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Abstract— The control and dynamics of complex mechanical
systems with unactuated cyclic coordinates, using only internal
controls, is treated here. The goal is to achieve full control-
lability of the reduced dynamics obtained by eliminating the
cyclic coordinates using standard Routh reduction. The reduced
system is also underactuated. We use high frequency, high
amplitude periodic inputs and the framework of chronological
calculus and averaging theory, for this purpose. A feedback
scheme based on this approach is applied to the example of
a dumbbell body in planar motion with an attitude control
input in a central gravitational field. From our earlier work
on this model, based on linearization, we know that the system
is controllable at its relative equilibria. This work supplements
earlier research on the possible use of internal controls for
orbital maneuvers of underactuated spacecraft.

I. INTRODUCTION

This paper deals with averaging-based control of underac-
tuated mechanical systems with cyclic coordinates. Although
the general theory presented here can be applied to all
underactuated mechanical systems with drift, we focus on
applications to systems that have unactuated cyclic coordi-
nate(s). For such systems, we deal with the reduced dynamics
obtained by eliminating the cyclic coordinates.

In Section II, we obtain the reduced equations of motion
by Routh reduction, which have the general structure of
a 1-homogeneous system with drift, as described in [1].
In Section III, we give some general theory on averaging-
based control of underactuated mechanical systems (see [1],
[2], [3], [4] and references therein). We also make use of
nonlinear Floquet theory, as given in [5], [1]. Although the
full dynamics of such systems are simple mechanical systems
as described in [6], [7], the reduced dynamics obtained from
Routh reduction are described as 1-homogeneous systems,
which have terms linear in velocity. An alternative way of
looking at the “reduced dynamics” and control of mechanical
systems with a cyclic variable is given in [9].

A specific example of a dumbbell-shaped body in central
gravity, is considered for an application of the general theory
in Section IV. The dumbbell body in planar motion is
modeled as two identical mass particles that are connected
by a rigid link. This model has been treated in our prior
work [10], [11]. An alternate scheme for stabilization using
potential shaping is applied to the three dimensional model
of the dumbbell body in [12]. Since the only external force
on the dumbbell body is central gravity, the orbital angular
momentum is conserved. The reduced equations of motion

for the orbit and attitude dynamics have been previously
obtained in [11]. These reduced equations incorporate the
attitude control inputs, and they form the basis for application
of the control techniques presented here.

A control scheme to stabilize the unstable relative equi-
libria of this model is obtained in Section V. To verify the
performance of the control law obtained for a maneuver,
we carry out numerical simulations based on a variational
(symplectic-momentum) integration algorithm given in [13].
Such integrators can yield accurate simulations of complex
mechanical systems over long time periods. This is necessary
for applications where the control scheme needs to act over
long time periods. An excellent overview of variational
integrators, with an emphasis on integrators that preserve
geometric structures, is given in [14].

II. UNDERACTUATED MECHANICAL SYSTEMS

In this section, we describe the structure of underactuated
mechanical systems with cyclic coordinates on which the
Lagrangian is not dependent.

A. Underactuated Mechanical Systems with Cyclic Variables

Let Q be the configuration manifold of the system, and
let there be c cyclic variables for the system. Then the
configuration manifold can be represented trivially as Q =
S × T

c, with the local coordinates (xi, να), i = 1, . . . , m
and α = 1, . . . , c. The Lagrangian has the form

L(x, ẋ, ν̇) =
1

2
gij(x)ẋiẋj + g(m+α)i(x)ẋiν̇α

+
1

2
g(m+α)(m+β)ν̇

αν̇β − V (x),

where gab(x) are the components of the metric at the
point x, and V (x) is the potential energy. The conjugate
momenta pα corresponding to the να are conserved. The
classical Routhian is defined by setting the pα constant and
performing a partial Legendre transformation in the να:
R(x, ẋ) = L(x, ẋ, ν̇) − pαν̇α, where ν̇α is a function of
x and ẋ as follows:

ν̇α(x) = g(m+α)(m+β)(x)(pβ − g(m+β)i(x)ẋi).

The metric on the reduced space is defined by hij =
gij − gi(m+α)A

α
j , where Aα

j = g(m+α)(m+β)g(m+β)j are
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the connection coefficients. The modified potential for the
reduced system is

Vp(x) = V (x) +
1

2
g(m+α)(m+β)(x)pαpβ ,

and the Routhian in terms of these quantities is

R(x, ẋ) =
1

2
hij(x)ẋiẋj + Aα

j (x)pαẋj − Vp(x).

Introducing the modified Routhian [2], [18]

R̃(x, ẋ) =
1

2
hij(x)ẋiẋj − Vp(x), (1)

the equations for the reduced dynamics take the form

d

dt

∂R̃

∂ẋi
−

∂R̃

∂xi
= −Bα

ijpẋj , (2)

and the Bα
ij are curvature coefficients of the connection A,

Bα
ij =

∂Aα
i

∂xj
−

∂Aα
j

∂xi
.

If there are m actuated degrees of freedom, then applying
d’Alembert’s principle, the equations of motion obtained
from (2) are

ẍi = −Γi
jkẋj ẋk − Ci

kẋk − hil ∂Vp

∂xl
+ hiaua, (3)

where

Γi
jk =

1

2
hil

(
∂hlj

∂xk
+

∂hlk

∂xj
−

∂hjk

∂xl

)
,

are the Christoffel symbols for the metric h [18], Ci
k =

hilBα
lkpα, and ua, a ∈ {1, 2, . . . ,m}, are the control inputs.

B. Homogeneous Structure of Such Systems

The fibers of the tangent bundle TS are given by the
kernel of Tπ, where π : TS → S is the (tangent bundle)
projection. Let V denote the fiber space, then V = Ker(Tπ).
The notion of homogeneity with respect to the fiber is
determined by the dilation operator, δt, which dilates the
fiber as δt : TS → TS, (x, v) �→ (x, etv), so that
(δt)

p = δpt. In local coordinates, the infinitesimal generator
of the dilation operator is the Liouville vector field on TS

(see [15]) ∆ = vi ∂
∂vi .

Definition 1. A vector field X ∈ χ(TS) is said to be
homogeneous of order p ∈ Z if [∆, X] = pX , for some
p > −2.

Here [·, ·] denotes the Jacobi-Lie bracket and χ(TS) denotes
the set of vector fields on TS. The only smooth vector field
of order less than −1 is the zero vector field and the only
vector field of order -1 are the vertical lifts. We state below
a few other properties of homogeneous vector fields, arising
in mechanical systems applications.

Proposition 1. Given X, Y ∈ χ(TS), homogeneous of
order p and q respectively, [X,Y ] is homogeneous of order
p + q.

From this proposition, we get the following corollary.

Corollary 1. If X, Y ∈ χ(TS) are vertical lifts, then
[X,Y ] = 0.

Hence, if X, Y are vertical vector fields, the Jacobi identity
implies the symmetry of the Jacobi-Lie bracket [X, [Γ, Y ]] =
[Y, [Γ, X]], for any Γ ∈ χ(TS).

Definition 2. The symmetric product of vertical lifts with
respect to the vector field Γ ∈ χ(TS) is defined as

〈X : Y 〉Γ ≡ [X, [Γ, Y ]],

where X, Y ∈ χ(TS) are vertical vector fields.

This is a generalization of the symmetric product of Lewis
and Murray [7] and the definition of Crouch [8] in terms of
gradient vector fields. In application to a mechanical system
with a drift vector field Γ, we will simply write 〈X : Y 〉 for
this symmetric product on χ(TS).

There is a Z-gradation of homogeneous spaces created
from homogeneous vector fields in the set χ(TS). The
subspace of vector fields of homogeneous order k ∈ Z

is denoted Pk. The following properties hold for these
homogeneous spaces: [Pi,Pj ] ⊂ Pi+j , and Pk = {0},
∀ k < −1. Accordingly, we may define the following direct
sum of homogeneous spaces

Mk = ⊕i≤k
i=−1Pi, (4)

which inherit the properties of its homogeneous parts,
[Mi,Mj ] ⊂ Mi+j , and Mk = {0}, ∀ k < −1. For
mechanical systems of the form (3), the drift vector field
is in M1 (we call such systems 1-homogeneous), and the
control vector fields are in M−1 since they are lifts.

III. AVERAGING FOR UNDERACTUATED MECHANICAL
SYSTEMS WITH DRIFT

In this section, we use averaged feedback using the series
expansion methods in [15] for mechanical systems to obtain
control algorithms that are asymptotically stabilizing.
A. Nonlinear Floquet Theory

We consider a non-autonomous nonlinear system

ẏ = f(y, t/ε), (5)

where y ∈ M , M is a smooth manifold, and f(y, τ) is
a time-varying vector field that is periodic with period T .
Introducing a time scaling τ = t/ε, we get

y′ =
dy

dτ
= εf(y, τ). (6)

Let Φεf
0,τ be the flow generated by the vector field εf in

the time interval from 0 to τ . Hence, Φεf
0,τ is a family of

diffeomorphisms (on M ) satisfying the differential equation

dΦεf
0,τ/dτ = Φεf

0,τ ◦ εf(·, τ), Φεf
0,0 = Id, (7)

where Id denotes the identity map. an integral series
form (see [5]), which is denoted compactly by Φεf

0,τ =
−→exp

∫ τ

0
εf(·, σ)dσ, and called the right chronological expo-

nential, following [16]. The diffeomorphism Mε = Φεf
0,T ,

which gives the flow generated by (6) over one period, is
called the monodromy map; obviously, Φεf

0,τ+T = Mε ◦Φεf
0,τ .

We now present an important result stated in [5].
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Proposition 2. The origin is aymptotically stable for the
system (6) if it is an asymptotically stable fixed point for the
monodromy map Mε.

It is more convenient to deal with the logarithm of Mε,
which (if it exists) is a linear object. Assuming that this
logarithm (vector field) exists, we denote it as Λε, so that
Mε = exp Λε. We now state the analog of Floquet theorem
for nonlinear time-periodic systems.

Theorem 1. (Nonlinear Floquet Theorem) Let Φεf
0,τ denote

the flow of the time-periodic nonlinear system (6), where
f(y, τ +T ) = f(y, τ). If the vector field Λε is the logarithm
of the diffeomorphism Mε = Φεf

0,T , then the flow Φεf
0,τ can

be represented as a composition Φεf
0,τ = P (τ)◦exp(Λετ/T )

where P (τ) = P (τ + T ) is a periodic flow.

B. Averaging Control of Underactuated Mechanical Systems

An underactuated mechanical system with high frequency,
high amplitude, periodic control inputs can be expressed as

ẏ = X(y) +
1

ε
Y lift

a (y)ua
0(y, t/ε), (8)

where y = (x, ẋ) ∈ TS, X is the drift vector field, 0 < ε �
1 is a small parameter, Y lift

a and ua
0(·, ·), a = 1, . . . , n < m

are control vector fields and control inputs. For systems like
(3), X ∈ M1, and we have an underactuated 1-homogeneous
system. We assume that the directly actuated states can be
stabilized by state feedback, and the control inputs have
additional time-periodic vibrational terms;

ua
0(y, t) = εfa(y) + ua(t/ε), (9)

with ua(·) T -periodic. We scale time such that t/ε �→ τ , to
obtain

y′ = εXS(y) + Y lift
a (y)ua(τ), (10)

where XS(y) = X(y) + Y lift
a (y)fa(y) ∈ M1. The flow of

equation (10) can be obtained from the variation of constants
formula [16]. We define the vector field

Y (y, τ) =
(
Φ

Y lift

a
ua

0,τ

)∗

(εXS)(y), (11)

where (ΦG)∗ denotes the pull-back of the flow map ΦG,
along the vector field G. The variation of constants formula
gives the perturbed flow as the composition of flows

Φ
εXS+Y lift

a
ua

0,τ = Φ
Y lift

a
ua

0,τ ◦ ΦY
0,τ . (12)

If X1 and X2 are time-varying, then as given in [16], [17],

(
ΦX2

0,τ

)∗
X1(y, τ) = X1(y, τ) +

∞∑
k=1

∫ τ

0

· · ·

∫ σk−1

0(
adX2(y,σk) · · · adX2(y,σ1)X1(y, τ)

)
dσk · · · dσ1. (13)

This series does not converge in general, but for 1-
homogeneous systems, it is always convergent since only the
first two terms of the summation are nonvanishing. Hence,
(11) takes the form

Y = εXS + εU
(a)
(1) (τ)[Y lift

a , XS ]−
1

2
εU

(a,b)
(1,1) (τ)〈Y lift

a : Y lift
b 〉,

(14)

where the U
(·)
(·) (τ) terms are the averaging coefficients, given,

for example, by

U
(a,b)
(1,1) (τ) = U

(a)
(1) U

(b)
(1) =

( ∫ τ

0

ua(σ1)dσ1

)( ∫ τ

0

ub(σ1)dσ1

)
,

U
(a)
(n)(τ) =

∫ t

0

∫ σn−1

0

· · ·

∫ σ2

0

ua(σ1)dσ1 · · · dσn.

When time-averaged, these coefficients become the aver-
aged coefficients for the averaged system. Since the flow

Φ
Y lift

a
(y)ua(τ)

0,τ is also T -periodic, the averaged system corre-
sponding to (10) is the averaged flow along along Y (y, τ).

C. Averaged System

Nonlinear Floquet theory decomposes the flow of the
vector field Y in (12) as ΦY

0,τ = P (τ)◦exp(Zτ), where P (τ)
is a T -periodic mapping and Z is the autonomous, averaged

vector field. Since Φ
Y lift

a
(y)ua(τ)

0,τ is also T -periodic, the flow
of the system (10) is given by

Φ
εXS+Y lift

a
ua

0,τ = Φ
Y lift

a
ua

0,τ ◦ P (τ) ◦ exp(Zτ). (15)

We define the time-averaged coefficients

U
(A)
(N) =

1

T

∫ T

0

U
(A)
(N)(τ)dτ,

where the multi-index notation (A) = (a1, a2, . . . , a|A|) and
(N) = (n1, n2, . . . , n|N |) of [1] is used. A second order (in
ε) approximation to Z is given by

Z = εXS + εU
(a)
(1) [Y lift

a , XS ] −
1

2
εU

(a,b)
(1,1) 〈Y

lift
a : Y lift

b 〉

+ε2C1[[Y
lift
a , XS ], XS ] −

1

2
ε2C2[〈Y

lift
a : Y lift

b 〉, XS ]

+
1

2
ε2U

(a,b)
(2,1) [[Y

lift
a , XS ], [Y lift

b , XS ]] +
1

2
ε2(

U
(a,b,c)
(2,1,1) −

1

2
T U

(a)
(1) U

(b,c)
(1,1)

)
〈Y lift

a : 〈Y lift
b : Y lift

c 〉〉, (16)

where

C1 =
(
U

(a)
(2) −

1

2
T U

(a)
(1)

)
, C2 =

(
U

̂(a,b)

̂(1,1)
−

1

2
T U

(a,b)
(1,1)

)
.

The ·̂ symbol denotes integrals within the product structure,
for example,

U
(̂(a,b),c)

(̂(0,0),1)
(τ) =

( ∫ τ

0

U
(a,b)
(0,0) (σ)dσ

)(
U

(c)
(1) (τ)

)
.

Changing back to the original time coordinate, the flow of
the (second order) averaged autonomous system is given by

ż =
1

ε
Z(z). (17)

D. Feedback Stabilization with Sinusoidal Inputs

By modulating the values of the averaged coefficients U
(·)
(·) ,

we can control the averaged system (17). We use sinusoidal
input signals parametrized by their amplitudes:

ua(t) = αaωf(sin(ωt)), (18)

where T = 2π/ω is the period and f is a polynomial.
Let the ordered brackets in the second order expansion
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of the averaged vector field be denoted by Ȳj , and their
corresponding averaged coefficients be denoted T j(α), j =
1, . . . , N . The averaged equations can then be put into the
form

ż = XS(z) +
1

ε
T j(α)Ȳj(z) = XS(z) +

1

ε
B(z)H(α), (19)

where the matrices B and H are given by B(z) =
[Ȳ1 . . . ȲN ](z) and H(α) = [T 1 . . . TN ]�(α).

Asymptotic stability of the averaged system (17) will im-
ply asymptotic stability of the actual system by Proposition
3. We now present a continuous feedback law that stabilizes
an equilibrium of the reduced system in TS.

Theorem 2. Consider the system (8) with controls given by
(9) and an equilibrium, ye ∈ TS. Let α ∈ R

n denote the
vector of amplitudes αa of the T -periodic inputs in (18).
Let z(t) denote the averaged system response given by (19).
With the directly controlled states linearly stabilized with
state feedback as in (9), assume that

G =
∂H

∂α

∣∣∣
α=0

∈ R
N×n

is of maximal rank. If there exists a K ∈ R
n×2m such that

the matrix A − 1
ε
BGK has a stable spectrum, where

A =
∂XS(z)

∂z

∣∣∣
z=ye

+ T j(0)
∂Ȳj(z)

∂z

∣∣∣
z=ye

, B = B(ye),

then control inputs of the form (18) with

α = −K
(
z(t) − ye

)
, (20)

will stabilize the system about the equilibrium ye.

Proof: The linearized dynamics of the averaged system (19)
about z = ye and α = 0 is given by

ė(t) = Ae(t) +
1

ε
BGα, e(t) = z(t) − ye, (21)

where α parametrizes the control inputs. Now we define

Ā = A −
1

ε
BGK,

such that the linearized closed-loop system with the control
law (20) has the form ė(t) = Āe(t). Hence the averaged
system is stabilized if Ā has eigenvalues with negative real
part.

A difficulty with this control scheme is that it is based on
feedback of the averaged state. From [1] we get the following
series expansion for P (τ) in equation (15) upto first order
in ε:

P (τ) = Id + ε

∫ τ

0

Ũ
(a)
(1) (σ)dσ[Y lift

a , XS ] −

1

2
ε

∫ τ

0

Ũ
(a,b)
(1,1) (σ)dσ〈Y lift

a : Y lift
b 〉 + O(ε2), (22)

where Ũ
(A)
(N)(τ) = U

(A)
(N)(τ) − U

(A)
(N). The inverse of P (τ) is

given upto O(ε) by

P−1(τ) = Id − ε

∫ τ

0

Ũ
(a)
(1) (σ)dσ[Y lift

a , XS ] +

1

2
ε

∫ τ

0

Ũ
(a,b)
(1,1) (σ)dσ〈Y lift

a : Y lift
b 〉 + O(ε2). (23)

Hence, one can obtain the averaged state from the actual
state by inverting equation (15) as follows

z(t) = P−1(t) ◦ Φ
uaY lift

a

t,0 (y(t)). (24)

Since uaY lift
a is a T -periodic control vector field and the

Y lift
a ∈ M−1 commute, we can evaluate the flow Φ

uaY lift

a

0,t

and its inverse quite easily. In the following sections, we
apply these general results to the example problem of a
planar dumbbell body in central gravity.
IV. REDUCED DYNAMICS OF DUMBBELL BODY IN SPACE

We apply the control scheme given in the last section to a
rigid dumbbell body in central gravity, as depicted in Figure
1. The polar coordinates (r, ν), ν ∈ S, give the position
vector of the center of the dumbbell body in an inertial frame
fixed to the central body. The attitude θ is the angle between
the longitudinal axis of the dumbbell body and its position
vector. Let m and 2l be the mass of each end mass particle
and the length of the rigid link of the dumbbell, respectively.
The attitude control input N acts on each end mass normal
to the connecting link, thereby generating a pure moment.
A. Equations of Motion

The Lagrangian of this system is given by

L = T − Vg = m
(
ṙ2 + l2θ̇2 + 2l2θ̇ν̇ + l2ν̇2 + r2ν̇2

+
µ

r

(
2 −

l2

r2
(1 − 3 cos2 θ)

))
, (25)

where µ denotes the strength of the gravitational potential.
Note that ν is a cyclic variable for this Lagrangian, and the
corresponding orbital angular momentum

p =
∂L

∂ν̇
= 2m((r2 + l2)ν̇ + l2θ̇), (26)

of the dumbbell body is conserved.

2 l

ν

θr

Ν

Ν

Fig. 1. Dumbbell body in planar orbit in central gravitational field.

We carry out classical Routh reduction ([2], [18]) to obtain
reduced equations of motion. The Routhian is approximated
using a second order expansion in l

r
, to obtain

R(r, θ, ṙ, θ̇) = m
(
ṙ2 + l2θ̇2

(
1 −

l2

r2

))
+

pl2

r2
θ̇ ×(

1 −
l2

r2

)
−

p2

4mr2

(
1 −

l2

r2

)
− Vg(r, θ). (27)
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The quantity Va(r) = p2

4mr2

(
1 − l2

r2

)
is called the amend-

ment, and Vp(r, θ) = Va(r) + Vg(r, θ) is the modified
potential.

For convenience in averaging and numerical simulation,
we scale the dynamics equations. Let R be the characteristic
radius of orbit of the dumbbell body, and let us define:

ρ =
r

R
, Ω2 =

µ

R3
, τ = Ωt, and ε =

l

R
.

Note that τ here has a different meaning to that in Section
3, not be confused as a scaling of time by the large factor
1/ε; instead, the scaling here is by the (usually small) factor
Ω. We also define the scaled angular momentum

p̄ = 2{ρ2ν′ + ε2(θ′ + ν′)}, (28)

which is conserved. The reduced equations of motion in these
scaled coordinates are given in the form (3) below:

ρ′′ =
ε4

ρ3

(
1 −

2l2

r2

)
θ′2 −

p̄ε2

ρ3

(
1 −

2l2

r2

)
θ′

+
p̄2

4ρ3

(
1 −

2ε2

ρ2

)
−

1

ρ2
+

3ε2

2ρ4

(
1 − 3 cos2 θ

)
(29)

θ′′ = −
2ε2

ρ3

(
1 −

ε2

ρ2

)
r′θ′ +

p̄

ρ3

(
1 −

ε2

ρ2

)
r′

−
3

ρ3

(
1 +

ε2

ρ2

)
cos θ sin θ +

N̄

ε

(
1 +

ε2

ρ2

)
, (30)

where N̄ = N
mRΩ2 . These equations have the same form as

equation (8), with ε having the same role.

B. Stability and Controllability of Relative Equilibria

We identify the relative equilibria of this dumbbell body
in central gravity from the free reduced dynamics (N = 0).
The relative equilibria, xe = (re, θe), ẋ = 0, ν̈ = 0, are the
critical points of the modified potential:

θe = nπ, n ∈ Z, ν′2
e =

1

ρ3
e

+
3ε2

ρ5
e

, (31)

θe = (n +
1

2
)π, n ∈ Z, ν̇2

e =
1

ρ3
e

−
3ε2

2ρ5
e

. (32)

From our previous work in [10], [11], we know that the first
set of relative equilibria given by (31) is stable; this result
is obtained from the Routh stability criterion ([2], [18]). The
second set of relative equilibria given by (32) is unstable.

In [11], the reduced equations were linearized about these
equilibria, and their controllability properties obtained. We
repeat part of that analysis here. If we denote the vector of
reduced configuration perturbations by δx = [δr δθ]�, then
these linearized equations of motion can be expressed as a
second order differential equation of the form

Mδẍ + Cδẋ + Kδx = BN, (33)

where M is a symmetric positive definite inertia matrix, C is
a skew-symmetric matrix representing gyroscopic terms, K
is a symmetric “stiffness” matrix, and B is a control influence
vector. The system (33) is completely controllable if and only
if the controllability rank condition ([19])

rank[λ2M + λC + K, B] = 2 (34)

holds for all λ that satisfies det[λ2M + λC + K] = 0. This
controllability condition gives the following result.

Proposition 3. The linearized equations of motion for the
reduced dynamics are completely controllable if only the
attitude is actuated.

V. VIBRATIONAL CONTROL OF THE DUMBBELL BODY

A. Stabilization of Unstable Relative Equilibrium

We stabilize the above system about its unstable (relative)
equilibria given by (32), using a control law of the form (9)

N̄(y, τ) = εN̄f (y) + N̄a(α, τ), N̄f = −10
(
(θ −

π

2
) + θ′

)
.

(35)
The first term N̄f (y) linearly stabilizes the directly actuated
variable to its equilibrium value θe = π

2 . The second term is
used to feedback stabilize the averaged system according to
Theorem 2. The modified drift and control vector fields are:

XS =

⎡
⎢⎢⎣

ρ′

θ′

f1
f2

⎤
⎥⎥⎦ , Y lift =

⎡
⎢⎢⎣

0
0
0

1 + ε2

ρ2

⎤
⎥⎥⎦ ,

where f1 and f2 are the right sides of equations (29) and
(30) respectively, with N̄ replaced by N̄f . The coordinate
expressions for the Lie brackets and symmetric products
in the second order expansion (16), and evaluated for this
system, are given in [13]. For this system, the vector field
〈Y lift : 〈Y lift : Y lift〉〉 is negligible. The vector fields Ȳ1 =
[Y lift, XS ], Ȳ2 = 〈Y lift : Y lift〉, Ȳ3 = [[Y lift, XS ], XS ], and
Ȳ4 = [〈Y lift : Y lift〉, XS ] evaluated at almost all points of TS

span R
4. Note that, although two of these brackets are “bad”

brackets in the sense of Sussmann ([20]), their coefficients
given by this vibrational control scheme (see Figure 2) are
not always of the same sign. Hence, for feedback using this
scheme, these brackets cannot be considered as “bad” since
they provide additional control directions in the state space.

Now we feedback stabilize the averaged system corre-
sponding to (29)-(30) with the vibrational control

N̄a(τ) = αω(1 − cos(2ωτ)) + ω sin(ωτ). (36)

The averaged coefficients of Ȳ1, Ȳ2, Ȳ3, and Ȳ4 are evaluated
for the control law (36). These coefficients are provided in
Figure 2. We choose the parameter value ε = l

R
= 0.05,

and the frequency of the vibrational control ω = 50. Tthe
control (36) is a feedback law depending on the averaged
state, α = α(z), as follows

α = −K(z − ye) = −k1

(
θ −

π

2

)
− k2θ

′. (37)

Note that we only use attitude and attitude rate feedback;
effectively using the coupling between the attitude and radial
degrees of freedom to asymptotically stabilize the system
without feedback on the dumbbell’s position.
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Coefficient Value
T 1(α) ε(1 + πα)

T 2(α) − ε
2

(
3
2 + 2πα + 5α2

8 + 4π2α2

3

)
T 3(α) ε2

(
3
4 + πα + 5α2

16 + 2π2α2

3 − π(1+πα)
ω

)
T 4(α) − ε2

2

{
100α+π(36+α(3α+16π(2+πα)))

24ω
− π

ω

(
3
2 + 2πα + 5α2

8 + 4π2α2

3

)}
Fig. 2. Coefficients for the first four brackets in the second order expansion of the averaged controlled dumbbell dynamics.

B. Simulation Results

We present simulation results for this feedback scheme
used to stabilize an unstable relative equilibrium of
the dumbbell body given by ye = (ρe, θe, ρ

′
e, θ

′
e) =

(0.99826, π
2 , 0, 0), p̄ = 2.00102. The scalar gains k1 and k2

are chosen so that the condition in Theorem 2 is satisfied.
We evaluate all the matrices defined in Theorem 2 for the
second order averaged system linearized about ye. Choosing
k1 = 0.7, and k2 = −2.1, we find that the eigenvalues of
Ā = A− 1

ε
BGK have negative real parts. Thus, the unstable

relative equilibrium is asymptotically stabilized.
For a simulation of the dumbbell body in central gravity

with this averaging-based feedback control scheme, we give
an initial perturbation to the unstable relative equilibrium
with ρ0 = 1.00027, θ0 = 1.6008, ν′

0 = 1.001555, ρ′0 = θ′0 =
0. The simulation results are given by Figure 3, for both
actual and averaged systems. The averaged system (which

0 100 200 300 400 500 600
0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

sc
al

ed
 ra

di
us

 (ρ
)

0 100 200 300 400 500 600
1.57

1.58

1.59

1.6

1.61

1.62

1.63

1.64

1.65

1.66

scaled time (τ)

at
tit

ud
e 

(θ)

averaged
actual

averaged
actual

Fig. 3. Simulation results for stabilization of unstable equilibrium.

is not Lagrangian) was integrated using MATLAB’s ode45,
while the actual system was integrated by a variational
integration scheme given in [13]. The simulation is for a
duration of τ = 180π (about 90 orbits around the central
body). The results show that the orbit radius asymptotically
approaches that of the desired relative equilibrium, and the
attitude angle has small oscillations around θ = π

2 for both
the averaged and the actual system. Since the coupling from
attitude to orbit is weak (of order ε2), the convergence in the
orbital radius is slow.

VI. CONCLUSIONS

We present an averaging-based control scheme for under-
actuated mechanical systems with cyclic coordinates. This

scheme is applied to a dumbbell body in planar motion in
a central gravitational field, with attitude actuation. High
frequency periodic inputs are used to stabilize the dumbbell
body at one of its unstable relative equilibria. Asymptotic
stabilization of the orbital radius is slow, due to the small
coupling between the attitude and orbit degrees of freedom.
These results demonstrate the possibility of using attitude
and/or internal actuation for control of the motion of complex
mechanical systems in a potential field.
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