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I. INTRODUCTION

The aim of this paper is to provide a new framework for the long-run

average cost control problem for discrete time Markov chains with a

countable state space. The tranditional approach to this problem has been

to treat it as a limiting case of the discounted cost control problem as the

discount factor approaches unity. (See [13] for a succinct account and the

bibliographies of [1], [13], [14] for further references. [1] contains some

major recent extensions of this approach.) However, this limiting argument

needs a strong stability condition, various forms of which are used in the

literature [8]. This condition fails in many important applications such as

control of queueing networks. A concrete example of the failure of the

classical argument was provided in [12]. Motivated by these problems, [3],

[4] used an alternative approach to tackle a special class of Markov chains,

viz., those exhibiting a 'nearest-neighbour motion'. More precisely, the

hypotheses were that the chain moves from any state to at most finitely many

neighbouring states and the length of the shortest path from a state i to a

prescribed state is unbounded as a function of i. Two cases were

considered: the first being the case when the cost function penalizes

unstable behaviour and the second the case when there is no such restriction

on cost, but the stationary strategies satisfy a stability condition. The

aim in both cases was to establish the existence of a stable optimal

stationary strategy and to characterize it in terms of the dynamic

programming equations. Reasonably complete results were established in the

first case and comparatively weaker results in the second. This paper

considers a very general framework that subsumes both the paradigm of [3],
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[4] and that of [131].

The paper relies heavily on parts of [4]. In order to avoid excessive

overlap with [4] and to keep the present paper from getting too unwieldy, we

refer to [4] for a great many details. In view of this, we use the same

notation as [4]. This notation is recalled in section II. Section III

gives a necessary and sufficient condition for the tightness of invariant

probabilities under stationary strategies. Section IV gives a dynamic

programming characterization of a stationary strategy which gives less cost

than any other stationary strategy. Section V and VI study the stability

and statistical behaviour of a chain governed by an arbitrary strategy under

the conditions spelt out in section III. Section VII establishes the

existence of a stable stationary strategy which is optimal under various

definitions of optimality. Section VIII considers the case when at least

one stationary strategy is not stable, but the cost function penalizes

unstable behaviour. Section IX gives simple, more easily verifiable

sufficient conditions for the stability condition of section III to hold.

Finally, section X indicates how to extend all these results to control-

dependent cost functions and concludes with a few plausible conjectures.
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II. NOTATION AND PRELIMINARIES

Let Xn, n=1,2,..., be a controlled Markov chain on state space S =

{1,2,...} with transition matrix Pu = [[p(i,jui)]]' i, jeS, where

u = [u1 ,u2 ,...] is the control vector satisfying ui e D(i) for some

prescribed compact metric spaces D(i). The functions p(i,j,.) are assumed

to be continuous. Let L = SD(i) with the product topology. A control

strategy C(S) is a sequence of L-valued random variables

{n }', n = [tn(1)' tn(2 )...''' such that for all ieS, n > 1,

P(Xn+1 = i/Xm ,m' m < n) = p(Xn , i, n (X )).

As noted in [4], there is no loss of generality if we assume that (a) the

D(i)'s are identical or (b) the law of tn is the product of the individual

laws of tn(i), ieS, for each n. If Q{n} are i.i.d. with a common law 4,

call it a stationary randomized strategy (SRS), denoted by y[4]. If I is a

Dirac measure at some 4eL, call it a stationary strategy (SS), denoted by

y({). The corresponding transition matrices are denoted by P[Q] =

[[f p(i,j,u)4 i(du)]] (di being the image of I under the projection L ->D(i))

and P{}) = Pi. The expectations under the corresponding laws of {Xn } are

denoted by Eq['], E['] respectively (with the initial law either arbitrary

or inferred from the context).

We shall assume that the chain has a single communicating class under

all SRS. If in addition it is positive recurrent under some y[Q] or y(}),

call the latter a stable SRS (SSRS) or a stable SS (SSS) respectively and

denote by n[I] = [nt[](1), ,[I1(2),...] or w{t} = [r{(}(1), n{r}(2),...] the

corresponding unique invariant probability measures. For f:S -> R bounded,
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let Cf[§] = nN[t](i)f(i) and Cf[O} = ~ nf[)(i)f(i).

Let k:S -4R be a bounded cost function. Define

n

> k(Xm)
m=1

q = lim inf n
r -4-

Under an SSRS y[~] or an SSS yft}, we have Tn -"Ck[] (or Ck{t} resp.)

a.s. Let a = inf Ck{t}, A = inf Ck[Q], the infima being over all SSS (SSRS

resp.). Clearly, P<a. We say that an SSS ¥{Q0} is

(i) optimal in the mean if Ck{QO} = a = P and under any CS,

lim inf E(n] > a,
n --

(ii) optimal in probability if Ck{tO} = a = f and under any CS,

lim P(Tn 2 a-e) = 0 for all 8>0,
n ---

(iii) a.s. optimal if Ck{to} = a = P and under any CS,

T. >- a a.s.

Next, we summarize the relevant results of [3], [4], [13]. Call k

almost monotone if lim inf k(i) >) . Let T = minfn>lIXn = 1} and define

V[() = [V[}J(1), Vft}(2),...] by



V})](i) = E[ ~ (k(Xm ) - a)/Xj = i]

m=2

for each SSS y()]. Define VL[] = [V[l](1), V[1](2),...] analogously for an

SSRS y[j]. Since EE[/X 1 = 1] ( X under positive recurrence, these are well-

defined. The relevant results of [3], [4], [13] are as follows:

(1) Suppose all SS are SSS and

sup E[-l/XI = i] < =. (2.1)
ig 1

(see [8] for equivalent conditions.) Then there exists an a.s. optimal SSS

y{ 0)}. Furthermore, t{o}) is a.s. optimal if and only if the following

holds termwise:

CkI 0)}1 = (P {o) - U)V{o}0 + Q = min(Pu - U)V( 0o} + Q (2.2)
u

where 1c = [1, 2,....]T Q = [k(1), k(2), ...]T and U is the infinite identity

matrix [13].

(2) Suppose that at lest one SSS exists, k is almost monotone and (*)

below holds:

(*) For each i, p(i,j,.) 0 O for all but finitely many j and for any

finite subset A of S and M_1, there exists an N_1 such that whenever i>N,

the length of the shortest path from i to any state in A exceeds M under any

SRS.
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Then there exists an a.s. optimal SSS. Also, y([) is an a.s. optimal

SSS if any only if (2.2) holds. [3], [4].

(3) Suppose all SS are SSS, the set [nIt)t 8e L} is tight and (*)

holds. Then there exists an SSS which is optimal in probability. Also,

¥{0 ] is optimal in probability if and only if (2.2) holds. [4]

In the sections to follow, we generalize all three cases above. In the

last section, we also indicate how to extend our results to control-

dependent cost functions.

The main results of this paper are contained in Lemma 4.4, Theorems

7.1, 7.2, 7.3, 8.1 and 8.2. The key hypothesis is condition C of section

III for Lemma 4.4, Theorem 7.1 and 7.3, condition D of section VII for

Theorem 7.2 and condition E of section VIII for Theorem 8.2.
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III. TIGHTNESS OF THE INVARIANT PROBABILITIES.

Throughout sections III-VII, we shall assume that all SS are SSS.

Consider the condition:

Condition C: The family {(()}) of random variables is uniformly integrable,

where i(r) = s corresponding to the chain governed by yr(} with initial

condition X1 = 1.

Our aim is to prove that this condition is necessary and sufficient for

the tightness of [b{}1I48L}. We shall proceed via several lemmas.

Lemma 3.1. A sequence Xn, n=1,2,..., of S-valued random variables is a

Markov chain with transition matrix P if and only if for all bounded

f:S -*R, the sequence Yn' n = 1,2,..., defined by

n

Y = E (f(Xm) - ~ P(Xm 1, i, 4(Xm-l))f(i)) (3.1)

m=1 isS

is a martingale with respect to the natural filtration of [Xn}. (We use the

convention p(XO, i, 4(XO)) = P(X1=i).)

The proof is elementary. Let pn(i,j,t) denote the probability of going

from i to j in n transitions under yf}).

Lemma 3.2. For each i and n, the family of probability measures fpn(i,.,~),

geL} on S is tight.

Proof. Let {m --> in L. Then lim inf pn(i,j,gm) Ž pn(i,j,t) for each i,j,n
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by Fatou's lemma. Since 1 = [ pn(i,j,tm) = [ pn(i,j,g), it is easily seen

that lim pn(i,J, m) pn(ij, ). By Scheffe's theorem [2],

pn(i,.,tm) -_ pn(i,.,) in total variation and hence weakly. The claim

follows.

QED

Let ~n - S= in L and for m = 1,2,...,=, let Xm, n = 1,2,..., be a

Markov chain governed by r{{m} with Xm = 1 and Qm the law of

{Xm, n = 1,2,...} viewed as a probability measure on the canonical space S =

- SxSx

Lemma 3.3. Qm .-Q weakly.

Proof. A family of probability measures on a product space is tight if and

only if its image measures under each coordinate projections are. Thus

Lemma 3.2 implies the tightness of {Q1, Q2,,.*)* Let Q be any limit point

of this set. Let [X1, X2,...] be an SO-valued random variable with law Q.

Clearly, X1 = 1. Pick N_1. Let f:S -)R and g:SxSx...xS (N times) -*R be

bounded maps. Let Ym Yn be defined as in (3.1) with ((Xn}, g) replaced by

(f{XM }, gm), ({Xn }, {X) respectively. By Lemma 3.1, for n>N,

E[(Ym - YN)g(X,...,XN)] = 0.

Passing to the limit along an appropriate subsequence, we get
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E[(Yn - YN)g(X 1 ." " X n )] = O.

A standard argument based on a monotone class theorem shows that {Yn} is a

martingale with respect to the natural filtration of {Xn}. The claim now

follows from Lemma 3.1.

QED

By Skorohod's theorem, we can construct on a common probability space

(O,F,P) random variables i' n = 1,2,...,m=1,2,...,c, such that the law of

[il, ,...] agrees with the law of [Xm, X2,...] for each m and n -)Xn for

each n, a.s. We shall assume this done and by abuse of notation, write Xm

for Xn. Let vm = min{n>llXm = 1) and

am

um(i) = E[ I{Xj= i}]

j=2

for ieS, m = 1,2,,...,~. (Here and elsewhere, I{...} stands for the

indicator function.)

Corollary 3.1. Under condition C, E[ml] -4E[ ]1 and um(i) -)3u(i) for each

isS.

Proof. Outside a set of zero probability, Xm -)Xn for each n. Since these

are discrete valued, X = X from some n onwards. It is easy to see from

this that =m -_ ) a.s. The first claim follows. The second is proved

similarly. QED
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Theorem 3.1. The following are equivalent:

(i) Condition C holds.

(ii) {{n(}IstL} is tight.

(iii) {V{})IteL) is compact in the topology of weak convergence.

Proof. It is clear that (iii) implies (ii). Suppose (i) holds. For {Qn}

as above, we have

n {n}(i) = un(i)/E[tm] -4u (i)/E[t'] = n{t}(i)

for each i. By Scheffe's theorem, t[n} -* n(},) weakly and in total

variation. Thus the map t -h>{t} is continuous. Since L is compact, (iii)

follows. We shall now prove that (ii) implies (i). Suppose (ii) holds and

(i) is false. Then {4n} above can be picked so that lim inf E[tm] > Et[i].

(The > inequality always holds by Fatou's lemma.) Since n{dm}(1) =

(E[vm])- 1 for each m, we have lim sup n{tm)(l) < nt})(1). Now for each

N21,

N

2 7{Qm}(i)p(iJ,4m(iM) < 7{tm}(j).

i=1

Let n = n[(1), i(2),...] be any weak limit point of {1{tn}}. Then passing

to the limit along an appropriate subsequence in the above inequality, we

have
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N

RM(i)P(ij, :(i)) (j) .
i=:

Letting Nt-,

I A(i)p(i,j,9 (i)) < R(j).

ieS

Since both sides of the inequality add up to one when summed over j,

equality must hold. Hence n must be of the form n(i) = a{it},(i), isS, for

some a [tO,1). This contradicts the tightness of {{rin }, n=1,2,...). Thus

(ii) implies (i).

QED

Corollary 3.2. Under condition C, there exists a t0 8 L such that

Ck{ } = a.

Later on in section IX, we shall give simpler sufficient conditions

that ensure condition C. See [6] for some related results.
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IV. THE DYNAMIC PROGRAMMING EQUATIONS

The results of this section are essentially the same as the

corresponding results of [4] except for the much more general set-up being

used here. The proofs of [4] apply with a little extra work and thus we

omit many details, referring the reader to [4]. Assume condition C. In

particular, this implies that all SS are SSS.

Lemma 4.1. For any ieS, usD(i),

p(i,j,u) E['r/X 1 = j] <

i

Proof. Let {'eL be such that {'(j) = 4(j) for jSi, 4'(i) = u. Let

j = min{n>lIXn = j}. Then

p(i,J,u)E [r/X=j] = p(iju)Et[rI (i(<J/X1 = j]

+ ~ P(i,J,u)EF[rI{[i>.} /X1=
j]

< (E ,[Ti/Xi = i] + Et[./X 1 = i]) + Et,[/X l = i] < a.

QED

In particular, it follows that t p(i,j,u)V({f (j) is well-defined for

all i,u,t.

Lemma 4.2. For an SSRS y[t], v[a](1) = 0 and
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Ck 1§]lc = (P[Q] - U)V[M ] + Q (4.1)

termwise. In particular, for an SSS yft},

Ck{t}lc = (P{t} - U)V1[] + Q. (4.2)

Furthermore, any W = [W(l),W(2),....]T satisfying

Ck[ ]lc = (P[]i - U)W + Q

with sup (W(i) - V[I](i)) < - must differ from VE[] at most by a constant

multiple of le.

For a proof, see Lemmas 3.1 and 3.2 of [4]. Let {Xn } be governed by an

SSS yft) with X1 = 1. Consider

Y = (V{}(Xm ) - E[V({}(Xm)/Xm_i])-
m=2

Since V{})(X.) = V{W}(X1) = 0 by the above lemma, this equals
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i-1

(v[t}](Xm) - E[V(Q)(X m+)/Xm])

m=l

'-1

= 1 (k(Xm ) - Ckft)),

m=l

by (4.2). Thus E[IYI] < a.

Lemma 4.3. E[Y] = 0.

For a proof, see Lemma 5.2, [4].

Lemma 4.4. Ck{( } = a if and only if the following holds termwise:

Ck{tl c -= min (Pu - U)V{( + Q (4.3)

The proof is as in Lemma 5.3, [4], and the remarks that immediately

follow it. (4.3) are called the dynamic programming equations. It should

be remarked that in this paper we do not address the important issue of

studying the set of general solutions (c,W) of the system of equations

clc = min(Pu - U)W + Q

and characterizing the particular class (Ck{(}, V({} + constant x 1c) with 

as above, from among this set.
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V. STABILITY UNDER ARBITRARY STRATEGIES

In this section, we assume condition C and show that the mean return

time to state 1 remains bounded under arbitrary control strategies. Define

v as before. As observed in section III, the map --)Et[t/X 1 = 11 is

continuous. Hence there exists a a 8 L such that E['t/X 1=l] =

max Et[t/X1=I].

Let A1, A2 ... be finite subsets of S containing 1 such that U An = S.

Define zn = min{m>llXm4An or Xm = 1), n = 1,2,... Define vn:S -4R by

inf EN[n/X1 = i if isAn, i1,

Vn(i) = 0 if ifAn,

inf E[v(X2)I{X2O1/X=11] if i=1,

where the infima are over all CS. Standard dynamic programming arguments

[10] show that vn satisfies

vn(i) = max[l + ~ p(ije(i))Vn(J)] (5.1)

for isAn, i#l, and

Vn(1) = max[l + t p(l,j,M(l))vn(j)] (5.2)

Note that the summations on the right are finite in both cases because

vn(j) A 0 for at most finitely many j. Hence by continuity of p(i,j,.) and
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compactness of the D(i)'s, the maximum is attained in each case. Let 4n be

such that 4n(i), 4n(l) attain the maxima in (5.1), (5.2).

Lemma 5.1. E n Cn/Xi = 1] = max E [rn/X1 = 1], where the maximum is over

all CS.

The proof follows by standard dynamic programming arguments [101 and is

omitted.

Corollary 5.1. sup EE[/X 1=1] < EZ[z/X1=1], where the supremum is over all

CS.

Proof. Under any CS,

EE[n/X1= 1] _ Etn [/X 1 = 1]

< Eg [k/X1 = 1] < E[Tl/X1 = 1]

Let n -3).

QED

Corollary 5.2. All SRS are SSRS.

Lemma 5.2. {r[I]14 a product probability measure on LI is a compact set in

the topology of weak convergence.

Proof. The arguments leading to Lemma 5.1 and Corollary 5.1 can also be
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used to prove the following: For any SRS y[t],

E ILXm_>N)/X 1=1] < max E I Xm>N)/X 1=l],

m=2 m=2

N = 1,2,...,

Eq[/X1=1 _ > min E[/iX 1 = 1],

where the maximum (resp. minimum) are attained for some ~. In particular,

the right hand side of the second inequality is strictly positive. Thus

\nl[](i) = E[ I I{Xm
> N}/X1=1]/E[-l/X 1=1]

i>N m=2

< constant X max( t n{~}(i)).

iŽ>N

The tightness of in[t]) now follows from the tightness of {a{n(}. Let

§n -)Q in the topology of weak convergence of probability measures on L.

The space M(L) of probability measures on L with this topology is compact by

Prohorov's theorem and the set M(L) of probability measures in M(L) of the

product form is a closed and hence compact subset of this space. Let a be

any weak limit point of f{n[n]}, i.e., n[Inj] ->n for some subsequence {nj}.

By Scheffe's theorem, n[n;] -I n in total variation. Hence letting j -i- in
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v[~nj]P[nj ]I = [tinj]

we obtain,

RP[t ] = U,

i.e., n = i[CR]. Thus the map I -4n[t] is continuous. The claim follows.

QED

Corollary 5.3. There exists an SSRS y[4] such that Ck[t] = J.

Using arguments identical to those leading to Lemma 4.4, one can prove

the following.

Lemma 5.3. Ck([O] = f if and only if the following holds termwise:

Ck 0I]1C = min(PR[] - U)V[Qo] + Q (5.3)

Corollary 5.4. P = a.

We omit the proof here. It follows exactly along the lines of the

proof of Lemma 8.2 in section VIII, which in fact treats a slightly more

complicated situation.

As in section III, we have

Corollary 5.5. The set {lf{Xn} is governed by some SSRS and X1 = 1) is

uniformly integrable.
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VI. STATISTICAL BEHAVIOUR UNDER ARBITRARY STRATEGIES

In preparation for proving the optimality of the y{0 } of Corollary 3.2

with respect to arbitrary CS, we prove further properties of a chain

governed by an arbitrary CS.

Consider a fixed CS {rn} and let {Xn } be the Markov chain governed by

Q{n} with X1 = 1. As before, hi will denote the image of I 8 M(L) under the

i-th coordinate projection. Let v be as before. Note that we continue to

assume condition C.

Lemma 6.1. For each a e (0,1), there exists a V(a) e M(L) such that for any

bounded f:S -4R,

E[E am -1 ~ p(Xm,J,im(Xm))f(i)]

m=1 jsS

r-1

Et _ am -1 (JP(Xm,j,u)(a)X (du))f(j)]-

m=1 je 

Proof. Fix a and construct {(a) as follows: Define a probability measure u

on SxL by

r-1

Jgdu = E am lg(Xm,m )]/(E[(1-a)-l(1-a=)]

m=l

for all bounded continuous g:SxL --R. Disintegrate u as
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u(dx,dy) = u1(dx)u2(x)(dy)

where u1 is the image of u under the projection SxL -*S and u2:S ->M(L) is

the regular conditional distribution. Let u2j(i) denote the image of u2(i)

under the projection L ->D(j). Define f(a) as the product measure u2i(i).

The claim now follows by direct verification.

QED

Let f:S -4R be a bounded map. Define

U-1

ha(i) = Ea)[ am-lf(xm)/X 1 = 1], ieS.

m=1

Z = ha(1)

n-1

Zn= am-f(Xm) + an- ha(Xn)If{>n}, n=2,3,4,...

m=i

W = Zn+ - Zn n+1 n

-an f(X) + a ha(Xn+ )I[{>n+l} - an h (Xn)I{>n}, n=1,2,...
n a n+' a n

Clearly, ha(*') is bounded.

Lemma 6.2.
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:-1 r-1

E[ am-lf(Xm) ] = E (a)[ a-l(Xm)/X1 = 1].

m=i m=1

Proof. The right hand side is ha(l). Note that

--1 *-1

am-lf(Xm ) - ha(l)= Wn

m=i m=l

Letting Fn = v(Xm,am,mmn), n=1,2,..., the sequence

n-i

(Wn -E[Wm/Fm])
m=1

becomes an {Fn+1)-martingale. By the optional sampling theorem,

(C-1)Au (C-1) n

E[ Wm ]=Et E[W/Fm]].

m=i m=l

Since the expressions inside both expectations are bounded by a constant

times i, we can let n -* and apply the dominated convergence theorem to

claim

·- 1 '-1

EE a f(X ) ] - ha ( 1 ) = E Wm]

m=l m=1
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T-1

= E (EWm/Fm]]

m=l1

= E[ a m-(f(xm ) - ha(Xm) +

m=1

a S P(XmiJm (Xm ))ha( j)) ]

1Aj aeS

By Lemma 6.1, the right hand side equals

V-1

E am-l(f(Xm)- ha(Xm) + a (P(iju)I(a)i(du))ha(J))].

m=1 1#JeS

Hence the expression in (6.1) is zero. The claim follows.

QED

Note that for a given a, the claim above holds for all bounded f: S -)

R. Let an -41 in (0,1) such that I(an) - in M(L) for some I. Then a

trivial limiting argument (as for Corollary 3.1) shows that for all bounded

f:S -*R.
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· -1 :-1

E[ f(Xm)] = E 2 (X)]

m=1 m=l1

Summarizing the results,

Lemma 6.3. For any CS{Cn}, there exists an SSRS y[4] such that for all

bounded f:S -*R,

T-1 s-1

E[t f(Xm)/X 1=l] = E[ f(Xm)/X1=,

m=1 m=1

where the expectation on the left is with respect to the law under {Cn }.

Let {)n} be a fixed CS as before and [Xn} the chain governed by {n })

with X1=1. Let a0=1, an=min{m>)n_jlXm=l} (<- a.s. by Corollary 5.1), Fn =

U(Xm, m'p m<n) and Fn = the stopped a-field for the stopping time an. We

say that an S-valued sequence {Yn} of random variables is an acceptable

controlled Markov chain if Y1=1 and there exists an L-valued sequence of

random of random variables ({i} such that P(Yn+i = J/Ym' m' m<n) =

P(YnJn(Yn ) ).

Lemma 6.4. For each n, the regular conditional law of the process

Xan+m' m=1,2,..., conditioned on Fan is a.s. the law of an acceptable

controlled Markov chain.
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Proof. Fix n,m>1 and let o -) P(',) denote a version of the regular

conditional law of X. +i, i=1,2,..., given F6 . Recall the definition of
n n

P[j]. Let pq(i,j) denote the (i,j)-th element of P[Q]. We need to show

that there exists an M(L)-valued F. -measurable random variable C(O) such
n

that for any bounded real random variable Y which is measurable with respect

to Fa +m'
n

E[E[I(X +m+l = j)/F ]Y/F ] = E(p (w)(X a +m,j)Y/F ]
n n n n n

a.s. But the left hand side equals

E[I(X +m+=1 j)Y/F ] = E[I{X =j}I{X +=i}Y/F ]~y +M+1 a +m+1 a +m
n n iS n n n

= E[p(i,j, +m(i))YI{X +m=i}/F ] (6.2)
n n n

.sS

Define new probability measures Pi on the underlying probability space

by

dP.

dP= YI{X +m = i}
dP _mn

and let Ei['] denote the expectation with respect to Pi. A standard change

of measure argument shows that (6.2) equals
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E.[P(ij,t +m(i))/F ]E[YI{X +m = i}/F ].
n n n n

isS

Define the M(L)-valued random variable C(O) as follows: Let C(O) = 7i(&)

where {i (o) is the random measure of D(i) defined by

PfdOi() = E[f(O +m(X +m))Fa ]
n n n

for all bounded continuous f:D(i) -*R. (The definition of {i(o) and hence

that of C(O) is specified only a.s.) Then (6.2) equals

p(0)(i,J)E[YI{X aM = i/F ]I
n n

= E[(U P() (i,j)I{X +m = i})Y/F ]
i8s n n

= E[pj(w)(Xa +m' j)Y/F ]
n n

QED

Corollary 6.1. For each a s (0,1], there exists a sequence {0a(n)) of M(L)-

valued random variables such that pa(n) is F. -measurable for each n and for
n

all bounded f:S --R
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On+ -1 :-1

E am 1f(Xm)F ]=E 1a(n)[ am-lf(X )/X = 1] a.s.

m=6 n m=l

where E['] is the expectation with respect to the law under y[f].

Proof. Follows from Lemmas 6.2, 6.3 and 6.4. QED

In particular, this implies that

an+l 1 i-1

E[ ~ am lf(Xm)/f ] < sup Ei[ am-lf(Xm)/Xl=l] a.s.

m= a m=1

for a, f as above. This weaker conclusion is all we need for what follows

and can be proved also by combining Lemma 6.4 with a dynamic programming

argument similar to the one used to prove Corollary 5.1. However, we prefer

the above approach because the content of Corollary 6.1 is of independent

interest and is not captured by the alternative argument suggested above.
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VII. OPTIMALITY OF y{f0 }

In this section, we establish the optimality of ry{0 } of Corollary 3.2

under condition C. Let {n })' {Xn } be as in Section VI.

Let S = SU=}) denote the one point compactification of S and M(S), M(S)

respectively the spaces of probability measures on S, S with the topology of

weak convergence. Define a sequence f{n} of M(S)-valued random variables

and another sequence fun) in M(S) as follows: For ACS, n=1,2,...,

n

¥n(A) = If{XmA }

m=1

u (A) = E[¥n(A)].
n n

Lemma 7.1. Outside a set of zero probability, every limit point * of {n })

in M(S) (which is compact) has a decomposition

v = (1-c)n[l] + cS (7.1)

for some c e [0,1], ea M(L), 6 being the Dirac measure at a.

The proof is as in Lemma 3.6, [4] except that now we need to consider

feG (in the notation of [4]) with finite supports. A similar argument

proves the following:

Lemma 7.2. Each limit point u* of fun } has a decomposition



29

u = (1-c)nt[] + c6 (7.2)

for some c 8 [0,1] and t 8 M(L).

Lemma 7.3. Under condition C, c=O in (7.2).

Proof. Let Un denote the restriction to un to S for each n, viewed as an

element of M(S). It suffices to prove that {Un} is tight. Let

An = (n+l, n+2,...)C S, n = 1,2,... We have

n

Un(AN) = E[l I{Xm AN}]

m=1

n+1

< E[ E[ I{Xm a AN}]

m=1

n ~-1n rm+l

= E [ E[ I {X m AN}/F 1]]
m=O j= ! 

n -1

= E ) E I I[X aA =1]]
n= 1 (n)[ Ix 8 N/

m=o m=1

C-1

< 2 sup EL[ ~ I{Xm 8 AN)/X = 1]

m=1
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2 sup ( , nl](i)) sup EI[/x 1 = 1]

i=N+l

where {01(n)) are as in Corollary 6.1. By Lemma 5.2, the right hand side

can be made arbitrarily small by making N large. Thus un}) are tight and

the claim follows.

QED

Theorem 7.1. y{0} is optimal in the mean.

Proof. From (7.2) and the above lemma,

lim inf Et[n] > min Ck[1] = a. QED
n -4 Q

To ensure a.s. optimality, we need the following stronger condition:

Condition D: sup E[£ 2/X1 = 1] < -, where the supremum is over all CS.

It is easy to see that this implies condition C.

Theorem 7.2. Under condition D, ¥{t0} is a.s. optimal.

Proof. Let Pn denote the restriction to S of ¥n, n=1,2,..., viewed as an

element of M(S). By Corollary 5.4 and Lemma 7.1, it suffices to prove that

for each sample point outside a set of zero probability, the sequence {in }

is tight. Let An, n=1,2,..., be as in the proof of Lemma 7.3. Then
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n n

n(AN) n IXm 8 AN) 1< n F

m=1 m=O

where

+1am+1 1

F = I{X £ AN}, m=0,1,2...

j=ac

For any E>O and m=1,2,....

T-1

E[F/FI ] E() [ IX m a AN}/X1 = 1]

m=1

< sup( t n[t](i)) sup Eq['/X 1=1] < (

i=N+1

for N sufficiently large. Under condition D, we can use the strong law of

large number for martingales ([11], pp. 53) to conclude that

n

lim 1 (Fm - E[F /F ]) = 0 a.s.
n - m m 

m=O

Hence
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lim up Pn(An) < a a.s.

for N sufficiently large. The claim follows. QED

There is one important case for which we have a.s. optimality even

without condition D.

Theorem 7.3. If k is almost monotone, yf}) is a.s. optimal even if

condition D does not hold.

Proof. From Lemma 7.1 and the definition of almost monotonicity, it follows

that > _) = a a.s. QED

Corollary 7.1. y{0 }1 is optimal in probability.

Remark. We do not assume condition D here.

Proof. Using Theorem 7.1, 7.3 above, imitate the arguments of Lemmas 5.4,

5.5, Corollary 5.2 and Theorem 5.1 of [4] to conclude. QED

Theorem 7.2 is important in adaptive control situations involving self-

tuning as in [5]. Taking k to be minus the indicator of successive AN's

defined as above, one verifies easily that Theorem 7.2 implies 'condition T'

of [5]. Thus all the results of [5] can be rederived in the much more

general set-up here if we impose, as in [5], the additional restriction that

p(i,j,u) is either = 0 for all u or >0 for all u, for each pair i, jSS.
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(One can work around this extra restriction. However, we won't digress into

these matters here.)



34

VIII. THE GENERAL CASE

In this section, we assume that there exists at least one SS that is

not an SSS. Clearly, conditions C and D fail. In general, one cannot

expect to find an optimal SSS. For example, if k(i) > 0 for all i and

lim k(i) = O, then Ck{O) > 0 for all SSS ¥y{}, but lim Tn = 0 a.s. under any

SS that is not an SSS. This suggests that we should put a restriction on k

that will penalize the unstable behaviour. Almost monotonicity does

precisely that. In what follows, we assume that k is almost monotone and at

least one SSRS exists.

Lemma 8.1. There exists an SSRS y[4] such that Ck[l] = f.

This is proved exactly as in Lemma 4.1, [4].

Lemma 8.2. P=a

Proof. Let Q be as above. Writing P[I] = [[pq(i,j)]], we have

t p(i,j)E [./X 1=j] = E[.r/X1=i] < (8.1)

for all ieS and

Plc = (PIt] - U)VMl] + Q (8.2)

Recall that 1i is the image of I under the projection L -4D(i). For each i,

(8.1) implies that
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QM({usD(i)| p(ij,u)Epqlr/X1=j] < a)) = 1

i

Suppose that for some i0os, 2 p(io,j,.) VE[](J) is not hi - a.s. constant.

Relabelling S if necessary, assume that i0=1. Then we can pick a ueD(1)

such that

p(l,j,u)V§](j) < 2 pO(lj)V(I](j) (8.3)

i j

and

p(l,j,u)E[sr/X1=j] < (8.4)

i

Let 8' M(L) be such that i = 1 i for iP1 and 41 = the Dirac measure at u.

By (8.4), Eq,[/X 1=ll] < - and hence y[Q ] is an SSRS. It is also easy to

see that VWQ] = VW[ ]. Thus

p1c > (PQ4'] - U)V[4] + Q (8.5)

with a strict inequality in the first row and an equality in the rest.

Imitate the proof of Lemma 5.3, [41, to conclude that Ck[t'] < I, a

contradiction. Hence for each isS, the quantity Y p(i,j,.)V[t](j) is 4i-

a.s. a constant. Hence we can find a ui e D(i) for each i such that
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p P(i,j,ui)E [C/Xi==] < X

and

p(i,j,ui)V[§](j) = pt(ii)vtq](j)

~j S~j

Construct SRS y[Q(1)], y[q(2)],... such that {i(n) = 1i for i>n and {i(n) =

the Dirac measure at u i for i<n. Let t = [ulu 2,...] e L. The arguments

leading to (8.5) show that y[Q(1)] is an SSRS and

O1 = (P[§(1)] - U)V[4(1)] + Q,

implying CkIt(1)] = A. The same argument can be repeated to inductively

claim that Ck[O(n)] = i, n=1,2,... (In this connection, recall from the

second half of the proof of Lemma 5.3, [4], that relabeling S can change

V[I] at most by a constant multiple of 1c.) Since k is almost monotone, it

follows that ({r[(n)], n=1,2,...) is tight. Let n be any weak limit point

of this set. By Scheffe's theorem, n[I(n)] -)a in total variation along

appropriate subsequence. Letting n -) - along this subsequence in the

equation n[I(n)]P[t(n)] = nl[(n)], we have nP[}) - n. Thus X = nQet and

y(t} is an SSS. Moreover, Ck{(} = lim Ck[f(n)] = 8. The claim follows.

QED

Theorem 8.1. An a.s. optimal SSS exists.
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Proof. For t as above, Ck(OO = a. From Lemma 7.1 and the almost

monotonicity assumption on k, it follows that

_> P~ = a a.s. QED

The dynamic programming equations are harder to come by. Say that an

SSS y{}) is stable under local perturbation if for any t' s L such that

{'(i) = {(i) for all but one i, y}(') is an SSS.

Condition E. All SSS are stable under local perturbation.

The proof of Lemma 5.3, [4] can then be repeated to prove the

following:

Theorem 8.2. Under condition E, an SSS yf}) satisfies Ck{O} = a if and only

if (4.3) holds.

A sufficient condition for condition E to hold is that for each i8S,

p(i,J,.) 0 O for all j not belonging to some finite subset Ai of S. To see

this, note that if 4'(i) = 4(i) except for i=io, relabelling S so that

i0 = 1, we have

EV,[I/X1=l] = 1 p(l,j,4'(1))E [r/X1=j] < max E [s/X =j] < a.
jeA1

Thus the above subsumes the case studied in [4]. In particular, we did not

need the second half of the assumption (*) recalled in section II.

Without condition E, the same proof can be used to show the following
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much weaker statement:

Theorem 8.3. If ()t} is an SSS satisfying Ck{O} = a, then for any isS,

usD(i) such that y{'}) defined by 4'(j) = t(j) for jCi and t'(i) = u is an

SSS, the following holds

~ p(i,j,u)V{t}(j) - V{}J(i) + k(i) 2 a.

")'"~"^1~~"~~i~'~~~~U"".II-.·-I·~ ~ ~lU i ~~ .. _.j_..
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IX. SUFFICIENT CONDITIONS FOR UNIFORM INTEGRABILITY

It seems unlikely that there is a simple characterization of conditions

C or D applicable to all cases. Instead, one looks for simple sufficient

conditions that may be used either singly or in combination depending on the

problem at hand. In this section, we briefly outline a few such conditions.

Suppose we need a bound of the type sup E[rm/X1=l] < - for some m>l,

the supremum being over all CS belonging to a prescribed class A. One

obvious way of ensuring this would be to prove that for some integer N>1 and

reals K>O, e 8(0,1),

P(¶>nN/X1=1) < K 8n, n=1,2,...

for all CS in A. Most methods below are based on this idea.

(1) Suppose there exists a map V:S ->R such that V(l) = O, V(i) > 0 for i#1

and the following hold:

(Al) For some 80>0,

E[(V(X 1 ) - V(Xn))I{V(Xn) > O}/Fn] -0 (9.2)

under all CS.

(A2) There exists a random variable Z and a X>O such that
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E[exp(XZ)] < =

and for all ceR,

P(IV(Xn+1 ) - V(Xn) > /Fn ) < P(Z> (9.3)

under any CS.

Then a bound of the type (9.1) under all CS follows from Proposition

2.4 of [9], ensuring condition D. If we require (9.2), (9.3) to hold only

for all SS, we still have condition C. See [9] also for potential

applications to queueing and for a list of references that give other

closely related criteria. This method is similar to the "Liapunov function"

approach of [6], [10].

(2) Suppose that there exists a map V:S -*R such that V(i) > 1 for all i

and the following hold:

(A3) sup sup EE[V(X2 )/X1 =1] < - for all n=1,2,...

(A4) U f{ieS(V(i)/Et [V(X 2)/X=i]) < } is a finite set of all k=1,2,...
tesL

It is observed in [7], pp.415, that this ensures that all SS are SSS.

Assume furthermore that
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c = inf n{r() (1) > 0.

Let C = {seM(S)V¥(1) < c/2) and pick an integer N>4/c. Then

N

P(v2N/X1=l) = P(1 I{Xm=l } < X1 = 1)

m=1

N

m=1

= P(iN s C/X1 = 1). (9.3)

where [{n } are defined as in section VII. Under our assumptions, the

methods of [7] yield an exponential bound of the type (9.1) for all SSS.

This can be verified by checking that the estimates of [7], pp. 415-421, for

the logarithm of the right hand side of (9.3) hold uniformly for all SSS

under our hypotheses. Thus we have condition C. It is not clear whether

this method can be adapted to ensure condition D as well.

(3) Suppose that there exists an NŽ1 such that the following holds:

(AS) d = sup sup P(zŽN/X1 = i) < 1 (9.4)
ieS

where the first supremum is over all CS. Then for any acceptable chain

{Xn},
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2N-1
P(r_2N) = EE TTI{Xm#1]]

m-=l

N 2N-1
= El[I{Xml#)ElTT It{Xm 1/FN]]

N
_ d E[I1-T(Xm #)]

m=2

< d2

Repeating this argument, we get an estimate of the type (9.1), ensuring

condition D. If we take the first supremum in (9.4) over all SS only, we

still have condition C.

(4) Suppose that

V(i) = sup E [c/X/=i] < (9.5)

for all i and furthermore,

r-1

sup E[ I V(Xm)/X 1] < . (9.6)

m=1

These imply condition D as we verify below: Under any CS,
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ET2 /X1 11 = 2E m/X1 = 11 + E[r/X1 =1]

m=1

By (9.5) with i=l and Corollary 5.1, we have

sup E[T/X 1=] <( 

where the supremum is over all CS. Also, for any acceptable (Xn},

r-1 X

El _ m] = EL (r-m)I{f>m}]

m=1 m=1

= El ~ EL(,-m)/Fm]I{ >m)]

m=1

< El V(Xm )I f>m]

m=1

V-1- El ) V(XM)l

< sup EJt I V(X)/XX = 1] (9.7)

m=1

where the last inequality is obtained by dynamic programming arguments
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identical to those used to prove Lemma 5.1 and Corollary 5.1. The only

difference here is that the supremum on the right hand side of (9.7) may not

be attained for some t. However, it is finite by (9.6) and we are done.

Note that if we assume

sup sup Ej[1/X 1 =i] < ~. (9.8)

4sL isS

then sup V(i) < - and (9.5), (9.6) hold automatically. Recall from section

II that (9.8) is a typical assumption in the classical threatment of the

problem, which is thus subsumed by our results.
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X. CONTROL-DEPENDENT COST FUNCTIONS

The foregoing results are easily extended to control-dependent cost

functions. For simplicity, let D(i) = a fixed compact metric space D for

all i. This causes no lack of generality since we can always replace all

D(i) by L and each p(i,j,.) by its composition with the projection map

L -)D(i). Let k: SxD - [0,G) be a bounded continuous cost function and

suppose that we seek to a.s. minimize

n

lim sup k(Xm,(X))
n - n m=!

(or 'in mean' or win probability' versions thereof.)

Let M(SxD), M(SxD) denote the spaces of probability measures on SxD,

SxD resp. with the topology of weak convergence. For each SSRS y[4], define

R[l](AxB) = n[l(i) i (B ),

isA

for all ACS, B Borel in D. Write t{Q} =- #f] when Q = the Dirac measure at

teL.

Lemma 10.1. A collection of [tI]'s is tight if and only if the

corresponding collection of n[d]'s is.

This is immediate from the compactness of D.

Lemma 10.2: (a) If #[L(n)] -4# in M(SxD) for a sequence of SSRS {y[t(n)]},
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then # = n[I] for some SSRS Yr¥].

(b) If t{n}) -.) in M(SxD) for a sequence of SSS [{¥[n}}, then R = [gI} for

some SSS yf)}.

Proof. Let n denote the image of t under the projection SxD -4 S. Then

nr[(n)] -~n weakly and hence in total variation (by Scheffe's theorem). Let

f be a limit point of {Q(n)) in M(L). For each n, we have

n[JVn)]P(4(n)] = nt[(n)].

Letting n -3 along an appropriate subsequence, it follows that

nPI[] = t,

i.e., n = nt[]. Next, let f:SxD -3R be bounded continuous with compact

support. Let f(i,u) = I p(i,j,u)f(j). Then for each n, I v[f(n)](i)f(i) =

[ nt[(n)](i)ff(i,.)d1(n) = f~d[t(n)]. Letting n -3 along an appropriate

subsequence, we get, I n(i)f(i) = I n(i)ff(i,.)dq i = ffdR. Hence # = R[M].

This proves (a). The proof of (b) is similar. QED

Define a sequence fu}) of M(SxD)-valued random variables by:

n

u'(AxB) = ) I(X z A, m(Xm) m B

m=1

for A,B Borel in S, D respectively.
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Lemma 10.3. For each sample point outside a set of zero probability, every

limit point u* of ful} in M(SxD) is of the form

u = (1-c)#[t] + on

for some c s [0,1], some SSRS y[f] and some probability measure n on f{}xD.

For a proof, see Lemma 3.6 of [4]. Using the above lemmas, it is a

routine exercise to recover the results of preceding sections for this more

general cost function, as long as we make the following obvious

modifications:

(1) Redefine Ck[O] as Ck[t] = fkd#[t].

(2) Let u = [k(1,u), k(2,u),...]T. Replace (4.3) by

Ckf{}lc = min((P -U)V[(} + QU)

and (5.3) by

Ck[Io]l c = min(P[H] - U)V[%O] + Qu
)

(3) Redefine "almost monotonicity" as

lim inf inf k(i,u) > 1.
i -> u

The author has not attempted the case of unbounded cost functions, but

is seems reasonable to expect similar results under suitable growth
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conditions. See [1] to get a feeling of what these could be.

Finally, it is tempting to conjecture the following:

(1) If all SS are SSS, condition C automatically holds.

(2) Theorem 7.2 holds even without condition D.

(3) In Theorem 8.2, condition E cannot be relaxed.
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