
Control of Memory, Active Perception, and Action in Minecraft

Junhyuk Oh JUNHYUK@UMICH.EDU

Valliappa Chockalingam VALLI@UMICH.EDU

Satinder Singh BAVEJA@UMICH.EDU

Honglak Lee HONGLAK@UMICH.EDU

Computer Science & Engineering, University of Michigan

Abstract

In this paper, we introduce a new set of rein-

forcement learning (RL) tasks in Minecraft (a

flexible 3D world). We then use these tasks

to systematically compare and contrast exist-

ing deep reinforcement learning (DRL) architec-

tures with our new memory-based DRL architec-

tures. These tasks are designed to emphasize,

in a controllable manner, issues that pose chal-

lenges for RL methods including partial observ-

ability (due to first-person visual observations),

delayed rewards, high-dimensional visual obser-

vations, and the need to use active perception in

a correct manner so as to perform well in the

tasks. While these tasks are conceptually simple

to describe, by virtue of having all of these chal-

lenges simultaneously they are difficult for cur-

rent DRL architectures. Additionally, we evalu-

ate the generalization performance of the archi-

tectures on environments not used during train-

ing. The experimental results show that our new

architectures generalize to unseen environments

better than existing DRL architectures.

1. Introduction

Deep learning approaches (surveyed in LeCun et al., 2015;

Schmidhuber, 2015) have made advances in many low-

level perceptual supervised learning problems (Krizhevsky

et al., 2012; Girshick et al., 2014; Simonyan & Zisserman,

2015). This success has been extended to reinforcement

learning (RL) problems that involve visual perception. For

example, the Deep Q-Network (DQN) (Mnih et al., 2015)

architecture has been shown to successfully learn to play

many Atari 2600 games in the Arcade Learning Environ-

ment (ALE) benchmark (Bellemare et al., 2013) by learn-

ing visual features useful for control directly from raw pix-

els using Q-Learning (Watkins & Dayan, 1992).

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

T
o

p
-D

o
w

n
V

ie
w

F
ir

st
-P

er
so

n
V

ie
w

(a) t=3 (b) t=10 (c) t=11 (d) t=19

Figure 1. Example task in Minecraft. In this task, the agent should

visit the red block if the indicator (next to the start location) is

yellow. Otherwise, if the indicator is green, it should visit the blue

block. The top row shows the agent’s first-person observation.

The bottom row visualizes the map and the agent’s location; this

is not available to the agent. (a) The agent observes the yellow

indicator. (b) The agent looks left and sees the blue block, (c)

but it decides to keep going straight having previously seen the

yellow indicator. (d) Finally, it visits the red block and receives a

positive reward.

Recently, researchers have explored problems that require

faculties associated with higher-level cognition (e.g., in-

ferring simple general purpose algorithms: Graves et al.,

2014, and, Q&A: Weston et al., 2015). Most of these

advances, however, are restricted to the supervised learn-

ing setting, which provides clear error signals. In this pa-

per, we are interested in extending this success to similarly

cognition-inspired RL tasks. Specifically, this paper intro-

duces a set of tasks in Minecraft1, a flexible 3D world in

which an agent can collect resources, build structures, and

survive attacks from enemies. Our RL tasks (one exam-

ple is illustrated in Figure 1) not only have the usual RL

challenges of partial observability, high-dimensional (vi-

sual) perception, and delayed reward, but also require an

agent to develop movement policies by learning how to use

its active perception to observe useful information and col-

lect reward. In addition, our RL tasks require an agent to

learn to use any memory it possesses including its interac-

tion with active perception which feeds observations into

1https://minecraft.net/

https://minecraft.net/


Control of Memory, Active Perception, and Action in Minecraft

memory. We note that for simplicity we hereafter refer

to these cognition-inspired tasks as cognitive tasks but ac-

knowledge that they form at best a very limited exploration

of the range of cognitive faculties in humans.

In this work, we aim to not only systematically evaluate

the performance of different neural network architectures

on our tasks, but also examine how well such architec-

tures generalize to unseen or larger topologies (Minecraft

maps). The empirical results show that existing DRL ar-

chitectures (Mnih et al., 2015; Hausknecht & Stone, 2015)

perform worse on unseen or larger maps compared to train-

ing sets of maps, even though they perform reasonably well

on the training maps. Motivated by the lack of generaliza-

tion of existing architectures on our tasks, we also propose

new memory-based DRL architectures. Our proposed ar-

chitectures store recent observations into their memory and

retrieve relevant memory based on the temporal context,

whereas memory retrieval in existing architectures used in

RL problems is not conditioned on the context. In sum-

mary, we show that our architectures outperform existing

ones on most of the tasks as well as generalize better to un-

seen maps by exploiting their new memory mechanisms.

2. Related Work

Neural Networks with External Memory. Graves et al.

(2014) introduced a Neural Turing Machine (NTM), a dif-

ferentiable external memory architecture, and showed that

it can learn algorithms such as copy and reverse. Zaremba

& Sutskever (2015) proposed RL-NTM that has a non-

differentiable memory to scale up the addressing mecha-

nism of NTM and applied policy gradient to train the ar-

chitecture. Joulin & Mikolov (2015) implemented a stack

using neural networks and demonstrated that it can infer

several algorithmic patterns. Sukhbaatar et al. (2015b) pro-

posed a Memory Network (MemNN) for Q&A and lan-

guage modeling tasks, which stores all inputs and retrieves

relevant memory blocks depending on the question.

Deep Reinforcement Learning. Neural networks have

been used to learn features for RL tasks for a few decades

(e.g., Tesauro, 1995 and Lange & Riedmiller, 2010). Re-

cently, Mnih et al. (2015) proposed a Deep Q-Network

(DQN) for training deep convolutional neural networks

(CNNs) through Q-Learning in an end-to-end fashion;

this achieved state-of-the-art performance on Atari games.

Guo et al. (2014) used slow Monte-Carlo Tree Search

(MCTS) (Kocsis & Szepesvári, 2006) to generate a rela-

tively small amount of data to train fast-playing convolu-

tional networks in Atari games. Schulman et al. (2015),

Levine et al. (2016), and Lillicrap et al. (2016) have suc-

cessfully trained deep neural networks to directly learn

policies and applied their architectures to robotics prob-

lems. In addition, there are deep RL approaches to tasks

other than Atari such as learning algorithms (Zaremba

et al., 2016) and text-based games (Sukhbaatar et al.,

2015a; Narasimhan et al., 2015). There have also been a

few attempts to learn state-transition models using deep

learning to improve exploration in RL (Oh et al., 2015;

Stadie et al., 2015). Most recently, Mnih et al. (2016)

proposed asynchronous DQN and showed that it can learn

to explore a 3D environment similar to Minecraft. Unlike

their work, we focus on a systematic evaluation of the abil-

ity to deal with partial observability, active perception, and

external memory in different neural network architectures

as well as generalization across size and maps.

Model-free Deep RL for POMDPs. Building a model-

free agent in partially observable Markov decision pro-

cesses (POMDPs) is a challenging problem because the

agent needs to learn how to summarize history for action-

selection. To deal with such a challenge, Bakker et al.

(2003) used a Long Short-Term Memory (LSTM) net-

work (Hochreiter & Schmidhuber, 1997) in an offline pol-

icy learning framework to show that a robot controlled

by an LSTM network can solve T-Mazes where the robot

should go to the correct destination depending on the traf-

fic signal at the beginning of the maze. Wierstra et al.

(2010) proposed a Recurrent Policy Gradient method and

showed that an LSTM network trained using this method

outperforms other methods in several tasks including T-

Mazes. More recently, Zhang et al. (2016) introduced

continuous memory states to augment the state and ac-

tion space and showed it can memorize salient information

through Guided Policy Search (Levine & Koltun, 2013).

Hausknecht & Stone (2015) proposed Deep Recurrent Q-

Network (DRQN) which consists of an LSTM on top of a

CNN based on the DQN framework and demonstrated im-

proved handling of partial observability in Atari games.

Departure from Related Work. The architectures we

introduce use memory mechanisms similar to MemNN, but

our architectures have a layer that constructs a query for

memory retrieval based on temporal context. Our architec-

tures are also similar to NTM in that a recurrent controller

interacts with an external memory, but ours have a simpler

writing and addressing mechanism which makes them eas-

ier to train. Most importantly, our architectures are used in

an RL setting and must learn from a delayed reward sig-

nal, whereas most previous work in exploring architectures

with memory is in the supervised learning setting with its

much more direct and undelayed error signals. We describe

details of our architectures in Section 4.

The tasks we introduce are inspired by the T-maze

experiments (Bakker et al., 2003) as well as Maze-

Base (Sukhbaatar et al., 2015a), which has natural language

descriptions of mazes available to the agent. Unlike these

previous tasks, our mazes have high-dimensional visual ob-

servations with deep partial observability due to the nature

of the 3D worlds. In addition, the agent has to learn how



Control of Memory, Active Perception, and Action in Minecraft

M
key
t

M
val

t

W
val

W
key

M blocks

ϕ

xxt

(a) Write

ht

softmax

p
t

××

M
key
t M

val

t

(b) Read

Figure 2. Illustration of memory operations.

best to control its active perception system to collect useful

information at the right time in our tasks; this is not neces-

sary in previous work.

3. Background: Deep Q-Learning

Denote the state, immediate reward, and action at time t as

st, rt, at respectively. In the DQN framework, every tran-

sition Tt = (st, st+1, at, rt) is stored in a replay memory.

For (each) iteration i, the deep neural network (with param-

eters θ) is trained to approximate the action-value function

from transitions {(s, s′, a, r)} by minimizing the loss func-

tions Li (θi) as follows:

Li (θ) = Es,a∼πθ

[

(yi −Q (s, a; θ))
2
]

∇θLi (θ) = Es,a∼πθ
[(yi −Q (s, a; θ))∇θQ (s, a; θ)]

where yi = Es′∼πθ
[r + γmaxa′ Q (s′, a′; θ′)] is the tar-

get Q-value estimated by a target Q-network (θ′). In prac-

tice, the expectation terms are approximated by sampling a

mini-batch of transitions from the replay memory. The pa-

rameter of target Q-network (θ′) is synchronized with the

learned network (θ) after a fixed number of iterations.

4. Architectures

The importance of retrieving a prior observation from

memory depends on the current context. For example,

in the maze of Figure 1 where the color of the indica-

tor block determines the desired target color, the indica-

tor information is important only when the agent is see-

ing a potential target and has to decide whether to ap-

proach it or find a different target. Motivated by the lack

of “context-dependent memory retrieval” in existing DRL

architectures, we present three new memory-based archi-

tectures in this section.

Our proposed architectures (Figure 3c-e) consist of con-

volutional networks for extracting high-level features from

images (§4.1), a memory that retains a recent history of ob-

servations (§4.2), and a context vector used both for mem-

ory retrieval and (in part for) action-value estimation (§4.3).

Depending on how the context vector is constructed, we ob-

tain three new architectures: Memory Q-Network (MQN),

Recurrent Memory Q-Network (RMQN), and Feedback

Recurrent Memory Q-Network (FRMQN).

Context

xtxt−M

CNN

Q

(a) DQN

Context

xt

CNN

Q

(b) DRQN

Context

Memory

Q

xt

CNN

(c) MQN

Context

Memory

xt

CNN

Q

(d) RMQN

Context

Memory

xt

CNN

Q

(e) FRMQN

Figure 3. Illustration of different architectures

4.1. Encoding

For each time-step, a raw observation (pixels) is encoded

to a fixed-length vector as follows:

et = ϕenc (xt) (1)

where xt ∈ R
c×h×w is h × w image with c channels, and

et ∈ R
e is the encoded feature at time t. In this work, we

use a CNN to encode the observation.

4.2. Memory

The memory operations in the proposed architectures are

similar to those proposed in MemNN.

Write. The encoded features of last M observations are

linearly transformed and stored into the memory as key and

value memory blocks as illustrated in Figure 2a. More for-

mally, two types of memory blocks are defined as follows:

M
key
t = WkeyEt (2)

Mval
t = WvalEt (3)

where M
key
t ,Mval

t ∈ R
m×M are memory blocks with m-

dimensional embeddings, and Wkey,Wval ∈ R
m×e are

parameters of the linear transformations for keys and val-

ues respectively. Et = [et−1, et−2, ..., et−M ] ∈ R
e×M is

the concatenation of features of the last M observations.

Read. The reading mechanism of the memory is based

on soft attention (Graves, 2013; Bahdanau et al., 2015) as

illustrated in Figure 2b. Given a context vector ht ∈ R
m

(§4.3), the memory module draws soft attention over mem-

ory locations (and implicitly time) by computing the inner-

product between the context and all key memory blocks as

follows:

pt,i =
exp

(

h
⊤
t M

key
t [i]

)

∑M

j=1 exp
(

h⊤
t M

key
t [j]

) (4)

where pt,i ∈ R is an attention weight for i-th memory block

(t−i time-step). The output of the read operation is the lin-

ear sum of the value memory blocks based on the attention

weights as follows:

ot = Mval
t pt (5)

where ot ∈ R
m and pt ∈ R

M are the retrieved memory

and the attention weights respectively.



Control of Memory, Active Perception, and Action in Minecraft

xt

ht

q
t

q
t−1

ht−1

xt−1 xt+1

ht+1

q
t+1

retrieve

Figure 4. Unrolled illustration of FRMQN.

4.3. Context

To retrieve useful information from memory, the context

vector should capture relevant spatio-temporal information

from the observations. To this end, we present three differ-

ent architectures for constructing the context vector:

MQN: ht = Wcet (6)

RMQN: [ht, ct] = LSTM (et, ht−1, ct−1) (7)

FRMQN: [ht, ct] = LSTM ([et, ot−1] , ht−1, ct−1) (8)

where ht, ct ∈ R
m are a context vector and a memory cell

of LSTM respectively, and [et, ot−1] denotes concatenation

of the two vectors as input for LSTM. MQN is a feedfor-

ward architecture that constructs the context based on only

the current observation, which is very similar to MemNN

except that the current input is used for memory retrieval in

the temporal context of an RL problem. RMQN is a recur-

rent architecture that captures spatio-temporal information

from the history of observations using LSTM. This archi-

tecture allows for retaining temporal information through

LSTM as well as external memory. Finally, FRMQN has

a feedback connection from the retrieved memory to the

context vector as illustrated in Figure 4. This allows the

FRMQN architecture to refine its context based on the pre-

viously retrieved memory so that it can do more complex

reasoning as time goes on. Note that feedback connec-

tions are analogous to the idea of multiple hops in MemNN

in the sense that the architecture retrieves memory blocks

multiple times based on the previously retrieved memory.

However, FRMQN retrieves memory blocks through time,

while MemNN does not.

Finally, the architectures estimate action-values by incor-

porating the retrieved memory and the context vector:

qt = ϕq (ht, ot) (9)

where qt ∈ R
a is the estimated action-value, and ϕq is

a multi-layer perceptron (MLP) taking two inputs. In the

results we report here, we used an MLP with one hidden

layer as follows: gt = f
(

Whht + ot
)

, qt = Wqgt where

f is a rectified linear function (Nair & Hinton, 2010) ap-

plied only to half of the hidden units for easy optimization

by following Sukhbaatar et al. (2015b).

(a) I-Maze (b) Pattern Matching

(c) Random Maze (d) Random Maze w/ Ind

Figure 5. Examples of maps. (a) has an I-structured topology

where the location of indicator (yellow/green), goals (red/blue),

and spawn locations (black circle) are fixed across episodes. (b)

has two goals and two rooms with color patterns. (c) consists

of randomly generated walls and two goals. The agent can be

spawned anywhere except for goal locations. (d) is similar to (c)

except that it has an indicator at the fixed location (yellow/green)

and a fixed spawn location.

5. Experiments

The experiments, baselines, and tasks are designed

to investigate how useful context-dependent mem-

ory retrieval is for generalizing to unseen maps, and

when memory feedback connections in FRMQN are

helpful. Game play videos can be found in the sup-

plementary material and at the following website:

https://sites.google.com/a/umich.edu/

junhyuk-oh/icml2016-minecraft. Next, we

describe aspects that are common to all tasks and our

training methodology.

Environment. In all the tasks, episodes terminate either

when the agent finishes the task or after 50 steps. An agent

receives -0.04 reward at every time step. The agent’s initial

looking direction is randomly selected among four direc-

tions: north, south, east, and west. For tasks where there is

randomness (e.g., maps, spawn points), we randomly sam-

pled an instance after every episode.

Actions. The following six actions are available: Look

left/right (±90◦ in yaw), Look up/down (±45◦ in pitch),

and Move forward/backward. Moving actions move the

agent one block forward or backward in the direction it is

facing. The pitch is limited to [−45◦, 0◦].

Baselines. We compare our three architectures with two

baselines: DQN (Mnih et al., 2015) (see Figure 3a) and

DRQN (Hausknecht & Stone, 2015) (see Figure 3b). DQN

is a CNN architecture that takes a fixed number of frames as

input. DRQN is a recurrent architecture that has an LSTM

layer on top of the CNN. Note that DQN cannot take more

https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft
https://sites.google.com/a/umich.edu/junhyuk-oh/icml2016-minecraft


Control of Memory, Active Perception, and Action in Minecraft

Table 1. Performance on I-Maze. Each entry shows the average

success rate with standard error measured from 10 runs. For each

run, we measured the average success rate of 10 best-performing

parameters based on the performance on unseen set of maps. The

success rate is defined as the number of episodes that the agent

reaches the correct goal within 100 steps divided by the total num-

ber of episodes. ‘Size’ represents the number of blocks of the ver-

tical corridor. ‘X’ indicates that such sizes of I-Mazes belong to

the training set of maps.

SIZE TRAIN DQN DRQN MQN RMQN FRMQN

4 92.1(1.5) 94.8(1.5) 87.2(2.3) 89.2(2.4) 96.9(1.0)
5 X 99.3(0.5) 98.2(1.1) 96.2(1.0) 98.6(0.5) 99.3(0.7)
6 99.4(0.4) 98.2(1.0) 96.0(1.0) 99.0(0.4) 99.7(0.3)
7 X 99.6(0.3) 98.8(0.8) 98.0(0.6) 98.8(0.5) 100.0(0.0)
8 99.3(0.4) 98.3(0.8) 98.3(0.5) 98.0(0.8) 100.0(0.0)
9 X 99.0(0.5) 98.4(0.6) 98.0(0.7) 94.6(1.8) 100.0(0.0)
10 96.5(0.7) 97.4(1.1) 98.2(0.7) 87.5(2.6) 99.6(0.3)
15 50.7(0.9) 83.3(3.2) 96.7(1.3) 89.8(2.4) 97.4(1.1)
20 48.3(1.0) 63.6(3.7) 97.2(0.9) 96.3(1.2) 98.8(0.5)
25 48.1(1.0) 57.6(3.7) 98.2(0.7) 90.3(2.5) 98.4(0.6)
30 48.6(1.0) 60.5(3.6) 97.9(0.9) 87.1(2.4) 98.1(0.6)
35 49.5(1.2) 59.0(3.4) 95.0(1.1) 84.0(3.2) 94.8(1.2)
40 46.6(1.2) 59.2(3.6) 77.2(4.2) 71.3(5.0) 89.0(2.6)

than the number of frames used during training because its

first convolution layer takes a fixed number of observations.

However, DRQN and our architectures can take arbitrary

number of input frames using their recurrent layers. Addi-

tionally, our architectures can use an arbitrarily large size

of memory during evaluation as well.

Training details. Input frames from Minecraft are cap-

tured as 32 × 32 RGB images. All the architectures use

the same 2-layer CNN architecture as described in the sup-

plementary material. In the DQN and DRQN architec-

tures, the last convolutional layer is followed by a fully-

connected layer with 256 hidden units. In our architectures,

the last convolution layer is given as the encoded feature

for memory blocks. In addition, 256 LSTM units are used

in DRQN, RMQN, and FRMQN. More details including

hyperparameters for Deep Q-Learning are described in the

supplementary material. Our implementation is based on

Torch7 (Collobert et al., 2011), a public DQN implementa-

tion (Mnih et al., 2015), and a Minecraft Forge Mod.2

5.1. I-Maze: Description and Results

Task. Our I-Maze task was inspired by T-Mazes which

have been used in animal cognition experiments (Olton,

1979). Maps for this task (see Figure 5a) have an indicator

at the top that has equal chance of being yellow or green. If

the indicator is yellow, the red block gives +1 reward and

the blue block gives -1 reward; if the indicator is green,

the red block gives -1 and the blue block gives +1 reward.

Thus, the agent should memorize the color of the indicator

at the beginning while it is in view and visit the correct goal

depending on the indicator-color. We varied the length of

the vertical corridor to l = {5, 7, 9} during training. The

last 12 frames were given as input for all architectures, and

2http://files.minecraftforge.net/

the size of memory for our architectures was 11.

Performance on the training set. We observed two

stages of behavior during learning from all the architec-

tures: 1) early in the training the discount factor and time

penalty led to the agent to take a chance by visiting any

goal, and 2) later in the training the agent goes to the correct

goal by learning the correlation between the indicator and

the goal. As seen in the learning curves in Figure 6a, our ar-

chitectures converge more quickly than DQN and DRQN to

the correct behavior. In particular, we observed that DRQN

takes many more epochs to reach the second stage after

the first stage has been reached. This is possibly due to

the long time interval between seeing the indicator and the

goals. Besides, the indicator block is important only when

the agent is at the bottom end of the vertical corridor and

needs to decide which way to go (see Figure 5a). In other

words, the indicator information does not affect the agent’s

decision making along its way to the end of the corridor.

This makes it even more difficult for DRQN to retain the

indicator information for a long time. On the other hand,

our architectures can handle these problems by storing the

history of observations into memory and retrieving such in-

formation when it is important, based on the context.

Generalization performance. To investigate gen-

eralization performance, we evaluated the archi-

tectures on maps that have vertical corridor lengths

{4, 6, 8, 10, 15, 20, 25, 30, 35, 40} that were not present

in the training maps. More specifically, testing on {6, 8}
sizes of maps and the rest of the sizes of maps can

evaluate interpolation and extrapolation performance,

respectively (Schaul et al., 2015). Since some unseen maps

are larger than the training maps, we used 50 last frames as

input during evaluation on the unseen maps for all archi-

tectures except for DQN, which can take only 12 frames as

discussed in the experimental setup. The size of memory

for our architectures is set to 49. The performance on the

unseen set of maps is visualized in Figure 6b. Although

the generalization performances of all architectures are

highly variable even after training performance converges,

it can be seen that FRMQN consistently outperforms the

other architectures in terms of average reward. To further

investigate the performance for different lengths of the

vertical corridor, we measured the performance on each

size of map in Table 1. It turns out that all architectures

perform well on {6, 8} sizes of maps, which indicates

that they can interpolate within the training set of maps.

However, our architectures extrapolate to larger maps

significantly better than the two baselines.

Analysis of memory retrieval. Figure 7a visualizes FR-

MQN’s memory retrieval on a large I-Maze, where FR-

MQN sharply retrieves the indicator information only when

it reaches the end of the corridor where it then makes a de-

cision of which goal block to visit. This is a reasonable

strategy because the indicator information is important only

http://files.minecraftforge.net/


Control of Memory, Active Perception, and Action in Minecraft

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(a) I-Maze (Train)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

(b) I-Maze (Unseen)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(c) Matching (Train)

0 20 40 60 80 100 120 140−2.0

−1.5

−1.0

−0.5

0.0

0.5

(d) Matching (Unseen)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

0.0

0.5

(e) Seq+I (Train)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

(f) Seq+I (Unseen)

0 50 100 150 200−2.0

−1.5

−1.0

−0.5

(g) Seq+I (Unseen-L)

DQN
DRQN
MQN
RMQN
FRMQN

Figure 6. Learning curves for different tasks: (a-b) I-maze (§5.1), (c-d) pattern matching (§5.2), (e-g) random mazes (§5.3). X-axis and

y-axis correspond to the number of training epochs (1 epoch = 10K steps) and the average reward. For (b) and (d), ‘Unseen’ represents

unseen maps with different sizes and different patterns respectively. For (f) and (g), ‘Unseen’ and ‘Unseen-L’ indicate unseen topologies

with the same sizes and larger sizes of maps, respectively. The performance was measured from 4 runs for random mazes and 10 runs

for I-Maze and Pattern Matching. For the random mazes, we only show the results on Sequential Goals with Indicator due to space

constraints. More plots are provided in the supplementary material.

Table 2. Performance on pattern matching. The entries represent

the probability of visiting the correct goal block for each set of

maps with standard error. The performance reported is averages

over 10 runs and 10 best-performing parameters for each run.

TRAIN UNSEEN

DQN 62.9% (±3.4%) 60.1% (±2.8%)
DRQN 49.7% (±0.2%) 49.2% (±0.2%)
MQN 99.0% (±0.2%) 69.3% (±1.5%)
RMQN 82.5% (±2.5%) 62.3% (±1.5%)
FRMQN 100.0% (±0.0%) 91.8% (±1.0%)

when it is at the end of the vertical corridor. This qualitative

result implies that FRMQN learned a general strategy that

looks for the indicator, goes to the end of the corridor, and

retrieves the indicator information when it decides which

goal block to visit. We observed similar policies learned

by MQN and RMQN, but the memory attention for the in-

dicator was not as sharp as FRMQN’s attention and so they

visit wrong goals in larger I-Mazes more often.

The results on I-Maze shown above suggest that solving a

task on a set of maps does not guarantee solving the same

task on similar but unseen maps, and such generalization

performance highly depends on the feature representation

learned by deep neural networks. The extrapolation re-

sult shows that context-dependent memory retrieval in our

architectures is important for learning a general strategy

when the importance of an observational-event depends

highly on the temporal context.

5.2. Pattern Matching: Description and Results

Task. As illustrated in Figure 5b, this map consists of two

3 × 3 rooms. The visual patterns of the two rooms are ei-

ther identical or different with equal probability. If the two

rooms have the exact same color patterns, the agent should

visit the blue block. If the rooms have different color pat-

terns, the agent should visit the red block. The agent re-

ceives a +1 reward if it visits the correct block and a -1

reward if it visits the wrong block. This pattern matching

task requires more complex reasoning (comparing two vi-

sual patterns given at different time steps) than the I-Maze

task above. We generated 500 training and 500 unseen

maps in such a way that there is little overlap between the

two sets of visual patterns. Details of the map generation

process are described in the supplementary material. The

last 10 frames were given as input for all architectures, and

the size of memory was set to 9.

Performance on the training set. The results plotted in

Figure 6c and Table 2 show that MQN and FRMQN suc-

cessfully learned to go to the correct goal block for all

runs in the training maps. We observed that DRQN al-

ways learned a sub-optimal policy that goes to any goal

regardless of the visual patterns of the two rooms. An-

other observation is the training performances of DQN and

RMQN are a bit unstable; they often learned the same sub-

optimal policy, whereas MQN and FRMQN consistently

learned to go to the correct goal across different runs. We

hypothesize that it is not trivial for a neural network to com-

pare two visual patterns observed in different time-steps

unless the network can model high-order interactions be-

tween two specific observations for visual matching, which

might be the reason why DQN and DRQN fail more often.

Context-dependent memory retrieval mechanism in our ar-

chitectures can alleviate this problem by retrieving two vi-

sual patterns corresponding to the observations of the two

rooms before decision making.



Control of Memory, Active Perception, and Action in Minecraft

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(a) I-Maze (§5.1)

(b) Pattern matching (§5.2) (c) Sequential w/ Ind (§5.3)

Figure 7. Visualization of FRMQN’s memory retrieval. Each fig-

ure shows a trajectory of FRMQN at the top row, and the fol-

lowing rows visualize attention weights over time. (a) The agent

looks at the indicator, goes to the end of the corridor, and retrieves

the indicator frame before visiting the goal block. (b) The agent

looks at both rooms at the beginning and gradually switches atten-

tion weights from one room to another room as it approaches the

goal blocks. (c) The agent pays attention to the indicator (yellow)

and the first goal block (blue).

Generalization performance. Table 2 and Figure 6d

show that FRMQN achieves the highest success rate on the

unseen set of maps. Interestingly, MQN fails to general-

ize to unseen visual patterns. We observed that MQN pays

attention to the two visual patterns before choosing one of

the goals through its memory retrieval. However, since the

retrieved memory is just a convex combination of two vi-

sual patterns, it is hard for MQN to compare the similarity

between them. Thus, we believe that MQN simply overfits

to the training maps by memorizing the weighted sum of

pairs of visual patterns in the training set of maps. On the

other hand, FRMQN can utilize retrieved memory as well

as its recurrent connections to compare visual patterns over

time.

Analysis of memory retrieval. An example of FR-

MQN’s memory retrieval is visualized in Figure 7b. FR-

MQN pays attention to both rooms, gradually moving

weight from one to the other as time progresses, which

means that the context vector is repeatedly refined based

on the encoded features of the room retrieved through its

feedback connections. Given this visualization and its good

generalization performance, we hypothesize that FRMQN

utilizes its feedback connection to compare the two visual

features over time rather than comparing them at a single

time-step. This result supports our view that feedback con-

nections can play an important role in tasks where more

complex reasoning is required with retrieved memories.

5.3. Random Mazes: Description and Results

Task. A random maze task consists of randomly gener-

ated walls and goal locations as shown in Figure 5c and 5d.

We present 4 classes of tasks using random mazes.

Distance between indicator and goal

0 5 10 15

P
re

c
is

io
n

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

DQN

DRQN

MQN

RMQN

FRMQN

Figure 8. Precision vs. distance. X-axis represents the distance

between indicator and goal in Single Goal with Indicator task. Y-

axis represents the number of correct goal visits divided by the

total number of goal visits.

• Single Goal: The task is to visit the blue block which

gives +1 reward while avoiding the red block that gives

-1 reward.

• Sequential Goals: The task is to visit the red block first

and then the blue block later which gives +0.5 and +1 re-

ward respectively. If an agent visits the colored blocks in

the reverse order, it receives -0.5 and -1 reward respec-

tively.

• Single Goal with Indicator: If the indicator is yellow,

the task is to visit the red block. If the indicator is

green, the task is to visit the blue block. Visiting the cor-

rect block results in +1 reward and visiting the incorrect

block results in -1 reward.

• Sequential Goals with Indicator: If the indicator is yel-

low, the task is to visit the blue block first and then the

red block. If the indicator is green, the task is to visit

the red block first and then the blue block. Visiting the

blocks in the correct order results in +0.5 for the first

block and +1 reward for the second block. Visiting the

blocks in the reverse order results in -0.5 and -1 reward

respectively.

We randomly generated 1000 maps used for training and

two types of unseen evaluation sets of maps: 1000 maps

of the same sizes present in the training maps and 1000

larger maps. The last 10 frames were given as input for all

architectures, and the size of memory was set to 9.

Performance on the training set. In this task, the agent

not only needs to remember important information while

traversing the maps (e.g., an indicator) but it also has to

search for the goals as different maps have different ob-

stacle and goal locations. Table 3 shows that RMQN and

FRMQN achieve higher asymptotic performances than the

other architectures on the training set of maps.

Generalization performance. For the larger-sized un-

seen maps, we terminated episodes after 100 steps rather

than 50 steps and used a time penalty of −0.02 considering

their size. During evaluation, we used 10 frames as input

for DQN and DRQN and 30 frames for MQN, RMQN, and



Control of Memory, Active Perception, and Action in Minecraft

Table 3. Performance on random maze. The ‘Size’ column lists the size of each set of maps. The entries in the ‘Reward’, ‘Success’, and

‘Fail’ columns are average rewards, success rates, and failure rates measured from 4 runs. We picked the 10 best parameters based on

performance on unseen maps for each run and evaluated them on 1000 episodes. ‘Success’ represents the number of correctly completed

episodes divided by the total number of episodes, and ‘Fail’ represents the number of incorrectly completed episodes divided by the total

number of episodes (e.g., visiting goals in reverse order in sequential goal tasks). The standard errors are lower than 0.03, 1.5%, 1.0%
for all average rewards, success rates, and failure rates respectively.

TASK TYPE SIZE
DQN DRQN MQN RMQN FRMQN

REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL REWARD SUCCESS FAIL

SINGLE

TRAIN 4-8 0.31 90.4% 0.6% 0.45 94.5% 0.1% 0.01 78.8% 0.4% 0.49 95.7% 0.1% 0.46 94.6% 0.3%
UNSEEN 4-8 0.22 87.3% 0.7% 0.23 86.6% 0.2% 0.02 79.4% 0.3% 0.30 89.4% 0.3% 0.26 88.0% 0.5%
UNSEEN-L 9-14 -0.28 70.0% 0.3% −0.40 63.0% 0.1% −0.63 54.3% 0.4% -0.28 69.3% 0.1% -0.28 69.0% 0.1%

SEQ

TRAIN 5-7 −0.60 47.6% 0.8% −0.08 66.0% 0.6% −0.48 52.1% 0.1% 0.21 77.0% 0.2% 0.22 77.6% 0.2%
UNSEEN 5-7 −0.66 45.0% 1.0% −0.54 48.5% 0.9% −0.59 48.4% 0.1% -0.13 64.3% 0.1% -0.18 63.1% 0.3%
UNSEEN-L 8-10 −0.82 36.6% 1.4% −0.89 32.6% 1.0% −0.77 38.9% 0.6% -0.43 49.6% 1.1% -0.42 50.8% 1.0%

SINGLE+I

TRAIN 5-7 −0.04 79.3% 6.3% 0.23 87.9% 1.2% 0.11 83.9% 0.7% 0.34 91.7% 0.8% 0.24 88.0% 1.4%
UNSEEN 5-7 −0.41 64.8% 16.1% −0.46 61.0% 13.4% −0.46 64.2% 7.8% -0.27 70.0% 10.2% -0.23 71.8% 8.2%
UNSEEN-L 8-10 −0.74 49.4% 31.6% −0.98 38.5% 28.3% −0.66 55.5% 17.1% -0.39 63.4% 20.4% -0.43 63.4% 17.2%

SEQ+I

TRAIN 4-6 −0.13 68.0% 7.0% 0.25 78.5% 1.1% −0.07 67.7% 2.3% 0.37 83.7% 1.0% 0.48 87.4% 0.9%
UNSEEN 4-6 −0.58 54.5% 14.5% −0.65 48.8% 9.7% −0.71 47.3% 7.2% -0.32 62.4% 7.2% -0.28 63.8% 7.5%
UNSEEN-L 7-9 −0.95 39.1% 17.8% −1.14 30.2% 13.1% −1.04 34.4% 9.9% -0.60 49.5% 12.5% -0.54 51.5% 12.9%

FRMQN; these choices gave the best results for each archi-

tecture.

The results in Table 3 show that, as expected, the per-

formance of all the architectures worsen in unseen maps.

From the learning curves (see Figure 6e-g), we observed

that generalization performance on unseen maps does not

improve after some epochs, even though training perfor-

mance is improving. This implies that improving policies

on a fixed set of maps does not necessarily guarantee bet-

ter performance on new environments. However, RMQN

and FRMQN generalize better than the other architectures

in most of the tasks. In particular, compared to the other ar-

chitectures, DRQN’s performance is significantly degraded

on unseen maps. In addition, while DQN shows good gen-

eralization performance on the Single Goal task which pri-

marily requires search, on the other tasks it tends to go to

any goal regardless of important information (e.g., color of

indicator). This can be seen through the higher failure rate

(the number of incorrectly completed episodes divided by

the total number of episodes) of DQN on indicator tasks in

Table 3.

To investigate how well the architectures handle partial ob-

servability, we measured precision (proportion of correct

goal visits to all goal visits) versus the distance between

goal and indicator in Single Goal with Indicator task, which

is visualized in Figure 8. Notably, the gap between our

architectures (RMQN and FRMQN) and the other archi-

tectures becomes larger as the distance increases. This re-

sult implies that our architectures are better at handling par-

tial observability than the other architectures, because large

distance between indicator and goal is more likely to in-

troduce deeper partial observability (i.e., long-term depen-

dency).

Compared to MQN, the RMQN and FRMQN architectures

achieve better generalization performance which suggests

that the recurrent connections in the latter two architectures

are a crucial component for handling random topologies.

In addition, FRMQN and RMQN achieve similar perfor-

mances, which implies that the feedback connection may

not be always helpful in these tasks. We note that given a

retrieved memory (e.g., indicator), the reasoning required

for these tasks is simpler than the reasoning required for

Pattern Matching task.

Analysis of memory retrieval. An example of memory

retrieval in FRMQN is visualized in Figure 7c. It retrieves

memory that contains important information (e.g., indica-

tor) before it visits a goal block. The memory retrieval

strategy is reasonable and is an evidence that the proposed

architectures make it easier to generalize to large-scale en-

vironments by better handling partial observability.

6. Discussion

In this paper, we introduced three classes of cognition-

inspired tasks in Minecraft and compared the performance

of two existing architectures with three architectures that

we proposed here. We emphasize that unlike most evalua-

tions of RL algorithms, we trained and evaluated architec-

tures on disjoint sets of maps so as to specifically consider

the applicability of learned value functions to unseen (in-

terpolation and extrapolation) maps.

In summary, our main empirical result is that context-

dependent memory retrieval, particularly with a feedback

connection from the retrieved memory, can more effec-

tively solve our set of tasks that require control of ac-

tive perception and external physical movement actions.

Our architectures, particularly FRQMN, also show supe-

rior ability relative to the baseline architectures when learn-

ing value functions whose behavior generalizes better from

training to unseen environments. In future work, we intend

to take advantage of the flexibility of the Minecraft domain

to construct even more challenging cognitive tasks to fur-

ther evaluate our architectures.



Control of Memory, Active Perception, and Action in Minecraft

Acknowledgement

This work was supported by NSF grant IIS-1526059. Any

opinions, findings, conclusions, or recommendations ex-

pressed here are those of the authors and do not necessarily

reflect the views of the sponsor.

References

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,

Yoshua. Neural machine translation by jointly learning

to align and translate. In International Conference on

Learning Representations, 2015.

Bakker, Bram, Zhumatiy, Viktor, Gruener, Gabriel, and

Schmidhuber, Jürgen. A robot that reinforcement-learns

to identify and memorize important previous observa-

tions. In Intelligent Robots and Systems, 2003.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 06 2013.

Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,

Clément. Torch7: A matlab-like environment for ma-

chine learning. In BigLearn, Advances in the Neural In-

formation Processing System Workshop, 2011.

Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik,

Jitendra. Rich feature hierarchies for accurate object de-

tection and semantic segmentation. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 2014.

Graves, Alex. Generating sequences with recurrent neural

networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural

turing machines. arXiv preprint arXiv:1410.5401, 2014.

Guo, Xiaoxiao, Singh, Satinder, Lee, Honglak, Lewis,

Richard L, and Wang, Xiaoshi. Deep learning for

real-time atari game play using offline monte-carlo tree

search planning. In Advances in the Neural Information

Processing System, 2014.

Hausknecht, Matthew and Stone, Peter. Deep recurrent

q-learning for partially observable mdps. In AAAI Fall

Symposium on Sequential Decision Making for Intelli-

gent Agents, 2015.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-

term memory. Neural Computation, 9(8):1735–1780,

1997.

Joulin, Armand and Mikolov, Tomas. Inferring algorith-

mic patterns with stack-augmented recurrent nets. In

Advances in the Neural Information Processing System,

2015.

Kocsis, Levente and Szepesvári, Csaba. Bandit based

monte-carlo planning. In European Conference on Ma-

chine Learning, 2006.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.

Imagenet classification with deep convolutional neural

networks. In Advances in the Neural Information Pro-

cessing System, 2012.

Lange, Sascha and Riedmiller, Martin. Deep auto-encoder

neural networks in reinforcement learning. In Interna-

tional Joint Conference on Neural Networks, 2010.

LeCun, Yann, Bengio, Yoshua, and Hinton, Geoffrey. Deep

learning. Nature, 521(7553):436–444, 2015.

Levine, Sergey and Koltun, Vladlen. Guided policy search.

In Proceedings of the International Conference on Ma-

chine Learning, 2013.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel,

Pieter. End-to-end training of deep visuomotor policies.

Journal of Machine Learning Research, 2016.

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander,

Heess, Nicolas, Erez, Tom, Tassa, Yuval, Silver, David,

and Wierstra, Daan. Continuous control with deep re-

inforcement learning. In International Conference on

Learning Representations, 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,

Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,

Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,

Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik,

Amir, Antonoglou, Ioannis, King, Helen, Kumaran,

Dharshan, Wierstra, Daan, Legg, Shane, and Hassabis,

Demis. Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,

Mehdi, Graves, Alex, Lillicrap, Timothy P, Harley, Tim,

Silver, David, and Kavukcuoglu, Koray. Asynchronous

methods for deep reinforcement learning. In Proceed-

ings of the International Conference on Machine Learn-

ing, 2016.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear units

improve restricted boltzmann machines. In Proceedings

of the International Conference on Machine Learning,

2010.

Narasimhan, Karthik, Kulkarni, Tejas, and Barzilay,

Regina. Language understanding for text-based games

using deep reinforcement learning. In Conference on

Empirical Methods on Natural Language Processing,

2015.



Control of Memory, Active Perception, and Action in Minecraft

Oh, Junhyuk, Guo, Xiaoxiao, Lee, Honglak, Lewis,

Richard L, and Singh, Satinder. Action-conditional

video prediction using deep networks in atari games. In

Advances in the Neural Information Processing System,

2015.

Olton, David S. Mazes, maps, and memory. American

Psychologist, 34(7):583, 1979.

Schaul, Tom, Horgan, Daniel, Gregor, Karol, and Silver,

David. Universal value function approximators. In Pro-

ceedings of the International Conference on Machine

Learning, 2015.

Schmidhuber, Jürgen. Deep learning in neural networks:

An overview. Neural Networks, 61:85–117, 2015.

Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan,

Michael I, and Abbeel, Pieter. Trust region policy op-

timization. In Proceedings of the International Confer-

ence on Machine Learning, 2015.

Simonyan, Karen and Zisserman, Andrew. Very deep con-

volutional networks for large-scale image recognition. In

International Conference on Learning Representations,

2015.

Stadie, Bradly C, Levine, Sergey, and Abbeel, Pieter.

Incentivizing exploration in reinforcement learn-

ing with deep predictive models. arXiv preprint

arXiv:1507.00814, 2015.

Sukhbaatar, Sainbayar, Szlam, Arthur, Synnaeve, Gabriel,

Chintala, Soumith, and Fergus, Rob. Mazebase: A

sandbox for learning from games. arXiv preprint

arXiv:1511.07401, 2015a.

Sukhbaatar, Sainbayar, Weston, Jason, and Fergus, Rob.

End-to-end memory networks. In Advances in the Neu-

ral Information Processing System, 2015b.

Tesauro, Gerald. Temporal difference learning and td-

gammon. Communications of the ACM, 38(3):58–68,

1995.

Watkins, Christopher JCH and Dayan, Peter. Q-learning.

Machine Learning, 8(3-4):279–292, 1992.

Weston, Jason, Chopra, Sumit, and Bordes, Antoine. Mem-

ory networks. In International Conference on Learning

Representations, 2015.

Wierstra, Daan, Förster, Alexander, Peters, Jan, and

Schmidhuber, Jürgen. Recurrent policy gradients. Logic

Journal of IGPL, 18(5):620–634, 2010.

Zaremba, Wojciech and Sutskever, Ilya. Reinforce-

ment learning neural turing machines. arXiv preprint

arXiv:1505.00521, 2015.

Zaremba, Wojciech, Mikolov, Tomas, Joulin, Armand, and

Fergus, Rob. Learning simple algorithms from exam-

ples. In Proceedings of the International Conference on

Machine Learning, 2016.

Zhang, Marvin, Levine, Sergey, McCarthy, Zoe, Finn,

Chelsea, and Abbeel, Pieter. Policy learning with contin-

uous memory states for partially observed robotic con-

trol. In International Conference on Robotics and Au-

tomation, 2016.


