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�is work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. �e proposed
methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from�eodorsen’s
theory. �e mathematical model is written in the state space representation using rational function approximation to write the
aerodynamic forces in time domain.�e control system is designed using the fuzzy Takagi-Sugenomodeling to compute a feedback
control gain. It useds Lyapunov’s stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem.
Time simulations with di�erent initial conditions are performed using a modi	ed Runge-Kutta algorithm to compare the system
with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems
with discontinuous nonlinearities.

1. Introduction

�e requirement for more accurate tools for predictions of
nonlinear e�ects has motivated many research groups to
investigate aeroelastic systems considering nonlinearities. In
particular, the problem involving freeplay in control surfaces
has called attention of various researchers because it can be
a cause of limit cycle oscillation (LCO) leading to serious
consequences such as fatigue, pilot handling/ride quality,
con	ned manoeuvrings envelope, weapon aiming of military
aircra
, and induced �utter.

Another motivation to consider control surface freeplay
is that the requirements for aircra
 design according to mil-
itary speci	cation can be quite di�cult to achieve in prac-
tice, increasing the manufacturing and maintenance costs.
Considerable experimental and analytical e�orts have been
devoted to obtain representative aeroelastic models and
develop methodologies to study the freeplay problem.

In this context, many works in literature have presented
studies to understand and characterize nonlinear aeroelastic
behaviour. Conner et al. [1, 2] presented results for a typical
airfoil section based on time domain simulations.�e authors
showed accuracy between numerical and experimental data.
Tang and colleagues published theoretical and experimental
results considering an aeroelastic apparatus and the high
order Harmonic Balance methods [3]. �is method was
introduced by Krylo� and Bogoliubo� in 1947 and it has been
studied by di�erent researchers as shown in [4–8].

Kholodar and Dickinson studied the e�ects of aileron
freeplay in di�erent con	gurations of a real aircra
 [9]. Time
domain simulations were used to con	rm the limit cycles
previously predicted using the Harmonic Balance method.
Also considering similar approaches, Anderson and Mortara
presented results for the F-22 aircra
 including control
surface freeplay [10]. �e authors discussed the limits of
freeplay to keep the system stable. Recently, Abdelke	 and
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Figure 1: Typical section airfoil.

colleagues performed numerical and experimental investiga-
tions using a pitch and plunge rigid airfoil supported by a
torsional spring. �e authors studied di�erent mathematical
representations of freeplay nonlinearity, such as polynomial
expansion and hyperbolic tangent [11, 12]. Also considering a
two degrees of freedom airfoil, Guo andChen employedmul-
tivariable and Floquet theories to detect the fold bifurcation
and amplitude jump phenomenon in supersonic �ow [13].

Several control strategies with focus on LCO suppression
on aeroelastic systems have been developed in these last years.
Kurdila et al. [14] presented an extensive review of non-
linear control methods for high energy LCO. Experimental
works on controlling aeroelastic apparatus are presented in
[15, 16]. In [17] Li et al. designed a suboptimal controller
using the state-dependent Riccati equation considering cubic
nonlinearity. Adaptive 	lters cut-o� frequency with feedback
gain has also been used to suppress limit cycles and chaotic
motions [18]. �e authors investigated an augmented con-
troller with time delay parameter to determine regions of
instabilities in closed-loop con	gurations.

�is paper proposes a control strategy based on fuzzy
Takagi-Sugeno (FTS) solved using linear matrix inequalities
(LMIs) to control the LCO of a nonlinear aeroelastic system.
Techniques based on LMIs have been used to solve linear
aeroelastic problems, mainly considering structural uncer-
tainties [19, 20]. However, their application for solving non-
linear aeroelastic problems is rarely found in the literature.
�e advantage of using LMIs to design a control strategy is
based on the robust interior point algorithms that provides a
guarantee for 	nding optimal solutions, if that exists.

�e aeroelastic system is formulated in state space form
and is integrated in time domain using the forth order Runge-
Kuttamethod andHénon’s technique [21]. Hénon’s technique
is used to locate the switching points in the procedure
of numerical integration, as discussed herein. �eodorsen
aerodynamic forces are transformed to time domain using
rational function approximation. However, the proposed
approach is valid for other aerodynamic theories. Finally,
numerical simulations are performed on the benchmark
airfoil problem to demonstrate that LMIs combined with FTS
modeling can be used to design controllers for nonlinear
aeroelastic problems.

Transition point

�(t)

T�(t)

��

Figure 2: Freeplay nonlinearity.

2. Aeroelastic System with Freeplay

�e typical section airfoil shown in Figure 1 with a trailing
edge control surface is normally used to represent an aeroe-
lastic system with three degrees of freedom that includes
pitch �(�), plunge ℎ(�), and control surface rotation �(�). �is
modeling was previously proposed in [22]. �e structural
properties of this system are represented by the springs��, �ℎ, and ��, structural damping, and inertial properties.
�eodorsen theory is used to compute the aerodynamic
forces; however, the same control strategy could be adopted
for other aerodynamic theories [22, 23].

�e nonlinear discontinuity (freeplay) is considered to
occur in the control surface spring ��. So that the equation
of motion for this system can be represented by

Mü (�) +Du̇ (�) + F (K, u, �) = 	Qu (�) + B��u� (�) , (1)

where M and D are, respectively, the structural mass and
damping matrices, Q is a matrix of aerodynamic coe�cients

that depend on the airfoil geometry, 	 = (1/2)
�2 is the
dynamic pressure, and 
 is the air density and � is the
airspeed. B�� is a matrix of input (forces or moments). �e

vector u(�) = {ℎ(�) �(�) �(�)}� represents the physical dis-
placements and u�(�) is the control force. �e vector F rep-
resents the elastic restoring moment which depends on the
control surface restoring moment ��(�) shown in Figure 2.

By considering a freeplay amplitude of 2, the elastic
restoring moment can be written as

F (K, u, �) = {�ℎ(�) ��(�) ��(�)}� such that

�ℎ (�) = �ℎℎ (�) ,
�� (�) = ��� (�) ,
�� (�) = 0 if

����� (�)���� ≤ ,
�� (�) = �� [� (�) − ] if

����� (�)���� > .

(2)



Shock and Vibration 3

�e expressions in (2) are rearranged in amatrix form and
the nonlinear function�nl is introduced such that the sti�ness
is de	ned as a nonlinear structural sti�ness matrix Knl given
by

Knl = [
[
�ℎ 0 00 �� 00 0 ����	]] �⇒ F (K, u, �) = Knlu (�) , (3)

where

�nl = 0 if
����� (�)���� ≤ ,

�nl = 1 − � (�) if
����� (�)���� > . (4)

2.1. Representation in State Space Form. In order to obtain a
nonlinear state space model, a rational function is used to
write the aerodynamic forces in time domain. Jones in 1940
solved this problem using a rational function approximation
to approximate unsteady aerodynamic loads for the typical
section [24].

A
er Jones’ work, di�erent formulations have been used
to approximate generalized aerodynamic forces for arbitrary
motion, as, for instance, the approach based on Chebyshev’s
polynomials introduced by Dinu and colleagues with focus
on aeroservoelasticity [25]. Karpel proposes the Minimum-
State method with accuracy per model order superior to
previous works, but it is more complicated and computing-
time consuming because it involves nonlinear problems [26].
Vepa proposes a numerical technique based on Padè approx-
imation and according to the author the main advantage of
this method is that it can be generalized to three-dimensional
li
ing surfaces [27]. Recently, Biskri and colleagues present a
very interesting method based on a combination of the Least
Squares (or Roger’s approach) andMinimum-State methods,
of which themain idea is tominimize the number of lag terms
without passing through a long iterative algorithm [28].

In this paper Roger’s approach is used. �is approxi-
mation involves identifying every matrix Q
 shown in (5)
using a Least Square algorithm as proposed by Roger [29]
and summarized in [30]. �e approximation contains a
polynomial part representing the forces on the typical section
acting directly connected to the displacements u(�) and their
	rst and second derivatives. Also, this equation has a rational
part representing the in�uence of the wake acting on the
section with a time delay. Consider

Q (�) ≈ [
[
2∑

=0

Q
�
(  �)
 + �lag∑

=1

Q(
+2) ( �� + ( /�) �
)]] u (�) ,
(5)

where � is the Laplace variable, $lag is the number of lag terms,�
 is the %th lag parameter (% = 1, . . . , $lag), and  is the
aerodynamic semichord.

Substituting (5) into (1) and considering (3) it is possible
to write the equation of motion for the aeroelastic system in
state space format:

ẋ (�) = Anlx (�) + Bu� (�) , y (�) = Cx (�) , (6)

where x(�) = {u̇(�) u(�) u�(�)}� is the state vector and u�(�)
are states of lags required for the approximation of matrixQ.
�e matrix of outputs C = [CV C� C] has dimension 2& ×&(2 + $lag), where CV and C� are, respectively, the velocity
and displacement output matrices and the submatrix C has
only zeros to complete the matrix dimension, and & is the
number of degrees of freedom. MatrixAnl is presented in the
following form:

Anl

=
[[[[[[[[[[
[

−M−1� D� −M−1� K�(nl) 	M−1� Q3 ⋅ ⋅ ⋅ 	M−1� Q(2+�lag)
I 0 0 ⋅ ⋅ ⋅ 0

I 0 (−� )�1I 0 ⋅ ⋅ ⋅
...

... 0 d ⋅ ⋅ ⋅
I 0

... ⋅ ⋅ ⋅ (−� )��lagI

]]]]]]]]]]
]

,

(7)

where

M� = M − 	(  �)2Q2, D� = D − 	(  �)Q1,
K�(nl) = Knl − 	Q0, B = [M−1� B�� 0]�,

(8)

where M� and D� are, respectively, the aeroelastic mass and
damping matrices, K�(nl) is the nonlinear aeroelastic sti�ness
matrix, B is the input matrix, I is an identity matrix, and 0 is
a matrix of zeros with appropriated dimension.

2.2. Time Integration. To calculate the time response of the
system with freeplay a modi	ed 4th order Runge-Kutta
algorithm using Hénon method is used. Hénon method is
necessary in order to identify changes in the sti�ness due to
the freeplay. �is approach is used to minimize integration
errors mainly with respect to the phase shi
s.

�emain idea considered inHénon’s method is to change
the independent variable (time) to the degree of freedomwith
freeplay (a spacial variable) always that the sti�ness changes
with the freeplay region. In these cases, the time becomes
the dependent variable and the integration step is done in
the degree of freedom related to the freeplay. �e size of
the step is the amount necessary for this degree of freedom
to coincide with the transition points shown in Figure 2.
Once the control surface position is the transition point,
the system of equations is rewritten considering the time as
the independent variable. See complementary information in
[2, 21, 31].
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3. Development of Fuzzy
Takagi-Sugeno Controller

A fuzzy model uses rules, which are linguistic IF-THEN
statements involving fuzzy sets, fuzzy logic, and fuzzy infer-
ence. �ese rules play a key role in representing expert
control/modeling knowledge and experience and in linking
the input variables of fuzzy controllers/models to output
variable (or variables). To explain the procedure, consider
the open loop nonlinear aeroelastic system described in
following form:

5̇� (�) = �∑

=1

��
 (x (�)) 5
 (�) , (9)

where u� = 0,6 = $(2 + $lag), 7 = 1, . . . , 6, and ��
(x(�)) = ��
represents the �th nonlinear function, where � = 1, . . . , 6nl ≤62.

�e nonlinear system described by (9) can be represented
by the Takagi-Sugeno model using the following rule:

Rule 7:
if 81 (�) is 9�1 and . . . and 8� (�) is 9��
�en ẋ (�) = A�x (�) , y (�) = Cx (�) , 7 = 1, . . . , :,

(10)

where9�
 is the fuzzy set and : is the number of model rules;81(�), . . . , 8�(�) are known premise variables that in general
may be functions of the state variables, external disturbances,
and/or times. Each linear model represented by A� is called a
subsystem [32].

Taniguchi et al. [33] present a simple method to identify
the subsystems. �e basic idea is to write each nonlinear
function�� as a linear combination of its maximum�max

� and

minimum �min

� values both given, respectively, by

�max

� = max [�� (x (�))] ,
�min

� = min [�� (x (�))] . (11)

From these maximum and minimum values, each non-
linear function can be represented by

�� (x (�)) = [<min

� (x (�))] �min

� + [<max

� (x (�))] �max

� , (12)

where

0 ≤ <min

� (x (�)) , <max

� (x (�)) ≤ 1,
<min

� (x (�)) + <max

� (x (�)) = 1,
<min

� (x (�)) = [�� (x (�)) − �max

� ][�min

� − �max

� ] then,
<max

� (x (�)) = 1 − <min

� (x (�)) .

(13)

If [<min

� (x(�))+<max

� (x(�)) = 1], ∀� = 1, . . . , 6nl, then each
nonlinear function can be conveniently written as

�� (x (�))
= �nl∏

=1,
 ̸= �

{<min


 (x (�)) + <max


 (x (�))}
× {[<min

� (x (�))] �min

� + [<max

� (x (�))] �max

� } ,
(14)

or

�� (x (�)) = �1∑

=1

6
 (x (�)) �min

� + (2�nl )∑

=�1+1

6
 (x (�)) �max

� , (15)

where :1 = 2(�nl−1) and6
(x(�)) is given by

6
 (x (�)) = �nl∏
�=1

<(⋅)� (x (�)) , 2�nl∑

=1

6
 (x (�)) = 1, (16)

and the superscript (⋅) indicates the combination between
maximum and minimum values for each �th function<(⋅)� (x(�)).

Considering that Anl = Anl(�1, �2, . . . , ��nl) and substi-
tuting each �� according to (15), the nonlinear equation of
motion (17) is rewritten a
er some rearrangement as

ẋ (�) = (2�nl∑

=1

6
 (x (�))A
) x (�) + (2�nl∑

=1

6
 (x (�))B
) u� (�) ,
(17)

where each linearmatrixA
 is the original nonlinearmatrix at
which the6nl functions�� are substituted by the combination
ofmaximumandminimumvalues�max

� and�min

� . In this case
B
 = B ∀%.

Particularly for the typical section including freeplay
nonlinearity, there are three nonlinear functions (6nl = 3)
into the matrix Anl and they are given by

�1 = Gnl(1,6) = −M−1�(1,3) [���nl − 
0.5�2Q0(1,3)] ,
�2 = Gnl(2,6) = −M−1�(2,3) [���nl − 
0.5�2Q0(2,3)] ,
�3 = Gnl(3,6) = −M−1�(3,3) [���nl − 
0.5�2Q0(3,3)] ,

(18)

where Gnl(�,
) indicates an element into matrix Anl and the
subscripts (7, %) indicate the 7th row and %th column in each
respective matrix. �ese functions �� depend on �nl which is
illustrated in Figure 3.
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3.1. Closed-Loop Takagi-Sugeno Controller. In this section a
feedback control strategy is used to control the amplitude
of oscillation in the control surface. �e feedback force is
obtained by applying a feedback gain to the state systems
states, such that the control inputs are given by u�(�) =−Gx(�), where G is the feedback gain matrix. �e feedback
gain is calculated using linear matrix inequality to solve
Lyapunov’s function for stability, in this case

ẋ (�) = [
[
2�nl∑

=1

6
 (x (�)) (A
 − B
G)]] x (�) , (19)

�̇� = (2�nl∑

=1

6
 (x (�)) [A
 − B
G] x (�))
�

Px (�)

+ x(�)�P(2�nl∑

=1

6
 (x (�)) [A
 − B
G] x (�)) < 0,
(20)
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Table 1: Physical and geometric properties of the 2D airfoil.

Parameter Value

Semichord— 0.15m

Airfoil mass—9 5.0 kg

Air density—
 1.225 kg/m3

L 0.6%G −0.4%5� 0.2m/m:� (6.25 × 10−3)−1/2m/m5� 0.0125m/m:� (0.25)−1/2m/m

Plunge frequency—�ℎ 3.0Hz

Pitch frequency—�� 4.5Hz

Control surface de�ection—�� 12.0Hz

Parameters of lag—�
 (% = 1, . . . , 4) 0.2, 1.2, 1.6, 1.8

Reduced frequency—� [0.1, 2.0], Δ� = 0.1

where �� = x�Px is the Lyapunov function. �e stability of
this system is assured if there is a positive-de	nite matrix
P such that the inequality of (20) is true. A
er some
rearrangement this equation can be rewritten such as [32]

x
� (�) 2�nl∑

=1

6
 (x (�))
× [(A
 − B
G)�P + P (A
 − B
G)] x (�) < 0,

(21)

and 	nally, the solution of this inequality is equivalent to the
solution of all the following inequalities satis	ed simultane-
ously [34]:

(A
 − B
G)�P + P (A
 − B
G) < 0 % = 1, . . . , 2�nl . (22)
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Inequality (22) is not linear: then considering X = P−1,
G� = GX, it is possible to write the following linear matrix
inequality:

XA
�

 − G

�
�B
�

 + A
X − B
G� < 0 % = 1, . . . , 2�nl

such that G = G�X
−1. (23)

Although the control gain G has been computed using
inequality (23), the required control force u�(�) can exceed
desired limits. In this case, the control gain is multiplied by a
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constant < between the interval [0 1], conveniently adjusted
during the control design. �e control force is rewritten as

u� (�) = <u� (�) or u� (�) = −<Gx (�) . (24)

4. Numerical Application

To illustrate the method, numerical simulations were per-
formed using the three degrees of freedom airfoil section for
which the equations of motion are presented by �eodorsen
et al. in [23]. �e structural mass, sti�ness, and aerodynamic
forces matrices can be found in [17, 22, 35].

Initially, the linear �utter boundary was found extracting
the eigenvalues from the state space dynamic matrix without
freeplay. A
er that preliminary veri	cation, the 	rst order
harmonic balance method (HBM) was used to predict the
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LCOamplitudes.Di�erent researchers have usedHBMmeth-

ods to study limit cycles oscillations in aeroelastic systems, as
shown in [3, 6, 36, 37].
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4.1. Linear Flutter Boundary. Figure 1 illustrates the model

and its physical and geometric properties are presented in

Table 1. Figures 4 and 5 show, respectively, the classical �-�
and�-< diagrams for the linear �utter solution. According to

these results �utter speed is equal to 12.7m/s.

4.2. LCO Preliminary Predictions. A
er the preliminary lin-
ear analysis to identify the �utter boundary, the 	rst order
HBM was used to predict the LCO amplitudes. �e results
shown in Figures 6 and 7 were obtained by extracting the
eigenvalues from the matrix Anl de	ned for di�erent values
of equivalent sti�ness �eq, that is, the control surface sti�ness
assuming values from zero to ��. �e values of �eq/�� are
shown in Figure 8, where the nonlinear function�nl assumed
a unitary value and the control force u�(�) = 0. �e HBM
also provided an estimate for the 	rst harmonic of the system
response according to Figure 9.

4.3. Controller Design. Using the methodology described in
Section 4, three nonlinear functions were used to describe
the aeroelastic system with freeplay (��, � = 1, 2, 3). �ese
functions were computed assuming themaximumoscillation
amplitude equal to 	ve degrees; that is, −5∘ ≤ �(�) ≤ 5∘.
Figure 10 shows a comparison between their actual values and
computed values by (12).

�is leads to eight (23) dynamic matrices that are written
combining the maximum and minimum values of these
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Figure 13: Case 1: phase plan (|| = 0.4∘ and � = 12.5m/s).
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Figure 14: Case: phase plan (|| = 0.6∘ and � = 12.5m/s).

functions, such that

A1 = A (�max

1 , �min

2 , �min

3 ) , A2 = A (�max

1 , �max

2 , �min

3 ) ,
A3 = A (�min

1 , �max

2 , �min

3 ) , A4 = A (�min

1 , �min

2 , �min

3 ) ,
A5 = A (�max

1 , �min

2 , �max

3 ) , A6 = A (�max

1 , �max

2 , �max

3 ) ,
A7 = A (�min

1 , �max

2 , �max

3 ) , A8 = A (�min

1 , �min

2 , �max

3 ) .
(25)

�e results shown in this section were obtained consider-
ing two di�erent freeplay amplitudes and a time step equal

to 0.001 seconds. To compute the control gain, a column

input matrix was used to represent an actuator applying

force on the control surface (B�� = {0 0 1}�). Also, it was
considered that the parameter < is equal to 1.0 for all cases.

However, in particular for experimental applications where

limitations exist on the actuator force, the parameter < can
be conveniently chosen between ]0, 1[.

For the cases in which the freeplay amplitude was || =0.4∘, the initial conditionswere�(0) = 0.9∘ and 2.5∘. Similarly,
for the cases in which || = 0.6∘, the initial conditions were
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Figure 15: Case 2: control surface rotation (|| = 0.4∘ and � =13.1m/s).

�(0) = 1.3∘ and 3.5∘. �ese values were de	ned based on the
results obtained from the HBM, as discussed in Section 4.2.

Two di�erent conditions of airspeed were considered to
demonstrate the method. Di�erent controllers were designed
for each case. In 	rst case was chosen a condition of stable
limit cycle for each freeplay amplitude. In the second one,
unstable limit cycles were chosen in order to evaluate the
e�ectiveness of the approach. Consider if all neighboring
trajectories approach the LCO, it is stable; otherwise, the LCO
is unstable. De	nitions and a detailed discussion about stable
and unstable limit cycles can be found in [38].

Case 1 (stable LCO). In the 	rst case � = 12.5m/s was
considered for both freeplay amplitudes. Figures 11 and 12
show that the uncontrolled system response exhibits a limit
cycle oscillation with 	rst harmonic around 3.7Hertz and
amplitude approximately equal to 1 degree. It is possible
to note in those 	gures that although the 	rst order HBM
cannot predict, the system response exhibits a dominant
component around 15Hertz. In addition, the plunge andpitch
degrees of freedom behavior can be observed in the phase
plan shown in Figures 13 and 14. In these cases of stable
LCOs the designed controllers were able to suppress the limit
cycles.�e appendix presents details involved to compute the
Fourier transform when Hénon’s technique is used for the
time integration process.

Case 2 (unstable LCO). In this case was considered � =13.1m/s for both freeplay amplitudes. Figures 15 and 16 show
that the uncontrolled system response exhibits an unstable
limit cycle. However, the controller gains computed using
the proposed approach are able to suppress those nonlinear
responses. To improve the comprehension, Figure 17 shows a
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Figure 16: Case 2: control surface rotation (|| = 0.6∘ and � =13.1m/s).
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Figure 17: Case 2: zoom selection area for the control surface
rotation (|| = 0.6∘ and � = 13.1m/s).

zoom selection area for the control surface rotation consider-
ing the second freeplay amplitude.

For this second case the plunge and pitch degrees of
freedom behavior can be observed in the phase plan shown
in Figures 18 and 19. Finally, Figure 20 shows the control force
for � = 0.6∘ and similar results were obtained for the other
cases. Note that the parameter < < 1.0 can be chosen in order
to decrease the required control forcemainly for the 	rst time
steps.

5. Conclusions

�is paper presents a methodology to control limit cycle
oscillations in a typical section airfoil with control surface
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Figure 19: Case 2: phase plan (|| = 0.6∘ and � = 13.1m/s).

freeplay. �e idea was to use the fuzzy Takagi-Sugeno mod-
eling to describe the nonlinear aeroelastic system through
linear matrix inequalities. �e closed-loop problem was
written using a convex space and a linear control force was
computed using convex optimization. A linear �utter analysis
was performed to identify the �utter boundary. Also, the 	rst
order harmonic balance method was solved to predict the
limit cycle oscillation envelope. A
er these 	rst predictions
two freeplay amplitudes were de	ned and two airspeeds
were chosen to demonstrate stable and unstable limit cycles.
Finally, numerical simulations presented di�erent nonlinear
aeroelastic responses comparing the controlled and uncon-
trolled system.�e results show that fuzzy TS modeling is an
e�cient tool for solving this kind of problem.

Appendix

�e integration process involving Hénon’s technique can
result in di�erent time steps, as discussed in Section 2.2 and
shown in Figure 21. However, in order to apply the Fourier
transform to compute the system responses in frequency
domain, it is necessary to keep a constant time step. In this
case, a
er using the amount U�� to identify the transition
point shown in Figure 2, another time integration can be
performed considering the time step (U� − U��). �en, the
system response for the constant time step cannot include
that preliminary point obtained usingU��.�is procedurewas
employed to compute the responses plotted in Figures 11 and
12.
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