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While observing AKR and AKR backcross mice being bred to produce an 
AKR-H-2 b congenic mouse strain, one of us (J. B.) noticed that  homozygous H- 
2 b c~ d were more attracted to heterozygous H-2 O:H-2 k ? Q than to H-2 b homozy- 
gous Q Q. Meanwhile another of us (L. T.), unaware of these observations, 
arrived at the theoretical conclusion that  histocompatibility antigens might act 
as olfactory self-markers distinguishing different members of a population from 
one another (1). 

This article is an account of our study of H-2-associated '<mating preference." 
By "H-2" we imply the chromosomal region including H-2 which differentiates 
congenic stocks from their partner strains. We used a straightforward experi- 
mental  design: A c~ mouse (e.g., "bb") was caged with two H-2 congenic Q Q 
(e.g., "bb" and "kk"),  in estrus, and the trio was observed continuously until 
the c~ successfully mated with one of the Q ?. 

M a t e r i a l s  a n d  Methods  
The convention "cross 1," "cross 2," "cross 3," refers to the systems in which mat ing  preference 

was studied (Table I; reference 2). The mice were bred and main ta ined  in plastic cages, and were 
weaned and numbered at an age of 18-21 days. At weaning, the progeny were sexed and 
transferred to stock cages holding 8-10 c~ c~ or ~ Q. Neither the breeding cages nor stock cages 
were segregated from cages of various other strains being bred in the same quarters. 

All c~ c~ were vasectomized at an age of about 10 wk, and then each was separately caged. 
Vasectomy was performed to obviate pregnancy and allow the Q Q to be used more frequently in 
the tests. 

The Q ~ of each strain were caged together. Pro-estrus, and estrus (on the following day), were 
determined visually (3). After use in tests, Q Q with vaginal plugs were caged together. The 
pseudopregnancy induced by sterile mating conveniently provided Q ~P in roughly synchronous 
estrus 8-10 days later (4) for use in further tests. Throughout most of this study, Q Q of congenic 
pairs, e.g. BALB and BALB.B, or B6 and B6-H-2 k, were caged together after use, to save space. 
Later we caged Q Q of each stock separately. A light-dark cycle of 16:8 h was maintained (light 
period 10-2 a.m.) to condition the Q Q to ovulate at about 10 a.m., roughly 4 h after the mid-point of 
the dark period (4). 

Des ign  of E x p e r i m e n t s  
"Mating" refers to successful copulation verified by observation of a vaginal  plug. At  10-10:30 

a.m. the cage of each isolated vasectomized c; was placed on a bench for continuous observation. 

* This  work was supported by funds from the Rockefeller Foundation,  RF 74043, and NCI grant  
CA 08748. 

$ Present  Address: Depar tment  of Microbial Immunity,  NIH, Bethesda, Md. 20014. 
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TABLE I 
General Information 
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Cross 1 

Cross 2 

Cross 3 

Mouse 
strain* 

BALB 
BALB.B$ 

B6 
B6-H-2 k 

B10 
B10.A 

H-2 type 

d 
b (from B10) 

b 
k (from AKR) 

b 
a (from A) 

No. of 8 8  No. ofval id 
tested trials 

26 128 
26 133 

19 66 
23 79 

18 99 
18 92 

No. of hybrid 
g 8 tested 

No. of valid 
trials 

27 

25 

165 

86 

Abbreviations: BALB, BALB/c; B6, C57BL/6; and B10, C57BL/10. 
* For description and alternative notation of congenic stocks, see Klein (2). 
$ Breeding stock kindly provided by Dr. Frank Lilly, Albert Einstein College of Medicine, Bronx, 

N .Y.  

Two estrous Q Q of selectedH-2 types were then put in. The preference of the 6 was usually soon 
obvious from his more frequent attempts, after inspection of his prospective mates, to mount one 
rather than the other. After one of the 2 Q had mated, both were removed. The mated Q (with 
vaginal plug) was returned to stock. The second (unmated) 9 was tested with a fresh 6. If  mating 
occurred, the trial was scored "valid." If not, the test was scored "invalid" on the grounds that  the 
second ~ may not have been in estrus. 

We use the terms "strain preference" and "consistency of choice" for two aspects of the data. 
Strain preference refers to any tendency of the 6 population of a given strain to mate with 9 Q of 
one H-2-type rather than another. Consistency of choice concerns the mating preferences of 
individual 8 8  of such a population. It refers to any tendency of particular 6 6 ,  on repeated 
testing, to mate with Q Q of the H-2 type they mated with before. From a mathematical  stand- 
point, strain preference and consistency of choice need not be related to one another. To take an 
extreme case, if  50% of genetically identical 8 8 always chose ~ Q of one H-2 type, and the other 
50% always chose Q 2 of the other, there would be no strain preference, but complete consistency of 
choice. Similarly, strain preference could occur without a greater consistency of choice than is 
implicit in strain preference. 

We have tested heterozygous 8 8, as well as homozygous 8 8. As illustrated in Fig. 1, their  
situation is different. Our test system confronts the homozygous d with one of the three pairs of 
alternative choices which the three following types of 2 allow: (a) A homozygous Q genetically the 
same as himself. (b) A dissimilar homozygous ~. (c) A hybrid Q with whom he shares one H-2 
haplotype. But the hybrid 8 can be offered only Q 2 who share at least one H-2 haplotype with 
him and do not bear an H-2 haplotype foreign to him. The use of symbols such as bb and (b) to 
indicate the choices made is explained and illustrated in Fig. 1. 

Results and Discussion 
Evidence that H-2 Influences Mating Preference (Table II; reference 5) 
STRAIN PREFERENCE OF MICE OF DIFFERENT H-2 GENOTYPES.  In  cross 1, dd 

C~ d mated with (b) Q Q in 52% of trials, i.e., there was no strain preference. The 
bb c~ g mated with (b) Q Q in 70% of trials. Thus bb 8 d show strain preference 
in favor of Q $ of the same H-2 type as the c~. The results for hybrid d d are 
intermediate, with a rate of 58% for (b) 2 Q, and this ordering in the degree of 
strain preference is statistically significant; the latter two proportions, 58 and 
70%, are significantly different from 50%. 

In cross 2, homozygous c~ c~ of both types showed strain preference for Q Q of 
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Fro. 1. Schematic representat ion of the  s t ra in  preference of cross 2 (Table II); use of 
symbols to indicate choices made. In the  text  and tables, double symbols are used to indicate 
the results  of tr ials  involving only homozygous 9 Q. Thus, e.g. for cross 2, kk  indicates 
choices o f a  kk  9 in preference to a bb ?. A single symbol in parenthesis ,  e.g. (b) in lower 
r ight  box, is used to refer collectively to such tr ials  and also t r ia ls  involving hybrid Q Q. The 
figure shows tha t  (b) includes t r ials  in which (1) a bb ? was preferred to a kk Q, (2), a bb Q 
was preferred to a kb or bk Q, and (3) a kb or bk Q was preferred to a kk ?. This indicates 
the  meaning of the term "Prob(b)," the est imated probabili ty of mat ing  with a (b) ? ,  which 
appears frequently in the tables. Hybrids are denoted kb/bk (below) to indicate t ha t  
reciprocal hybrids (kk Q x llb d; bb ~ x kk c~) have given similar results; the data for 
reciprocal hybrid c; c~ and ? Q have therefore been combined. 

the dissimilar H-2 type. Thus kk ~ d mated with (b) ? Q at the rate of 67%, and 
bb ~ d mated with (b) Q 9 at the rate of 39%. Again the rate for hybrid d d was 
intermediate. 

In cross 3, where only homozygous d d and Q Q were tested, the rate of 
mating with bb ~ ? was 60% for a a d  d and 39% for bb d d. Again the choices of 
both male types were for 9 Q of dissimilar type. Strain preference is schemati- 
cally represented for cross 2 in Fig. 1. 

STRAIN PREFERENCE FOR SIMILAR AND DISSIMILAR H-2 TYPE. I n  cross 1, bb 
~;d preferred bb Q 9, the similar H-2 type; but  in crosses 2 and 3 
bb d d preferred the dissimilar H-2 type, kk $ Q and aa Q Q, respectively 
(Table II). Evidently d d of a particular H-2 type (bb in this case) may prefer 9 Q 
of similar or dissimilar H-2 type, depending on which particular H-2 type is 
offered as the alternative. This suggests a scale of preferences in which the 
similar H-2 type of the 9 may rank lower or higher than other H-2 types. It 
would not be safe to assume that  bb ~ d would always prefer Q Q in the order kk 
or ca, bb, dd, because the bb/dd choice (cross 1) was tested on a BALB 
background, whereas the bb/kk choice (cross 2) was tested on a B6 background, 
and the bb/aa choice (cross 3) on a B10 background. 

INTERMEDIATE STRAIN PREFERENCE RATES FOR HYBRID Q 9 .  C r o s s e s  1 a n d  2 

were analyzed further by comparing the data for all trials involving only 
homozygote-homozygote Q partners with the data for all trials involving only 
homozygote-hybrid Q partners. As Table III shows, there was no difference in 
the case of dd d d  (.51 vs . .53) ,  as expected from the fact that BALB 
dd d ~ showed no strain preference. For the three qther cases (bb d d in cross 1; 
kk and bb ~ d in cross 2) the degree of strain preference was less for trials in 
which one of the Q partners was a hybrid. 



YAMAZAKI ET AL. 

TABLE II 
Strain Preference According to ~ Genotype 
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~ No. of mat ings  Total t r ials  Prob(b) 95% Confidence interval  

2 2  

Cross 1 (d)* (b) 
dd 61 67 128 .52 .44-.61 
db/bd 69 96 165 .58 .51-.66 
bb 40 93 133 .70 .62-. 78 

X 2 for t rend in proportions$ (1 df) = 8.07; P < 0.005 

Cross 2 (k) (b) 
kk  26 53 79 .67 .57-.77 
kb/bk 40 46 86 .53 .43-.64 
bb 40 26 66 .39 .28-.51 

X 2 for t rend in proportions (1 df) = 10.53; P < 0.002 

Cross 3 aa* bb 
aa  37 55 92 .60 .50-. 70 
bb 60 39 99 .39 .30-. 49 

X 2 (1 df) = 7.14; P < 0.008 

* The use of symbols to indicate choices is explained and i l lustrated in Fig. 1. Briefly, (d) e.g. 
includes tests  involving a hybrid 2 as well as tests  involving only homozygous 2 2, and aae.g. 
refers exclusively to tests  involving only homozygous 2 2. 

$ See Armitage (5) for discussion of the statist ical  techniques used. 

TABLE III 
Strain Preference for Hybrid Q 2: Degrees of Strain Preference in Trials with 

Homozygote-Hybrid Q Partners Compared with Trials in which the Q Partners were 
Dissimilar Homozygotes 

No. of matings Prob(b) 

Cross 1 dd/(d) bb/(b) 
Dissimilar  2 homozygotes 34 36 .51 

dd d d Homozygote and hybrid 2 2 27 31 .53 

Dissimilar  2 homozygotes 18 54 .75 
bh ~ ~ Homozygote and hybrid 2 2 22 39 .64 

Cross 2 kld(k) bb/(b) 
Dissimilar 2 homozygotes 19 42 .69 

kk ~ c~ Homozygote and hybrid 2 2 7 11 .61 

Dissimilar  2 homozygotes 34 17 .33 
bb c~ ~ Homozygote and hybrid 2 Q 6 9 .60 

STRAIN PREFERENCE OF (~ C~ IN SUCCESSIVE TRIALS. Is strain preference e n -  
h a n c e d  or lessened as the ~ ~ age or acquire more mating experience? All data 
for crosses 1 to 3 are included in Table IV, where the mating scores are analyzed 
according to their place in the sequence of trials. There is no significant trend in 
these proportions except in cross 2 bb ~ g, but the latter may be explained by 
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TABLE IV 

Strain Preference on Successive Trials; Hybrid ? ~ Included 

Tria l  no.  
5 5 9 ? Total  

1 2 3 4 5 6 

Cross  1 

dd (d) 12 11 11 10 17" 61 
(b) 14 15 15 16 7* 67 

Prob(b) .54 .58 .58 .62 .29 .52 

bb (d) 8 6 5 12 9* 40 
(b) 18 20 21 14 20* 93 

Prob(b) .69 .77 .81 .54 .69 .70 

Cross  2 

kk 
(k) 6 7 8 5* 26 
(b) 17 15 8 13" 53 

Prob(b) .74 .68 .50 .72 .67 

bb (k) 15 11 9 5* 40 
(b) 4 8 6 8* 26 

Prob(b) .21 .42 .40 .62 .39 

Cross  3 
a a  6 9 7 5 4 6 37 

a a  bb 12 9 10 11 9 4 55 

Prob(bb) .67 .50 .59 .69 .69 .40 .60 

bb a a  13 14 8 10 8 7 60 
bb 5 4 10 7 8 5 39 

Prob(bb) .28 .22 .56 .41 .50 .42 .39 

* Inc ludes  s o m e  d a t a  for l a t er  tr ia l s .  

the higher proportion of hybrid 9 9 used in later trials. Because interpretation 
is complicated by the lesser strain preference in hybrid-homozygote trials (Table 
III) the results were recomputed for crosses 1 and 2 with the data for hybrid ~ 
excluded (Table V). The absence of a trend towards changing strain preference 
is even more evident here, except for a trend for dd d 5 of cross 1 which is not 
statistically significant. 

Consistency of Choice. In addition to assessing the strain preference of mice 
of different H-2 genotypes, we can ask whether on sequential testing each 5 is 
more consistent in his choice of 9 9 than would be expected in consequence of 



YAMAZAKI ET AL. 

TABLE V 

Strain Preference on Successive Trials; Hybrid ~ ~ Excluded 
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Trial no. 

3 3 2 ~ Total 
1 2 3 4 5 

Cross 1 
dd 12 5 7 4 6 34 dd bb 14 12 5 3 2 36 

Prob(bb) .54 .71 .42 .43 .25 .51 

dd 8 2 2 5 1 18 bb bb 18 7 14 7 9 55 
Prob(bb) .69 .78 .87 .58 .90 .75 

Cross 2 
kk 6 7 6 0 19 kk 
bb 17 15 6 4 42 

Prob(bb) .74 .68 .50 1.00 .69 

kk 15 11 6 2 34 bb 
bb 4 8 4 1 17 

Prob(bb) .21 .42 .40 .33 .33 

genotypic strain preference alone. Any such tendency we shall call "consistency 
of choice." This can be determined by inspecting the mating histories of genotyp- 
ically identical 3 d individually. If there is no consistency of choice beyond that  
implicit in the strain preference of a particular 3 population, then the choices 
made in a sequence of trials should be independent of the first choice. But if the 
choices in second and subsequent trials show a higher degree of concordance 
with the first choice than can be accounted for by genotypic strain preference 
alone, then individual 3 3 must  also have a phenotypic bias towards one H-2 
type or the other. 

The criterion chosen for this analysis (Tables VI and VII) is the probability of 
a (b) mating [Prob(b)], or a bb mating [Prob(bb)], on second and subsequent 
matings of individual d d tha t  chose a (b) or bb mate in the first trial; compared 
with Prob(b) or Prob(bb) for genotypically identical 3 3 that  made the opposite 
choice on first mating. Regardless of strain preference, these probabilities should 
be equal if there is no consistency of choice. But often the observed proportions 
are very different. The most striking example is dd d 8 of cross 1 (Table VI and 
Fig. 2). Those individual dd d 3 that  made a (d) choice in their  first trials had 
only a .36 estimated probability of subsequent (b) matings, whereas dd d 8 that  
first made a (b) choice had a .70 probability of subsequent (b) matings. Or as 
illustrated in Fig. 2, dd 3 d whose first choice was dd had a .32 probability of 
subsequent bb matings, whereas dd d 3 whose first choice was bb had a .74 
probability of subsequent bb matings. 

Table VI shows analysis of consistency for all matings. In Table VII the data 
for all hybrid trials have been excluded. Consistency is even more evident there, 
although this is not reflected in the P value for cross 2 because the sample is 
smaller. There is no evidence of consistency for cross 3 (Table VI). 
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TABLE VI 
Consistency of Choice:* All Matings 

g (No. tested$) ~ ~ First trial Subsequent trials 

Cross 1 

dd (12) 
(14) 

(d) (b) Prob(b) 
(d) 35 20 .36 
(b) 14 33 .70 

(12) (d) 23 38 .62 
db/bd (15) (b) 34 43 .56 

(8) (d) 13 20 .61 
bb 

(18) (b) 19 55 .74 

(32) 
All 

(47) 

Significance of the difference A: ×2 

(d) 71 78 .52] A 
(b) 67 131 .66 J 

= 6.21; P < 0.02 

Cross 2 
(6) 

kk (17) 

(k) (b) Prob(b) 
(k) 8 8 .50 
(b) 12 28 .70 

(11) (k) 13 10 .43 
kb/bk (14) (b) 16 22 .58 

(15) (k) 22 19 .46 
bb (4) (b) 3 3 .50 

(32) (k) 43 37 .46] B 
All (35) (b) 31 53 .63 ] 

Significance of the difference B: X 2 = 4.04; P < 0.05 

Cross 3 aa bb Prob(bb) 
(6) aa  11 13 .54 

aa  
(12) bb 20 30 .60 

bb 
(13) aa  35 27 .44 

(5 bb 12 7 .37 

All 
(19) aa 46 40 .47] C 
(17) bb 32 37 .54 ] 

The difference C is not significant: X 2 = 0.52 

* Schematically illustrated in Fig. 2. 
$ See trial no. 1 in Table IV. 

C o n s i s t e n c y  of choice ha s  i m p l i c a t i o n s  t h a t  s t r a i n  p re fe rence  does not .  S t r a i n  
p re fe rence  could  be  a d e q u a t e l y  e x p l a i n e d  on  a p u r e l y  gene t ic  bas is .  B u t  consis t -  
ency  of  choice r e p r e s e n t s  n o n r a n d o m  v a r i a t i o n  of ~ ~ of i de n t i c a l  geno type ,  a n d  
so imp l i e s  t h a t  t he  sensory  m e c h a n i s m  r e spons i b l e  for m a t i n g  p re fe rence  e i t h e r  
(a) i n c l u d e s  p rov i s ion  for m e m o r i z i n g  the  specific s igna l s ,  or (b) c a n  fo r tu i t ous ly  
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TABLE VII 
Consistency of Choice: Hybrid ~ ~ and Q ~ Excluded 
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d (No. tested) Q Q First  t r ial  Subsequent  t r ials  

Cross 1 dd bb Prob(bb) 

dd* (12) dd 17 8 .32 
(14) bb 5 14 .74 

bb 
(8) dd 5 10 .67 

(18) bb 5 26 .84 

All 
(20) dd 22 18 '451 A 
(32) bb 10 40 .80 J 

Significance of the difference A: X 2 = 10.41; P < 0.002. 

Cross 2 kk  bb Prob(bb) 
kk  (6) kk  5 7 .58 

(17) bb 8 18 .69 

bb 
(15) kk 17 10 .37 

(4) bb 2 3 .60 

All 
(21) kk  22 17 .44] B 
(21) bb 10 21 .68 

Significance of the difference B: X 2 = 3.14; P < 0.07 

* Results for these d d are schematically represented in Fig. 2. 

First trial Subsequent reals 

? 

0 dd • bb 

[] Proportion of matings wlth QQ of indicated type 

FIG. 2. Schematic representation of consistency of choice of dd ~ ~ for homozygous dd or 
bb 9 Q in cross 1 (Table VH). 

be biased one way or the other in individual ~ 6. If (a) is true, then in cross 1 
(e.g.) dd ~ ~ that  preferred (d) Q Q were specifically conditioned to do so, just  as 
other genetically identical dd d c~ were specifically primed to prefer (b) Q Q. But 
as yet we have no evidence of specific environment cues that  would support the 
former interpretation. 

Evidence that the Choice is Made Mainly or Entirely by the ~ and not the 
Q. The data above show that alleles of a locus in the region of H-2 influence 
the mouse's choice of a mate. One partner must  transmit  identification signals 
governed by H-2, and the other must  distinguish between different incoming 
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signals. Which is the active recipient? The ~ or the Q? The observed mating 
behavior suggests that  the Q Q are passive and the ~ c~ active. But such behav- 
ior might be simulated by rejection of the c~ by one of the Q Q. 

The histories of individual ~ c; show that  the choice of mates is not random. 
Strain preference and consistency of choice both indicate this. If Q Q were 
entirely passive (transmitted signals but made no choice) then their  sequential 
mating histories should show no consistency except to the extent that  where 
selection of one Q rather  than the other is characteristic of the ~ population as a 
whole (strain preference) the history of each Q will show on the average the 
same preponderance of matings of the preferred type. (This argument  depends 
on the assumption that the Q Q were drawn at random from the population 
available in estrus, which was the case.) The data are analyzed in Table VIII in 
accordance with the postulate that  the choice is made by the Q. A slightly 
different method of calculation was necessary. 

In terms of hypothetical selection by Q Q, the result of a valid trial can be construed as 
solicitation by one ~ or as rejection by the other. Therefore both Q ? in each trial were given a 
score: (a) The mated Q in favor of the d 's  H-2 type, and (b) the unmated ~ in favor of the 
alternative H-2 type. For example, of 89 cross 1 dd Q ~ included in this analysis 49 on their  first 
valid trial ei ther (a) were presented to a d d  ~ and mated with him, or (b) were presented to a bb 

who mated with the other Q. Either result was scored dd (first entry in Table VHI). In 70 
subsequent valid trials these 49 Q Q yielded 44 scores (63%) for dd and 26 scores (37%) for bb. The 40 
dd Q Q who first received bb scores gave virtually the same results: 23 scores (62%) for dd and 14 
scores (36%) for bb. 

Table VIII reveals no consistency on the part  of dd ? Q in any of the crosses. 
We discount the data showing a trend in the reverse of consistency for bb Q Q in 
cross 2 because the sample is small. 

F u r t h e r  C o m m e n t  
The various ways in which genes in the major histocompatibility complex may 

be implicated in immunological types of recognition, notably in discrimination 
between '<self" and <<non-self," cannot be reviewed here. The H-2-associated 
mating preference we described is a form of self-identification that  might be 
traced back to a time long before the evolution of specific adaptive immunity,  as 
discussed elsewhere (1). 

The fact that  a particular d may consistently prefer Q Q of one H-2 type, 
whereas a genetically identical ~ may consistently prefer ~ ? of a different H-2 
type, may imply that  ~ ~ can learn by experience to prefer (e.g.) d to b, or the 
reverse. The term "memory" has come to be used in immunological circles in 
reference to adaptive immunization. Analogies have been suggested between 
immunologic and neurologic memory [for references and discussion see Cohn (6, 
7)]. The element of memory in H-2-associated mating preference, if memory is 
involved in consistency of choice, might in turn  suggest a link between the two, 
because of several connections between immune responses and genes in the 
region of H-2. Although we as yet lack evidence regarding whether  or not 

~ can be specifically trained to prefer one or another H-2 type, certain 
negative inferences can be drawn: The mating preferences of reciprocal hybrid 

~ were not significantly different. Therefore the preferences of d ~ of hybrid 
genotype are not noticeably affected by exposure to contrasting H-2 types during 
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TABLE VIII  

Analysis of the Data for Evidence of Consistency of Choice by Q Q 
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Q Q (No. tested) d ~ First trial Subsequent trials 

Cross 1 dd bb Prob(bb) 
dd (49) dd 44 26 .37 

(40) bb 23 14 .38 

bb (34) dd 19 26 .58 
(41) bb 29 44 .60 

Cross 2 kk bb Prob(bb) 

kk (5) kk 3 3 .50 
(30) bb 19 27 .59 

bb (26) kk 29 18 .38 
(5) bb 6 0 .00 

Cross 3 aa bb Prob(bb) 
(19 a a  24 42 .64 a a  
(23) bb 38 46 .55 

bb (31) aa 55 45 .45 
(15) bb 26 19 .42 

the period from zygosis to weaning. Nor is the first mating experience decisive, 
because strain preference is already evident in first trials, and does not de- 
monstrably increase with mating experience (Tables IV and V). 

The stimulus is probably olfactory, although other sensory mechanisms are 
possible (see reference 8). The pheromone or pheromones best known in mice are 
excreted by the d, causing synchronous estrus in Q Q (9), pregnancy block by 
strange ~ d (10), and precocious puberty in young Q ~ (11). The first two effects 
can be exerted over considerable distances (12). [These pheromone effects, and 
others related to ~ aggression and identification of sex are reviewed by Whitten 
(13) and Bronson (8).] Possibly the putative ~ substance specified by the major 
histocompatibility complex may also act at a distance, in which case receptive 

d housed in quarters containing mice of several different strains may at a 
receptive age be primed by airborne H-2-associated pheromones before they are 
tested. The signal transmitted by the Q must be controlled by an H-2-1inked 
gene, because genetically identical ~ d can distinguish between congenic ~ Q of 
different H-2 types. Similarly d d must possess a receptor gene in the H-2 
region, because congenic ~ ~ of different H-2 types make different choices when 
offered the same pair ofH-2-dissimilar ~ ~. (This could not be so if the receptor 
gene were on the Y chromosome, because the congenic strains we studied carry 
the same Y as their partner strains.) The most obvious model of mating 
preference therefore is that of two linked genes in the H-2 region, one for the 
signal and one for the receptor. A similar model has been suggested to account 
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for H-2-associated interactions between cells cooperating in immune responses 
(14). 

Of several uses which mating preference might serve in nature, the most 
easily comprehensible is maintenance of heterozygosity of genes in the vicinity 
of H-2. To cite only one obvious advantage of H-2-heterozygosity: This region 
includes Ir (immune response) genes with dominant alleles conferring strong 
responsiveness to particular antigens. Where infections are a prominent envi- 
ronmental hazard, hybrids would enjoy the advantage of a wider range of 
immune defenses. Nature is evidently prepared to pay a high price for heterozy- 
gosity in the region of H-2, according to current views of the Tit locus (15). The t 
mutants, which are prevalent in the wild and are linked to H-2, are lethal in the 
homozygous state. They would therefore decline in frequency in wild popula- 
tions if it were not for their extraordinarily high and non-Mendelian rate of 
transmission by c~ d. Presumably their lethality is balanced by advantages, no 
doubt including heterozygosity in the H-2 region. 

The H-2-associated mechanism of mating preference could work to the same 
end if choice of dissimilar H-2 types is commoner in nature, as has proved to be 
the case so far in laboratory mice. 

S u m m a r y  

When a d mouse is presented with two H-2 congenic Q ? in estrus, his choice 
of a mate is influenced by their H-2 types. The term <'strain preference" is used 
to describe the general tendency of the d population of one inbred strain to 
prefer Q Q of one H-2 type rather than another. The term <'consistency of choice" 
is used to describe the added tendency of particular ~ d of one inbred strain, in 
sequential mating trials, to prefer Q Q of the H-2 type they chose in previous 
trials. Statistical analysis showed trends in the data that support the following 
conclusions: (a) The choice is made by the d, not the Q. (b) The strain prefer- 
ence of ~ d may favor Q ~ of dissimilar H-2 type (four of six comparisons), or of 
similar H-2 type (one of six comparisons). (c) Consistency of choice does not 
always correspond with strain preference. In one of six comparisons of H-2 
genotypes there was no strain preference but pronounced consistency of choice 
by individual ~ d. This suggests memory, but fortuitous bias is not excluded. 
(d) Strain preference of the same d population may favor Q Q of the same or a 
different H-2 type, depending on which different H-2 type is offered as the choice 
alternative to self. 

These findings conform to a provisional model in which olfactory mating 
preference is governed by two linked genes in the region of H-2, one for the Q 
signal and one for the d receptor. These mating preferences could in natural 
populations serve the purpose of increasing the representation of particular H-2 
haplotypes or of maintaining heterozygosity of genes in the region of H-2. 
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