 2009)
H sapiens recon1 2042 49.2 Genome-scale metabolic network of Homo sapiens (Duarte et al. 2007)
M musculus 859 35.8 Genome-scale metabolic network of Mus musculus (Quek and Nielsen 2008)
BreastHealthy 2719 45.6 Metabolic network of human glandular breast cells (Gatto et al. 2014)
LungHealthy 2343 39.9 Metabolic network of human pneumocytes (Gatto et al. 2014)
KidneyHealthy 2662 37.1 Metabolic network of human kidney cells (Gatto et al. 2014)
UrothelialHealthy 2430 36.6 Metabolic network of human urothelial cells (Gatto et al. 2014)

For each network, we show its cluster (C) (cf. Fig. 2), network name, number of (unblocked) reactions (n), percent of driver reactions (d ), brief descrip-
tion, and reference.
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indirectly using fewer driver reactions. This finding is in line with
the observation that, unlike primary metabolism, the pathways of
secondary metabolism can be controlled by manipulating one or
a few enzymes (Sweetlove and Ratcliffe 2011).

In addition, we observe that the fraction of driver reactions
follows a power-law decay with the fraction of coupled reactions
(scaling coefficient of 0.24, Pearson correlation of −0.72 [log-log]
P value = 1.2 × 10−4) (Fig. 3B). This suggests that the complexity
of control strongly depends on the extent of coupling inmetabolic
networks that are difficult to control, such as central metabolism.
On the other hand, the complexity of control is largely indepen-
dent of the amount of coupling in networks that have few driver
reactions.

These results are robust with respect to the choice of the sam-
pling scheme and the number of sampled activity patterns
(Methods). Moreover, despite the finding that flux coupling anal-
ysis is sensitive tomissing reactions (Marashi and Bockmayr 2011),
we observe that the determined driver reactions are not signif-
icantly altered when removing up to 15% of the reactions from
the network of E. coli central metabolism, or up to 25% of the reac-
tions from the genome-scale metabolic network (P values < 0.05
for the Pearson correlation coefficients of driver frequencies with
andwithout removal of reactions) (see “Sensitivity tomissing reac-
tions” in the Supplemental Material). Altogether, these robustness
tests demonstrate the power of our method in making predictions
from incomplete network reconstructions (Monk et al. 2014).

A B

C

DEF

Figure 2. Clustering of flux coupling profiles. (A, top) Silhouette index over number of clusters for three clusteringmethods: hierarchical, k-means, and k-
medoids. For five clusters (dashed line), the three methods give identical clustering (blue, red, and green circles), which is shown in B–F. (Bottom) Cluster
dendrogram obtained from hierarchical clustering of the flux coupling profiles using Euclidean distances (see also Supplemental Fig. S3). (B) Cluster 1 con-
tains the flux coupling profiles of both nonextremophile archaea. (C) Cluster 2 combines the flux coupling profiles of organisms adapted to extreme
environmental conditions: the haloalkaliphilic Natronomonas pharaonis, the hyperthermophilic T. maritima, the solvent tolerant Pseudomonas putida, as
well as the pathogen M. pneumoniae and urothelial cancer. (D) Cluster 3 contains the flux coupling profiles of both networks representing E. coli central
metabolism. (E) Cluster 4 combines the genome-scale networks of E. coli, M. tuberculosis, and three of the four cancer networks. (F) Cluster 5 contains
all analyzed eukaryotic networks, including the fungi Aspergillus niger, unicellular algae Chlamydomonas reinhardtii, Homo sapiens, Mus musculus, and
the four tissue-specific human networks.
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Driver reactions are under complex

cellular regulation

Since the key idea of our method is that
driver reactions facilitate control ofmetabol-
ic fluxes, we hypothesize that driver reac-
tions are under complex cellular regulation
to achieve efficient control of metabolism.
We use the number of distinct TFs and small
RNAsassociatedwitha reactionas aproxy for
estimating the complexity of its regulation.
To this end, we first determine the number
of TFs regulating the enzyme(s) associated
with each reaction of the genome-scale met-
abolic network of E. coli (Methods). Similar
to the classification of vertices by their roles
in controlling an arbitrary complex network
(Jia et al. 2013), we group the reactions in the
metabolicnetworkofE. coli into three classes
based on the number of activity patterns

in which they appear as driver reactions:
Redundant reactions are never required
for control and, thus, can always be con-
trolled through other reactions; intermit-
tent reactions are driver reactions for at
least one, but not all considered activity
patterns, and critical reactions are driver
reactions for all activity patterns. We
find that both critical and intermittent
reactions are regulated by significantly
more TFs (average of 1.9 and 2.9, respec-
tively) in comparison to redundant reac-
tions (average of 1.0, Wilcoxon rank-
sum test P values of 1.3 × 10−15 and
2.1 × 10−37, respectively) (Fig. 4A). The
largenumberof TFs associatedwith inter-
mittent reactions indicates that reactions
whose role as driver or nondriver varies
for different activity patterns require the
most extensive transcriptional regula-
tion. In addition, we observe that fewer
TFs than expected by chance (46 of 82)
are associated with more than one class
of reactions (permutation test, P value =
1.0 × 10−3) (Fig. 4B), suggesting that the
three classes of reactions operate under
distinct modes of transcriptional regula-
tion. Moreover, of the 46 TFs associated
with more than one class, significantly
more are shared between intermittent
and critical reactions (34) compared to
the other intersections (30 TFs are shared
between redundant and intermittent,
and24between redundant andcritical re-
actions; permutation test, P value = 2.0 ×
10−3). Similar results are obtained when
extending the analysis to include post-
transcriptional regulation by small RNAs.
This points to the similarly important
role of intermittent and critical driver
reactions in cellular regulation and attri-
butes a less pronounced role to redun-
dant reactions.

A

B

Figure 3. Flux control properties of the 23 analyzedmetabolic networks. (A) Relationship between net-
work size (x-axis) and complexity of flux control, as quantified by the fraction of driver reactions required
for controlling all reactions (y-axis). Three groups can be distinguished: small central metabolic networks
containing large fractions of driver reactions (triangles); medium-sized, predominantly microbial net-
works (squares); and the large E. coli, human and cancer networks containing the smallest fractions of
driver reactions (circles) (see also Supplemental Fig. S4). (B) Relationship between flux coupling frequen-
cy and the fraction of driver reactions. Networks are arranged by the fraction of coupled reaction pairs
(x-axis) and fraction of driver reactions required for controlling all reactions (y-axis). The fraction of driver
reactions decays logarithmically (scaling coefficient of 0.24, dashed line) with the fraction of coupled re-
actions, indicated by a Pearson correlation of −0.72 on the log-log data (inset). The legend is sorted by
decreasing fraction of driver reactions required for control of the network.

A B

Figure 4. Transcriptional regulation of reaction classes in E. coli. (A) Box plot of the number of tran-
scription factors regulating redundant, intermittent, and critical reactions, indicating themedian (red
lines), 25th and 75th percentiles (blue boxes), maximum nonoutlier value (black whiskers), and out-
liers (red crosses). (B) Venn diagram showing the number of transcription factors associated with re-
dundant, intermittent, and critical reactions, and their intersections.
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On the other hand, we find that redundant reactions are sig-
nificantly enriched with reactions related to essential genes from
experimental data (hypergeometric test, P value 5.5 × 10−21)
(Zhou and Rudd 2013). Similarly, redundant reactions are signifi-
cantly enriched with reactions predicted to be essential for growth
using flux balance analysis (hypergeometric test, P value 3.6 ×
10−17), which also points to an already indicated agreement be-
tween the two data sets (Orth et al. 2011). This finding suggests
that driver reactions, as definedhere, are largely unrelated to essen-
tial genes in Escherichia coli. This is not totally unexpected, since
essential genes have fundamental cellular functions required for
survival under any environmental condition, while driver reac-
tions allow efficient control of metabolism under a specific envi-
ronmental condition. Moreover, essential reactions must carry
flux under any condition. Hence, their capability of controlling
other reactions through their flux may be limited, which may ex-
plain why they are found predominantly among redundant
reactions.

Driver reactions control tumor development at the interface

between gene regulation, signaling, and metabolism

The accelerated glucose uptake, glycolysis, and lipogenesis are a
signature of proliferating cells in a variety of tumors, thought
to arise through aberrant interactions between gene regulation,
signaling pathways, and metabolism (Heiden et al. 2009). How-
ever, it remains difficult to identify which genes and enzymes
are ultimately responsible for causing and controlling tumor devel-
opment. To assess whether the identified driver reactions are
related to genes that have been shown to cause cancer (Futreal
et al. 2004), we analyze the gene-enzyme-reaction associations.
Remarkably, we find that critical driver reactions in the four cancer
networks are statistically associated with cancer causing genes
(hypergeometric test, P value = 6.8 × 10−4), suggesting that our
framework can be used to identify genes and reactions whose
causal role in cancer is hitherto unknown. In contrast to previous
analyses that compare the presence and absence of reactions in
cancer vs. healthy tissues (Agren et al. 2012), here, we pinpoint
reactions that are involved in causing cancer. We obtain similar
results when extending the analysis to include cancer associated
genes fromhigh-throughputmutational screenings, whole-exome
and whole-genome sequencing (hypergeometric test, P value =
9.6 × 10−4) (D’Antonio et al. 2012; Methods).

To pinpoint the changes in flux control underlying the
switch from healthy to cancer metabolism, we identify reactions
that are critical drivers in networks of cancer but are redundant
in the corresponding healthy tissue. We refer to these reactions
as metabolic switches because of their divergent role in controlling
cancer but not healthymetabolism. In total, there are 21metabolic
switches (Supplemental Table S2). We find that the number of
couplings of metabolic switches differs between the cancer and
healthy tissue networks, mostly with respect to inhibitive cou-
plings (Supplemental Fig. S5). Specifically, metabolic switches
tend to have less inhibitive couplings in cancer compared to
healthymetabolism. This suggests that the less extensive competi-
tion between pathways in cancer cellsmay be an important feature
of their (de)regulation.

We focus onmetabolic switches across cancer types, i.e., reac-
tions that are critical drivers in more than one cancer type and
redundant in the corresponding healthy tissues. In total, we
find five such reactions (Supplemental Table S2): (1) hydrolysis
of S-adenosylhomocysteine (SAH) by adenosylhomocysteinase

(AHCY, EC 3.3.1.1); (2) phosphorylation of deoxyguanosine by
deoxyguanosine kinase (dGK, EC 2.7.1.113); (3) phosphorylation
of diacylglycerol (DAG) to phosphatidic acid (PA) by diacylglycerol
kinase (DAGK, EC 2.7.1.107); (4) oxygenation of inosine mono-
phosphate (IMP) by IMP dehydrogenase (EC 1.1.1.205); and (5)
phosphorylation of deoxyadenosine by deoxyadenosine kinase
(dAK, EC 2.7.1.76). Indeed, four of these reactions are widely
known to be involved in key aspects of cancer regulation. First,
AHCY is essential for maintaining low levels of SAH in healthy
cells, as varying levels of SAH can lead to DNA hypomethylation
(Yi et al. 2000; Caudill et al. 2001) and cancer (Simile et al. 1994;
Huang 2002; Sibani et al. 2002; Calvisi et al. 2007; Shrubsole
et al. 2015). Its inhibition by different drugs selectively induces ap-
optosis in cancer, but not in healthy cells (Borchardt et al. 1984;
Aarbakke et al. 1986; Chiang 1998; Tan et al. 2007; Hayden et al.
2011), confirming its predicted role as a critical driver in cancer,
but not in healthy tissues. Second, a high level of dGK is associated
with leukemia (Arnér 1996), and its phosphorylation of several
nucleoside analogs increases sensitivity to these anticancer drugs
(Zhu et al. 1998; Rodriguez et al. 2002; Lotfi et al. 2006). Third,
DAGKs are enzymes catalyzing a key step of the phosphatidylino-
sitol cycle, acting as a molecular switch between cell signaling
and lipidmetabolism (Mérida et al. 2008). Their activation is essen-
tial for invasiveness, mitogenesis, and growth of various cancer
types (Baldanzi et al. 2004; Bacchiocchi et al. 2005; Dominguez
et al. 2013). Elevated levels of DAGKs are associated with malig-
nant transformation (Mérida et al. 2008), and the product PA acti-
vates the cancer associated mTOR signaling pathway (Avila-Flores
et al. 2005). Fourth, IMP dehydrogenase has a central role in
developing cancers from adult stem cells (Rambhatla et al. 2005)
and is widely used as a therapeutic target for a range of cancer
types (Jackson et al. 1975; Shu and Nair 2008; Hedstrom 2009).
Importantly, each of these enzymes has multiple roles in cancer
signaling, gene regulation, and metabolism (Chiang 1998; Avila-
Flores et al. 2005; Lotfi et al. 2006; Hedstrom 2009), suggesting
that metabolic switches play key roles in regulation of cancer me-
tabolism at the interface with other cellular functions. Moreover,
these results suggest that the 21 metabolic switches may be used
as novel drug targets for the specific type of cancer in which
they are found (Supplemental Table S2).

While the specific role of the fifth metabolic switch across
cancer types, dAK, in cancer is less evident, its substrate deoxyade-
nosine was found to be involved in leukemia (Carson et al. 1980;
Chang et al. 1982), and the same reaction is also catalyzed by
dGK and deoxycytidine kinase, which are known to be involved
in tumor development (Arnér 1996; Manome et al. 1996). It is
also tightly linked to SAH metabolism and DNA methylation
(Ullman et al. 1978). Our results therefore indicate that deoxya-
denosine phosphorylation is also central to tumor development
and may be used as a novel therapeutic target in breast and renal
cancers.

The results suggest that tumor metabolism is controlled by
metabolic switches and that their role in controlling fluxes can
be exploited by therapeutic strategies. To survey the cellular
processes and functions which underlie the control of tumor me-
tabolism through metabolic switches, we perform gene enrich-
ment analysis (Mi et al. 2016) of the genes associated with the
21 metabolic switches and of those associated with reactions to
whichmetabolic switches are coupled in the corresponding cancer
network (Methods). We find that metabolic switches are specifi-
cally enriched with phosphatidylinositol phosphatase activity
and phosphatidylinositol-mediated signaling. In contrast, the
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reactions controlled by metabolic switches through their flux
coupling are enriched with DNA replication and repair, RNA splic-
ing, gene silencing, mitotic recombination, cytokines, exonucle-
ases, and stem cell population and telomere maintenance. All of
these functions and processes are involved in different types of
cancer, and in particular, in the cellular control through telomeres
(Robles-Espinoza et al. 2015). Hence, metabolic switches serve as
higher level points of control, that act indirectly on essential cell
replication, regulatory, and signaling processes required for prolif-
eration and tumorigenesis on the genomic level.

Importantly, our method also helps us reveal the molecular
causes for the (de)regulation of metabolic pathways. For example,
we find that AHCY is fully coupled to methyltransferase in the
healthy glandular breast and urothelial networks, indicating that
the production of SAH, a byproduct of essential methylation reac-
tions, is coupled to its degradation by AHCY (Fig. 5A,B). Indeed,
the tight coupling of SAH production by methylation reactions
to its degradation by AHCY is necessary to avoid the inhibition
of essential methyltransferases, and thus hypomethylation, be-
cause SAH strongly inhibits methyltransferases (Yi et al. 2000;
Caudill et al. 2001). In the metabolic networks of the correspond-
ing cancer types (i.e., breast and urothelial cancer), we find that
the AHCY andmethyltransferase reactions are not fully but inhib-
itively coupled due to the common production of SAH (since SAH
hydrolysis is reversible) (Fig. 5C). This result suggests that SAH lev-
els are no longer controlled by AHCY activity in these cancers.
Instead, the inhibitive coupling from the reversed AHCY reaction
to methyltransferases indicates that a large flux toward the pro-
duction of SAH may inhibit methylation in cancer, which is in
agreement with the experimental studies (Yi et al. 2000; Sibani
et al. 2002).

Discussion

We propose a computational framework to study the flux control
of metabolic networks, which combines the computational effi-
ciency of biasedmethodswith the comprehensiveness of unbiased
approaches. By formalizing the requirement of biological systems
to exchange matter with the environment, we are able to intro-
duce two new coupling relations: anti-coupling, representing the
combined essentiality of two reactions for each possible steady
state; and inhibitive coupling, representing the competition of
reactions for common reactants/products. Since anti-coupling
indicates condensed rather than redundant pathways, we expect-
ed to find it only in small networks. Nevertheless, its presence
in all medium-sized networks suggests extensive channeling of
metabolite fluxes through the anti-coupled reactions in these net-
works. The concept may therefore stimulate further analyses, such
as the identification of bottlenecks within subsystems of metabo-
lism. This may help reveal novel targets for metabolic engineering
applications, such as optimizing the microbial production of
chemicals.

In this regard, our framework differs from the classical meta-
bolic control analysis (MCA) (Heinrich and Schuster 1996), which
is based on the linearization of the network around a steady-state
concentration of metabolites. A flux control coefficient of an en-
zyme quantifies the relative change in flux in response to the
relative change in the enzyme activity. Therefore, in silicoMCA re-
quires specification of the enzyme kinetics to calculate flux control
coefficients, which may further bias estimations of flux control
coefficients on genome-scale metabolic networks. While flux con-
trol coefficients can specify the contribution of individual en-

zymes to the control of flux, they have not been used to identify
reactionswhich can act as drivers of the system to a particular state.
Moreover, in contrast to MCA, whose quantifications pertain to a
single steady state, our framework allows the identification of driv-
ers in the entire set of feasible steady states.

A

B

C

Figure 5. Control of methylation by the AHCY driver reaction.
(A) Central reactions of the methionine cycle, essential for methylation
of DNA, RNA, and proteins. AHCY is identified by our method as a met-
abolic switch for urothelial and breast cancer. It controls methylation by
regulating the level of produced SAH, which inhibits methyltransferases.
(B) Flux coupling graph of the reactions from A in healthy breast tissue.
Full coupling between AHCY and methyltransferase ensures that SAH is
produced and consumed at equal rates, avoiding its accumulation and
DNA hypomethylation. For clarity, only the coupling relations between
the reactions from A are shown. (C) Flux coupling graph of the reactions
from A in the breast cancer network. The coupling relations differ from
those of the healthy breast tissue network due to the differences in the in-
cluded reactions and metabolites. AHCY is no longer fully coupled to
methyltransferase and methionine synthase, allowing for independent
fluxes of the reactions and varying SAH levels. Inhibitive coupling be-
tween AHCY and methyltransferase implies that elevated flux of either re-
action inhibits flux of the other reaction due to accumulation of the
common product SAH, leading to DNA hypomethylation and cancer,
which is in agreement with experimental findings (Results). (Ado)
Adenosine, (Hcy) Homocysteine, (L-Met) L-Methionine, (SAH) S-adeno-
sylhomocysteine, (AHCY) adenosylhomocysteinase, (SAM) S-adenosylme-
thionine, (SAMS) SAM synthase, (MetS) methionine synthase, (MT)
methyltransferase.
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By mapping to a classical graph-theoretic problem, we deter-
mine the smallest sets of reactions thatmust be directly controlled
to achieve a feasible reaction activity pattern at steady state.
We find that critical and intermittent driver reactions are under
complex transcriptional and post-transcriptional regulation in
themetabolic network of E. coli, indicating that cellular regulation
relies on driver reactions to achieve efficient control of metabo-
lism. Our finding that driver reactions are associated with more
TFs compared to redundant reactions serves as a proof-of-concept
of our optimality-based framework. Our method is based on a
qualitative description of reaction activities and hence does
not account for entirely quantitative differences in metabolic
flux. However, two of the flux coupling types (full and inhibitive)
indeed allow for a quantitative description of flux coupling and
may thus be used in the future to extend the framework proposed
herein to the quantitative study of flux control.

An important advantage of the proposed framework is that it
does not require an objective function and hence enables system-
atic studies of metabolism in multicellular organisms. Therefore,
the approach may be particularly useful for the design of bio-
medical strategies. By employing metabolic networks of four
cancer types and their corresponding healthy tissues, we demon-
strate that driver reactions have important roles in controlling tu-
mor development, as they are statistically associated with genes
known to cause cancer. We find that reactions acting as metabolic
switches, i.e., reactions that are critical drivers in cancerous but
not healthy cells, are key control points of tumor development.
While metabolic switches have direct interactions with multiple
cellular levels, the reactions they control are primarily associated
with genomic stability, cell division, inter-cellular signaling, and
telomeremaintenance. Hence, the novel reactions identified here-
inmay help to develop therapeutic strategies based on the concept
of flux control in tumor metabolism. Importantly, the (bio)chem-
ical basis of our approach facilitates insights into the specific
molecular mechanisms of control, such as the inhibition of meth-
yltransferases resulting from changed coupling relations of AHCY
in breast and urothelial cancer (cf. Fig. 5). Hence, our framework
may be used to gain mechanistic insights into cellular regulation
in disease and engineering of biological systems.

Methods

Analyzed metabolic networks

We analyze 23 metabolic networks encompassing a broad spec-
trum of organisms from all kingdoms of life, including genome-
scale networks and subsystems, condition- and tissue-specific,
healthy, and cancer networks. The covered organisms include
three archaea (Feist et al. 2006; Gonzalez et al. 2010; Satish
Kumar et al. 2011), five prokaryotes (Jamshidi and Palsson 2007;
Nogales et al. 2008; Zhang et al. 2009; Orth et al. 2011; Wodke
et al. 2013), and five eukaryotes (Duarte et al. 2007; Andersen
et al. 2008; Quek and Nielsen 2008; Manichaikul et al. 2009;
Arnold and Nikoloski 2014).

The represented subsystems include three networks of central
metabolism (Schuetz et al. 2007; Manichaikul et al. 2009; Orth
et al. 2010), four human tissue-specific networks, and four cancer
networks associated with these tissues (Gatto et al. 2014). The
number of subcellular compartments ranges from one (in archaea,
central metabolism of E. coli, M. pneumoniae, and M. tuberculosis)
to seven in the Homo sapiens genome-scale, tissue-specific, and
cancer networks. The number of reactions capable of carrying
steady-state flux in the analyzed networks ranges from 75 (for cen-

tral metabolism of E. coli) to 2719 (for glandular breast tissue).
Details of the analyzed networks are provided in Table 1.

Calculation of flux coupling relations

Full, partial, and directional coupling are calculated using the F2C2
tool (Larhlimi et al. 2012). To define anti-coupling, we restrict the
set of feasible flux distributions to

F = {v [ Rn|Sv = 0, lb ≤ v ≤ ub, ∃i [ E : vi = 0},
where n is the number of reactions, S the stoichiometric matrix, lb,
ub the lower and upper flux bounds, and E the set of exchange
reactions. Here, we use ub = 1000, lb = 0 for irreversible, and lb =
−1000 for reversible reactions, since these values have previously
been used for similar constraints (Schellenberger et al. 2011). To
determine whether two reactions i and j are anti-coupled, i.e., vi
= 0 implies vj≠ 0 for each feasible flux distribution v, we determine
the feasibility of a vector v∈ F satisfying vi = 0 and vj = 0 using
a mixed integer linear program (MILP). If no such vector
exists, then the reactions i and j are anti-coupled. To determine
whether a reaction i is inhibitively coupled to a reaction j, i.e., a
maximum flux of reaction i implies vj = 0, we first determine the
maximum flux of i, i∗ =maxv∈ Fvi, using flux variability analysis
(Mahadevan and Schilling 2003). We then determine the feasibil-
ity of a vector v∈ F satisfying vi = i∗ and vj≠ 0 using a MILP. If no
such vector exists, then i is inhibitively coupled to j. This pro-
cedure requires specifying finite upper bounds for all fluxes. We
show that inhibitive coupling does not depend on the choice of
uniform upper bounds (see “Inhibitive coupling does not depend
on the choice of uniform upper bounds” in the Supplemental
Material). The MILPs for calculating full, partial, directional,
anti- and inhibitive couplings are discussed in the Supplemental
Material.

Clustering of flux coupling profiles

The flux coupling profile of a metabolic network S is given by a
vector φ ∈ R5 representing the normalized frequencies of the five
coupling types:

fi(S) =
|wi|∑5
j=1 |wj|

, i = 1, . . . ,5,

where |wi| is the number of reaction pairs coupled by type i.
We apply three classical clustering algorithms, i.e., hierarchical
(agglomerative), k-means, and k-medoids, based on the Euclidean
distances of the flux coupling profiles from the 23 analyzed net-
works. We evaluate the clusters obtained at each cutoff distance
(hierarchical clustering) and for each possible number of clusters
(k-means and k-medoids) using the Silhouette, Calinski-Harbasz,
and Davies-Bouldin indices. For a given clustering C = {C(1),… ,
C(k)} of our n = 23 networks, the Silhouette index is given by

SI(C) = 1
n

∑n
i=1

bcdi − wcdi
max{bcdi,wcdi} ,

where bcdi is the smallest average of the Euclidean distances of a
profile i to the profiles in all other clusters, and wcdi is the average
Euclidean distance of profile i to all profiles within the same clus-
ter. Thus, SI(C )∈ [−1,1], with larger values indicating higher qual-
ity of the clustering. The Calinski-Harbasz index is defined as

CH(C) = bcv(C)
wcv(C) × n− k

k− 1
,

where bcv(C) is the between-cluster variance, and wcv(C) is the
within-cluster variance. Thus, CH(C)≥ 0, where larger values
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indicate higher quality of the clustering. TheDavies-Bouldin index
is given by

DB(C) = 1
k

∑
i[C

max j=i
wcci + wccj

cdi,j

{ }
,

where wcci is the average Euclidean distance between each profile
in cluster i and the centroid of cluster i, wccj is the average dis-
tance of each profile in cluster i and the centroid of cluster j, and
cdi,j is the distance between the centroids of clusters i and j.
Thus, DB(C)≥ 0, where small values indicate a high quality of
the clustering.

When applying the three clustering algorithms to the flux
coupling profiles obtained from the five coupling types, we obtain
the same clustering from each algorithm only for k = 5 clusters,
which corresponds to a cutoff distance of 0.25. The clustering
and quality for all other cutoffs differ depending on the selected
algorithm and quality measure. For k = 5, we obtain SI(C) = 0.66,
CH(C ) = 30.0, and DB(C ) = 0.7 (cf. Fig. 2A). The highest cluster
qualities are obtained for k = 20 (using the Calinski-Harbasz index
with k-medoids or k-means clustering) and k = 22 (all other combi-
nations), corresponding to only one or three nonsingleton clusters
formed by two networks each. This indicates a strong separation of
most networks by their flux coupling profiles. The nonsingleton
cluster for k = 22 is formed by the two nonextremophile archaea,
while k = 20 yields two additional clusters formed by the healthy
glandular breast and lung tissue networks, and the healthy urothe-
lial and kidney tissue networks, respectively. Each of these clusters
is a subset of, and thus in agreement with, the clusters obtained
for k = 5.

When considering only the previously studied flux coupling
types, i.e., full, partial, and directional coupling, the three cluster-
ing algorithms give a consistent clustering for k = 14 and k = 21,
corresponding to cutoff distances of 0.075 and 0.033, respectively.
These sets of clusters, as well as the clusters for k = 5, differ signi-
ficantly from the clusters obtained from the five coupling types
(adjusted Rand Index of 0.14 for k = 5, 6.1 × 10−14 for k = 14, and
0.01 for k = 21, respectively) (Hubert and Arabie 1985). Moreover,
we do not observe phylogenetic or functional relationships in
these clusters (cf. Results; Supplemental Fig. S3).

To determine whether the clustering of flux coupling profiles
based on the five coupling types is a consequence of structural de-
terminants, we employ the same clustering approach to the nor-
malized cumulative singular value spectra of the metabolic
networks (Duarte et al. 2007). The singular values of a stoichio-
metric matrix S are given by the diagonal entries of D obtained
by singular value decomposition:

S = UDV∗.

The cumulative singular value spectra are obtained from the singu-
lar values by dividing the cumulative values of Di,i by the sum
of singular values

∑
i Di,i. Clustering of the cumulative singular

value spectra yields only one set of clusters that is consistent across
the clustering methods: A. thaliana and the genome-scale network
of H. sapiens form two singleton clusters, while all remaining net-
works fall into the same cluster at a cutoff distance of 0.97, yielding
SI(C) = 0.98, CH(C ) = 211.6, and DB(C) = 0.07. When comparing
these clusters to those obtained from the flux coupling profiles,
we obtain an adjusted Rand Index of −0.06, indicating a signifi-
cant dissimilarity.

Biochemically feasible network randomization and P values

To test the hypothesis that the flux coupling profiles of the ana-
lyzed metabolic networks reflect functionally important features
of metabolism, we determine their statistical significance using

network randomization under mass-balance constraints (Basler
et al. 2011). The reactions of a metabolic network are randomized
by replacing their substrates and products by compounds from the
same network and changing their stoichiometric coefficients,
while preserving atomic mass balance. The resulting randomized
networks satisfy basic physical principles, allowing us to estimate
the significance of network properties in a biological context
(Basler et al. 2012). We calculate the flux coupling profile of each
randomized network and determine z-scores

zi = (xi − �yi)
si

,

where xi = φi(S) is the relative frequency of coupling type i in the
network S, �yi is the average frequency of coupling type i over
randomized networks, and σi its standard deviation. The P values
are given by

pi = 2
∫1

|zi |

N(0,1).

We find that the frequencies of directional, full, and inhibitive
couplings differ significantly from random networks in 16, 18,
and 19 of the 23 real-world networks, respectively (P values <
0.05), suggesting that these couplings are a result of functional
or evolutionary constraints (Basler et al. 2012). The relative fre-
quencies of partial couplings are not significant in any of the con-
sidered networks, while the relative frequencies of anti-couplings
are significant only for the network of M. pneumoniae. The latter
also contains the largest number of significant coupling types
(i.e., full, directional, anti, inhibitive), followed by 15 networks
with three significant coupling types (i.e., full, directional, inhib-
itive). The profiles of A. thaliana, T. maritima, M. barkeri, and
Methanosarcina acetivorans do not contain significant coupling
types, although the P values of inhibitive coupling in the latter
two are close to the used significance level (0.0545 and 0.057)
(see Supplemental Table S1). Altogether, these findings suggest
that the flux coupling profiles for most of the networks reflect
functional or evolutionary features of the considered metabolic
pathways (Basler et al. 2012).

Sampling of reaction activity patterns

Since the commonly employed methods for random sampling
of steady-state flux distributions generate nonzero flux values,
rather than a random distribution of active and inactive reactions,
they are not suitable for our approach. Therefore, here, we develop
two different schemes for random sampling of steady-state feasible
reaction activity patterns. In the first scheme, each import reaction
is specified as inactive with probability ½. Next, a feasible flux
distribution v∈ F is calculated by maximizing the fluxes of export
reactions with randomly chosen coefficients. This approach corre-
sponds to specifying a random set of available nutrients while
maximizing diverse combinations of export fluxes and aims at
generating diverse and biologically meaningful reaction activity
patterns. The steady-state compatible activity pattern of the sam-
ple is given by the support of the generated flux vector, σ =|sign(v)|.

The second scheme generates an initial feasible reaction ac-
tivity pattern σ1 by minimizing d1(2s1 − 1), such that v∈ F with
σ1 = |sign(v)|, where d1 is a random vector in [−1, 1]n. A subsequent
sample σi is generated by minimizing di(2si − 1), where
di = 1− 2

∑i−1
j=1 sj/(i− 1) is the sign inversed mean of all previous

samples, normalized to [−1,1]. Again, the feasibility of σi is
achieved by satisfying the existence of v∈ F with σi = |sign(v)|.
This scheme aims at samplingmaximally distinct activity patterns.
Again, the feasible activity pattern of the sample is given by σ =
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|sign(v)|. The obtained results based on 500, 1000, or 5000 ac-
tivity patterns are virtually identical for each of the two sampling
schemes.

Flux coupling graph

The flux coupling graph of a metabolic network is a directed
labeled graph G = (V,E), where V is the set of all unblocked, non-
essential reactions of the network, and two vertices i, j are con-
nected by an edge (i,j)∈ E, if reaction i is coupled to reaction j.
Five edge labels L = {ωfull, ωpartial, ωdirectional, ωanti, ωinhibitive} indi-
cate that i is coupled to j by the corresponding coupling type.
Note that edges with labels ωfull, ωpartial, ωanti are symmetric: If
(i,j)∈ E and L(i,j)∈ {ωfull, ωpartial, ωanti}, then ( j,i)∈ E with L(i,j) =
L( j,i). Moreover, the edges of type ωfull, ωpartial, and ωdirectional re-
flect the transitivity of the respective couplings: If (i,j), ( j, k)∈ E,
L(i,j) = L( j,k)∈ {ωfull, ωpartial, ωdirectional}, then (i,k)∈ E, L(i,j) = L( j,
k) = L(i,k). We show that calculation of the driver reactions in large
networks is computationally inexpensive due to the transitivity re-
lations (see “Analogy between flux coupling and mass balance” in
the Supplemental Material). For a given reaction activity pattern,
we use the flux coupling graph to generate the control graph
and calculate the driver reactions.

Control graph

For a metabolic network with n reactions, a given reaction activity
pattern σ = {0,1}n specifies the active reactions σ1 = {i: σi = 1} and in-
active reactions σ0 = { j: σj = 0}, where |σ1∪σ0| = n and σ1∩σ0 =Ø. The
steady-state feasibility of activity patterns, i.e., v∈ Fwith |sign(v)| =
σ, is guaranteed by our sampling approach (see “Sampling of
reaction activity patterns”). To determine the driver reactions for
σ, we first generate the control graph, which contains a vertex
for each reaction i, and a directed edge (i→ j), if i and j are coupled,
and controlling the status of reaction i allows us to impose the
status of reaction j specified by σ. Formally, the edges in the CG
are specified by the adjacency matrix M, where Mi,j = 1, if either
of the following hold:

1. σi = σj = 1 and L(i,j)∈ {ωfull, ωpartial, ωdirectional}, or
2. σi = 0, σj = 1, and L(i,j) = ωanti, or
3. σi = 1, σj = 0, and L(i,j)∈ {ωinhibitive}, or
4. σi = σj = 0 and L(i,j)∈ {ωfull, ωpartial}, or
5. σi = σj = 0 and L( j,i) = ωdirectional,

and Mi,j = 0 otherwise.

Calculation of driver reactions

The driver reactions are given by a smallest set of reactions, whose
activities must be specified to activate all reactions in σ1 and deac-
tivate all reactions in σ0. In the CG, the driver reactionsD(CG) cor-
respond to aminimumout-dominating set (Chartrand et al. 1999),
i.e., a smallest set D⊆V(CG), such that D∪N+(D) =V(CG), where
N+(D) is the first-order out-neighborhood of D. We determine
the driver reactions from the adjacency matrix M of the control
graph using the following integer linear program:

min
∑n
i=1

xi

s.t. x ·M ≥ 1,

where x∈ {0, 1}n. The solution yields x with a minimal number of
nonzero entries and xM≥ 1. Thus, each reaction iwith xi = 1 is in a
minimum out-dominating set of the CG, and corresponds to a
driver reaction of σ.

Transcriptional regulation of E. coli metabolism

To determine the agreement between coupled reactions and their
coregulation, i.e., regulation of genes by a common transcription
factor, we obtain the genes associated with the enzymes in the ge-
nome-scale metabolic network of E. coli from the Supplementary
Material of Orth et al. (2011) and KEGG (Kanehisa et al. 2014).
This results in 925 enzymatic reactions (and hence, 427,350 reac-
tion pairs), of which 24 are involved in transport of protons or
molecules across the inner membrane: ATP synthase, fatty acid-
coenzyme A ligase (involving 10 different fatty acids), formate de-
hydrogenase (oxidation of either ubiquinone or menaquinone-8),
hydrogenase (hydrogenation of ubiquinone, menaquinone-8, or
2-Demethylmenaquinone), NADH dehydrogenase (oxidation of
ubiquinone, menaquinone-8, or 2-Demethylmenaquinol-8), gly-
cohydrolase catalyzed cytosolic import of nicotinamide, nitrate
reductase (reduction of ubiquinol in the cytosol or periplasm
and reduction of 2-Demethylmenaquinol-8), and NAD(P)+ trans-
hydrogenase. Next, we obtain the transcriptional regulatory net-
work from RegulonDB (Salgado et al. 2013) and determine the
TFs and small RNAs regulating (i.e., activating or repressing) the
genes of the 925 enzymatic reactions of E. coli. Two reactions are
coregulated if there is at least one TF activating or repressing any
of the genes associated with both reactions (cf. Supplemental
Fig. S2). The number of TFs regulating a reaction is then given by
the number of unique TFs activating or repressing the genes that
encode its catalyzing enzymes (cf. Fig. 4). Similarly, the number
of small RNAs regulating a reaction is given by the number of
unique small RNAs regulating the transcripts or enzymes of the
reaction.

Driver reactions in cancer

We analyze four cancer networks (i.e., breast, lung, renal, and uro-
thelial cancer) and networks of the corresponding healthy tissues
(glandular breast, pneumocytes, kidney, and urothelial cells)
(Gatto et al. 2014). Todetermine the reactionswhich are associated
with genes known to cause cancer, we obtain 547 census genes from
the Catalog of Somatic Mutations in Cancer (COSMIC) (Futreal et
al. 2004) and an additional 1453 genes fromhigh-throughputmu-
tational screenings, whole-exome sequencing, andwhole-genome
sequencing of cancer samples from the Network of Cancer Genes
(NCG) (D’Antonio et al. 2012) (March 2015 database versions).
Next, we map the reactions to genes through their gene-enzyme-
reaction relationship (which excludes nonenzymatic reactions,
such as transport and diffusion reactions), yielding a total of 2363
reactions from the four cancer networks. Of these, 112 are associat-
ed with cancer causing genes from COSMIC (4.7%) and 614 to
genes from the NCG data set (26.0%). We identify 620 reactions
as critical drivers in any of the four cancer networks (26.2%). Out
of these, 45 are associated with the census genes in COSMIC
(7.3%) and 191 to genes from the NCG data set (30.8%), yielding
P values of 6.8 × 10−4 (COSMIC) and 9.6 × 10−4 (NCG) (hypergeo-
metric test) for the overrepresentation of these genes.

To identify reactions whichmay have a key role in (de)regula-
tion of cancer metabolism and tumor development, we focus on
reactions which are critical drivers in cancer networks and redun-
dant in the corresponding healthy tissues (metabolic switches).
There is no reaction which is a metabolic switch for each of the
four cancer types. DAGK is the only metabolic switch for three
cancer types (lung, urothelial, and renal). Four reactions are meta-
bolic switches for two cancer types: AHCY (urothelial and breast),
dGK (urothelial and renal), IMP dehydrogenase (urothelial
and breast), and dAK (renal and breast). DAGK, AHCY, dGK, and
IMP dehydrogenase play key roles in tumor development, and
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there is some support for the role of dAK in cancer (see Results;
Supplemental Table S2).

To determine the processes and functions inwhichmetabolic
switches and the reactions that they control are enriched, we per-
form gene enrichment analysis of the genes associated with these
reactions. First, we obtain the Gene Ontology biological processes
andmolecular functions in which genes are significantly enriched
(P value < 0.05) (Robles-Espinoza et al. 2015) that are associated
with (1) all reactions in the four analyzed cancer networks, (2)met-
abolic switches, and (3) the reactions to which metabolic switches
are coupled. We then report in the main text the biological pro-
cesses and molecular functions in which only metabolic switches,
or only the reactions they control, respectively, are significantly
enriched (hence, the processes and functions in which all genes
of the analyzed cancer networks are enriched are excluded).

Software availability

The Qualitative Flux Control (QFC) source code is freely available
in the Supplemental Material and at http://scholar.harvard.edu/
yyl/qfc.
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