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Control of gene expression through the 
nonsense-mediated RNA decay pathway
Andrew Nickless1†, Julie M. Bailis2† and Zhongsheng You1* 

Abstract 

Nonsense-mediated RNA decay (NMD) was originally discovered as a cellular surveillance pathway that safeguards 
the quality of mRNA transcripts in eukaryotic cells. In its canonical function, NMD prevents translation of mutant 
mRNAs harboring premature termination codons (PTCs) by targeting them for degradation. However, recent stud-
ies have shown that NMD has a much broader role in gene expression by regulating the stability of many normal 
transcripts. In this review, we discuss the function of NMD in normal physiological processes, its dynamic regulation 
by developmental and environmental cues, and its association with human disease.
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Background
Nonsense-mediated RNA decay (NMD) is an essential 

RNA quality control and gene regulatory mechanism that 

is conserved among eukaryotes [1–9]. NMD safeguards 

the quality of the transcriptome and maintains cellular 

homeostasis by eliminating transcripts that harbor pre-

mature termination codons (PTCs). PTCs can arise from 

errors in nucleic acid metabolism, such as genetic muta-

tions or defects in splicing or transcription. In addition, 

PTCs may also form during mRNA synthesis from nor-

mal gene structures, including from programmed recom-

bination. In its canonical role, NMD prevents translation 

of transcripts that might produce C-terminally truncated 

proteins with reduced or aberrant function.

NMD also targets non-mutant transcripts, and its 

regulation of normal gene expression impacts a wide 

range of physiological processes including cell differen-

tiation, response to stress and development of disease. 

Recent estimates suggest that NMD-mediated degrada-

tion affects up to 25% of transcripts, either directly or 

indirectly in certain cellular milieus [1, 10, 11]. Although 

the overall process of NMD is conserved for both mutant 

and non-mutant transcripts, the signals that trigger 

NMD or its inhibition vary according to the specific tar-

get and biological context.

In this review we focus on the function and impact of 

NMD on normal gene expression in mammals. We out-

line the NMD process and highlight the known roles for 

NMD in normal physiology, with a particular emphasis 

on its function as a gene regulatory mechanism and its 

dynamic regulation by environmental and developmental 

signals. We conclude with an overview of the impact of 

NMD dysregulation on human disease and discuss the 

potential of treating genetic and neurological disorders 

and cancer by manipulating NMD activity.

Overview of the NMD pathway
First discovered in yeast and then extensively studied in 

Caenorhabditis elegans, Drosophila, mouse, human cells, 

and other model systems, NMD is a RNA surveillance 

pathway that acts at the interface between transcrip-

tion and translation [10, 12–15]. NMD must accurately 

distinguish a PTC from a normal stop codon on an 

mRNA and then recruit and activate enzymes to destroy 

the transcript. �ere are two main models to explain 

how transcripts are identified as targets for NMD. �e 
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exon-junction complex (EJC) model proposes that 

EJC—a large multi-protein assembly deposited  ~20–24 

bases upstream of an exon–exon junction as a result of 

pre-mRNA splicing—acts as a second signal to mark an 

upstream stop codon as a PTC [16–29]. During transla-

tion, ribosomes scan the mRNA and will pause at a stop 

codon. If an EJC is present more than 50–55 bases down-

stream of the stop codon, the protein kinase SMG1, its 

substrate Upf1, a ATPase/helicase, and eukaryotic poly-

peptide release factors eRF1 and eRF3 are then recruited 

to form a complex—the SURF complex—on the mRNA. 

Phosphorylation of UPF1 by SMG1 leads to the recruit-

ment of SMG5, SMG6 and SMG7 via phospho-specific 

interactions [30, 31]. After recruitment, SMG5 and 

SMG7 promote RNA decapping and deadenylation by 

recruiting factors such as DCP1a and POP2, leading to 

the exposure of the transcript ends to cellular exonucle-

ases [32–39]. SMG6, which has endonuclease activity, 

provides a second mechanism for initiation of mRNA 

decay by cleaving transcripts internally near the PTC, 

generating two unprotected RNA ends that are further 

degraded by cellular nucleases [40–43].

�e second model for NMD posits that the abnormally 

long 3′ untranslated region (UTR) downstream of a PTC 

acts as a second signal to promote PTC recognition. 

While the molecular mechanism of this model is less well 

defined, it has been proposed that accumulation of UPF1 

as well as other regulatory elements in the 3′ UTR medi-

ates the recruitment of other NMD factors and the initia-

tion of mRNA decay [44–47]. For additional information 

about the mechanisms of PTC recognition, readers are 

directed to a number of recent reviews [13, 48–50].

A debate remains about where NMD takes place in 

the cell. NMD inherently relies on the translation pro-

cess, which normally occurs in the cytoplasm. However, 

some investigators have proposed that translation can 

also take place in the cell nucleus [51–53]. Several stud-

ies suggest that NMD is associated with the nucleus or 

nuclear fraction. For example, levels of PTC-contain-

ing triosephosphate isomerase (TPI) and mouse major 

urinary protein (MUP) transcripts were specifically 

reduced in the nuclear fraction [54–57]. NMD-medi-

ated degradation of the TCRβ transcript can also take 

place in purified nuclei [58]. Several other nonsense 

reporter mRNAs also appear to be targeted by NMD in 

the nucleus [51, 59–64]. �e idea of PTC recognition in 

the nucleus is also consistent with the existence of non-

sense-associated altered splicing (NAS), a NMD-related 

nuclear pathway that also requires PTC recognition 

[65]. However, the claims of nuclear NMD and transla-

tion remain controversial as other lines of evidence sug-

gest that NMD is primarily a cytoplasmic process [25]. 

Indeed, alternative interpretations of the nuclear NMD 

data are possible, including the possibility that NMD 

occurs during nuclear export, of which there is some 

evidence [66].

Role of NMD and its regulation in normal 
physiological processes
Bioinformatics analysis of EST databases and RNA 

sequencing data in cells where NMD is disrupted have 

clearly demonstrated that NMD has a widespread effect 

on gene expression [10, 67, 68]. �is realization has led 

to the identification of numerous putative NMD target 

mRNAs, based on characteristics such as PTCs or long 

3′ UTRs and an observed increase in the stability and/or 

levels of transcripts after NMD suppression [1, 4, 5, 11, 

69–75].

Multiple mechanisms exist to generate PTCs in tran-

scripts of normal genes (Fig. 1). Alternative splicing gen-

erates diversity in mRNA isoforms but can also lead to 

formation of PTCs that target transcripts for NMD. For 

instance, the RNA binding protein polypyrimidine tract 

binding protein 1 (PTBP1) can repress splicing of exon 11 

of its own mRNA, leading to NMD of the transcript [76]. 

As such, PTBP1 negatively regulates its own expression. 

Human arginine–serine rich (SR) splicing factors have 

also been shown to be regulated by alternative splicing 

coupled to NMD [77, 78]. �is so-called unproductive 

splicing and translation (RUST) represents an autoregu-

latory mechanism that controls the levels of splicing fac-

tors and other RNA binding proteins [77–81]. �e use of 

alternative transcription initiation sites can also generate 

mRNA isoforms with a stop codon upstream of a splice 

junction, resulting in NMD [82]. Programmed ribosomal 

frameshifting (PRF)—which can potentially occur in up 

to 8–12% of genes—is another mechanism that can cre-

ate a PTC, leading to NMD [83–86]. Stop codons that 

trigger NMD can also form if the primary coding region 

of an mRNA is preceded by an upstream open reading 

frame (uORF) [87, 88]. Transcriptome analysis indicates 

that long 3′ UTRs are among the most common features 

of NMD targets, although 3′ UTR length per se is not 

considered a reliable predictor of NMD of a given tran-

script [29, 44–46, 74, 88–91].

Transcripts encoding selenoproteins comprise another 

interesting class of NMD targets. A UGA codon normally 

signals a stop to translation but can be redefined to code 

for the amino acid selenocysteine in a high selenium 

environment [92]. If selenocysteine is incorporated in the 

last exon of a transcript it generally evades NMD, while 

if selenium is not abundant, these transcripts will be 

degraded via NMD if their stop codon resides upstream 

of an exon–exon junction [93, 94]. �is regulatory mech-

anism enables cells to respond to alterations in levels of 

the essential trace element selenium. �erefore, while 



Page 3 of 12Nickless et al. Cell Biosci  (2017) 7:26 

some NMD targets—such as those encoding selenopro-

teins or splicing factors—have been well characterized, 

the validation of other putative NMD targets is ongoing, 

as is the understanding of the consequences of NMD-

induced regulation of gene expression.

�ere are many examples where normal physiologi-

cal processes employ NMD to regulate gene expression 

(Table 1). As an example of the essential nature of NMD 

for normal cellular processes, knockouts of Smg1, Smg6, 

Upf1, or Upf2 have been shown to cause embryonic lethal-

ity in mice [1–4, 6]. NMD has also been shown to play a 

central role in the development and differentiation of spe-

cific cell types through regulation of gene expression.

During lymphocyte development, cells undergo a series 

of programmed genomic rearrangements to assemble 

immunoglobin and T cell receptor (TCR) genes. Two-

thirds of these rearrangement events yield unproductive 

gene products harboring PTCs, whose clearance requires 

NMD [5, 95, 96]. Consistent with this observation, condi-

tional ablation of NMD in T-cells significantly increased 

the abundance of these nonsense TCR transcripts, result-

ing in apoptotic cell death [5]. Interestingly, thymocyte 

development could be restored by introducing a com-

plete TCRβ sequence that prevents the accumulation of 

nonsense counterparts, indicating that removal of the 

mutant transcripts by NMD is key to the survival of these 

cells [97]. However, conditional knockout of Upf2 had 

minimal effects on mature T cells, perhaps because T cells 

naturally downregulate NMD as part of the differentiation 

process [5]. In the myeloid lineage, the LMNB1 mRNA is 

specifically downregulated by NMD during granulopoie-

sis due to programmed intron retention. Importantly, this 

regulation of LMNB1 mRNA is required for normal dif-

ferentiation of granulocytes [98].

NMD

Regulation of 
Gene Expression

RNA Quality Control

Aberrant Transcripts Normal Transcripts

Genetic 
Mutations

Aberrant 
Splicing

Inaccurate 
Transcription

uORF

Alternative 
Splicing

Intron

Programmed 
Ribosomal 

Frameshifting
Frameshifting Signal

PTC

No PTC

Fig. 1 NMD functions both in RNA surveillance and in gene regulation. Several features of mRNA transcripts can mark the transcripts as substrates 
for degradation by NMD. Green boxes, exons; lines, introns; potential splicing events are shown by blue or purple lines; genetic mutations and tran-
scriptional aberrations are denoted with stars. The translation start site (ATG) is marked by arrows and stop codons are marked by red circles
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Similar to the hematopoietic system, embryonic stem 

cells (ESCs) rely on NMD for their proliferation, while 

their differentiation is associated with downregulation 

of NMD activity [99, 100]. NMD influences stem cell dif-

ferentiation by regulating the signaling of two key growth 

factors, TGFβ and BMP [100]. Ablation of NMD by 

SMG6 knockout in mouse ESCs prevented cellular differ-

entiation, and re-expression of wild type but not mutant 

SMG6 restored proper differentiation [6]. Knockdown 

of other NMD factors caused a similar phenotype [6]. 

Prolonged, elevated expression of NMD-regulated pluri-

potency genes, such as c-Myc, underlies the inability of 

NMD-deficient ESCs to differentiate [6].

A number of studies have also revealed connections 

between NMD and proper development of the nervous 

system [90, 101–109]. In mammals, UPF3B expression is 

altered during brain development, and UPF3B mutants 

with impaired NMD function inhibit proper neurite out-

growth [105, 107]. Neuronal development is also com-

promised when UPF3B is downregulated with shRNA or 

when NMD is inhibited with the compound Amlexanox 

[105, 107]. NMD also functions to limit the expression 

of Robo3.2 in commissural neurons, which is required 

for proper axonal migration during development [109]. 

NMD components such as SMG1, UPF1 and UPF2 can 

localize to axonal growth cones in neurons, consist-

ent with the idea that NMD modulates gene expression 

locally in these structures [109]. During the process of 

neurogenesis, a regulatory circuit is activated in differ-

entiating neurons whereby expression of miR-128 targets 

mRNAs of several NMD factors for translational repres-

sion [90]. �is results in NMD attenuation and upregula-

tion of NMD target genes, many of which foster proper 

neuronal development [90].

Nonsense-mediated RNA decay also can impact gene 

expression in mature neurons, however. Ablation of the 

EJC factor eIF4AIII in mature neurons results in altered 

expression of critical factors such as ARC, leading to 

increased synaptic strength [108]. During seizure, when 

neuronal activity is aberrant, the RNA splicing pro-

tein NOVA regulates insertion of cryptic exons into the 

mRNA of a number of neuronal factors, leading to NMD 

of these transcripts [110]. Together, these findings high-

light the importance of NMD in the development and 

function of the nervous system.

In developing muscle cells, NMD activity is attenuated 

as myoblasts differentiate to myotubes. During myogen-

esis, gene expression can be downregulated by NMD or 

by a related pathway, Staufen-mediated mRNA decay 

(SMD). SMD is increased in myoblasts due to the upreg-

ulation of the STAU1 (Staufen homolog) protein, which 

binds its cognate sites in the 3′ UTR of target mRNAs 

[111]. STAU1 competes with UPF1 for binding to UPF2, 

which functions in both NMD and SMD [112, 113]. 

�is competition leads to inhibition of UPF2-dependent 

NMD and increased expression of the NMD target myo-

genin that promotes myogenesis [112].

Interactions of cells with external factors such as 

viruses can also be modulated by NMD. Robust NMD 

activity targets certain viral RNAs harboring NMD-

inducing features to suppress expression of viral proteins 

and limit viral titer in host cells [114, 115]. However, 

some viruses possess mechanisms to co-opt the NMD 

process for their own benefit. For example, it has been 

found that the RNA-binding proteins tax and rex, 

expressed by the human T-cell leukemia virus type-1 

(HTLV-1), stabilize both viral RNAs and host RNAs that 

would normally be targets for NMD [116, 117]. An ele-

ment in the 3′ UTR of the Rous sarcoma virus also ren-

ders the viral RNA insensitive to host NMD, possibly by 

inhibiting the capacity of UPF1 to initiate NMD [118, 

119]. As another example, hepatitis C infection triggers 

inactivation of NMD by binding and sequestering WIBG/

PYM, a protein required for recycling of the EJC [120].

Recent studies suggest that NMD controls not only 

the levels of mRNAs, but also that of long non-coding 

RNAs (lncRNAs). While the majority of the genome is 

transcribed into RNA, only about 2% of the genome has 

been shown to code for proteins [121, 122]. LncRNAs are 

a prominent class of RNA molecules that have important 

roles in cellular processes, including modifying chroma-

tin, regulating transcription, altering mRNA stability, and 

influencing translation [123, 124]. A subset of lncRNAs 

have been shown to be associated with the translation 

machinery—sometimes producing detectable micropep-

tides—and about 17% of lncRNAs were found to be tar-

gets of NMD [125–130]. While the biological significance 

of this regulation remains to be defined, the fact that so 

many lncRNA transcripts are targeted by NMD suggests 

that NMD plays a central role in regulating the func-

tions of lncRNAs and their corresponding micropeptide 

products.

Dynamic regulation of NMD during cellular 
responses to stress
Cellular stress activates widespread changes in gene 

expression that allow cells to adapt to challenging condi-

tions. One mechanism that enables this response is the 

inhibition of NMD (Table  1). Cellular stresses such as 

amino acid deprivation, hypoxia and endoplasmic retic-

ulum (ER) stress induce phosphorylation of the transla-

tion initiation factor eIF2α, which in turn causes NMD 

repression and the stabilization and increased expression 

of critical stress response factors such as ATF4, ATF3, 

CHOP, and IRE1α [70, 73, 131–136]. NMD is also attenu-

ated in response to an increase in intracellular calcium 
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levels as well as persistent DNA damage [137 AN and 

ZY, unpublished]. By controlling the expression of spe-

cific genes, this dynamic regulation of NMD serves as 

an adaptive response to cope with cellular stress and 

promote survival. When the environmental insults are 

too severe, NMD also contributes to apoptosis. An early 

event during apoptosis is the cleavage of UPF1, which 

generates a dominant negative peptide fragment that sti-

fles NMD activity [138]. �e resulting reduction in NMD 

activity allows for the upregulation of several pro-apop-

totic NMD target genes including GADD45α, GADD45β, 

BAK1, GAS5, DAP3, and DUSTP2, leading to cell death 

[138, 139]. GADD45α, which acts in the MAP kinase 

pathway, has also been proposed to be the key target that 

triggers apoptosis when NMD is disrupted in the absence 

of exogenous stress [140].

�e observations that NMD is suppressed in response 

to a number of cellular stresses raises the question of how 

abnormal RNAs—which are often generated during gene 

expression—are dealt with during intervals of reduced 

NMD activity. One possibility is that the benefits of the 

expression of stress response genes after NMD attenua-

tion outweigh the risks of the lack of RNA surveillance. 

It is also possible that cells retain residual NMD activ-

ity after stress, which is sufficient for RNA surveillance. 

During these intervals of low NMD activity, the activa-

tion of an autoregulatory circuit that leads to increased 

mRNA stability of NMD factors—which are normally 

targeted by NMD—rapidly restores NMD activity to 

appropriate levels once cellular conditions improve [74, 

91, 141]. �e discovery of alternative branches of the 

NMD pathway that are apparently independent of UPF2, 

UPF3, or the EJC introduces the possibility that when one 

branch of NMD is suppressed other branches still remain 

active and degrade aberrant transcripts [46, 142, 143]. In 

support of this idea, the activity of the UPF2-dependent 

branch of NMD is diminished during myogenesis but 

an alternative, UPF2-independent branch is stimulated, 

allowing both for increased expression of the NMD target 

myogenin and continued degradation of mutant mRNA 

transcripts [112]. An additional mechanism to cope with 

reduced NMD activity is autophagy, which purges cells 

of the mutated, misfolded, and aggregated proteins that 

accumulate in NMD-deficient cells [144].

NMD and human disease
Nonsense-mediated RNA decay and its regulation influ-

ence the development of human disease. While some dis-

ease phenotypes are exacerbated by the effects of NMD, 

others are suppressed by them, making NMD a “double-

edged sword”. One example where NMD contributes to 

disease is β-thalassemia, which is often caused by muta-

tions in the β-globin gene that generate a nonsense 

mRNA. Most recessive forms of β-thalassemia result 

from nonsense mutations in the first or second exon of 

the β-globin gene, with the corresponding mRNAs being 

targeted for degradation by NMD [145–147]. In these 

cases, the unaffected allele is still able to be expressed but 

the amount of protein produced is unable to compen-

sate for loss of function of the mutant allele. Mutations 

Table 2 Small molecules that inhibit NMD e�ciency

Compound Mechanism References

NMD inhibitors

 PI3K-like kinase inhibitors (e.g. caffeine, wortmannin) Inhibits SMG1 kinase activity [171, 172]

 NMDI1 Disrupts the interaction between SMG5 and Upf1 [174]

 NMDI14 Disrupts the interaction between SMG7 and Upf1 [158]

 Patemine A Inhibits the NMD function of eIF4A3 [23]

 5-azacytidine Promotes expression of c-Myc, which represses NMD [175]

 Cardiac glycosides (e.g. digoxin, ouabain) Increase cytoplasmic calcium, which represses NMD [137]

Translation inhibitors

 Cyclohexamide Inhibits translation [95]

 Emetine Inhibits translation [95]

 Puromycin Inhibits translation [95]

 Anisomycin Inhibits translation [95]

Translation modifiers

 Suppressor tRNAs Change stop codons into amino acid-encoding codons [164–166]

 PTC-124 Promotes stop codon read-through [167]

 Aminoglycosides Promotes stop codon read-through [168, 169]

 Amlexanox Promotes stop codon read-through [170]



Page 7 of 12Nickless et al. Cell Biosci  (2017) 7:26 

that occur in the final exon of β-globin evade degrada-

tion and consequently are translated normally. However, 

the resulting truncated proteins have dominant negative 

activity that interferes with normal hemoglobin function 

[145].

Numerous other genetic diseases, including cystic 

fibrosis, polycystic kidney disease, and muscular dystro-

phy, are also caused by PTCs that trigger NMD of tar-

get mRNAs [145, 147]. Interestingly, different subtypes 

of muscular dystrophy can result from mis-expression 

of distinct genes that are associated with NMD. Duch-

enne’s muscular dystrophy results from loss of function 

of dystrophin, which can occur when mutations in the 

gene generate a PTC that targets the transcript for NMD. 

Facioscapulohumeral muscular dystrophy results from 

the misexpression of the DUX4 transcription factor in 

muscle. DUX4 is normally a substrate for NMD, but its 

misexpression in muscle leads to the inhibition of NMD, 

resulting in a regulatory feedback loop that further sta-

bilizes the DUX4 transcript, leading to cellular toxicity 

[148].

Certain neurodevelopmental disorders are closely con-

nected with dysregulation of NMD. Mutations in the 

NMD factor UPF3B have been found to cause syndromic 

and nonsyndromic intellectual disability (ID) [101, 102, 

104, 106]. UPF3B mutations are also associated with a 

spectrum of disorders including attention-deficit hyper-

activity disorder, autism and schizophrenia [102–104]. 

Dysregulation of other NMD factors such as UPF2 and 

SMG6, is also associated with various forms of ID [102].

Aberrant NMD also is associated with inflammation 

and cancer. Deletion of one allele of the NMD kinase 

SMG1 in a mouse model results in chronic inflammation 

as well as cancer predisposition [3]. Mutations in UPF1 

have been identified in inflammatory myofibroblastic 

tumors (IMT) [149]. In IMT, decreased NMD function 

leads to increased expression of the transcript for the 

NIK protein kinase, which activates the NFkB pathway 

and promotes cytokine expression and inflammatory 

infiltrates [149]. Inhibition of NMD can cause chronic 

activation of the immune response, leading to autoim-

munity [150]. Loss of function or overexpression of NMD 

factors have also been found to be associated with several 

other cancer types, including pancreatic cancer and neu-

roblastoma [151–154]. Deregulation of NMD contrib-

utes to tumorigenesis likely due to aberrant expression of 

oncogenes and tumor suppressor genes with PTCs [151, 

155, 156].

Although decreased NMD efficiency can cause human 

disease and contribute to the severity of disease pheno-

types, NMD inhibition can also be a strategy for disease 

treatment. Inhibiting NMD may alleviate the symptoms 

of certain genetic diseases caused by PTCs in a single 

gene—e.g. β-thalassemia, cystic fibrosis, Hurler’s syn-

drome, and Duchenne muscular dystrophy—by allowing 

expression of a mutant protein product that is partially 

functional [145]. However, this therapeutic strategy is 

limited by the ability of the truncated proteins to provide 

sufficient activity to compensate for the loss of function. 

A more promising solution may be to restore expression 

of full-length, functional proteins by combined treatment 

of NMD inhibitors (to stabilize nonsense transcripts) 

with drugs that allow stop-codon read-through. �is 

strategy has been successfully used to restore full-length, 

functional proteins in a model of Hurler’s syndrome and 

in cancer cells with nonsense mutations in the p53 gene 

[157, 158]. A recent modification of this potential thera-

peutic strategy uses antisense oligonucleotides (ASOs), 

which are showing increasing promise in clinical tri-

als, rather than small-molecule drugs to repress NMD 

activity, thereby expanding the repertoire of potential 

NMD-targeted therapeutic strategies [159]. Interest-

ingly, increasing NMD activity, such as by overexpress-

ing UPF1, can alleviate the phenotypes of amyotrophic 

lateral sclerosis (ALS) in both in vitro and in vivo mod-

els. A large fraction of ALS is caused by aberrant expres-

sion of TDP43, which deregulates splicing and generates 

many NMD targets [160, 161]. �e observed effects of 

UPF1 overexpression suggest that NMD enhancers may 

be effective in treating certain forms of ALS and raise the 

possibility that a similar principle may apply to other dis-

orders caused by aberrant RNA processing.

Due to the presence of a higher level of nonsense 

mRNAs caused by mutations and genomic instability in 

cancer cells, inhibition of NMD may cause accumulation 

of mutant proteins and activation of the unfolded pro-

tein response, leading to heightened cell death. Inhibition 

of NMD can also promote the expression of novel anti-

gens on tumor cells, due to the translation of nonsense 

mRNAs generated by frameshift mutations or aberrant 

splicing [162, 163]. For these reasons, there has been a 

strong interest in developing small molecules to inhibit 

NMD activity (Table  2). Compounds such as cyclohex-

imide and puromycin abrogate NMD by inhibiting trans-

lation, and other reagents that modify the specificity or 

efficacy of translation termination—suppressor tRNAs, 

aminoglycosides, PTC124, amlexanox—are also capa-

ble of stabilizing nonsense transcripts [95, 164–170]. 

Wortmannin and caffeine also inhibit NMD by decreas-

ing SMG1 enzymatic activity, but these inhibitors are 

limited as tools because they also affect other PI3K 

family members such as ATM, ATR and DNA-PK [171, 

172]. Inhibitors of SMG1 kinase activity with improved 

potency and selectivity, such as pyrimidine deriviatives, 

have been identified and shown to substantially dimin-

ish UPF1 phosphorylation in  vitro and in cells [173]. 
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Recently, other potent small molecule inhibitors selective 

for SMG1 kinase have been identified to inhibit UPF1 

phosphorylation in cells and in mouse tumor xenograft 

models, where they promote anti-tumor efficacy (JMB, 

unpublished). Inhibitors to NMD factors other than 

SMG1 have also been reported. For example, patem-

ine A was found to repress NMD activity by inhibiting 

the NMD function of eIF4AIII, whereas NMDI-1 blocks 

NMD by preventing the interaction between SMG5 

and UPF1 [23, 174]. NMDI-14 was identified in a com-

putational screen for molecules that physically prevent 

the interaction of SMG7 with UPF1 [158]. Promisingly, 

NMDI-1 and particularly NMDI-14 potently repress 

NMD at low concentrations with minimal cellular tox-

icity [158, 174]. In addition, the approved drugs 5-aza-

cytidine and cardiac glycosides such as ouabain and 

digitoxin were recently found to inhibit NMD by upregu-

lating Myc or by increasing intracellular calcium, respec-

tively [137, 175]. �ese findings point to the potential of 

NMD-based therapeutic intervention by directly inhib-

iting NMD factors, or indirectly affecting the cellular 

microenvironment.

Perspectives
Nonsense-mediated RNA decay, initially discovered as 

a quality control mechanism that targeted mutant tran-

scripts for degradation, is now widely appreciated as a 

key mechanism that regulates gene expression. NMD 

plays a crucial role in multiple cellular processes, includ-

ing development, differentiation and disease physiology. 

While the main factors that drive NMD have been iden-

tified, many opportunities remain to fill in gaps in our 

understanding of NMD target selection and its impact 

on cell biology. A major area of ongoing NMD research 

will concern the complex regulatory networks that gov-

ern NMD activity in developmental and tissue-specific 

contexts. In addition to uncovering new pathways or 

processes where NMD is dynamically regulated, puta-

tive NMD transcripts must be validated and their effects 

on cell biology elucidated. Work discussed in this review 

has begun to address this challenge. �e contribution of 

NMD to disease states, particularly neurological disor-

ders and cancer will constitute another major direction 

of NMD research. �e discovery of novel inhibitors—and 

potentially also enhancers—of the NMD pathway provide 

the possibility for therapeutic intervention with genetic 

diseases, neurological disorders, and cancer. NMD inhibi-

tion by chemical or genetic means has been demonstrated 

to restore expression of proteins in vitro, but the viability 

of these strategies in vivo—including in humans—remains 

to be tested. Furthering this promising work is paramount 

to applying our ever-expanding understanding of NMD to 

the treatment of human disease.
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