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A nonlinear feedback control strategy for delaying the onset and eliminating the
subcritical nature of long-wavelength Marangoni–Bénard convection is investigated
based on an evolution equation. A control temperature is applied to the lower wall
in a gas–liquid layer otherwise heated uniformly from below. It is shown that, if
the interface deflection is assumed to be known via sensing as a function of both
horizontal coordinates and time, a control temperature with a cubic-order polynomial
dependence on the deflection is capable of delaying the onset as well as eliminating the
subcritical instability altogether, at least on the basis of a weakly nonlinear analysis.
The analytical results are supported by direct numerical simulations. The control
coefficients required for stabilization are O(1) for both delaying onset indefinitely and
eliminating subcritical instability. In order to discuss the effects of control, a review is
made of the dependence of the weakly nonlinear subcritical solutions without control
upon the various governing parameters.

1. Introduction
The long-wavelength mode of Marangoni–Bénard convection (Scriven & Sternling

1964; Smith 1966) is the most dangerous mode of instability if the layer of fluid
is sufficiently thin, or when it is subjected to reduced gravity. A number of studies
of the instability have been made by means of an evolution equation derived in
the long-wavelength limit. A review of this equation and its development is given
by Oron, Davis & Bankoff (1997). These studies reveal that the properties of this
instability are substantially different from convection of the finite-wavelength cellular
type (Pearson 1958). Funada & Kotani (1986) and Funada (1987) showed that steady
finite-amplitude solutions exist in a region below the neutral curve predicted by linear
theory. Due to the subcritical nature of the instability, the region below the neutral
curve is only conditionally stable. Initial disturbances with sufficiently small amplitude
will decay to the no-motion state but those with large enough amplitude will diverge.
Besides spatially periodic finite-amplitude solutions, localized solutions of the solitary
type are also possible.

Recently, an extension of the one-layer model to a gas–liquid model was performed
by VanHook et al. (1997), who demonstrated that a two-fluid model is essential for
producing good agreement with experimental observations obtained from a two-fluid
layer bounded above and below by rigid walls. The authors performed both a weakly
nonlinear analysis and direct numerical simulations based on a more general evolution
equation than that used by Funada, in which the nonlinearity is not necessarily
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Figure 1. Geometric configuration.

assumed to be small. Their results are consistent with those reported by Funada (1987)
in that steady solutions can only be found below the linear neutral curve. But unlike
Funada’s one-layer result which only gives surface deformations of depression, both
elevated and depressed type interfacial deformations are possible in the gas–liquid
model, depending on the Biot numbers involved. Based on numerical simulations of
the two-fluid model and experimental observations, VanHook et al. (1997) reported
that no forward branch of solution connected to the unstable subcritical branch of
solution has been found. On the other hand, the parameter regime explored by the
authors in the fully numerical simulations is limited. It will be pointed out later that
for a certain range of the parameter associated with a depressed interface the cubic
nonlinear term is stabilizing and therefore a stable forward branch is possible.

From the viewpoint of applications, the long-wavelength mode of instability can
be detrimental for many processes involving heat transfer or material processing due
to its tendency to rupture the surface. A natural question arising is whether this mode
of instability can be suppressed or modified in such a way that the subcritical region
can be stable even for finite-amplitude disturbances. The current analysis, though
restricted to a regime near the critical point based on an amplitude expansion up to
the cubic term, indicates that the answer is affirmative.

Our control strategy basically applies a principle similar to that used by Tang &
Bau (1994) for controlling Rayleigh–Bénard convection, which is as follows. Assume
that a certain variable describing the instability can be measured so that complete
knowledge of this variable is available in both space and time. We can feed this
information back into the dynamics in terms of a function of another variable that
can affect the instability, such as, in the case of Tang & Bau (1994), a control
temperature. In fact, Bau (1999) has shown independently how such a control can
delay the onset of thermocapillary convection on a linear basis, although a different
sensing mechanism is used than the one we employ. But unlike these authors who
demonstrated control of a single but arbitrary Fourier component of the instability,
we use the control temperature to affect directly an actual localized disturbance arising
from the long-wavelength instability. Our approach is equivalent to assuming control
over a continuous bandwidth of wavenumbers in Fourier space in the problem of
Tang & Bau (1994). As for the use of a nonlinear control law in the present study,
our strategy appears to be more akin to another study done on the control of the
planform of Rayleigh–Bénard convection by Shortis & Hall (1996). However, Yuen &
Bau (1996) have shown how a cubic-order nonlinear control can prevent the onset of
a subcritical bifurcation of a secondary instability in the problem of one-dimensional
flow in a convection loop, which is governed by the Lorenz equations.

For our problem, the control law governs an actuating temperature, Tc(x, y, t),
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applied on the lower wall as a polynomial function of the interfacial deflection, η,

Tc = K1η +K2η
2 +K3η

3 + · · · , (1)

where η = h − 1, so that, with reference to figure 1, the deflection is measured from
the mean position of the interface. Thus, the actuating temperature Tc is zero for the
undisturbed basic state, which is different from the model used by Shortis & Hall
(1996) but similar to that of Tang & Bau (1994). The constants Ki (i = 1, 2, 3, . . .),
or gains, will be determined later by means of analysis. In the present study, the
first three leading terms in the polynomial will be used. The linear term in (1) is
responsible for changing the value of the critical Marangoni number. Depending on
how much forward shift of the bifurcation point is desirable, K1 can be determined.
The linear term will modify the next-order nonlinear terms via change of the structure
of the linear solutions. The second term in (1), K2, can then be chosen to remove
the quadratic-order nonlinearity from the evolution equation, which is essential for
the removal of subcritical instability. Both the first- and second-order control terms
will affect the cubic-order nonlinearity. After the quadratic-order term is eliminated,
the cubic-order nonlinearity controls the dynamics. Subcriticality or supercriticality
of the bifurcation then depends only on the sign of the cubic-order term. If we
pick the right sign for K3, it is possible to create a supercritical bifurcation. Besides
allowing convection to occur at a higher value of Marangoni number, a supercritical
bifurcation might be preferred because it is less sensitive to environmental noise.

We review the derivation of the evolution equation with control incorporated in
§ 2. In § 3, the weakly nonlinear solutions with no control are reviewed and further
investigated. The control strategy and analysis as well as the supercritical solutions in
the controlled case are studied in § 4. In § 5, we provide more results based on direct
numerical simulation. Finally, some concluding remarks will be given in § 6.

2. Mathematical formulation
Numerous authors have studied the one-layer version of the evolution equation

which has since been extended into a gas–liquid version by VanHook et al. (1997;
see their paper or Oron et al. (1997) for the earlier references). The gas–liquid model
takes into account the ratios of thermal properties and thicknesses of the fluids
but assumes that the upper fluid density is much smaller than that of the lower
fluid so that the motion of fluid above the interface can be neglected. Consider
the fluid model shown in figure 1. The static depths of the liquid and gas are,
respectively, d and dg; the thermal diffusivities are κ and κg . The bottom, top and
static interfacial temperatures are, respectively, T ∗b , T ∗t and T ∗i . In the situation with
control, an additional temperature T ∗c is imposed on the bottom wall. Length, time,
velocity, pressure and temperature are scaled by quantities d, d2/κ, κ/d, ρνκ/d2 and
∆T ∗ = T ∗b − T ∗i , respectively.

An evolution equation can be obtained from the Navier–Stokes and energy equa-
tions by assuming that the horizontal characteristic scale of the unstable modes, L,
is much greater than either d or dg . In other words, the fundamental wavenumber,
defined by q = 2πd/L, is a small parameter with which the basic equations can be
expanded. The expansion procedure gives rise to an evolution equation governing the
local interfacial depth h. But before we proceed, it is important to understand the
scaling scheme appropriate to the long-wavelength expansion. In this scheme, the in-
terfacial height, the vertical coordinates, the vertical and horizontal velocities, and the
temperature and pressure are scaled, respectively, according to: h ∼ O(1), ∂z ∼ O(1),
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w ∼ O(q2) and u⊥ ∼ O(q), T ∼ O(1) and P ∼ O(1). In deriving the evolution equa-
tion, the variables of the basic equations are accurate up to the leading orders given
above. The equation of state for surface tension, σ, is given by σ = σ0 + γ0(T

∗ − T ∗b ),
in which the first term on the right is assumed to be significantly larger than the
amplitude of the second term. The normal-stress condition can be considered tem-
perature independent and dependent on σ0 only. The tangential-stress condition, on
the other hand, depends on γ0 but not on σ0. In a non-dimensional form the equation
of state is then

S = S0 +M(T − Tb), (2)

where S0 is the reference surface tension defined by S0 = σ0d/ρνκ and M is the
Marangoni number defined by M = γ0d∆T

∗/ρνκ. Here, γ0 denotes the derivative of
surface tension with respect to temperature at the reference value.

The long-wavelength evolution equation has the following form:

∂τh+ ∇ ·
{
− 3

2
D

(
dT

dh

)
h2∇h− h3∇h+

q2

B
h3∇∇2h

}
= 0 , (3)

which is identical to equation (3.12) of VanHook et al. (1997) for the uncontrolled
case. In the above equation, h(X,Y , τ) is the non-dimensional local thickness of the
liquid where X = qx and Y = qy are stretched horizontal coordinates and τ = 1

3
Gq2t

is defined as a slow time with G being the Galileo number defined by G = gd3/νκ.
The operator ∇ denotes the horizontal Laplacian in stretched coordinates. The two
major parameters D and B are defined by D = M/G and B = G/S0 (notice our B/q2

corresponds to the definition of B in VanHook et al. 1997; we later denote B/q2

as Bv). The parameter B is the usual Bond number whereas VanHook et al. (1997)
refer to D−1 as the ‘dynamic Bond number’, where σ0 is replaced by γ0∆T

∗. The three
terms inside the wavy brackets on the right-hand side of (3) represent, respectively,
thermocapillary, gravity and surface-tension effects.

In the evolution equation, the surface-tension term corresponds to a fourth-order
derivative in the horizontal coordinates. Many authors (e.g. Deissler & Oron 1992;
VanHook et al. 1997) retain this term even for q � 1 by introducing the scaling
relationship B ∼ O(q2), which is often referred to as the strong surface-tension limit
(see Simanovskii & Nepomnyashchy 1993), although it is also appropriate for the
microgravity case with S0 ∼ O(1). In the long-wavelength expansion, q → 0 is assumed
but B then becomes artificially small as q → 0. But without a strong-surface-tension
scaling relationship, the surface-tension term in general is two orders of magnitude
in q smaller than the other terms, unless a re-scaling of the equation is introduced
for near critical conditions. This re-scaling will give a lower-order nonlinear equation
(see Funada 1987; Simanovskii & Nepomnyashchy 1993). In both controlled and
uncontrolled convection, we shall first consider the re-scaled version of the equation
with fixed S0 in order to obtain the behaviour of instability close to the bifurcation
point. After we have gained a better understanding of the behaviour at low-order, then
we shall invoke the strong-surface-tension, weakly nonlinear version of the equation
by retaining up to the cubic-order nonlinear term in order to obtain the qualitative
behaviour of the bifurcated solutions further away from the critical point. Note that
the large surface tension case corresponds to small B, and so it also corresponds to
microgravity conditions.

The interfacial temperature T (h) can be computed in the small-q limit so that the
heat transfer is locally conductive (and quasi-steady) between the upper and lower
walls. According to our scaling, the basic temperatures at z = 0, 1 and (1 + dg/d)
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are 0, −1 and −(1 + H−1), respectively, where H is known as the one-layer Biot
number defined by H = kgd/kdg . When control is applied, the lower-wall temperature
becomes Tc. In the long-wavelength limit, the interfacial temperature at the deformed
interface, T (h), can be computed from the condition of continuity of heat flux at
the interfacial surface. Since the temperature gradient in each layer is constant, this
condition can be written as

Tc − T (h)

h
=

(
kg

k

)
T (h) + 1 +H−1

1− h+ dg/d
, (4)

where the two-layer Biot number F = (d/dg − H)/(1 + H) is defined (see VanHook
et al. 1997). Note that F > 0 if k > kg . If we substitute the two ratios in the above
equation, dg/d and kg/k, by H and F and with some algebraic manipulations, we
obtain the following expression for T (h):

T (h) = T0(h) + Tc

(
1 +

H

1 +H
T0(h)

)
, (5)

where T0(h) denotes the non-dimensional temperature in the absence of control (see
also equation (3.6j) of VanHook et al. 1997), namely,

T0(h) = − h

1− F(h− 1)
. (6)

The first two terms within the wavy bracket of (3) are O(1), while the third term is of
O(q2) for fixed B. When D is at the critical value Dc for which q → 0, the sum of the
first two terms vanishes. For D slightly different from Dc, there is an O(q2) proximity
in which a balance between the sum of these two terms and the O(q2) surface-tension
term exists if h− 1 ∼ O(q) is assumed.

We now substitute (1) for Tc into (5) and 1 + η for h. Then (3) gives

∂τη + ∇ ·
{

(1 + ε)Ψ − K̂1Θ1 − K̂2Θ2 − K̂3Θ3

−(1 + η)3 +
(1 + η)3q2

B
∇2

}
∇η = 0, (7)

where the K̂i are a set of normalized parameters defined by

K̂i =
3DKi

2(1 +H)
for i = 1, 2, 3, (8)

and

ε = 3
2
D(1 + F)− 1 (9)

measures the degree of supercriticality for the linear, uncontrolled case. In terms of
η, we obtain

Ψ (η) = 1 + 2(1 + F)η + (1 + F)(1 + 3F)η2 + · · · , (10)

Θ1(η) = 1 + 2(1−H(1 + F))η + (1−H(1 + F)(3F + 4))η2 + · · · , (11)

Θ2(η) = 2η + (4− 3H(1 + F))η2 + · · · , (12)

and

Θ3(η) = 3η2 + · · · . (13)

After summing up the terms appearing in the wavy brackets of (7) other than the
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term involving B−1, we obtain

Λ ≡ (1 + ε)Ψ − K̂1Θ1 − K̂2Θ2 − K̂3Θ3 − (1 + η)3

= (ε− K̂1) + (2F − 1− a1K̂1 − 2K̂2)η

+(3F2 + 4F − 2− a2K̂1 − b2K̂2 − 3K̂3)η
2 + · · · , (14)

where a1 = 2(1−H(1 +F)), a2 = 1−H(1 +F)(3F + 4) and b2 = 4− 3H(1 +F). These
coefficients may vanish for certain parameter values of H and F . In the examples
given, however, we assume that they are non-zero. Now, (7) can be rewritten as

∂τη + ∇ ·
{
Λ+

(1 + η)3q2

B
∇2

}
∇η = 0 . (15)

For the purpose of later analysis, the above equation for the uncontrolled and
controlled situations will be treated separately and the equation will be re-scaled in
the region near the critical point.

Re-scaled equations for uncontrolled convection

First, we consider the uncontrolled situation. In this case, the K̂i (i = 1, 2, 3) vanish.
Equation (14) becomes

Λ = ε+ (2F − 1)η + (3F2 + 4F − 2)η2 + · · · . (16)

Because the strong-surface-tension assumption is not used, a factor of q2/B appears
with the surface tension term in (7). A lowest-order balance can be achieved by
rescaling ε, η and t as follows:

ε = q2R, η = q2A, T = q2τ, (17)

where R, A and T (note: the second slow time T uses the same notation as tempera-
ture) are O(1) quantities. Thus, we are in an O(q2) neighbourhood of criticality where
the growth rates are O(q4) using unscaled non-dimensional variables. The quadratic
term in (16) is O(q2) relative to the other terms. This balance yields the following
evolution equation, to O(q2):

∂TA+ ∇ ·
{
R +

1

B
∇2 + (2F − 1)A

}
∇A = 0. (18)

In this balance, only the quadratic-order nonlinearity is retained. In the special case
when F = 0.5, the quadratic nonlinear term vanishes so that we must take into
account the next-order cubic nonlinear term. This case will be discussed later in § 3.1.

Re-scaled equation for controlled convection

The term (ε− K̂1) in (14) represents the shift in the critical value of M due to linear
control (see § 4). Our control strategy is to eliminate the subcritical steady solutions,
at least on a weakly nonlinear basis. The way to accomplish this goal is to diminish
the quadratic term so that the cubic nonlinear term becomes the dominant term. To
do this, we go back to (14). For the O(η) term to be of the same order as the O(η2)
term, we require the coefficient of the O(η) term to be of O(q). Thus, we impose the
following condition:

F − 1
2
− 1

2
a1K̂1 − K̂2 = αq, (19)

where α is a parameter of O(1) which models any residual quadratic effect due, say,
to detuning. The O(1) balance in (19) determines the value of K̂2 in terms of K̂1,
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that is,

K̂2 = F − 1
2
− 1

2
a1K̂1. (20)

This condition enables us to eliminate K̂2 in favour of K̂1 and K̂3 so that the final
scheme involves a two-gain representation. The new scalings corresponding to (17) to
be introduced for the control situation are: ε− K̂1 = q2R, η = qA and T = q2τ. The
following evolution equation is then obtained:

∂TA+ ∇ ·
{
R +

1

B
∇2 + αA+ βA2

}
∇A = 0, (21)

where R, α and β are again O(1) parameters and A is of O(1). Note that a different
scaling on η than that in the uncontrolled case is used, due to the reduction in
magnitude of the quadratic term. As a result, the cubic term appears in (21) whereas
it is of higher order in (18).

In (21), both R and α are independent of the gains. Their values can be imposed
arbitrarily. On the other hand, the parameter β depends on the control gains in the
following manner:

β = β0 + β1K̂1 − 3K̂3, (22a)

where

β0 = 3(1 +H)F2 + 3
2
HF − 3

2
H, (22b)

β1 = 3(1 +H)HF2 + 6H2F + 3(H2 −H + 1). (22c)

The parameter β controls the sign of the cubic nonlinear coefficient, which determines
the subcriticality and supercriticality of the bifurcation at this order. If the quadratic
term had not been eliminated, subcritical convection would still occur but control
of the finite-amplitude convection could be exerted via K̂3. However, the scaling of
the controlled case would then hold, and so large values of K̂3 ∼ O(q−2) would be
required for such control. For R > 0, it is clear that we need β < 0 to achieve a
steady finite-amplitude state, and so K̂3 > 0 is desirable for this purpose. In § 4 more
analysis of the above control strategy, including examples and a summary of results,
will be given.

3. Solutions for uncontrolled convection
Besides Funada & Kotani (1986) and Funada (1987) who analysed the weakly

nonlinear evolution equations, Simanovskii & Nepomnyashchy (1993, § 3.3) present
a brief description of the equations with quadratic and cubic nonlinearity and their
solutions (see their equations (3.46) and (3.57) for more details). For this reason,
an extensive analysis will not be done here. But it is worthwhile to illustrate the
bifurcation characteristics and explore the weakly nonlinear regime since experimental
results are now available (VanHook et al. 1997). It is also desirable to have a better
idea of how the weakly nonlinear solutions depend upon the parameters involved in
order to discuss the effect of control.

We observe that previous studies, notably Deissler & Oron (1992) and VanHook et
al. (1997), suggest that the flow field is in general associated with axisymmetric surface
deformations (see VanHook et al. figure 9). In this paper, we shall treat both the
one-dimensional rectilinear and the axisymmetric cases. The rectilinear case is simple
enough to permit an explicit analysis, which will provide a better understanding of
the instability. The axisymmetric case is more relevant to experimental observations.
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Subcritical steady solutions

In this subsection we present the nonlinear one-dimensional solutions and bifurcation
characteristics for the rectilinear case. Emphasis will be placed on the one-dimensional
solutions because we will later examine the effect of feedback control on such
disturbances. Here an explicit analysis is given based on (18). We integrate the steady
form of (18) once to give(

R +
1

B
∂XX

)
∂XA+ (2F − 1)(A∂XA) = c3 . (23)

A second integration of the above equation gives(
R +

1

B
∂XX

)
A+ (2F − 1) 1

2
A2 = c2 + c3X. (24)

For bounded steady solutions, the constant of integration c3 is set to zero. Then both
sides of the equation are multiplified by ∂XA, and another integration gives

1

B
(∂XA)2 = c1 + c2A− RA2 − (2F − 1)

3
A3. (25)

This equation certainly can be integrated once more to give A in terms of a Jacobi-
Elliptic integral. Only the cnoidal modes are presented here. Cnoidal solutions can be
expressed in terms of Jacobi-Elliptic functions (e.g. see Abramowitz & Stegun (1972)
and MATLAB under special functions). Using a short notation, one such function,
cn(u, m), is written here as cnu. The parameter m has values between zero and one.
Consider a solution of the form A(X) = A0 + Ascn2(λX,m) where A0 is a constant
corresponding to a shift of reference level. The differential equation satisfied by cn2(u)
where u = λX is (

dcn2u

du

)2

= 4cn2u(1− cn2u)(1− m2 + m2cn2u). (26)

In terms of A− A0 and X, this equation can be written as

(∂X(A− A0))
2 = λ2A2

s

(
4(1− m2)

As
(A− A0) +

(2m2 − 1)

A2
s

(A− A0)
2 − 4m2

A3
s

(A− A0)
3

)
.

(27)

By comparison with (25), the coefficient of the linear (A−A0) term on the right-hand
side gives the constant c2. The quadratic and cubic terms in (A−A0) give the following
relationships for the phase and amplitude:

λ2 =
RB

4(1− 2m2)
, As =

12λ2m2

B(2F − 1)
. (28)

By expanding the terms involving (A−A0), the constant term independent of A gives
c1 in terms of A0. We note that for 0 6 m < 1/

√
2 the cnoidal modes correspond

to R > 0 but below the linear neutral curve. For 1/
√

2 < m 6 1 the cnoidal modes
are strictly subcritical (i.e. R < 0). Since both the critical R and λ occur at zero, it is
important to note that λ ∼ R1/2.

There are two limits of interest. The first one corresponds to m → 0, for which
cn(u, m) → cos(u). But as m → 0, we also have A → 0 so that the nonlinear term
becomes negligible. In this case, we obtain R = 4λ2/B and the solution becomes
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Figure 2. Stability diagrams showing the linear neutral curve and nonlinear equilibrium curves for
(a) R versus λ and (b) As versus R.

(A − A0) = As cos2 λX where As becomes arbitrary. We rewrite the equation as
A = A0 + As(1 + cos(2λX))/2 and choose A0 = −As/2 so that the solution becomes
A = (As/2) cos(2λX). This choice of A0 can be extended to the fully nonlinear solution
by imposing the mean level of A as the reference level. If we denote k = 2λ, then from
the phase equation (28) the neutral curve R = k2/B is recovered (for m → 0). The
cnoidal solution limit with m → 0 therefore corresponds to the linearized problem.
The amplitude of solutions is linear in R, just as for a bifurcation of a transcritical
type.

The second limit corresponds to m→ 1, for which cnu→ sechu as m→ 1. Therefore
we obtain A = A0 + As sech2 λX where

R = −4λ2

B
, As =

12λ2

B(2F − 1)
(29)

and A0 is determined by
∫ ∞
−∞ AdX = 0. A solitary solution can exist only for R < 0

since λ has to be real. Hence, as R is increased from a large negative value, solitary
disturbances can appear first. The amplitude is given by As = −3R/(2F − 1). For a
given R, this solution gives a localized elevation or depression depending on whether
F is greater or smaller than 0.5. This result is consistent with the findings of VanHook
et al. (1997).

We now illustrate the solution domains. We let B = 1 and F = 1, since (18)
can be normalized to a single parameter corresponding to R. In fact this choice
corresponds to the normalized equation. In figure 2(a), the upper and lower heavy
solid curves correspond, respectively, to the neutral curve and the solitary-solution
curve according to (28). These two curves separate the (λ, R)-plane into three distinct
regions. In region III both linear and quadratic nonlinear effects are destabilizing
and so no steady solution exists. In region II the linear effect is stabilizing but
the nonlinear effect is destabilizing. A dynamical balance among thermocapillarity,
gravity and surface tension forces exists in this region and gives rise to the family of
cnoidal solutions. The four thin lines from the top correspond to m = 0.2 to 0.8 in
increments of 0.2. In region I the linear effect is dominant. With a sufficiently large
spatial scale for the disturbances, disturbances to the basic state will decay in this
region. Figure 2(b) shows the R versus As relationship. The heavy solid line on the
right corresponds to the linear solution and the one on the left corresponds to the
solitary solution. The number next to each curve denotes the value of m. On the side
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of R < 0, the solitary-mode shape appears to be the most unstable solution because
it gives the lowest bound of As. Below the left heavy solid line, the disturbance will
decay; above the line, a disturbance will grow. Hence, a critical disturbance amplitude
exists that gives rise to the solitary solution. On the side of R > 0, the linear effect
also becomes destabilizing. The sinusoidal modes corresponding to the linear effect
would appear to be the fastest growing ones for a hypothetical situation where the
initial value of R is positive.

The evolution equation for the special case F = 0.5 at which the quadratic nonlinear
term vanishes has to be scaled differently than (17). The scales for this case are similar
to those for controlled convection in § 2.2, namely, ε = q2R, η = qA and T = q2τ.
With this scaling at F = 0.5, the extended equation becomes

∂TA+ ∇ ·
{
R +

1

B
∇2 +

3

4
A2

}
∇A = 0. (30)

The cubic term for this case is destabilizing. It will be demonstrated later, however, that
for F < 0.387, approximately, the cubic term exerts a stabilizing effect. By including
this higher-order term a stable branch of steady-state solution can be obtained. The
effect of including the cubic term will be discussed by means of numerical solutions
later, from which both axisymmetric and rectilinear solutions can be compared. At
F = 0.5, (30) becomes the governing equation. Because the coefficient of the cubic
nonlinear term is positive, the equation admits the modified solitary solution for
R < 0 given by

A(X) = As sech λX, (31)

where λ = ±(−RB)1/2 and As = ±(6λ2/Bβ)1/2. Again the modified solitary solution
is subcritical. But unlike the solitary solution, the modified solitary solution can be
either an elevation or depression for a given set of parameters. No steady supercritical
(R > 0) solution exists for F = 0.5. Furthermore, all the steady subcritical solutions are
unstable – a conclusion of both Funada (1987) and Simanovskii & Nepomnyashchy
(1993).

The one-dimensional rectilinear case discussed above permits an explicit treatment
from which the structure of the solutions in the proximity of the bifurcation point
can be analysed in detail. In the following, we extend the previous scope of analysis
by numerical computations of both axisymmetric steady solutions and the one-
dimensional rectilinear solutions when the effect of the cubic nonlinear term is also
included.

Numerical solutions

The result of § 3.1 reveals a family of subcritical solutions near the critical point. In
order to understand whether the subcritical solutions continue onto other branches of
solutions further away from the critical point, the next higher-order nonlinear terms
have to be included. In the following we consider a weakly nonlinear version of (15)
by retaining up to the cubic-order term in η. Also, in order to retain the surface-
tension term, we invoke the strong-surface-tension assumption. In the analysis of this
subsection, we assume the factor q2 is absorbed in the parameter B (see VanHook et
al. 1997), and so we define Bv = Bq−2 where Bv ∼ O(1). Up to the cubic-order term
(15) becomes

∂τη + ∇ ·
{(

ε+
1

Bv
∇2 + (2F − 1)η + (3F2 + 4F − 2)η2

)
∇η
}

= 0. (32)
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To proceed, a note on the mass conservation property of (32) will be helpful. In the
numerical solutions, we consider only fluid of finite horizontal extent. This situation
includes the case of a fluid confined by lateral walls and the case of a control volume
of an infinite layer of fluid bounded by an imaginary control surface. Integrating the
equation over the volume and using the divergence theorem gives

∂τQ =

∫
S

{
ε+

1

Bv
∇2 + (2F − 1)η + (3F2 + 4F − 2)η2

}
(∂nη)dS, Q ≡

∫
V

ηdV . (33)

Given the fact that there is no mass flux through the bottom wall and the interface,
the flux integral on the right-hand side is over the lateral boundary enclosing the
volume of fluid. There are two cases for which the flux integral vanishes. These
are: (i) ∂xη vanishes identically at the lateral boundary, (ii) the sum of the four
terms inside the wavy bracket of the flux integral of (33) vanishes (in this case,
η corresponds to an equilibrium solution). In the two types of solutions we shall
consider, namely, axisymmetric solutions and one-dimensional rectilinear solutions
with periodic boundary conditions, the flux integral vanishes for both cases. When
the flux integral vanishes, then Q is constant in time.

For the axisymmetric steady solutions, in polar coordinates we let η = η(r). For an
arbitrary function f(r) we have the following identities:

∇f = ir
df

dr
, ∇2f =

1

r

d

dr

(
r
df

dr

)
.

Substituting the operators into the above equation and integrating the resulting
equation once yields

1

Bv

(
r
d3η

dr3
+

d2η

dr2

)
+ {ε+ (2F − 1)η + (3F2 + 4F − 2)η2}

(
r
dη

dr

)
= 0. (34)

The above problem will be solved by using a finite difference approach and the steady-
state solutions are obtained by the Newton–Raphson method. There are numerical
steady-state solutions of a cnoidal type. For a given subcritical value of ε the solitary
solution corresponds to the largest horizontal scale (i.e. smallest λ, see (28)). Since the
solitary mode (with localized structure) appears to be the type seen in experiments
(VanHook et al. 1997), our effort here is to investigate the localized solution resembling
the solitary mode. In the above equation the integration constant is set to zero so that
η(∞) = 0. In the numerical solutions, a finite cut-off radius is chosen at a sufficiently
large value, rco, so that we set η(rco) = 0. The other two boundary conditions to be
imposed on the numerical solutions are

d

dr
η(0) = 0,

d

dr
η(rco) = 0. (35)

The rectilinear solutions are obtained from the following one-dimensional equation:(
ε+

1

Bv
∂XX

)
∂XXη + ∂X{(2F − 1)η + (3F2 + 4F − 2)η2)∂Xη} = 0. (36)

The boundary conditions imposed are periodic at two cut-off points X = ±Xco,

η(−Xco) = η(Xco), ∂Xη(−Xco) = ∂Xη(Xco). (37)

Again our focus will be the solitary mode. The variation of the rectilinear solutions
appears to have slightly longer horizontal scale. The coefficient of the cubic term
in (34), (36) is negative (and so stabilizing) only if F < 0.387. We will restrict the
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Figure 3. (a) A comparison between the bifurcation curves for the rectilinear and axisymmetric
localized solutions at Bv = 1 and F = 0 (see the text for details); (b) the three-dimensional shape
of the axisymmetric localized disturbance (unstable) at ε = −0.02 corresponding to the backward
branch; (c) shape of the axisymmetric localized disturbance (stable) at ε = −0.02 corresponding to
the forward branch; (d) a comparison between the half-sectional shapes of η of the backward-branch
solution (dashed) and forward-branch solution (solid) of the axisymmetric mode (heavy lines) and
rectilinear mode (thin lines) at ε = −0.02.

discussion to this range of F . For larger F , steady forward-branch solutions are not
possible at this order.

In figure 3(a) we show the bifurcation diagram for both axisymmetric and rectilinear
localized solutions corresponding to parameter values Bv = 1 and F = 0. In the
experiment Bv is about an order of magnitude larger whereas F can indeed be close
to zero (see VanHook et al. 1997, table 2 and § 5). A larger Bv corresponds to a steeper
deformation with smaller horizontal scale (see more discussion below). The cut-off
length scales are rco = 20 and Xco = 40 for the two types of solutions, respectively.
These values are based on the scale from the solitary solution (29). Indeed, further
increase of the cut-off scales has little effect on the solutions (although numerical
difficulties could occur when the cut-off scales are a factor two larger; in that case a
converged solution becomes difficult to obtain). The heavy curve shows the minimum
value of η of the axisymmetric solution at r = 0 versus ε and the thinner curve shows
the minimum η of the rectilinear solution at X = 0. Since the horizontal scale for
the solution (∼ ε−1/2) becomes very large as ε → 0, the axisymmetric and rectilinear
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solutions start at ε = −0.01 and −0.02, respectively. For ε < 0, the dashed portions
of the subcritical curves are unstable, which can be shown via the time-dependent
solutions of the initial-value problem. These portions would be straight lines without
the cubic-order term. No upper-branch solution is found on the supercritical side
corresponding to ε > 0. For the axisymmetric solution, the upper subcritical branch
encounters a turning point at ε ≈ −0.072, and continues onto a forward stable
branch of solution indicated by the solid line. The stable branch has significantly
larger deformation amplitude and the solution of this branch eventually becomes
supercritical. Likewise, the turning point for the rectilinear solution occurs at a
slightly lower ε ≈ −0.02. In general, for a given ε value, the rectilinear deformation
appears shallower than the corresponding axisymmetric deformation.

When F becomes larger, the magnitude of η(0) at the turning point of the branches
also becomes larger. In the inset of figure 3(a), we show the branches of solutions
corresponding to F = 0.33 above η = −1. Since this value corresponds to the lower
wall, rupture of the interface will take place before η = −1, leading to the formation of
a dry spot. The result in the inset suggests that the lower-branch solutions cannot exist
much further away from the turning point because of rupture. Since the amplitude of
deformation increases rapidly with ε, the stable steady-state solution prior to rupture
occurs only for a narrow range of ε.

As for the shapes and amplitude, the upper and lower branches of solutions are
quite distinct other than near the turning point. To compare the shapes of the two
solutions, we provide two three-dimensional plots of the equilibrium axisymmetric
solution η(r) at ε = −0.02 for the case of F = 0. The unstable solution has the shape
of a cone and the stable solution has the shape of a bowl; the two plots are shown in
figures 3(b) and 3(c), respectively. The bowl-shaped solution has a significantly larger
amplitude and flatter bottom. It is of interest to provide a comparison between the
axisymmetric solution and the rectilinear solution. Again consider the case of F = 0
and at ε = −0.02 as shown in figure 3(d); the heavy lines represent the axisymmetric
solution and the thin lines represent the rectilinear solution.

We have also computed but do not show here the axisymmetric branch of solution
for F = 0 and Bv = 30, which is significantly larger (note that in the experiments of
VanHook et al., the authors used Bv = 18, according to their table 2). The branch
resembles the one shown in figure 3(a). Indeed, the shift between the two branches at
Bv = 1 and 30 is small. For example, at Bv = 1 the turning point occurs at ε ≈ 0.072,
with η(0) ≈ −0.52. At Bv = 30, these values are ε ≈ 0.077, and η(0) ≈ −0.46, respec-
tively. However, the horizontal scale of the localized deformation becomes significantly
smaller at Bv = 30 than at Bv = 1. The numerical solutions at Bv = 30 can be obtained
with a cut-off value rco = 8 instead of 20. Later, in regard to figure 7(b), we shall
discuss a stable forward branch solution obtained via time simulation. In that case,
comparison between our analysis and experiment will be discussed in greater detail.

For F > 0.5, the equilibrium solitary solutions become elevated. By including the
cubic term, the instability becomes even stronger at larger values of F than without the
term. In this case, there will be no forward branch of solution. However, it should be
remembered that motion of the fluid in the upper layer has been ignored in the model.

4. Control strategy and analysis
A number of authors have demonstrated that a linear feedback control can delay

the critical point to higher values for certain fluid states (see Tang & Bau 1994, 1998;
Shortis & Hall 1996; and Joshi, Speyer & Kim 1997). Because of the possibility of
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Figure 4. Delay of onset of long-wavelength convection as a function K̂1 for the cases of F = 0.33
(solid line) and F = 0.66 (dashed line). The second pair of curves to the right is included to show
the destabilizing effect of the gain on a stable case when the layer is heated from above (where
M < 0).

subcriticality, however, the region below the new critical point in the presence of
control need not be completely stable. Disturbances can still grow exponentially to
large amplitude if subcritical finite-amplitude steady solutions exist but are unstable.
In order to guarantee that the no-motion state for our problem is stable even for such
disturbances, our control strategy is nonlinear with the primary aim of eliminating
the possibility of a subcritical solution by eliminating the quadratic nonlinear effect.
We restrict the higher-order analysis to the proximity of the shifted critical point so
that only the re-scaled version of (21) will be examined.

Increasing Mc

In deriving (21), the scaling relationship ε − K̂1 = q2R has been used. The critical
control parameter corresponding to R = 0, with K1 substituted for K̂1, gives

ε− K̂1 =
3D

2(1 +H)
((1 + F)(1 +H)−K1)− 1 = 0. (38)

In the fluid we consider, M is positive for heating from below, and so we require
D > 0. When (38) is cast in terms of Mc, it gives

Mc(K1) =
2

3

G(1 +H)

(1 +H)(1 + F)−K1

. (39)

The ratio |Mc(K1)/Mc(0)| measures the degree of stabilization. When this ratio is
greater than one, the control exerts a stabilizing effect. Below one, the control is
destabilizing. The ratio of the Marangoni numbers is given by

M(K1)

M(0)
=

1

1−K1,eff

, (40)

where K1,eff = K1/(1 +F)(1 +H). A typical linear stability diagram is shown in figure
4. In the results, we let H = 0.1, which is appropriate for a gas–liquid layer. The
pair of solid curves corresponds to the case F = 1/3, and the pair of dashed curves
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Figure 5. Sketch showing how a bottom modulated temperature can stabilize or destabilize the
fluid at the interface. (a) Bottom heating is designed to reduce the vertical temperature gradient at
the interface. Cold spots pull fluids from the hotter surrounding. The layer may still be unstable
if the basic gradient is sufficiently strong. (b) When the bottom heating is strong enough, the high
and low spots become hot and cold, respectively. When this happens, the high spots will be pulled
apart by the surrounding low spots. The layer is unconditionally stable in this case.

corresponds to F = 2/3. The top-left and bottom-right regions outside the curves are
unstable. As the gain K1 increases from zero, the critical value of M increases from
M(0) to positive infinity at K1,eff = 1. For K1 > (1 +H)(1 + F) the layer will always
be stable on the basis of a linear theory if the fluid has M > 0. Complete stabilization
is therefore easiest to achieve for low values of H and F . In contrast to the result of
Bau (1999) for the onset of stationary convection, we conclude that ∂M/∂K1 > 0 as
q → 0 for the case considered here (F > 0, or k > kg).

The physical mechanism for the stabilizing effect is now explained for the case
of M > 0 with the aid of figure 5. At K1 = 0, an elevated (depressed) region
is cooler (warmer) than the undeflected interface. A cooler spot pulls fluid from
surrounding warmer regions to feed the growing elevated region. As K1 increases, the
elevated (depressed) region becomes warmer (cooler), and so stabilization occurs. The
argument to this point is similar to that of Tang & Bau (1994) for Rayleigh–Bénard
convection. At K1 = (1 + F)(1 + H), the tangential gradient of temperature on the
interface vanishes. For K1 > K∗1 , the elevated (depressed) region becomes a warm
(cold) region and is pulled downwards by surrounding cold fluid. This explains why
(40) gives another branch of the critical curve which emerges from negative infinity.
This curve is relevant when the surface tension of the fluid increases with temperature,
i.e. when M is negative. Below this branch, the region is unstable. As K1 increases
away from K∗1 , this lower branch tends to zero indicating complete destabilization
(which also occurs as K1 → −∞ for M > 0). A large gain is required for building
up the reversed interfacial thermal gradient needed to drive the long-wavelength
convection for a layer of fluid with M < 0. We note in passing that a general analysis
of the case M < 0 needs to include the possibility of oscillatory disturbances. For
larger wavenumbers and values of K1 roughly an order of magnitude greater than
we consider, Bau (1999) has shown that oscillatory instability cannot only occur
for M > 0 but can be more unstable than the monotonic instability. This kind of
oscillatory instability seems to be associated with large values of gain and occurs also
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Figure 6. Curves showing three half-branches of the symmetric pitch-fork bifurcation correspond-
ing to the first three leading Fourier coefficients for α = 0 and (a) β = −0.1 and (b) β = −0.5.

for Rayleigh–Bénard convection; see Tang & Bau (1994). For K̂i ∼ O(1), (15) and
(21) do not allow oscillatory solutions as q → 0.

Nonlinear control and supercritical solutions

Apart from the coefficients, (21) has the same form as (32) discussed above. Unlike (32),
in which the two coefficients of the nonlinear terms are determined from the imposed
parameter values, the values of the two control coefficients α and β can be adjusted
in (21) to achieve the desired effect. We will again concentrate on one-dimensional
disturbances. Although it is important to consider more general disturbances, the
basic ideas of this paper can be conveyed by means of a one-dimensional analysis.

First, we consider the case α = 0. This case corresponds to a perfect cancellation of
the quadratic nonlinear term. We shall obtain the bifurcation curves by the Fourier
method. Since the equation contains only even-order spatial derivatives, A can be
considered either of even or odd parity, such as

A =

Nt∑
n=0

an cos nkX, (41)

where Nt is a cut-off integer and k is the wavenumber. Periodic lateral boundary
conditions are assumed based on the above solution form. The constant term a0

corresponds to a shift in reference level, which has to be determined from mass
conservation. All coefficients except for a0 are determined from the evolution equation
based on the above expansion. The linear neutral curve is again given by R = k2/B
with the critical wavenumber occurring at k = 0, which allows us to scale the
wavenumber according to k = k1(BR)1/2, so that k1 varies between zero and 1. The
Fourier coefficients can be arranged in a vector form and the equation becomes a set
of first-order coupled ordinary differential equations, denoted by a vector equation
ẋ = f(x). In the following example, we let k1 = 0.18. The equilibrium solution is
again obtained by using the Newton–Raphson method. In the solutions we observe
that all coefficients an with even index n (n > 2) vanish. Well-converged solutions
are achievable with Nt = 8. In figures 6(a) and 6(b) we show the three leading
coefficients, a1 (solid), a3 (dashed) and a5 (dashed-dotted) as functions of R for two
β values: −0.1 and −0.5, respectively. It is noted that, with negative β, the solution
will be different from the modified solitary-type solutions of (30). The bifurcation
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is of the pitch-fork type and in the figures only one of the two pitch-fork branches
is shown. The other branch (not shown) is a mirror reflection about the horizontal
axis. The relative magnitudes of the coefficients shown also indicate a fairly rapid
convergence with respect to Nt. Comparing the same curves between figures 6(a)
and 6(b), we see that for a given R the magnitudes of the coefficients for β = −0.5
are considerably smaller than those for β = −0.1. A larger |β| is associated with a
stronger stabilizing influence. The stability of the steady solution can be determined
by integrating the equation ẋ = f(x) using an initial condition perturbed slightly from
the steady solution. The steady solution is found to be stable. So far, no other steady
solution with the same wavenumber based on the form (41) has been found. In the
uncontrolled problem discussed in § 3.2 the finite difference method was used for the
localized disturbances. Here, the Fourier method is used to obtain periodic solutions.
But it has been established that both methods indeed give the same numerical results.

It is now desirable to provide a summary of the previous results concerning how
to compute the control gains. Assume that the values of F and H are given. Our
goal in using control is to achieve a certain forward shift in Dc (therefore Mc and
ε) and also a value of β for the coefficient of the cubic term corresonding to a
supercritical bifurcation. Based on these inputs we compute Dc and Ki (i = 1, 2, 3)
from the following equations:

Dc =
2(1 + ε)

3(1 + F)
, (42a)

K̂1 = ε , K1 =
2(1 +H)K̂1

3Dc
, (42b)

K̂2 = F − 1
2
− 1

2
a2K̂1, K2 =

2(1 +H)K̂2

3Dc
, (42c)

K̂3 = 1
3
(β0 + β1K̂1 − β), K3 =

2(1 +H)K̂3

3Dc
, (42d)

where a1 = 2(1 − H(1 + F)) and β0 and β1 are given by (22a, b), respectively. Note
that the Dc as well as the control gains do not depend on B. The result for a selected
group of inputs is summarized in table 1, in which the results are based on H = 0.1.
The result indicates that in general larger values of K1 and K3 are required to control
the instability for larger values of F . It is also advantageous to have a1 > 0 if K̂1 > 0
(i.e. ε > 0) in order to reduce the size of K̂2, i.e. have H(1 + F) < 1. In another
study employing nonlinear feedback control strategy by Shortis & Hall (1996), it is
remarked that the delay of convection by means of a linear feedback can give rise to
subcritical instability. Here, we found that a quadratic term of O(a1K̂1) is responsible
for generating subcritical instability.

5. Direct time simulations
Equations (18), (21) and (32) can be solved as initial-value problems by means of a

finite-difference approach. The time-dependent solutions allow us to examine stability
from a different point of view. In the integration of the one-dimensional form of the
equation, we assume a periodic boundary condition at the two end points and impose
a mass conservation condition which serves to modify the free-surface level in the
presence of deformation. Below we provide a few representative examples. The initial
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F ε β Dc K1 K2 K3

0.33 0.50 0.00 0.75 0.49 −0.59 0.54
0.67 0.50 0.00 0.60 0.61 −0.30 1.18
0.33 0.50 −0.50 0.75 0.49 −0.59 0.70
0.67 0.50 −0.50 0.60 0.61 −0.30 1.38
0.33 1.00 −0.50 1.00 0.73 −0.76 0.86
0.67 1.00 −0.50 0.80 0.92 −0.61 1.49

Table 1. Values of control gains computed from selected parameters.
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Figure 7. Direct time simulaton showing (a) divergence in time of a sufficiently large-amplitude
disturbance near a steady, subcritical solution branch; (b) convergence to a finite-amplitude stable
equilibrium with parameters under experimental conditions when the stabilizing cubic nonlinear
term is included in the equation; (c) the divergent behaviour of an elevated localized disturbance
at B = 1, F = 0.67 and R = −0.2 and with no control; (d) the decay of the same disturbance as in
(c) when control is imposed with parameter values α = −0.5 and β = −0.1. See the text for details.

disturbance shape corresponds to a steady-state solitary deformation because this is
the most ‘dangerous’ disturbance for Ki = 0.

Consider an example for (18) with F = 0.33 and B = 1. First, we show that
if the amplitude of a localized disturbance is sufficiently large, then it will diverge
even when the value of R is subcritial. Let us assume that R = −0.2. Figure 7(a)
shows an initial disturbance corresponding to a depressed solitary deformation of
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amplitude 2|As| (dashed curve), where As is the equilibrium value from (29). For mass
conservation we impose the constraint

∫
AdX = 0. In the integration, a time step of

2 × 10−3 is used. The solid curves show the divergence in time, with the first curve
corresponding to 5000 time steps. In the plot, consecutive curves are separated by
1000 steps. The divergence becomes very rapid after 104 time steps. On the other hand,
if the initial localized disturbance has amplitude less than that of the dashed curve,
the disturbance will eventually damp out and the static no-motion state will resume.
For R > 0, however, disturbances will diverge even for small amplitudes. For small
values of F , the rate of divergence is less severe for the same disturbance amplitude.

As a comparison to the diverged solution, we consider a second example for a
stable depressed solution. In figure 7(b), we consider a smaller F = −0.07, Bv = 18
and ε to be slightly supercritical at 0.05. The value of F is the same as that for
figure 21 of the experiments (VanHook et al. 1997). The value of ε is supercritical,
roughly corresponding to the mean condition of the experiment. Here, Bv is equal
to their static Bond number, which is equal to 18 according to the value of their
table 2. The time simulation here is based on the one-dimensional rectilinear version
of (32) with strong surface tension, so that the effect of the cubic nonlinear term is
included. In this example, there exists a stable finite-amplitude solution corresponding
to a forward branch. The initial disturbance prescribed is a solitary-shaped localized
disturbance (dashed curve). The time step used for integration of this case is equal
to 0.02. The three solid curves represent the solutions sampled at 5 × 103 steps. The
dashed-dotted curve corresponds to the solution at the end of 1.2 × 105 steps. A
reasonably well-converged steady-state solution is achieved as shown. Now we show
that the horizontal scale from the simulated steady solution is indeed consistent
with the scale of the mode observed in the experiments (see VanHook et al. 1997).
According to the description of the experiment, the liquid layer sits on a gold-plated
aluminium mirror of diameter-to-liquid-thickness ratio, L/d, ∼ 2.25 × 102 (based on
a diameter of 3.81 cm and an averaged d value of 0.017 cm). Considering a period of
the disturbance based on the maximal length scale of the mirror, we obtain q ∼ 0.03.
In our simulation, the horizontal extent of figure 7(b), measured in ∆X, is equal to
16. Now if we let q∆X equal L/d = 225, we obtain q = 0.07, which is on the same
order of magnitude as the experimental value.

Lastly, we demonstrate how the control stabilizes an otherwise unstable case for
which the interface diverges. Consider again Bv = 1 but now F = 0.67. We choose
F > 0.5 for this case because it represents a more unstable situation than the previous
F < 0.5 case. If the control works for this situation, we argue that it will work
even better for the more stable situation. Figure 7(c) shows again how an initially
prescribed localized disturbance (at 1.5As) diverges in time without control, based
on (18). Again, the dashed line shows the initial disturbance shape. The subcritical
condition corresponds to R = −0.2. The first solid line corresponds to 5000 steps
after the start of integration with a time step of 0.01, and a sampling period of 2000
steps is used thereafter for the curves associated with increasing amplitude. In figure
7(d), with the same initial localized disturbance (dashed line), time step of integration,
and values of R, F and B as in figure 7(c), we now study the time behaviour by
imposing the values of control parameters at α = −0.5 and β = −0.1, using (21).
The four thin solid lines show the subsequent disturbance shape at 104 steps apart.
The dashed-dotted line shows the disturbance shape at the end of 4× 105 steps. The
otherwise diverging disturbance converges to the no-motion state in a slow fashion
when the control is invoked. In fact, a more rapid decay is possible by increasing the
magnitude of β. The sign of α appears to be insignificant to the control.
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6. Concluding remarks

In this paper we have analysed a strategy for controlling long-wavelength
Marangoni–Bénard convection. Based on the re-scaled version of the evolution equa-
tion near the critical point, a family of steady-state subcritical solutions of cnoidal-type
was found. In order to demonstrate the dynamical effect of the next-order nonlinear-
ity, the strong-surface-tension assumption is invoked, and a stable forward branch is
obtained for both the rectilinear and axisymmetric cases. Stable forward branches for
other cnoidal-type solutions will certainly be present, although only disturbances of
the localized type have been investigated here.

The strategy of control discussed in this paper basically is to alter values and
signs of the linear and lower-order nonlinear coefficients. With control, subcritical
solutions can be suppressed. The bifurcation properties of the supercritical solutions
are investigated with and without detuning. The results demonstrate that the strategy
is effective for controlling the long-wavelength instability. Lastly, a few examples are
provided to show the unstable growth of a disturbance without control and how such
unstable disturbances can be damped out by applying the control temperature at the
wall.

We have focused mainly on disturbances of a localized type in the analysis. Other
disturbances, such as those of cnoidal type, can certainly become unstable in the
absence of control. But with control, we can basically eliminate the entire family
of cnoidal modes by eliminating the quadratic nonlinear term from the evolution
equation. The analysis needs to be generalized in order to demonstrate the control of
three-dimensional instabilities, and eventually, the model must be made more realistic
to reflect the obvious fact that sensing and control is unlikely to be done on a truly
continuous basis. However, we believe that such refinements will not change the basic
conclusions of this analysis.
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