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There is considerable evidence that nutritional and metabolic control of follicular growth
is mediated by metabolic hormones and growth factors, particularly with processes
mediated by insulin-like growth factor I (IGF-I) and its binding proteins (IGFBPs). From
knowledge that hormones and growth factors which can be affected by diet also
positively affect ovarian function, the concept has emerged that metabolic modifiers of
gonadotrophin action, rather than gonadotrophins themselves, could affect follicle
development. While ovulation rate can be enhanced under certain conditions in cyclic
gilts, assessing influences of metabolic modifiers on the post-lactational sow is
confounded by variability in the return to oestrus after weaning. In a series of studies
involving insulin administration between weaning and oestrus, successive experiments
produced different results, but several measures of reproductive performance were
enhanced. Administration of somatotrophin (ST) has also been shown to increase
follicular development in both gilts and sows. Both insulin and ST increase IGF-I
production by pig ovarian follicles, and insulin is more effective than IGF-I in reducing
atresia and increasing progesterone in cultured pig follicles. Whether increases in litter
size are achieved after an increase in ovulation rate involves many factors, including the
quality of ova and whether the increase in ovulation rate exceeds the uterine capacity to
maintain pregnancy. Given the variation in genetics and management practices,
development of treatments to enhance follicle quality leading to maximal litter size is
challenging.

Introduction

Although it has long been known that exogenous gonadotrophins increase follicular development
and ovulation rate, the number of ovulations is variable and may have negative effects on embryo
survival. Nutritional and hormonal manipulation may enhance follicular development, both by
enhancing gonadotrophin secretion directly and by enhancing the ovarian response in the face of
unvarying gonadotrophin concentrations. Given the knowledge that hormones and growth factors
that can be affected by diet also positively affect ovarian function, the concept that metabolic
modifiers, rather than gonadotrophins themselves, could be applied to affect follicle development
has emerged. This review will concentrate mainly on metabolic interfaces between nutrition and
reproduction rather than nutritional manipulations themselves. Emphasis will be on follicle
development rather than embryo survival; effects of metabolic manipulations on embryo survival
are discussed by Foxcroft (this volume).

When consideration is given to increasing ovulation rate, there are practical limitations. First,
while ovulation rate and litter size are positively correlated up to approximately 18 ovulations,
ovulations beyond that point result in little or no increases in litter size (Wu et al., 1987). In mature

sows and gilts on full feed, ovulation rates are usually maximal, and manipulation of follicular
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development to increase ovulation rate will not be useful. However, in animals with lower ovulation
rates, such as gilts on the first or second oestrous cycle and primiparous sows, augmentation of
ovulation rate may be useful.

Current Concepts of Follicle Growth, Atresia and Ovulation Rate

It is well established that the ovulatory population of follicles increases growth between about day 14
and day 16 of the oestrous cycle. Granulosa and theca cell proliferation decreases between day 15 and
oestrus, which indicates differentiation (Fricke et al.,1996). Between day 16 and oestrus, there is a loss
of 40-50% of the medium-sized follicles due partly to growth of follicles to the next size category but
mostly to atresia (Guthrie et al., 1995a). Exposure to FSH during the last stages of granulosa cell mitosis
appears to be required so that some follicles can escape atresia (Hsueh et al., 1994). In pigs, FSH patterns
were temporally correlated with atresia, decreasing at the time atresia increased (Guthrie et al., 1993).
Apoptotic cell death in the ovary has been characterized by several biochemical markers including
decreased DNA turnover, decreased oestrogen production, increased progesterone production, a
decrease in the number of gonadotrophin receptors and increased production of IGF-binding protein
(Hsueh et al., 1994). Thus follicular a tresia is considered to be a result of a balance between survival and
atretogenic factors. Follicle survival factors include, but are not limited to, epidermal growth factor,
nerve growth factor, insulin-like growth factor I (IGF-I), gonadotrophins, activin and oestrogens, while
atretogenic factors include testosterone, GnRH and interleulcins (1-Isueh et al., 1994).

In the pig ovary as in the ovaries of other species, apoptotic cell death is the mechanism by which
follicular atresia occurs (Guthrie et al., 1995a). Guthrie et a/. (1995a) demonstrated that apoptosis
could be assessed in gilts by flow cytometric analysis and that these measures were correlated highly
with oestradiol production and with morphological assessment of atresia. Atresia was highest in
medium-sized (3-6 mm) follicles (87%) on day 5 after withdrawal of Altrenogest (Guthrie et a/.,
1994), which corresponds to the late stages of preovulatory maturation before the LH surge. In
contrast, the percentage of atretic granulosa cells was 17% in medium-sized follicles on days 1 and 3
after Altrenogest withdrawal, which corresponds to earlier stages of preovula tory follicular
development (Guthrie et al., 1994). These researchers also demonstrated that during the early luteal
phase, there is a wave of follicular growth followed by a tresia (Guthrie et al., 1995a). In contrast,
during follicular growth in the latter part of the luteal phase between day 7 and day 15, there was no
change in the percentage of atretic follicles, indicating that follicular growth in pigs may not be
characterized by repeated waves of follicular development (Guthrie and Cooper, 1996). The most
severely affected enzyme was p450 aromatase, which was undetectable in a tretic follicles (Garrett
and Guthrie, 1996). In contrast, 30-hydroxysteroid dehydrogenase and P45007 lyase were not
affected by atresia, which is in agreement with other work which demonstrates that progesterone
production continues in atretic follicles (Guthrie et al., 1994). Figure 1 illustrates identification of Ki-
67, a nuclear antigen associated with cell proliferation, aroma tase and detection of apoptosis in
a tretic and nonatretic follicles. Since oestrogen is a follicle survival factor that reduces a tresia (Hsueh
et al., 1994), aroma tase expression may be critical for survival of follicles.

Techniques for enhancing follicular development include methods that may either influence
negative feedback relationships with gonadotrophins or intrafollicular control mechanisms.
Immunization against inhibin (King et at., 1993) and androstenedione (McKinnie et al., 1988) increase
ovulation rate but their effects on litter size have not been evaluated. However, immunization
against the a-subunit of inhibin prevented the compensatory increase in corpora lutea following
unilateral ovariectomy, suggesting a local effect of inhibin (King et al., 1995). There is increasing
evidence for intraovarian paracrine regulation by inhibin and related peptides, and further
refinement of these relationships may result in more predictable control of ovulatory processes
(Findlay et a/., 1996). Manipulation of the steroid environment may also influence ovulation rate.
When testosterone was administered between day 13 and oestrus, ovulation rate and the number of
recovered blastocysts were increased (Cardenas and Pope, 1997). Part of the mechanism may be
provision of a substrate for oestradiol production, but the mechanism is not known.
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Fig. 1. Photomicrographs of sections from ovarian follicles from non-atretic (a—c)and atretic (d—f)follicles.
Sections (a) and (d) are 31end-labelled to detect apoptosis; sections (b) and (e) are immunostained for aroma tase,
and sections (c) and (f) are immunostained for cell proliferation-associated antigen, Ki-67 (W. Garrett and
D. Guthrie, unpublished).

Metabolic Influences on Components of the Hypothalamo—Hypophyseal—OvarianAxis

Although positive associations between level of feed intake and ovulation rate or litter size are well

established (reviewed by Einarsson and Rojkittikhun, 1993; Cosgrove and Foxcroft, 1996), the

mechanisms by which increased nutritional status affects ovarian function have not been
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established. In gilts, the principal effect of feed restriction is to compromise the GnRH pulse
generator, and realimentation or glucose infusion restores LH pulses (Booth, 1990), while insulin
restores follicular growth (Britt et al., 1988). Charlton at al. (1993) observed lowered ovarian IGF-I
mRNA with restricted feeding, but refeeding did not increase IGF-I mRNA. In feed-restricted
lactating sows, glucose infusion did not affect pulsatile In secretion (Tokach et 1992b). These
results suggest that metabolic state can affect the LH response to a stimulus such as glucose.

When extra feed was given to cyclic gifts, increases in ovulation rate were accompanied by
increases in LH pulse frequency and FSH, as well as insulin (Cox et al., 1987; Flowers et al , 1989).
However, in the studies of Cox et al. (1987), increases in ovulation rate stimulated by dietary energy
or exogenous insulin were not necessarily accompanied by increased LH. In ovariectomized gilts
with insulin depleted by diabetes mellitus and without insulin therapy for 4 days, pulsatile LH
secretion was not altered (Angell et al , 1996). When ovary-intact diabetic gilts were depleted of
insulin on day l 2 of the oestrous cycle, LFI pulse frequency increased between day 12 and day 18,
and LH increased again at the time at which normal gilts had preovulatory LH surges (Cox et al.,
1994). In spite of the absence of adverse effects on gonadotrophins, follicle growth decreased and
atresia increased (Meurer at al., 1991; Cox et al., 1994). Taken together, these results suggest that the
effect of metabolic modifiers of reproduction on ovarian function does not require changes in
gonadotrophins.

In considering the applicability of using metabolic modifiers to enhance ovulation rate in gilts, it
must be considered that maximal feed intake will produce maximal ovulation rates (Beltranena et al.,
1991). In contrast, sows, in which weaning triggers preovulatory development, are more vulnerable
to the metabolic influences of the previous lactation. Despite the increased LH pulsing that is
stimulated by weaning, there is considerable variability in follicular development and steroid
secretion (Foxcroft et al., 1987). The primiparous sow is particularly susceptible to delayed oestrus
after weaning or smaller litter sizes, suggesting that when metabolic factors interface with enhanced
gonadotrophin secretion at weaning, loll ide development can be affected. In support of this concept,
Clowes et al. (1994) observed greater litter sizes (12.8 versus 10.4) and increased insulin
concentrations when remating was delayed until the second post-weaning oestrus. Understanding
of metabolic influences in sows is further complicated by a non-linear relationship between interval
to oestrus and litter size and perhaps ovulation rate (Vesseur at al., 1994). Thus metabolic
manipulations that affect the interval from weaning to oestrus could alter litter size.

Research assessing influences of nutritional manipulations on ovarian function in sows has
demonstrated that ovarian function after weaning can be affected by metabolic state during
lactation. Tokach at al. (1992a) and Koketsu et al. (1996) demonstrated that concentrations of insulin
and glucose and the number of LH pulses during lactation were greater in sows with normal
intervals to oestrus (Fig. 2). Zak et al. (1997) observed that restricting feed during weeks 1-3 or week
4 of lactation decreased ovulation rate and increased the weaning to oestrus interval in primiparous
sows. Circulating insulin and IGF-I were reduced during feed restriction, and embryo survival was
decreased only in sows receiving less feed during the last week of lactation. Feeding starch as an
energy source during lactation may also facilitate LH production and ovarian function after weaning
(Kemp et al., 1995). Thus dietary manipulation clearly can affect ovarian function after weaning,
perhaps by affecting follicles during the lactation phase or before, as well as embryo survival.

Role of Metabolic Hormones on Ovarian Function

The insulin-like grozath.fiwtor I system

A preponderance of evidence confirms positive associations between IGF-I and follicle function
in swine, although most of these studies were performed in vitro (reviewed by Hammond et al., 1993;
Spicer and Echternkamp, 1995). Although, as indicated above, nutrition modulates systemic
concentrations of IGF-I, there is local control of 1GF-I as well as other intraovarian compounds, and
this explains the marked heterogeneity of follicles in the face of a similar endocrine milieu (Tonetta



Follicular developmentandovulation rate 35

Insulin

(niu

m1-1)

30

25

20

15

10

5

100

ID 80
co
E 60

40

20o
ci

7 14 21 22

Days after arrowing

Fig. 2. Patterns of insulin, glucose and LH in sows categorized on

the basis of days to oestrus (0 in oestrus < 7 days after weaning

n = 23; and •, in oestrus > 7 days after weaning, n = 11). Day 22

represents the first day after weaning. In sows with delayed

oestrus, serum insulin was lower on days 14, 21 and 22, and

glucose and number of LH pulses were lower on day 21 (P < 0.05).

SEMs ranged from 1.43 to 2.67, 1.35 to 2.88, and 0.16 to 0.35 for

insulin, glucose and LH pulses, respectively. Redrawn from

Koketsu et a/. (1996).

and diZerega, 1990). Synthesis of IGE-I by granulosa cells from pigs has been demonstrated, and

production of IGE-I is increased by gonadotrophins and growth hormone in vitro (Hammond et al.,

1993). Messenger RNA for both IGE-I and -II increased with increasing size of follicles (Yuan et al.,

1996). In contrast, Zhou et al. (1996) observed that IGF-I and IGF-1 receptor mRNA were concentrated

in healthy follicles, whereas mRNA encoding IGF-11 was found in all follicles regardless of the

degree of atresia. This finding suggests a functional paracrine role for IGF-I but does not allow

conclusions for although IGF-II affects steroidogenesis (Spicer and Echternkamp, 1995). The

IGF-binding proteins modulate effects of IGF-I systemically as well as in the ovary and are in general

considered to inhibit follicular development (Hammond et al., 1993).

Recent evidence indicates that IGFBPs, as well as IGF-I, are related to follicular function in swine.

Expression of mRNA encoding IGF-I increased as follicles increased in size during the oestrous cycle,

whereas expression of the IGFBP-2 gene was greater in smaller follicles, and IGFBP-3 was not

detected in follicles using Northern blot analysis (Hammond et al., 1993). Yuan et al. (1996)

demonstrated that most IGFBP-2 gene expression was in the theca interna cells and was lower in large

antral than in small antral follicles in that cell type, but decreased less markedly in granulosa cells

Concentrations of IGFBP-2 in follicular fluid were also inversely related to follicular diameter or

oestradiol production (Howard and Ford, 1992) and were positively related to atresia in the early

luteal phase as well as during preovulatory maturation (Guthrie et al., 1995b). Despite the association

with atresia, mRNA encoding IGFBP-2 was detected in healthy, preovulatory follicles (Zhou et al.,
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1996). In contrast, IGFBP-3 was not associated with atresia (Guthrie et al., 19956; Edwards et al., 1996),
although addition of IGFB1'-3 to cultured rat follicles prevented IGF-I from acting as a survival factor
(Chun et al., 1994). Messenger RNA for IGFBP-3 was not detected in the ovary at the follicular phase
(Zhou et al., 1996), but recent evidence from our laboratory using a sensitive ribonuclease protection
assay in individual follicles suggests that mRNA for IGFBP-3 is present in the walls of preovulatory
follicles (Cox and Qiu, 1995). Associations between atresia and IGFBP4 and -5 have been reported,
but these IGFBPs are present at low concentrations in the follicular fluid of pigs (Guthrie et al., 1995b).
However, Zhou et al. (1996) observed that mRNA for IGFBP-4 was associated with the presence of LH
receptor gene expression in granulosa cells, indicating a role that is more complex than mediation of
atTesia. In addition to alterations in gene expression, IGFBPs in follicular fluid may be altered by post-
translational processing, including proteolysis. Recent evidence in swine indicates that proteolytic
activity for IGFBP -2, -4 and -5 increased during follicular growth and was decreased during atresia
(Besnard et al., 1997). Thus factors that influence activity of proteases for IGFBPs represent another
level of control of follicle function.

Insulin-like growth factor I is a strong survival factor for rat follicles, attenuating apoptosis in a
similar way to gonadotrophins (Chun et al., 1994). Insulin also acted as a survival factor in that study,
but was less potent than IGF-I. Growth hormone, which increased IGF-I, nevertheless did not reduce
atresia in the rat early antral or preovulatory follicle (Chun et al., 1994, 1996). In contrast to the rat
model, we have obtained evidence that insulin is more potent in reducing apoptosis and increasing
progesterone than IGF-I in pig follicles (Purvis et al., 1997). The model we developed was aimed at
studying the population of medium follicles (4 mm diameter) representative of days 16-18 of the
oestrous cycle. It was considered that this population, although non-atretic when obtained, has a
high potential for atresia. We have previously determined that follicles cultured in the presence of
FSH (100 ng ml-') produce oestradiol linearly over time in culture (Edwards et al., 1996). Addition of
insulin to FSH reduced apoptosis, whereas IGF-I had no effect (Fig. 3). Insulin (50 ng m1-1) also
increased progesterone concentrations, but 5000 ng IGF-I did not affect progesterone. The
mechanism of insulin action does not appear to involve mediation by IGF-T, because intrafollicular
TGF-I concentrations were higher in insulin-treated follicles but were similar to those produced by
addition of IGF-I. Interestingly, insulin increased IGFBP-2 in medium after culture for 23 h, but not
in follicular fluid, whereas IGF-I did not alter IGFBP-2 compared with controls. In cultures of pig
preantral follicles that already contained 1% insulin in the medium, IGF-I enhanced growth
although the increase was less than with FSH or epidermal growth factor (Flowers and Turner, 1996).
There have been few attempts to administer IGF-I in vivo to affect follicular function in pigs.

Both insulin and ST increase IGF-I production systemically and in the ovarian follicle, and both
affect IGFBP production, although each hormone responds to circulating glucose in opposite ways
(Spicer and Echternkamp, 1995). In our laboratory the combined influences of pST and insulin on
follicular development were examined by inducing diabetes mellitus in gilts that had been
immunized against growth hormone-releasing hormone (provided by Jeffrey D. Armstrong of North
Carolina State University) (Howell et al., 1993). The two treatments were compared with control
animals in a 2 x 2 factorial arrangement. Immunoneutralization of GHRH lowered follicular IGF-I
concentrations from 245 to 113 ng m1-I but did not affect oestradiol concentrations on day 18 of the
oestrous cycle, after half the diabetic gilts were without insulin therapy from day 12 (Fig. 4). In
contrast, diabetes mellitus significantly lowered both IGF-I (104 versus 254 ng m1-1)and oestradiol
(71 versus 301 ng m1-1), as well as the number of follicles greater than 2 mm (31.5 versus 58.3).
Another unique effect of diabetes mellitus, but not GHRH immunoneutralization, was that IGFBP-2
was increased in follicles to 186% of control values. However, follicular IGFBP-3 was reduced to 50%
of control values as a result of GHRH immunoneutralization. Therefore, although the functional
absence of either ST or insulin decreased IGF-I in follicular fluid, reduction in IGFBP-3 activity may
have ameliorated negative effects of lowered TGF-I. In contrast, the combined influence of increased
IGFBP-2 and decreased IGF-I in follicles of diabetic gilts may account for decreased follicular
function. Interactions among systemic insulin, ST, IGFBPs and IGF-I as well as intrafollicular
interactions beween the last two factors may function to control normal follicular responses to
alterations in metabolism.
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Insulin

Follicle development in gilts. We have previously observed that administration of insulin to cyclic

gilts during the first pubertal oestrous cycle increased ovulation rate (Cox et al., 1987) and reduced

follicle atresia (Matamoros et al., 1990) in gilts at the second postpubertal oestrus. In prepuberal,

eCG-treated gilts, we observed an increase of IGF-I in medium-sized follicles of gilts given insulin

(Matamoros et al., 1991). In contrast, when insulin was administered to gilts during days 13-17 of the

fifth postpubertal oestrous cycle, IGF-I and oestradiol concentrations were decreased and atresia

was not affected (Hughey et al., 1993). This result suggests that effects of insulin may be related to

age, maturity and (or) related metabolic changes.

We demonstrated that normal ovarian function could be maintained in streptozotocin-induced

diabetic pigs given daily insulin injections from 35 days of age until initiation of oestrous cycles, but

that withdrawal of insulin therapy reduced follicle diameter and oestradiol production and

increased at-esia (Meurer et al., 1991; Cox et al., 1994; Edwards et al., 1996). Upon withdrawal of

insulin replacement therapy, the incidence of follicular atresia increased within 2 days. Gene

expression for IGF-I in follicle walls as well as IGF-I in follicular fluid, decreased rapidly upon

withdrawal of insulin, and 1GFBP-2 in follicular fluid increased (Cox and Qiu, 1995; Fig. 5). Neither

mRNA encoding IGFBP-3 nor IGFBP-3 in follicular fluid (not shown) was affected by diabetes. Both

lowered IGF-I and increased IGFBP-2 probably contributed to the increased atresia and lowered

oestrad iol.
There is evidence that 4-6 mm follicles are particularly affected by insulin. First, it was the

medium-sized follicle population that was maintained from day 17 (39.8% of total follicles) to 19

(35.1%) of the cycle by insulin injections beginning on day 15, compared with a reduction from 41.7

to 16.6% in saline-treated animals. A corresponding increase in atretic follicles from 15.5 to 38.2%

occurred in control animals, while a reduction in atretic follicles on both days 17 (6.3%) and 19

(10.7%) was observed in insulin-treated animals (Matamoros et al., 1991). This evidence is supported

by the in vitro data presented in Fig. 3. Further evidence that the 5 mm follicle population is
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Fig. 4. Influence of imrnunoneutralization of GHRH on
concentrations of (a) IGF-I and (b) oestradiol in the five
largest follicles present on day 18 of the oestrous cycle in
gilts (n =22). The letters H and G designate gilts
immunized against human serum albumin (I-ISA) and an
HSA-GHRH conjugate, respectively, and the letters N
and D represent normal and streptozotocin-diabetic gilts,
respectively. Insulin replacement therapy was removed
from diabetic gilts on day 12 of the oestrous cycle. There
were no interactions, and both main effects significantly
reduced IGF-I, but only diabetes mellitus reduced
oestradiol (P < 0.05). SEMs ranged from 15.3 to 25.0 and
from 13.3 to 19.1 for IGF-I and oestradiol, respectively.
Redrawn from Howell et al. (1993).

vulnerable to altered metabolic support was obtained by Edwards et al. (1996). In diabetic gilts, the
largest follicles present on the ovary were 5 mm in diameter, and oestradiol production in vitro was
similar to that of follicles from control and diabetic insulin-treated gilts. However, IGF-1 was
severely reduced in those follicles, indicating that either insulin, IGF-1 or a combination thereof is
necessary for follicle growth beyond the 5 mm stage. While research has demonstrated that insulin is
required for normal follicle function;imanipulating follicle development in gilts with insulin is not of
practical Use, because, as noted above, maximal ovulation rates can be obtained with feeding. Table
1 illustrates the lack of an effect of insulin on ovulation rates and litter size in gilts fed ad libitum, for
which ovulation rates were maximal, and is in agreement with the observations of Beltranena et al.
(1991) cited above. Insulin was not given to limit-fed gilts because of the danger of hypoglycaemia.

Effectson reproductivepeyformancein primiparoussows. In sows after weaning, there is potential
for manipulating reproduction with metabolic modifiers such as insulin, because ovulation occurs in
the face of the recent negative energy balance of lactation. On the basis of initial studies with gilts, in
several studies in commercial settings we have administered insulin during the period between
weaning and oestrus and have observed inconsistent, but positive effects on reproductive function
(Table 2). These effects include increasing farrowing rate in a herd with typically low farrowing rates
and increasing litter size in another herd with greater than 90% farrowing rate (Ramirez et al., 1997).
These results contrast with those of Kirkwood and Thacker (1991), who did not find a significant effect
of exogenous insulin on litter size, using a higher daily dose of insulin (0.75 versus 0.40 iu kg' day-')



Fig. 5. Influence of removal of insulin therapy from diabetic gilts on (0)

IGF-I and (g)1GFBP-2 in follicular fluid and mRNA for (N) IGF-I and )

IGFBP-2 in follicle walls. Insulin removal for 2 or 4 days decreased IGF-I

and its mRNA and increased follicular fluid IGFBP-2 (P < 0.05) but did not

affect its mRNA. SEMs ranged from 9.8 to 15.6 and 4.9 to 10.4 for IGF-I

concentration and mRNA and from 0.3 to 0.5 and 0.9 to 1.5 for IGFBP-2 in

follicular fluid and mRNA, respectively. Redrawn from Cox et al. (1995).

and mixed parity sows. Their results indicate that insulin did not influence ovulation rate, that uterine

capacity was insufficient, or that mature sows already ovulated maximally. We also failed to increase

litter size in multiparous sows treated with insulin (Cox et al., 1995). When prirniparous and

multiparous sows were compared, total litter size was not affected by insulin but was higher, as

expected, for multiparous sows compared with primiparous sows (11.8 and 9.8 pigs born in total, SEM

= 0.3;P < 0.001). Farrowing rates (89.7±3% overall) were not influenced by parity or insulin treatment.

In a study with primiparous sows lactating for 30 days, doses of insulin were higher and given

for longer than in other studies (Table 2), and insulin treatment lowered ovulation rate (Rojkittikhun,

1992). This finding may be related to production of a negative metabolic signal by the increased

duration of injection, the small sample sizes or to the fact that some of the treated sows gave birth to

a smaller number of piglets in their previous litter, indicating a predetermined low ovulation rate.

Since increased feed intake alone between weaning and oestrus might be sufficient to increase

insulin, we examined the influence of insulin injections daily for 4 days between weaning and

postweaning oestrus in primiparous sows given extra feed between weaning and postweaning

oestrus in a 2 x 2 arrangement (Cox et al., 1995). Total litter size in prirniparous sows (in oestrus

within 10 days after weaning) was affected differenfly by insulin depending on the level of feed

intake between weaning and oestrus (treatment by feed level interaction, P < 0.02) and was also

positively related to feed intake during lactation (P < 0.05). When litter sizes, adjusted for lactation

feed intake, were compared with the mean of insulin-treated sows given 3.63 kg feed (11.6 piglets in

total), means for the insulin/2.72 kg and saline/3.63 kg treatments (9.6 piglets each) were lower (P <

0.05) and the mean for the saline/2.72 kg (10.5 piglets) treatment was similar (P = 0.10; overall SEM =

0.7). It should also be noted that despite the larger litter size in the insulin-treated sows fed 3.63 kg,

farrowing rate tended (P < 0.07) to be lower in this treatment group (74 ± 8%), compared with 86 ±5,

89 ±5, and 93 ±8% for saline/2.72 kg, insulin/2.72 kg and saline/3.63 kg treatment combinations,

respectively. Although the greatest litter size was achieved with insulin plus the high level of feed,

the tendency for lower farrowing rates suggests that there are negative effects of this combination of

insulin and extra feed. The results show that prirniparous sows may have a critical need to be in a
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Table 1. Effects of exogenous insulin and feed intake on ovulation rate

and litter size in gifts

Treatment Number of gilts Corpora lutea
Number of fetuses at


60 days

Limit-fed • 14 13.2b Not mated
Ad libitum feed 36 17.5 12.0
Ad libitum+ insulin once a day c 37 17.2 11.4
Ad libitum+ insulin twice a day 31 17.9 12.3
SEM




0.9 0.5

'A diet based on corn and soybean meal (14% protein) was limit-fed to provide 5400 kcal metabolizable
energy (1.8 kg day') or fed ad libitum. Data from Ramirez, 1994.
°Significantly different from the other treatments (Pc 0.05).
'Each insulin treatment provided a total of 0.80 IU kr' dar Lente insulin (Eli Lilly and Company,
Indianapolis, IN).

certain metabolic condition for insulin to be effective. More appropriate feeding regimens may
permit an augmented and repeatable reproductive response to insulin. More recently interval to
oestrus was decreased but ovulation rate (18.3 average) and litter size (10.3) were unaffected by
insulin (N. Whitley, unpublished observation, Table 2). Taken together, these results are consistent
with the notion that insulin increased the anabolic state of sows, but the positive effects were
manifested in different ways.

Manipulation of post- weaning follicle development in sozus. In lactating sows, follicle growth
advances as lactation advances, but follicles reach only about 5 mm in diameter by 3-4 weeks of
lactation (Britt et al., 1985). Follicular growth patterns during lactation and after weaning measured
ultrasonically illustrate that within 2 or 3 days after weaning, the 4-5 inm follicles are replaced by
larger follicles (M. Lucy, personal communication). We have conducted one study in which follicle
populations were monitored after insulin administration to primiparous sows for 3 or 5 days after
weaning (Whitley et al., 1997a). Insulin increased atresia and the number of 6 mm follicles at 3 days
after weaning and the overall number of follicles present at day 5, but at both 3 and 5 days after
weaning follicular fluid IGF-I, IGFBP-2 and oestradiol were reduced. These results suggest that
insulin may have increased numbers of follicles without increasing steroidogenesis by attenuating
IGF-I. Perhaps the lowered IGFBP-2 allowed follicles to escape atresia. However, in another study,
insulin increased oestradiol in medium- and large-sized follicles but did not affect IGF-I or IGFBP-2
(Whitley et al.,1997b). It is assumed that in the latter study insulin may not have lowered peripheral
glucose concentrations as much (not measured), because animals received 0.45 kg more feed per day
between weaning and oestrus, and the duration of lactation was 21 days, compared with 30 days in
the former study. In addition to increasing oestradiol, insulin administration in the second study
also resulted in increased follicular testosterone (not shown) and progesterone in a pattern similar to
that for oestradiol.

The effects of insulin reported to date, while generally positive, are not consistent. However, the
results are consistent with an overall anabolic effect that could variously affect follicles, oocytes or
embryos, reproductive tract environment or gonadotrophin actions. Administration of insulin may
provide a physiological signal of increased anabolism before the time such a state would normally
occur after weaning, but coincident with preovula tory follicle growth.

Pigsomatotrophin

Results of studies investigating the control of follicular development and ovulation rate after
administration of pig somatotrophin (pST) are contradictory. Positive effects of pST have been



T
ab

le
2.

S
um

m
ar

y
of

ef
fe

ct
s

of
ex

og
en

ou
s

in
su

lin
on

re
pr

od
uc

tiv
e

fu
nc

tio
n

of
so

w
s

du
rin

g
la

ct
at

io
n

or
af

te
r

w
ea

ni
ng

N
um

be
r

in
ex

pe
rim

en
t

In
su

lin
do

se
an

d
du

ra
tio

n
S

ig
ni

fic
an

t
ef

fe
ct

s
of

in
su

lin
A

ut
ho

rs

12
0

M
ix

ed
pa

rit
y

0.
40

iu
kr

'
da

y'
2

da
ys

be
fo

re
to

4
da

ys
af

te
r

w
ea

ni
ng

8
P

rim
ip

ar
ou

s
0.

75
iu

kr
'

da
y'

ld
ay

pr
e-

w
ea

ni
ng

th
ro

ug
h

oe
st

ru
s

26
P

rim
ip

ar
ou

s
0.

75
iu

kg
-.

da
y'

fr
om

w
ea

ni
ng

to
oe

st
ru

s
(u

p
to

30
da

ys
)

28
P

rim
ip

ar
ou

s
In

fu
si

on
13

0
iu

da
y'

,
da

y
20

to
26

po
st

-f
ar

ro
w

in
g

13
8

P
rim

ip
ar

ou
s

0.
40

iu
kr

'
da

y'
4

da
ys

af
te

r
w

ea
ni

ng

49
1

P
rim

ip
ar

ou
s

0.
40

iu
kg

1d
ay

'
2

or
4

da
ys

af
te

r
w

ea
ni

ng

N
o

ef
fe

ct
s

Lo
w

er
ed

ov
ul

at
io

n
ra

te

H
ig

he
r

in
ci

de
nc

e
of

an
oe

st
ru

s

(1
0/

13
ve

rs
us

5/
13

)

N
o

ef
fe

ct
s

F
ar

ro
w

in
g

ra
te

in
cr

ea
se

d


(9
2.

3
ve

rs
us

76
.7

%
)

In
su

lin
fo

r
4

da
ys

in
cr

ea
se

d
to

ta
l

lit
te

r
si

ze
(1

0.
3

ve
rs

us
9.

3)
an

d
liv

e

bo
rn

pi
gs

(1
0.

0
ve

rs
us

9.
0)

K
irk

w
oo

d
an

d
T

ha
ck

er
,

19
91

R
oj

ki
tti

kh
un

,
19

92

Jo
hn

st
on

et
al

.,
19

94

T
ilt

on
el

al
.,

19
96

R
am

ire
z

et
al

.,
19

97

C
ox

el
at

,
19

95
23

1
M

ul
tip

ar
ou

s


17
1

P
rim

ip
ar

ou
s

14
3

P
rim

ip
ar

ou
s

43
P

rim
ip

ar
ou

s

0.
40

iu
kr

'
da

y'
4

da
ys

af
te

r
w

ea
ni

ng



0.
40

iu
kg

1d
ay

'
4

da
ys

af
te

r
w

ea
ni

ng

0.
40

iu
kg

da
y'

4
da

ys
,

in
cr

ea
se

d
fe

ed

0.
40

iu
kg

-,d
ay

'
4

da
ys

af
te

r
w

ea
ni

ng

N
on

e

In
cr

ea
se

d
re

tu
rn

to
oe

st
ru

s
in

10
da

ys

(8
6

ve
rs

us
78

%
)

In
te

ra
ct

io
n

to
in

cr
ea

se
lit

te
r

si
ze

in

in
su

lin
-t

re
at

ed
so

w
s

on
hi

gh
er

fe
ed

in
ta

ke

D
ec

re
as

ed
in

te
rv

al
to

oe
st

ru
s

N
.

W
hi

tle
y

an
dN

.
C

ox
,

(5
.0

ve
rs

us
6.

9
da

ys
)

un
pu

bl
is

he
d



42 Nancy M. Cox

observed for IGF-I production in vitro by pig granulosa cells (Spicer and Echternkamp, 1995) as well
as other species, and synergism of ST with gonadotrophins has been demonstrated in humans
undergoing superovulation (Homburg et al., 1988). In early antral rat follicles in culture, rbST
increased IGF-I messenger RNA but did not reduce apoptosis (Chun et aL, 1996).

Many attempts in vivo to increase follicular development involved administration of pST during
follicular development (Table 3). Administration during the prepubertal period has had few
permanent effects on reproductive characteristics, with the exception of the study of Echternkamp et
al. (1994), who used low doses of pST in sustained release implants. Treatment with 4 mg pST day'
interacted with body type to increase the number of medium-sized follicles, with a greater initial
number in control compared with lean and obese body types (12, 2 and 4, respectively) and 23, 9 and
11 follicles in control, lean and obese gilts treated with 4 mg pST day'. Importantly, pST decreased
IGFBP-2 concentration in follicular fluid but not in serum.

In cyclic animals, pST can have potent effects on the occurrence of oestrus. Kirkwood et al. (1988)
administered pituitary-derived pST from day 14 of the oestrous cycle to 24 h after oestrus. This dose
increased insulin and glucose concentrations on day 20 of the oestrous cycle, and ovulation rate was
increased by pST (12.4 for control and 14.3 for pST-treated). However, nine of 20 pST-treated gilts
were anoestrous, whereas none of the control animals were anoestrous. The anoestrous gilts tended
to have lower insulin and glucose values, which may have been beneath a threshold necessary for
continued cycling. Despite ad libitum feeding, pigs did not gain weight during the experimental
period, adding additional credence to the idea that there is a critical threshold of metabolism below
which metabolic modifiers can have harmful peripheral effects. A critical period for inhibition of
oestrus with pST was determined by Kirkwood et al. (1989). They observed that administration of
pST beginning on day 14, but not day 17, suppressed the subsequent oestrus, illustrating that pST
may affect follicles negatively during follicle selection. In a follow-up experiment, treatment was
shortened to days 14-17 of the oestrous cycle, and that treatment resulted in an increase in
percentage in oestrus (91%) compared with gilts treated from day 14 to day 22 (73%), but no increase
in ovulation rate. It should be noted that the ovulation rate of the controls in this experiment was
14.0, compared to 12.3 in the study of Kirkwood et al. (1988). Thus ovulation rate must be below a
physiological maximum in order to be increased by metabolic modifiers, which may explain the
inconsistent results for the two studies.

Preovulatory development in sows may also be manipulated by pST, although farrowing rate
and litter size in multiparous sows were not affected by treatment with 6 mg pST day"' from 2 days
before weaning to 4 days after weaning (Kirkwood et al., 1993). Recently we treated primiparous
sows with 40 pg pST kg' day' (dose of approximately 6 mg day') beginning one day after weaning
and observed increased ICF-1 on day 5 (Whitley et al., 199713).The only IGFBPs increased by pST
treatment in this model were the 30 and 22 kDa species, but the relevance of this increase is
questionable since these IGFBPs are present in small quantities and proteolysis of these IGFBPs is
related to follicle development (Besnard et al., 1997). Follicular fluid oestradiol and testosterone were
also increased by pST and insulin, indicating that ST may have positive effects on follicular
development in sows if administered during the 5 days after weaning. In summarizing the potential
applicability of manipulation with ST, increased follicular development is possible with appropriate
dosages and administration, but the influence on pregnancy establishment has not been evaluated.

Conclusion

Parallel with information on the intrafollicular control of ovarian function, progress has been made
in the practical application of metabolic modification of reproductive function. Metabolic
manipulation of follicles is most successful in follicles of intermediate development, which have the
potential for atresia or ovulation, depending on metabolic and gonadotrophin support. Progress in
control of follicular development and ovulation rate will depend on a better understanding of these
factors as well as the influence of metabolic state when metabolic hormones are administered. It can
be concluded that metabolic modifiers may be harmful if body condition is below average and may
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be unnecessary if body condition is above average. Enhancing ovulation rate by manipulating the
preovulatory follicle is possible in gilts and appears to be possible in sows, although less reliable.
Gilts can be managed such that ovulation rate is not limiting to litter size. However, follicle
development in sows may benefit from anabolic signals applied for a short enough time to enhance
reproduction without causing deleterious peripheral metabolic effects. Thus it is more practical to
consider application of metabolic modifiers to produce anabolic signals during preovulatory follicle
growth in sows. Future progress in this area will involve assessing effects of metabolic manipulation
on embryo quality, as well as integration of research on intrafollicular factors which control fertility.

The author gratefully acknowledges the excellent assistance in interpretation of data and preparation of the
manuscript provided by A. B. Moore, J. Purvis, B. F. Stevens, N. C. Whitley and H. Zhang and the data
generously contributed by H.D. Guthrie, W. M. Garrett and M. C. Lucy.
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