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 
Abstract—This study presents an energy management approach 

for a hybrid energy system comprised of a photovoltaic (PV) 

array and a polymer electrolyte membrane fuel cell (PEMFC). 

Two storage devices (a Li-ion battery module and a 

supercapacitor (SC) bank) are used in the proposed structure as 

a high-energy high-power density storage device. Multi-segment 

converters for the PV, FC, battery, and SC are proposed for grid 

independent applications. Nonlinear differential flatness-based 

fuzzy logic control for dc bus voltage stabilization for power 

plant are investigated. To validate the control approach, a 

hardware system is realized with analog circuits for the PV, FC, 

battery, and SC current control loops (inner controller loops) and 

with numerical calculation (dSPACE) for the external energy 

control loop. Experimental results with small-scale devices [a 

photovoltaic array (800 W, 31 A), a PEMFC (1200 W, 46 A), a 
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Li-ion battery module (11.6 Ah, 24 V), and a SC bank (100 F, 32 

V)] demonstrate the excellent energy-management scheme during 

load cycles. 

 
Index Terms-- Flatness control, fuel cells (FCs), fuzzy logic, Li-Ion 

battery, nonlinear system, photovoltaic (PV), supercapacitor 

(SC). 

I.  INTRODUCTION 

olar power source is one of the most promising renewable 
power generation technology [1], [2]. FCs also show great 

potential to be green power sources of the near future because 
of many advances they have (such as low emission of 
pollutant gases, high efficiency, and flexible modular 
structure) [3]. However, each source has its own drawbacks. 
For instance, solar power is highly dependent on climate while 
FCs need hydrogen-rich fuel. FCs are good energy sources to 
provide reliable power at a steady rate, but they cannot 
respond to the electrical load transients as fast as desired. This 
is mainly due to their slow internal electrochemical and 
thermodynamic responses [4], [5], [6]. 

Because different alternative energy sources can 
complement each other, the multisource hybrid alternative 
energy systems (with proper control) have great potential to 
provide higher quality and more reliable power to customers 
than a system based on a single resource. Moreover, to 
overcome the PV and FC drawbacks, the system can be 
combined with other energy storage devices with fast 
dynamics, such as battery or SC, to form a hybrid power 
generation system [7], [8]. 

The specific energy of batteries is usually high, but the 
specific power is relatively low. On the other hand, the 
specific energy stored in an SC is comparatively lower, but the 
specific power is rather large due to the short time constant of 
double layer charging [9], [10]. Therefore, a combination of 
both devices in a hybrid system appears to be reasonable: the 
high energy content of the battery and the high power of the 
SC [11], [12]. 

In this paper, a hybrid alternative energy system consisting 
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Fig. 1.  Proposed power converter structure of a power plant supplied by a PV, an FC with a Li-Ion battery and supercapacitor storage devices, where pPV (= 
vPViPV), vPV and iPV are the PV power, voltage, and current, respectively;  pFC (= vFC iFC), vFC and iFC are the FC power, voltage, and current, respectively; pBat

(= vBat iBat), vBat and iBat are the battery power, voltage, and current, respectively; pSC (= vSC iSC), vSC and iSC are the SC power, voltage, and current, 
respectively; pLoad (= vBus iLoad), vBus and iLoad are the load power, dc bus voltage, and load current, respectively. PPVo, pFCo, pBato, and pSCo are the output 
powers to the dc link from the converters of PV, FC, battery, and supercapacitor, respectively. 

of PV, FC, Li-Ion battery and SC is proposed. An intelligent-
control (T–S fuzzy logic) law based on a differential flatness 
estimate of the system is proposed for the dc bus voltage 
stabilization. The remainder of the paper is structured as 
follows: the section II details the hybrid energy system and the 
power plant model. In section III, a proof of the flat system 
consisting of the hybrid energy power plant, the fuzzy logic 
control law for dc bus voltage stabilization, the SC, and the 
battery charging strategies are presented. In section IV, the test 
bench results for the proposed system are presented. Finally, 
this paper ends with concluding remarks for further study in 
section V. 

II.  HYBRID POWER PLANT 

A.  System Configuration Studied 

The power converter circuits of the proposed renewable 
hybrid power plant is presented in Fig. 1. The SC and battery 
converters has four-phase parallel bidirectional converters 
(two-quadrant converters) and the FC and PV converters have 
four-phase parallel boost converters. With interleaved 
switching technique operation, the current ripple is smaller, 
consequently, it is achievable to use smaller inductors and 
capacitors at the input and output of the converter [13], [14], 
[15]. In addition, interleaved boost converters can also reduce 
input current ripple and the switching losses, so the efficiency 
of the converter is improved [16], [17], [18] 

For reasons of safety and dynamics, the PV, FC, SC, and 
battery converters are generally regulated principally by inner 
current-regulation loops (or power-control loops) based on the 
classical cascade control structure [5]. The dynamics of inner-
control loops are much faster than those of outer control loops, 
which are described shortly. Consequently, the SC current iSC, 
the PV current iPV, the FC current iFC and the battery current 
iBat are estimated to track completely their set-points of iSCREF, 
iPVREF, iFCREF, and iBatREF, respectively. 

For clarity, the oscilloscope waveforms in Figs. 2 and 3 
portray the steady-state characteristics of the proposed 
interleaved converters for the FC and SC devices at different 
current set-points. The real test bench was implemented in the 
laboratory (refer to Appendix). 

Fig. 2 illustrates the dc bus voltage, the FC voltage, the FC 
current, the first, second, third, and forth inductor currents at 
iFCREF = 44 A; and Fig. 3 portrays the dc bus voltage, the SC 
voltage, the SC current, the first, second, third, and forth 
inductor currents at iSCREF = 20 A (charging). One can 
observe that the source current (total input) is the sum of the 
inductor currents and that the source ripple current is 1/N the 
individual inductor ripple currents. So, the source ripple 
current of the four-cell interleaved converter is nearly zero. It 
means that each source mean current is close to the source rms 
current at the switching frequency of 25 kHz. 
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Fig. 2.  Steady-state waveforms of the proposed four-cell interleaved FC 
converter system at an FC current command of 44 A (rated current). 

B.  Model of the Power Plant 

The inner control loops of the PV, FC, battery, and SC 
powers can be estimated as a unity gain. The PV power set-
point pPVREF, the FC power set-point pFCREF, the battery power 
set-point pBatREF, and the SC power set-point pSCREF are 

 

PVPVPVREFPVPVPVREF ivivpp      (1) 

FCFCFCREFFCFCFCREF ivivpp       (2) 

BatBatBatREFBatBatBatREF ivivpp  .    (3) 

SCSCSCREFSCSCSCREF ivivpp  .     (4) 

Hence, the dc-bus capacitive energy yBus and the 
supercapacitive energy ySC can be written as 

2
BusBusBus

2

1
vCy            (5) 

2
SCSCSC

2

1
vCy                (6) 

 
Fig. 3.  Steady-state waveforms of the proposed four-cell interleaved SC 
converter system at a SC current command of 20 A (charging). 

 
We suppose that there are only static losses in these 

converters, in which rPV, rFC, rBat, and rSC represent the only 
static losses in the PV, the FC, the battery, and the SC 
converters, respectively. As shown in Fig. 1, the derivative of  
dc-bus capacitive energy yBus is given versus pPVo, pFCo, pBato, 
pSCo, and pLoad by the following differential equation: 

 
 

LoadSCoBatoFCoPVoBus pppppy        (7) 

 
where 

2

PV

PV
PVPVPVo 








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v

p
rpp ,              (8) 
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
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III.  ENERGY MANAGEMENT 

In this kind of hybrid system (Fig. 1), there are three 
variables to be controlled: 

 First, the dc bus voltage vBus (or dc bus energy yBus) is 
the most significant variable.  

 Second, it is the SC voltage vSC (or supercapacitive 
energy ySC) (charging supercapacitor). 

 Third, it is the battery energy yBat or the battery state-
of-charge SOC (charging battery). 

and four-control variables: 
 the SC power reference pSCREF, 
 the battery power reference pBatREF, 
 the FC power reference pFCREF, and 
 the PV power reference pPVREF. 

A.  Literature Review: Energy Management Based on Battery 

and Supercapacitor Energy Storages 

The hybrid power sources based battery and supercapacitor 
energy storages have already been investigated before 
recently, for example by Yoo et al. [19] who worked on a 
regulated voltage power sources composed of a diesel engine- 
based generator, lead acid battery bank, and SC bank for a 
four-wheel-driven series hybrid electric vehicle (HEV). This 
vehicle has been designed to operate in two modes: 1). the 
normal mode utilizing the En-Gen set, SC, and battery, and 2). 
the EV mode while utilizing the battery and SC. In normal 
mode, they proposed the dc-link voltage regulated by the SC 
bank based on a PI-linear controller and battery can assist in 
the power supply in the normal operation mode to improve the 
dynamic performance in which the dc–dc converter with the 
battery bank functions both as the dc-link voltage regulator as 
well as the current controller to assist with the power supply. 

Afterthat, Ongaro et al. [20] proposed a power management 
architecture that utilizes both SC cells and a lithium battery as 
energy storages for a PV-based wireless sensor network. This 
work is similar to Yoo’s work [19] that also uses the SC bank 
(2.5 V) to regulate the dc bus voltage of 3.3 V, whereas the 
PV converter realizes the MPPT of the PV module; the PV 
converter is controlled by a feedback loop and the reference is 
determined either by the source MPPT or by the control on the 
SC voltage, depending on the state of the power management 
algorithm based on state-machine algorithm. Moreover, the 
battery converter is a bidirectional boost converter to charge 
and to utilize the battery (4.2 V) at the same time depending 
on the working conditions. This choice is dictated by the 
required voltage level of the battery, respect to the dc power 
bus. 

Afterward, Bambang et al. [21] proposed a linear model 
predictive control (MPC) of FC/battery/SC hybrid source. 
This work is also similar to You’s work [19] that functions 
based on a dc bus voltage regulation (linear PI controller). 
However, MPC received a dc bus current reference generated 
by the dc bus voltage controller; vFC, vBat, and vSC; and then 
MPC generates the current references for FC, battery, and SC, 
in which the dynamic programming is used to find solution for 
MPC’s problem. This seems to have some problems of the 
online computational burden. 

Next, Torreglosa et al. [22] proposed the predictive control 
for the energy management of a FC/battery/SC tramway. Once 
again, they proposed to use a SC bank to regualte a dc bus 
voltage of 750 V, where a linear PI controller generates a SC 
current reference iSCREF. However, the FC and battery current 
references are estimated by the predictive control algorithm.  

The problem of such a control strategy is well known: the 
online computational burden [21], [22] or the definition of 
system states (state-machine [20]) implies control algorithm 
permutations that may lead to a phenomenon of chattering 
when the system is operating near a border between two states. 
Solutions exist to avoid such a phenomenon, of course: hard 
filtering, hysteretic transition, and transition defined by a 
continuous function. 

The hybrid source control strategy presented hereafter is 
not based on the state definition, so naturally it presents no 
problem of chattering near state borders. The basic principle 
here lies in using  

 the SCs (the fastest energy source), for supplying 
energy required to achieve the dc bus stabilization:  
# SCs  DC Bus [19], [20], [21], [22]. 

 the batteries, for charging the SCs:  
# Battery  SCs 

 and, the PV and FC, although obviously the main 
energy sources of the system, for charging the batteries:  
# PV + FC  Battery 

Accordingly, the SC converter is operated to realize a dc 
link voltage regulation. The battery converter is driven to 
maintain the SCs at a given state-of-charge, here the SC 
voltage regulation. Then, the PV and FC converters are also 
driven to maintain the batteries at a given state-of-charge, here 
the battery SOC regulation. So, the three-control loops can be 
seen in Fig. 4. 

B.  DC Bus Voltage Stabilization 

To regulate the dc-bus voltage vBus (DC link stabilization), 
based on the flatness control theory [23][25], the flat outputs 
y, the control input variables u and the state variables x are 
defined as 

Busyy  , SCREFpu  , Busvx        (13) 

From (5), the state variable x can be written as 

 yCyx  Bus2 .         (14) 

From (7)  (12), the control input variable u can be calculated 
from the flat output y and its time derivative (named here 
“inverse dynamics”): 
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Fig. 4.  Control algorithm of FC/PV/Battery/SC power plant. 
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   (15) 
where 

SC
2
SCSCLim 4rvp  .                 (16) 

pSCLim is the limited maximum power from the SC converter. 
Thus, it is clear that  yx   and  yyu , . The proposed 

reduced order model can be studied as a flat system [23]-[25]. 
It should note here that the inverse dynamics term (15) is 

the important expression to prove the system’s flatness 
property; moreover, the differental flatness approach is the 
model based control, so that pPVo, pFCo, and pBato are estimated 
by (8) – (10). The parameter estimation errors [such rFC, rSC, 
rPV, and rBat (8)-(11), (16)] will be compensated by the 

proposed controller presented later. Neverterless, Song et al. 
[26] and Thounthong et al. [27] have already shown that the 
nonlinear differential flatness-based approach provides a 
robust controller in power electronics applications. The 
performance of the control system is hardly affected by the 
error considered in the model parameters. 

The control objective is to regulate the dc bus voltage vBus 
or the dc bus energy yBus (= y1). The controller contains a 
Takagi-Sugeno (T-S) inference engine and two fuzzy inputs: 
the energy error e1 (=y1REFy1) and the differential energy error 

1e , which are carefully adjusted using the proportional gain 

KP and the derivative gain KD, respectively. In addition, the 
fuzzy output level can be set by the proportional gain KO (Fig. 
4) [23]. 

Triangular and trapezoidal membership functions are 
chosen for both of the fuzzy inputs, as revealed in Fig. 5(a). 
There are seven membership functions for each input, 
including NB (Negative Big), NM (Negative Medium), NS 
(Negative Small), Z (Zero), PB (Positive Big), PM (Positive 
Medium) and PS (Positive Small). For the singleton output 
membership function, the zero-order Sugeno model is used, 
where the membership functions are specified symmetrically 
[Fig. 5(b)]. 
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Fig. 5.  Rule base and membership functions. (a) Input membership 
functions. (b) Output membership function. (c) Rule base. 

 

 
Fig. 6.  Battery charging limitation function. 

 
For the rule base, expert suggestions, an experimental 

approach, and a trial and error technique were used to define 
the relationships between the inputs and the output. The data 
representation was in the form of an IF-THEN rule, as shown 
in the following example: 
 

IF 1ie  is NS and ie1  is NS  

      THEN zi (=output) is NB. 

 
As shown in Fig. 5(c), the total number of rule bases is 

therefore equal to 49 rules. To obtain the output of the 
controller, the center of gravity method for the COGS of the 
singletons is utilized as 

 









N

i
i

N

i
ii

w

zw

U

1

1              (17) 

 

where the weights (wi) can be retrieved from 

 iii eew 11 ,max .           (18) 

 

C.  Charging Supercapacitor 

To charge the SC module by the battery bank, equation (7) 
may be written with yBus = constant and without losses (Fig. 1) 
as 

     BatFCPVLoadSC ppppp         (19) 

A desired SC voltage reference is defined as vSCREF. A 
proportional (P) controller is chosen, so that it generates the 
SC power demand pSCDEM: 

 SCSCREFSCSCDEM vvKp        (20) 

where KSC is the controller parameter. Refer to (19), this signal 
pSCDEM becomes pBatEst. To protect the battery bank, the battery 
current must be limited within an interval [limit charging 
current IBatCh (here negative value), limit discharging current 
IBatDis (here positive value). Subsequently, the signal pBatEst 

must be limited by using maximum and minimum functions. 
This results in pBatSAT. To optimize the lifetime of the batteries, 
it is advisable to limit the battery current (or power) slope in 
order to ensure a longer battery lifetime. Therefore, a first-
order filter is chosen for the battery power dynamics as 
follow: 

    )1(tt 1
BatSATBatREF


t

epp


     (21) 

where, 1 is the regulation parameters. 
 

D.  Charging Li-Ion Battery 

To charge the battery, equation (7) may be written with 
yBus = constant and without losses (Fig. 1) as 

    SC

Total

FCPVLoadBat ppppp

p




        (22) 

The familiar battery SOC estimation is defined as [28] 

    
t

ot
Bat

Bat
o di

Q
SOCtSOC 

1
 (23) 

where SOCo is the known battery SOC [%] at the time to, and 
QBat is the rated capacity [Ah]. The simple method to charge 
the battery is via the constant current approach (maximum 
charging current IBatCH is set to approximately QBat/2 - QBat/5; 
for a Li-ion battery, it can be set at IBatCH = QBat) when the 
SOC is far from the state of charge reference SOCREF, the use 
of a reduced current when the SOC is near SOCREF, and zero 
when the SOC is equal to SOCREF [29]. Then, a proportional 
(P) controller is chosen, so that it generates the battery power 
demand pBatDEM: 

 SOCSOCKp  REFBatBatDEM         (24) 

where KBat is the controller parameter. Then, pBatSet = 
min[pBatDEM, pBatLim], in which pBatLim is generated by vBat  
iBatDEM. To avoid overvoltage during charging battery in case 
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of an erroneous SOC estimation, the battery voltage must be 
monitored to limit charging current. Thus, iBatDEM is the 
charging limitation function (Fig. 6) generated by 

    












Bat

BatBatMax
BatChBatDEM 1

V

vV
Ii ,min      (25) 

where VBatMax is the defined maximum battery voltage, and 
ΔVBus is the defined voltage band. 

Therefore, the system generates a total power reference 
pTotal. First, pTotal is considered as the PV power. The power 
must be limited in level, within an interval of the maximum of 
pPVMax (maximum power point tracking MPPTPV [30], [31]; 
here, the perturb and observe (P&O) algorithm [32], [33] has 
been implemented) and the minimum of pPVMin (set to 0 W). 
Second, the difference between pTotal and pPVREF is the FC 
power demand pFCDEM. The FC power must be limited in level, 
within an interval of the maximum pFCMax and the minimum 
pFCMin (set to 0 W), and limited in dynamics with respect to the 
constraints that are associated with the FC [34], [35]. Then, to 
limit the transient FC power, a second order filter is used [36], 
[37], such that the power demand pFCDEM is always limited by 

    )1( 2

2

2
FCDEMFCREF




tt

e
t

etptp


      (26) 

where 2 is the control parameter. So, the proposed control 
algorithm is portrayed in Fig. 4. 

IV.  EXPERIMENTAL VALIDATION 

The experimental tests were performed by connecting a dc 
bus voltage of 60 V loaded by an electronic load. The 
parameters associated with the system regulation loops are 
summarized in Table I. The test bench details can be seen in 
Appendix. Note that equipvalent series resistances in these 
converters are obtained from the offline identification. The 
proposed control loops (Fig. 4) were implemented in the real-
time card dSPACE DS1104 platform using the fourth-order 
Runge–Kutta integration algorithm and a sampling time of 
100 μs, through the mathematical environment of MATLAB–
Simulink. 

Firstly, for the sake of the dc-bus voltage stabilization by 
the supercapacitor module, the oscilloscope waveforms in 
Figs. 7 and 8 portray the dynamic characteristics that are 
obtained during the large load step of 300 W and 490 W, 
respectively. It shows the dc-bus voltage, the load power 
(disturbance), the SC power, and the SC voltage. The initial 
state is in no-load power; the SC storage device is full of 
charge, i.e., the SC voltage = 25 V (vSCREF = 25 V); the battery 
is full of charge (95 % here), and the dc-bus voltage is 
regulated at 60 V (vBusREF = 60 V); as a result, the FC, PV, 
battery and SC powers are zero. After that, one sets pFCREF = 

pPVREF = pBATREF = 0 in order to observe the only SC to 
stabilize the dc bus voltage. At t = 20 ms, the large load power 
steps from 0 W to a constant value (positive transition). One 
can see the SC supplies the transient and steady-state load 
power demand and the similar waveforms in Figs. 7 and 8. 
The dc-bus voltage (dc-link stabilization) is minimally 
influenced by the large load power step. 

 

 
TABLE I 

SYSTEM PARAMETERS 

 
 

Next, Fig. 9 presents waveforms that are obtained during 
the long load cycles. The load will be varied to emulate the 
real environment: light load, over load, and transient 
transitions. Note that the PV array is installed on the roof of 
the laboratory building, so that the solar energy production is 
directly from the sun. 

The graph shows the dc bus voltage, the PV voltage, the FC 
voltage, the load power, the SC power, the battery power, the 
PV power, the FC power, the battery current, the FC current, 
the SC voltage, the battery voltage, and the battery SOC.  

In the initial state, the load power is zero; the battery is full 
of charge, i.e., SOC = SOCREF = 95%; and the SC is also full 
of charge, i.e., vSC = vSCREF = 25 V; as a result, the PV, FC, 
battery, and SC powers are zero. 

At t1, the load power steps from 0 W to the constant power 
of 500 W. The following observations are made: 

 The SC supplies most of the transient step load. 
 At the same time, the PV power increases to a 

maximum power point (MPP) of approximately 400 W 
at t2, which is limited by the maximum power point 
tracker (MPPT). Due to a cloudy sky during the test 
bench validation, the MPP is only 400 W instead of its 
rated PV power 800 W. 

 Simultaneously, the FC and battery powers increase 
with limited dynamics [refer to (21) and (26)] to the 
small constant power at t2. 

 The input from the SC, which supplies most of the 
transient power that is required during the stepped load, 
slowly decreases to zero. 

Next, at t3, the large load power steps from 500 W to the 
constant power of 1,400 W. The following clarifications are 
made: 
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Fig. 7.  Experimental results: Dynamic characteristic of the hybrid source 
during a step load from 0 to 300 W. 

 
Fig. 8.  Experimental results: Dynamic characteristic of the hybrid source 
during a step load from 0 to 490 W. 

 
 The PV power is still at the maximum power level of 

400 W by the MPPTPV. 
 The SC supplies most of the transient step load. 
 The battery is deeply discharged with limited dynamics 

[refer to (21)] to its limited discharging current at 8 A 
at t4. 

 Simultaneously, the FC power increases with limited 
dynamics [refer to (26)] to its limited maximum power 
of 550 W at t5. 

 The input from the SC, which supplies most of the 
transient power that is required during the stepped load, 
slowly decreases, and the unit remains in a discharge 
state after the load step because the steady-state load 
power (1,400 W) is greater than the total power 
supplied by the PV, FC, and battery. 

Subsequently, at t6, the load power steps from 1,400 W to 

zero, and SOCREF (= 95%) > SOC (= 93%); vSCREF (= 25 V) > 
vSC (= 16 V). As a result, the SC changes its state from 
discharging to charging, demonstrating the six phases. 

 First, the PV still supplies its limited maximum power 
of around 400 W; the FC still supplies its limited 
maximum power of 550 W; and the battery supplies its 
limited discharging current of +8 A. This means the 
PV, FC, and battery supply powers to charge only the 
SC. 

 Second, at t7 (vSC = 21 V), the SC is nearly charged at 
25 V, which afterward reduces the charging power. As 
a result, the FC and battery powers are reduced. But, 
the PV still supplies its limited maximum power of 
around 400 W. 

 Third, at t8 (SOC = 92.8 %), the battery changes its 
state from discharging to charging. This means the PV 
and FC supply powers to charge both the SC and 
battery, intelligently. 

 Forth, at t9, the FC power reduces to zero, so that only 
the PV supplies power to charge both the SC and 
battery. Simultaneously, the PV power is gradually 
reduced. 

 Fifth, at t10, the battery is charged at its limited 
charging current of 4 A. 

 Sixth, at t11, the SC is fully charged at 25 V; then, the 
SC power is zero. At the same time, the battery is 
nearly charged at 94%, which subsequently reduces the 
charging current.  Finally, the battery will be charged 
by the PV to full-of-charge. 

Finally, Fig. 10 presents waveforms that are obtained 
during the short load cycles. The graph shows the dc bus 
voltage, the FC voltage, the PV voltage, the load power, the 
SC power, the battery power, the PV power, the FC power, the 
battery current, the FC current, the battery voltage, the SC 
voltage, and the battery SOC. In the initial state, the load 
power is zero, and the storage devices are fully charge, i.e., vSC 
= 25 V and battery SOC = 95%; as a result, the FC, PV, SC, 
and battery powers are zero. At t1 (t = 40 s), the load power 
steps to the final constant power of around 1300 W. The 
following observations are made: 

 The SC supplies most of the 1300W power that is 
required during the transient step load. 

 Synchronously, the battery power increases with 
limited dynamics [refer to equ. (21)] to a limited 
discharge current of +8 A (= IBatDis) at t2. 

 Simultaneously, the PV power increases to a maximum 
power point (MPP) of around 400 W at t3, which is 
limited by its MPPT automatically. 

 Concurrently, the FC power increases with limited 
dynamics [refer to equ. (26)] to a maximum power of 
550 W at t4. 
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Fig. 9.  Experimental results: power plant response during long load cycles. 
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Fig. 10.  Experimental results: power plant response during short load cycles. 
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 The input from the SC, which supplies most of the 
transient power that is required during the stepped load, 
slowly decreases and the unit remains in a discharge 
state after the load step because the steady-state load 
power (approximately 1300W) is greater than the total 
power supplied by the FC, PV, and battery. 

Subsequently, at t5, the load power steps from 1,300 W to 
zero, and battery SOCREF (= 95%) > SOC (= 93.7%); vSCREF (= 
25 V) > vSC (= 16 V). As a result, the SC changes its state 
from discharging to charging, demonstrating the six phases. 

 First, the PV still supplies its limited maximum power 
of around 400 W; the FC still supplies its limited 
maximum power of 550 W; and the battery supplies its 
limited discharging current of +8 A. This means the 
PV, FC, and battery supply powers to charge only the 
SC. 

 Second, at t6 (vSC = 21 V), the SC is nearly charged at 
25 V, which afterward reduces the charging power. As 
a result, the FC and battery powers are reduced. But, 
the PV still supplies its limited maximum power of 
around 400 W. 

 Third, at t7 (SOC = 93.7 %), the battery changes its 
state from discharging to charging. This means the PV 
and FC supply powers to charge both the SC and 
battery, intelligently. 

 Forth, at t8, the FC power reduces to zero, so that only 
the PV supplies power to charge both the SC and 
battery. Simultaneously, the PV power is gradually 
reduced. 

 Fifth, at t9, the battery is charged at small current; the 
SC is fully charged at 25 V; then, the SC power is zero. 

 Sixth, at t10, the battery is fully charged at 95%; then, 
the FC, PV, SC, and battery powers are zero. 

One can observe that the power plant is always energy 
balanced (pLoad = pPV + pFC + pBat + pSC) when using the 
proposed original control algorithm. 

V.  CONCLUSION 

The main contribution of this present work is to propose an 
original control algorithm for a dc distributed generation 
supplied by the PV/FC sources, and the storage devices: SCs 
and Li-Ion battery. The combined utilization of batteries and 
SCs is the perfect hybridization system of a high energy and 
high power density. The control structure presents how to 
avoid from the fast transition of the battery and FC powers, 
and then reducing the battery and FC stresses. As a result, 
hybrid power source will increase its lifetime. However, it is 
beyond the scope of this paper to demonstrate the power 
sources lifetime. 

Experimental results in our laboratory carried out using a 
small-scale test bench, which employs a PEMFC (1.2 kW, 46 
A), a PV (800 W, 31 A) and storage devices composed of SC 
bank (100 F, 32 V) and Li-Ion battery module (11.6 Ah, 24 
V), corroborate the excellent performances of the proposed 
energy management during load cycles. 

Finally, the nonlinear flatness-based control is a model 
based control approach. It requires to know system parameters 

(such rFC, rSC, etc…) to obtain the differential flatness property 
[refer to the dynamics term (15)]. For future works, some 
online state-observers (or parameter-observers) [38] will be 
used to improve the system performances. 

APPENDIX.  TEST BENCH DESCRIPTION OF THE POWER PLANT 

The prototype test bench of the studied power plant was 
implemented in the laboratory, as illustrated in Fig. 11. The 
prototype PV converter of 2 kW, the FC converter of 2 kW, 
the battery converter of 4 kW, and the SC converter of 4 kW, 
were realized in the RERC laboratory (Fig. 11). Details of the 
real power sources and storage devices are presented in Table 
II.  

The PV, FC, battery, and SC current regulation loops were 
realized by analog circuits as inner current control loops. The 
control algorithms (external control loops), which generate the 
current references, were implemented in the real time card 
dSPACE DS1104 (as presented in Fig. 11). 

 

Fig. 11.  Photograph of the experimental setup in the laboratory      
(Renewable Energy Research Centre, KMUTNB). 

 

Fig. 12.  Photograph of the implement converters. 
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Table II. 
SPECIFICATIONS OF THE STORAGE DEVICES AND THE POWER SOURCES 
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