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CONTROL OF LEADING-EDGE VORTICES ON A DELTA WING 1

by

C. Magness, O. Robinson, and D. Rockwell

I. INTRODUCTION

The unsteady flow structure of leading-edge vortices on a delta wing has been

investigated using new types of experimental techniques, in order to provide insight into the

consequences of various forms of active control. These investigations involve global control of
the entire wing and local control applied at crucial locations on or axijacent to the wing.
Transient control having long and short time-scales, relative to the convective time-scale

C/Uoo, allows substantial modification of the unsteady and time-mean flow structure.

Global control at long time-scale involves pitching the wing at rates an order of

magnitude lower than the convective time-scale C/Uoo, but at large amplitudes. The

functional form of the pitching maneuver exerts a predominant influence on the trajectory of
the feeding sheet, the instantaneous vorticity distribution, and the instantaneous location of
vortex breakdown.

Global control at short time-scales of the order of the inherent frequency of the shear
layer separating from the leading-edge and the natural frequency of vortex breakdown shows

that "resonant" response of the excited shear layer-vortex breakdown system is attainable.

The spectral content of the induced disturbance is preserved not only across the entire core of

the vortex, but also along the axis of the vortex into the region of vortex breakdown. This

unsteady modification results in time-mean alteration of the axial and swirl velocity fields and
the location of vortex breakdown.

Localized control at long and short time-scales involves application of various transient

forms of suction and blowing using small probes upstream and downstream of the location of

vortex breakdown, as well as distributed suction and blowing along the leading-edge of the

wing applied in a direction tangential to the feeding sheet. These local control techniques can

result in substantial alteration of the location of vortex breakdown; in some cases, it is possible
to accomplish this without net mass addition to the flow field.

II. EXPERIMENTAL TECHNIQUES

The unsteady flow structure from the leading-edge of a delta wing subjected to various

forms of active control has been characterized using new types of laser-diagnostic systems and

image-processing techniques. These methods are integrated with active control systems, driven
by central microcomputers. Using these approaches, it is possible to impose active control of
arbitrary functional form and examine the response of the instantaneous flow structure. The

two- and three-dimensionM flow structure is interpreted with the aid of newly-released graphics
supercomputers.

III. GLOBAL CONTROL AT LONG TIME SCALES

The concept of a phase shift between the unsteady motion of the wing and the

development of the leading-edge vortex is well known. In qualitative visualization studies,

Lambourne et al. (1969), Cad-el-Hak and Ho (1985a,b, 1986), and Atta and Rockwell (1989)

reveal various features of the visualized cross-section of the vortex during its unsteady
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development. There also occurs a phase shift of the location of vortex breakdown relative to
the wing motion; it has been characterized from various perspectives by Woffelt (1986),

Rockwell et al. (1987), Atta and Rockwell (1987), Reynolds and Abtahi (1987), Gilllam,

Robinson, Walker, Wisser (1987), and Lemay, Bati11, and Nelson (1988).

The following unresolved issues are the focus of this investigation: the effect of

arbitrary forms of pitching maneuver on the instantaneous structure of the leadlng-edge vortex

including trajectories of feeding sheets and distributions of vorticity; the influence of vortex
breakdown over a portion of the cross-section of the vortex; and the response of the axial

location of vortex breakdown in relation to all of these features.

Concerning the nature of the instantaneous structure of the leading-edge vortices,

obtained from particle tracking techniques, the following represent the major findings:

(i) For locations upsteam of vortex breakdown, the shape, degree of concentration,
and the location of the maxima of the instantaneous vorticity distribution across

the vortex core are quite different for the up- and downstrokes of the continuous

pitch-up-down maneuvers of the wing. This finding emphasizes the importance of
accounting for the instantaneous cross-sectional structure of the vortex, and not

simply the instantaneous location of vortex breakdown, in determining the overall

loading on the wing.

(ii) Comparison of the vorticity distribution of the leading-edge vortex with the
trajectory of the feeding sheet from the edge of the wing shows the relationship
between the possible trajectories of the feeding sheet and the corresponding

vorticity field. A major factor is the occurrence or non-occurrence of vortex
breakdown within the core of the vortex.

Figure 1 shows an excerpt from the current investigation. Contours of constant

vorticity were obtained by direct particle tracking and image processing techniques. The

experimental parameters correspond to a pitching motion of 15" < a < 40" for a continuous

pitch-up-down motion at a pitching rate &C/2Uoo = 0.15. The surface of the wlng is
indicated by the bold horizontal line. The contours of constant vorticity on the left side

correspond to the pitch-up portion of the maneuver, and those on the right side to the pitch-

down portion. The differences in elevation, orientation, and scale of the vorticity distributions

are evident. They are dependent upon the history of the wing motion and appear to be most

pronounced at the smallest angle of attack a = 20".

The importance of accounting for vortex breakdown within the core of the vortex is

illustrated in Figure 2. Instantaneous positions of the feeding sheets and contours of constant

vorticity are shown for the same parameters as in Figure 2, but at a = 40" for two different

types of maneuvers. The shaded black region represents the extent of breakdown within the
vortex. For the simple pitch-down motion, a = 40" represents the static condition

immediately preceding the onset of the maneuver, while the pitch-up-down case at a = 40"

includes the integrated history of the upstroke portion of the maneuver. It is evident that the

positions of the feeding sheet and the contours of vorticity are substantially different for these

two cases.

The structure of the leading-edge vortex at a given cross-section must, of course, be

considered in conjunction with the axial movements of the location of vortex breakdown.

Magness, Robinson, and Rockwell (1989) preliminarily addressed the effect of the type of

pitching maneuver on the general response of the vortex breakdown location as a function of

angle of attack. Recent studies have focussed on the vortex response to different classes of
maneuver, and the detailed structure of the leadlng-edge vortices. Regarding the response of

the location of the vortex breakdown, the major findings are:
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(i) Continuous pitch up-down motions of the wing can preclude occurrence of vortex

breakdown on the upstream portion of the wing, relative to that occurring for
simple pitch-up and pitch-down motion where relaxation processes having long
time scales are allowed to occur.

(ii) For the continuous pitch-up-down maneuver of the wing, the consequence of not

allowing the vortex breakdown to relax to its equilibrium state is to produce

upstream movements of the vortex breakdown location towards the apex for
initial decreases in angle of attack a.

(iii) Combinations of simple ramp-type motions to form a hybrid pitching motion
produce overshoots of the static characteristic of vortex breakdown location versus

angle of attack, beyond that attainable with any of the simple ramp motions
alone.

Figure 3 shows plots characterizing the first two of these three principal findings at two
extreme values of reduced frequency. This sort of characterization of the breakdown location

serves as a basis for detailed investigations of the flow structure of the leading-edge vortices.

IV. GLOBAL CONTROL AT SHORT TIME SCALES

Perturbation of a delta wing in the pitching mode at sufficientlyhigh frequency and

very low amplitude allows control of the detailed flow structure of the leading-edge vortex. In

essence, the vortex development and breakdown on a delta wing involves two classes of

characteristic frequencies: the inherent instabilityfrequency of the shear layer from the

leading-edge; and the frequency at which vortex breakdown occurs. The major issues here are:

the structure of the perturbed feeding sheet; the nature of the perturbed onset of vortex

breakdown; and the corresponding alteration of the time-mean vortex flow.

Simple considerations of hydrodynamic instability show that the processes of

disturbance amplification in the shear layer and in the vortex core during the breakdown

process are receptive to a wide range of excitation frequencies. As a consequence, it ispossible

to attain "resonant" excitation, leading to large alteration of the separating shear layer from

the edge of the wing and the breakdown of the vortex core. The preliminary phase of this

investigation was reported by Rockwell et al. (1987). This work is described in its completed

form by Kuo, Magness, and Rockwell (1989).

The principal findings of this investigation are, in short:

(i) Small amplitude perturbations of the leading-edge lead to substantial alteration of

the structure of the shear layer separating from it without occurrence of the
classical mechanism of small-scale vortex coalescence.

(ii) The spectral content of the disturbance induced in the shear layer separating from

the leading-edge is preserved not only across the core of the vortex, but also along
the streamwise extent of the core into the region of vortex breakdown.

(iii) Substantial alteration of the time-mean characteristics of the leading-edge vortex
include changes in the axial and swirl velocity fields and modification of the
location of vortex breakdown.

Selected excerpts describing certain of the foregoing phenomena are given in Figures 4

through 6. Figure 4 shows the visualization obtained by locating a vertical hydrogen bubble
wire along the leading-edge of the wing. The laser sheet that illuminated the marker bubbles

was translated to the downstream locations x/C indicated in the photos. Excitation frequency
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fe is normalized with respect to the inherent instability frequency f_ of the shear layer
separating from the leading-edge. Large-scale vortical structures are induced over the cross-

section of the vortex in the presence of excitation at the inherent instability frequency of the
feeding sheet. No small-scale vortex coalescence occurs.

Figure 5 shows spectra of the streamwise component fi, i.e. Sfi, taken at various
locations upstream and downstream of the onset of vortex breakdown. The edge excitation

frequency fe is normalized by the inherent vortex breakdown frequency fb" For excitation at

the first harmonic of the vortex breakdown frequency, i.e. at fe/f b = 2, the spectral content
shows predominance of the excitation frequency and its associated higher harmonics in regions

before and after occurrence of vortex breakdown. In this case, the higher harmonic content

persists well downstream of the onset of breakdown. For excitation at fe/fl_ = 1, there also
occur a large number of higher harmonics due to the strong nonlinearity of the shear layer
response. This spectral content is maintained over the entire cross-section of the vortex core

prior to the occurence of breakdown, emphasizing the nonoccurence of vortex-vortex

interactions (i.e. coalescence) in the shear layer as it is wrapped inwards toward the center of

the core. Downstream of vortex breakdown, the predominant excitation peak at fe/f b = 1
persists, but the coherent higher harmonic components are attenuated.

Figure 6 shows contours of constant mean axial velocity U and constant fluctuating
velocity fi over the entire cross-section of the leaMing-edge vortex at values of excitation

frequency fe, relative to the inherent vortex breakdown frequency fb' i.e. f__e/lf_ -- 1 (left
column) and 2 (right column). The effect of the matched excitation at fe/f h --_.s to induce

large amplitude fluctuations in the separating shear layer surrounding the core of the vortex,
located at the peak of the contours of constant U and designated by the symbol +. At

fe/f b = 2, the location of the core of the vortex moves downward towards the surface of the
wing and outward towards the leading-edge. The maximum amplitude of the fluctuation fi is
coincident with the location of the core of the vortex. This coincidence of the maxima of U

and fi corresponds to the early onset of vortex breakdown at the higher excitation frequency

fe/fb = 2.
t

V. LOCAL CONTROL AT MODERATE AND LONG TIME SCALES

Local control involves localized injection or suction of the flow at defined locations in

the flow field and/or the surface of the wing. In a practical sense, this can be achieved by use

of small probes, whose tips are located at crucial locations in the vortex core, or slits along the

leaxling-edge of the wing. In essence, these techniques simulate localized point sources/sinks or
distributions of them. The major issues here are: determination of the most sensitive location

of the applied control; and optimization of the functional form of the unsteady control in the

form of blowing/suction.

For the case of localized blowing along the leading-edge of the wing, Wisser, Iwanski,

Nielson, and Ng (1988) most recently have revealed an increase in length of the vortex core

prior to breakdown and an increase in lift acting on the wing. Not until this past year has the

case of localized suction been explored; such simulations of a localized sink are described by

Parmenter and Rockwell (1989). Location of a probe in the region downstream of vortex

breakdown allows efficient restabilization of the vortex core. Among the principal findings are:

(i) Locations of the simulated point sink downstream of the occurrence of vortex

breakdown produces stabilization of the core; such stabilization is attainable at

relatively low values of dimensionless suction coefficient Cp. The transient
response time of the stabilization process due to an imposed transient (unsteady

sink flow) scales as the magnitude of the imposed transient suction.

(ii) Hysteresis effects occur due to relaxation of the vortex

stationary wing) after abrupt onset or cessation of suction.
effects simulate those on a pitching delta wing.
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Localized control involving simulations of distributed sources/sinks in the form of a
blowing/suction slit along the leading-edge have received little attention except for the steady

blowing experiments of Wood and Roberts (1987), Wood, Roberts and Lee (1987) and
Roberts, Hesselink, Kroo, and Woods (1987), and the (high frequency) sinusoidal

perturbations employed in the investigation of Gad-el-Hak and Blackwelder (1987). The
consequences of this type of control on the structure of the large-scale vortex have remained
unexplored. Moreover, the possible modification of the nature and location of onset of vortex

breakdown has not been pursued. Important considerations in our recent investigations

include not only the case of steady blowing, but also the corresponding case of steady suction
and, most significantly, the case of cyclic blowing and suction. The major findings of this
investigation are:

(i) Both steady suction and steady blowing are effective at low values of Cp, i.e. both
result in lengthening of the vortex core prior to the onset of breakdown.

(ii) The most effective and robust control involves cyclic suction and blowing at an
appropriate frequency. This approach involves no net mass addition to or from
the flow.

The use of cyclic blowing and suction applied tangentiMly in the form of a jet V.(t) at
the rounded leading-edge is represented in Figure 7; it is compared with the case Jof no

blowing/suction, i.e. V;(t) = O. (These data were acquired by Professor W. Gu, a member of
our research group.) (_omparison of these velocity fields of Figure 7 suggests that application

of the control results in restabilization of the vortex from a stalled condition to a well-defined,
large-scale vortical structure and downward deflection of the separation streamline from its
approximately horizontal position. These trends are associated with downstream movement of
the location of vortex breakdown.
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' Pitch-g_ Pitch-up-down

cz= 25°

= 20°

Figure 1: Instantaneous contours of constant vorticlty at midchord for continuous pitch-up-

down maneuver of delta wing. Sweep angle -- 75"; pitch rate &C/2U -- 0.15; pitching axis at
midchord.

Pitch-up-down Pitch-down

c_= 40°

Figure 2: Instantaneous contours of constant vorticity and positions of feeding sheet at

a ---- 40" for continuous pitch-up-down and pitch-down maneuvers. Sweep angle -- 75"; pitch

rate &C/2U = 0.5; pitching axis at midchord.
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Figure 3: Instantaneous location of vortex breakdown as function of angle of attack for three
basic types of delta wing maneuvers and two extreme values of dimensionless pitching rate.

Sweep angle of delta wing -- 75".
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Figure 4: Visualization of flow structure of separating shear layer at several cross-sections

along leading-edge of delta wing. Ratio of excitation frequency fe to inherent instability

frequency fi of separating shear layer is: 0 (left column); 0.5 (middle column); and 1.0 (right
column). Angle of attack a "- _ + a 0 sin 21rfet; i_ -- 20", a 0 = 1".
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Figure 5: Overview of evolution of spectral content of vortex core upstream and downstream

of vortex breakdown. Ratio of excitation frequency fe to vortex breakdown frequency fb has
values indicated, fi/fb = 2.
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Figure 6: Distribution of mean Ii component of axial velocity over cross-section of vortex
upstream of occurrence of vortex breakdown. Data acquired at reference station x/C = 0.38

upstream of vortex breakdown. Ratio of excitation frequency fe to frequency fb of inherent
vortex breakdown is fe/f, = 1 (left column) and fe/f b = 2 (right column). Ratio of inherent

instability frequency fi ot seuar_ ing shear layer to frequency fb is fi/fb = 2.
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edge. Laser sheet defining cross-section of visualized vortex located at approximately one-third
chord.
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OVERVIEW

Concepts of Control: Time-Scales and
Vorticity Budgets

Experimental Approaches

Global Control at Small Time-Scales

tu/c << 1

Global Control at Large Time-Scales
tu/c >> 1

Local Control at Moderate Time-Scales

tu/c - 1
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EXPERIMENTAL APPROACHES

. • Quantitative Flow Visualization:
Measurements

J Bubble Marker Tracking

Particle Tracking

J Particle Imaging

• Quantitative Flow Visualization:
Two- and Three-Dimensional Images

• Local Velocity Measurement: Laser-Doppler
Anemometry

• Force and Pressure Measurements

Global Velocity

Construction of
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EXPERIMENTAL APPROACHES

Integrated Active Control

Centralized Computer Control of

[] Wing Motion (Global);
Blowing / Suction (Local)

u Laser Firing

. Image Shifting System

[] Camera(s)

a Data Acquisition Systems

v Arbitrary Functional Forms of Global and
Active Control
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GLOBAL CONTROL AT SMALL TIME SCALES
tu/c << 1

Forced Instability and Concentration of Vorticity in
Feeding Sheet

Resonant Interaction of Instabilities of Feeding Sheet
and Vortex Breakdown

Preservation of Spectral Content Throughout Leading-
Edge Vortex

Modification of Time-Mean Axial and Swirl Velocity
Components
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GLOBAL CONTROL AT MODERATE
AND LARGE TIME SCALES

tU/C-1 or _>_>1

Response of Leading-Edge Vortex in Absence of
Vortex Breakdown: Sensitivity to Integrated History
of Motion

Response of Leading-Edge Vortex in Presence of
Vortex Breakdown: Nonlinear Coupling of Feeding
Sheet-Vortex Breakdown-Stall Zone

Response of Vortex Breakdown: Sensitivity to Class
of Forcing

Response of Feeding Sheets and Vorticity Distributions
with and without Vortex Breakdown: Sensitivity to
Class of Forcing
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LOCALCONTROLATMODERATETIMESCALES
tU/C - 1

Response of Leading-Edge Vortex to Time-Dependent
Variations of Leading-Edge Separation: Restabilization
of Vortex Core

Response of Leading-Edge Vortex: Structure in Cross-
Flow Plane During Restabilization in Relation to
Separation Conditions

Response of Leading-Edge Vortex: Variations of
Feeding Sheet and Vorticity Distributions of
Restabilized Vortex
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