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Abstract—This paper solves an -agent formation shape con-
trol problem in the plane. The objective is to design decentralized
control laws so that the agents cooperatively restore a prescribed
formation shape in the presence of small perturbations from the
prescribed shape. We consider two classes of directed, cyclic infor-
mation architectures associated with so-called minimally persistent
formations: leader-remote-follower and coleader. In our framework
the formation shape is maintained by controlling certain interagent
distances. Only one agent is responsible for maintaining each dis-
tance. We propose a decentralized control law where each agent
executes its control using only the relative position measurements
of agents to which it must maintain its distance. The resulting non-
linear closed-loop system has a manifold of equilibria, which im-
plies that the linearized system is nonhyperbolic. We apply center
manifold theory to show local exponential stability of the desired
formation shape. The result circumvents the non-compactness of
the equilibrium manifold. Choosing stabilizing gains is possible if
a certain submatrix of the rigidity matrix has all leading principal
minors nonzero, and we show that this condition holds for all min-
imally persistent leader-remote-follower and coleader formations
with generic agent positions. Simulations are provided.

Index Terms—Center manifold theory, formation shape control,
graph persistence, graph rigidity.

I. INTRODUCTION

T HERE has been increased interest recently in coopera-
tive control of autonomous vehicle formations and mo-

bile sensor networks. Ongoing rapid advancements in compu-
tation, communication, sensing, and control technologies have
made it possible to imagine systems in which multiagent co-
operation allows unprecedented new sensing capabilities when
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compared to what can be achieved with a single agent. The mo-
tivation for studying such systems comes from both the ubiqui-
tous potential for applications and the interesting technical chal-
lenges that such systems present. Applications include teams of
unmanned aircraft for military reconnaissance missions, satel-
lite formations for deep space imaging, and submarine swarms
for oceanic exploration. For large formations, an overarching
requirement and key technical challenge is that the formation
operates in a decentralized fashion, where each agent operates
using only local information.

A fundamental task for autonomous vehicle formations is
formation shape control. Precisely controlled formations can
maintain mobile sensing agents in optimal sensing configura-
tions. In this paper, we study an -agent formation shape control
problem. The objective is to design decentralized control laws
for each agent to restore a desired formation shape in the pres-
ence of small perturbations from the desired shape.

A critical feature of the formation shape control problem is
the information architecture, i.e., precisely what variables are
sensed and what are controlled. We use certain relative position
measurements to achieve shape maintenance. A key distinction
in the literature involves whether the controlled variables are
a set of relative positions or a set of interagent distances (if

and are the positions of agents and , re-
spectively, then the relative position of agent with respect to
agent is whereas the interagent distance between agents

and is ). When agents actively control relative posi-
tions, the formation shape maintenance problem can be cast as
a consensus problem [1]–[4]. A consensus problem is to design
decentralized control laws to drive the agents toward agreement
on certain quantities of interest, e.g., relative position. In con-
sensus problems, a crucial role is played by the graph Lapla-
cian. On the other hand, when agents actively control intera-
gent distances, then the graph rigidity [5] of the information ar-
chitecture becomes the crucial concept for the formation shape
maintenance problem, with the rigidity matrix playing a cru-
cial role in the stability analysis [6]–[12]. An advantage of con-
trolling distances is that the relative position measurements for
each agent can be taken in an arbitrary coordinate basis, whereas
controlling relative positions and using a consensus algorithm
requires relative position measurements in a global coordinate
basis.

A further delineation in the literature for rigidity-based for-
mation control involves whether the information architecture is
undirected or directed. In an undirected formation, the task of
controlling a particular interagent distance is shared by both of
the involved agents. Undirected formations with gradient-based
control laws are studied in [12]. In a directed formation, the task
of controlling a particular interagent distance is given to only
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one of the involved agents. This has the advantage of halving the
number of links in the information architecture. Directed forma-
tions are studied in [8]–[11], [13] and are the focus of this paper.
In [8], global stability analysis for a cyclic three-agent formation
is provided; the control law is generalized in [9]. Formations of
nonholonomic robots are considered in [13].

The concept of rigidity for directed graphs is not a simple
transposition of rigidity for undirected graphs; therefore, the
term persistence is used for directed graphs to distinguish from
the undirected notion [14]. Persistence includes rigidity, but also
requires a further condition called constraint consistence that
precludes certain directed information flow patterns [15]. In di-
rected formations, it becomes possible to have cycles in the
information architecture. Acyclic formations engender a trian-
gular decomposition that makes stability much easier to deal
with [10]. Cyclic formations present possibilities of instability
and the challenge of controlling it. This paper considers mini-
mally persistent formations (persistent formations with the min-
imum number of links in the information architecture), which
fall into three categories: Leader-First-Follower (LFF), Leader-
Remote-Follower (LRF), and Coleader. In [11], Yu et al. con-
sider minimally persistent LFF formations in the plane with cy-
cles. We emphasize that LFF does not imply acyclic; acyclic
LFF formations are considered in [10]. Yu et al. present decen-
tralized nonlinear control laws to restore formation shape in the
presence of small distortions from the desired shape. They show
that choosing stabilizing control gains is possible if a certain
submatrix of the rigidity matrix has all leading principal minors
nonzero and further prove that all minimally persistent LFF for-
mations generically obey this principal minor condition.

The main contribution of this paper is to minimally persistent
LRF and coleader formations. This is nontrivial because the
nonlinear closed-loop system has a manifold of equilibria,
which implies that the linearized system is nonhyperbolic.
Center manifold theory is thus required in the stability analysis.
For LFF formations, Yu et al. obtain a hyperbolic system via the
choice of a particular global coordinate system and prove local
exponential stability of the formation shape through eigenvalue
analysis. For LRF and coleader formations, such a choice of
global coordinate system is not possible. Accordingly, we apply
a new result based on center manifold theory to show local
exponential stability of the desired formation shape. In [12],
Krick et al. also use center manifold theory, but their analysis
is restricted to undirected formations. A further key challenge
of the argument, in contrast to that of [12], is to circumvent the
non-compactness of the equilibrium manifold. We show that it
is again possible to choose stabilizing control gains whenever a
certain submatrix of the rigidity matrix has all leading principal
minors nonzero and show that this condition holds for all LRF
and coleader formations. This paper and [11] together consti-
tute a solution to the formation shape maintenance problem
for all minimally persistent formations. The practical utility of
LRF and coleader formations remains, however, a question for
future research.

The paper is organized as follows. Section II presents back-
ground on the structure of minimally persistent formations and
center manifold theory. Section III presents a new center mani-
fold theory result for systems with an equilibrium manifold. In
Section IV, we describe the nonlinear equations of motion and

show how center manifold theory can be applied to prove that
the desired formation shape is locally exponentially stable. In
Section V, we show that the principal minor condition holds for
all LRF and coleader formations. In Section VI, we illustrate
the results with numerical simulations. Section VII gives con-
cluding remarks and future research directions.

II. BACKGROUND

In this section, we review the structure of information archi-
tectures for minimally persistent formations, and center mani-
fold theory, which offers tools for analyzing stability of dynam-
ical systems near nonhyperbolic equilibrium points. Drawing
from [14], we briefly review the concepts of rigidity and per-
sistence in the plane; for a complete treatment in the plane see
[14] and for extensions to higher dimensions see [15].

A. Rigid and Persistent Formations

1) Rigidity: The information architecture of a formation is
represented by a graph where the vertex set repre-
sents the agents and the edge set represents the set of intera-
gent distances to be controlled to maintain formation shape. A
representation is a function which assigns to each
vertex a position in the plane, and we call the position
of vertex . Consider all continuous motions such that the dis-
tances between any two vertices connected by an edge remains
constant. The graph is called rigid if for almost all1 representa-
tions, every such motion preserves the distance between every
vertex pair. A formation is an information architecture together
with a representation and is called rigid if is a
rigid graph.

Rigidity is a generic property; that is, for a formation with
generic agent positions, it is not the particular agent positions
that matter in determining rigidity, but rather the distribution of
the edges among the graph vertices. This leads us to the fol-
lowing paraphrase of Laman’s well-known combinatorial char-
acterization of rigid graphs in the plane [18].

Theorem 1 ([18]): A graph is rigid iff there is a
subgraph , that satisfies the following:

• .
• For any and the associated induced subgraph

of with , there holds
.

The first condition gives the minimum number of edges re-
quired for a rigid graph: given vertices, one must have at
least edges. The second condition gives the manner in
which a minimum set of edges must be distributed amongst the
vertices to ensure rigidity. A graph is called minimally rigid if
it is rigid and has exactly edges.

There is a separate linear algebraic way to characterize
rigidity involving the rigidity matrix. Let be a forma-
tion in the plane and be the position of agent . Let

be the rigidity function defined by

1The term almost all is referring here to generic representations. A represen-
tation is called generic if the set of coordinates of agent positions is algebraically
independent over the rationals. Non-generic representations correspond to spe-
cial agent configurations, e.g., all agents are collinear. The fact that rigidity is a
generic property is nontrivial; for discussion on use of the terms “generic” and
“almost all” in this context, see [5], [16], [17]
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Fig. 1. Constraint consistent and non-constraint consistent graphs with the
same underlying undirected graph.

(1)

where the th entry of , viz. , corresponds to the edge
connecting vertex to vertex in . The rigidity matrix

is given by the Jacobian of and has the
following structure. The columns of are regarded as sets
of two columns, with each set of two columns corresponding to
a vertex of , i.e., columns and correspond to vertex
. Each row of corresponds to an edge of . In the th row

corresponding to the edge connecting vertices and , all entries
zero except in columns , , , , which are ,

, , and , respectively, with denoting
the coordinates of agent . We have the following result from
[5].

Theorem 2 ([5]): Let be a formation in the plane
with generic representation and let be the associated
rigidity matrix. Then is rigid iff the rank of is .

Thus, a rigid formation has at least well-distributed
edges and has a rigidity matrix with full row rank. Further, the
dimension of the null space is exactly three. The vectors in the
null space correspond to a set of infinitesimal displacements of
the agents that preserve the formation shape, with the three inde-
pendent displacements spanning the null space corresponding to
translation in two directions and rotation of the entire formation.

2) Persistence: There are two possible ways that a particular
interagent distance can be controlled. Either the two involved
agents share the responsibility, resulting in an undirected for-
mation, or only one of the involved agents is given the respon-
sibility, resulting in a directed formation. Directed formations
have the advantage of reducing the sensing/communication re-
quirements by half, and naturally lend themselves to leader-fol-
lower formations that are prevalent in the literature. In a directed
formation, a direction is assigned to every edge in with an out-
ward arrow from the agent responsible for controlling the inter-
agent distance, so becomes a directed graph.

The concept of rigidity for directed graphs is not a simple
transposition of rigidity for directed graphs; therefore, the term
persistence is used for directed graphs to distinguish from the
undirected notion. In order to preclude situations where the for-
mation shape maintenance task becomes impossible for directed
information flows, a further condition called constraint consis-
tence is required in addition to rigidity. Examples of a con-
straint consistent and non-constraint consistent graph are shown
in Fig. 1, taken from [11]. In the right-hand graph, agent 1 is free
to move in the plane while agents 2 and 3 can move on circles
around agent 1; thus, it may be impossible for agent 4 to main-
tain all of its distance constraints simultaneously. For further
discussion and rigorous definitions, see [11], [14], and [15].

Fig. 2. Examples of LFF and LRF formations with four agents. (a) In LFF
formations, the one-DOF agent is connected to the leader, and (b) in LRF for-
mations the one-DOF agent is not connected to the leader.

3) Minimally Persistent Formations: Our exclusive focus in
this paper will be on minimally persistent formations. We have
the following basic result from [14].

Theorem 3 ([14]): Let be a directed graph in the
plane with at least two vertices. Then is minimally persistent
iff the underlying undirected graph is minimally rigid, which
has precisely edges, and no vertex has more than two
outgoing edges.

This means in particular that one of the following happens for
minimally persistent formations.

• Type (A) [Leader-First-Follower (LFF)]: One agent known
as the leader has no outgoing edge, i.e., zero distances to
maintain and thus two degrees of freedom (DOF). Another
known as the first follower has one out going edge to the
leader, i.e., one distance to maintain and thus one DOF. The
remaining, ordinary followers have two outgoing edges
each, i.e., two distances to maintain and thus zero DOF.

• Type (B) [Leader-Remote-Follower (LRF)]: One agent
known as the leader has no outgoing edge (two DOF),
another known as the remote follower has one outgoing
edge to an agent other than the leader (one DOF), and the
remaining ordinary followers have two outgoing edges
each (zero DOF).

• Type (C) [Coleader]: three agents (known as coleaders),
have one outgoing edge each (one DOF each) and all
others (known as ordinary followers), have exactly two
such edges each (zero DOF). Fig. 2 illustrates examples
LFF and LRF formations. Fig. 3 illustrates examples
of coleader formations with differing information flow
patterns and coleader connectivity.

In directed formations, it becomes possible to have cycles
in the information architectures. LFF formations can be either
cyclic or acyclic, and LRF and coleader formations are inher-
ently cyclic (see Theorem 5 of [14]). A cyclic information ar-
chitecture presents a possibility of instability and the challenge
of controlling it.

When might the last two structures be used? There is cur-
rently no straightforward measure like a controllability gramian
that might give guidance as to preferred information structures,
and such a measure might well give guidance. Apart from that,
one can readily contemplate intuitively the potential attractive-
ness of a cyclic coleader pattern in the case of a formation three
of whose agents define a triangle, with all other agents in the
interior of the triangle. The three agents defining the triangle
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Fig. 3. Examples of coleader formations with connected coleaders. (a) Cyclic
coleaders. (b) Inline coleaders. (c) v-coleaders. Examples of coleader forma-
tions with non-connected coleaders. (d) One-two coleaders. (e) Distributed
coleaders. Each coleader has only one interagent distance to maintain and so
has only one outgoing arrow.

would in some sense confine and lead the rest of the formation.
The motion of the three agents in this case can be analyzed as
in [8], and would be independent of the motion of other agents,
though not conversely. In relation to a leader-remote-follower
structure, one could conjecture its relevance for control of a for-
mation whose shape was long and thin. At one end of the for-
mation, the leader would move in the direction of a target. At
the other end of the formation, the freedom of the remote fol-
lower would be used to rotate the formation, thereby aligning
its longer axis with the direction of target motion.

The distinction between LFF, LRF, and coleader formations
is important in the stability analysis for the formation shape
maintenance control laws. In particular, for LFF formations it
is possible to define a global coordinate basis to obtain a hyper-
bolic reduced-order system in which local stability can be as-
certained via eigenvalue analysis of the linearized system [11].
This is so because in the framework of both [11] and this paper,
after its “small” initial move, the leader stops moving. There-
after, the algorithm of [11] forces the first follower to move
in the direction of the leader. Thus, the direction of movement
of the first follower in the LFF framework is fixed. This direc-
tion critically defines the stated coordinate basis in [11]. In con-
trast, for LRF formations the direction associated with the re-
mote follower’s DOF is not fixed in space since it is following
an agent other than the leader to satisfy its distance constraint.
Similarly, for coleader formations the directions associated with
the coleader DOFs are not fixed in space. Thus, the device used
in [11] to obtain a global coordinate system that provides a hy-
perbolic reduced-order system no longer applies. Consequently,
one cannot draw conclusions about the local stability of the non-
linear system near the desired formation shape by analyzing
the linearized system alone; more sophisticated techniques are
needed. Center manifold theory provides tools for determining
stability near nonhyperbolic equilibrium points.

In contrast to [11], [12] does use center manifold theory to
establish stability of the closed-loop system, but their analysis
is restricted to undirected graphs. It is possible to work with a
reduced-order system, using the fact that for the laws in ques-
tion, the centroid of the formation is stationary. This allows the
full-order system to be reduced by 2 in dimension, and leaves

one zero eigenvalue for the linearized system. A critical feature
of the center manifold analysis of [12] is the observation that the
set of equilibria of this reduced-order system is then compact.
For LRF formations, one can fix the position of the leader to
obtain a compact set of equilibria for a reduced-order system.
However, this is not possible in the coleader setting. In either
case, separate aspects of center manifold theory have to be used
to establish a related de facto compactness condition.

B. Center Manifold Theory

Center manifold theory deals with stability of nonhyperbolic
equilibrium points of a nonlinear system (that is, equilibrium
points about which the linearization has one or more eigen-
values with zero real part). Effectively, the theory allows one
to reduced the dimension of the nonlinear system. The motions
tend asymptotically toward trajectories on the center manifold
rather than to a point. Standard treatments of center manifold
theory can be found in e.g., [19]–[21]. These concentrate on iso-
lated equilibria. In the formation shape maintenance problem,
the dynamic system has a manifold of non-isolated equilibrium
points corresponding to the desired formation shape that for the
coleader case is not even compact. In [22], Malkin proves a
local stability result where trajectories converge to a point on
an equilibrium manifold. More general results for equilibrium
manifolds are presented by Aulbach in [23]. In [12], Krick et al.
emphasize the importance of compactness for proving stability
of the entire equilibrium manifold. Here, we state a new result
for stability of equilibrium manifolds and offer a concise proof
using center manifold theory.

Consider the nonlinear autonomous dynamic system

(2)

where the function is , almost everywhere including
a neighborhood of the origin. Suppose the origin is an equilib-
rium point and that the Jacobian of (we will use the notation

) at the origin has eigenvalues with zero real part and
eigenvalues with negative real part. Then (2) can be lo-

cally transformed into the following form:

(3)

where is a matrix having eigenvalues with zero real parts,
is a matrix having eigenvalues with negative real parts, and

the functions and satisfy

(4)

Definition 1: An invariant manifold is called a center mani-
fold for (3) if it can be locally represented as follows;

(5)

for some sufficiently small neighborhood of the origin where
the function satisfies and .

We have the following standard result.
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Theorem 4 ([21]): Consider (3) where has eigenvalues
with zero real part, has eigenvalues with negative real part,
and and satisfy (4). There exists a center manifold
for (3) with local representation function .
The dynamics of (3) restricted to any such center manifold is
given by the following -dimensional nonlinear system for
sufficiently small

(6)

If the origin of (6) is stable (asymptotically stable) (unstable),
then the origin of (3) is stable (asymptotically stable) (unstable).
Suppose the origin of (6) is stable. Then if is a solu-
tion of (3) for sufficiently small , there is a solution

of (6) such that as

(7)

where is a positive constant.
This result shows that in order to determine stability near

the nonhyperbolic equilibrium point of (2), one can analyze
a reduced-order system, viz. (6). If the origin of the reduced-
order system (6) is stable, then the solutions of the original
system converge exponentially to a trajectory on the center man-
ifold. This result however only applies when the nonhyperbolic
equilibrium point is isolated. In our formation shape control
problem, we will see that there is a smooth manifold of equilib-
rium points. This requires a new center manifold result, which
we provide in the following section.

III. CENTER MANIFOLD RESULT FOR A SYSTEM

WITH AN EQUILIBRIUM MANIFOLD

We have the following result when there is a manifold of equi-
libria, and we will contrast it with the result of [12]. There are
two essential differences with the result of [12], both related to
the fact that [12] deals with undirected formations and the sim-
plifications they engender.

First the undirected nature of the formations renders the
center manifold underlying [12] compact. This is in fact quite
crucial to the argument in [12]. Ultimately the goal of [12]
and indeed our goal is to demonstrate exponential convergence
to the center manifold. The lack of compactness of this man-
ifold, that unlike the setting of [12] is the case here, causes
difficulties.2

The second difference stems from the fact that the undirected
nature of the formation considered in [12] makes the entire
center manifold, under the control law of [12], exponentially
stable. In the directed formation case considered here that does
not necessarily happen. This requires a fundamentally new re-
sult provided in Theorem 5 below. Observe that although the
theorem postulates and proves the existence of a center mani-
fold, it makes no explicit compactness assumptions, in contrast
to [12].

Theorem 5: Consider (2) with , almost every-
where including a neighborhood of the origin. Suppose there is a

2Saying that a manifold is locally exponentially stable means that there is
a single exponent � such that all trajectories converge to the manifold from a
sufficiently small neighborhood at least as fast as � . One could envisage
a non-compact manifold where any single trajectory approaches the manifold
exponentially fast but no single � could be found applicable to all trajectories.

smooth -dimensional manifold of equilibrium points
for (2) that contains the origin. Sup-

pose at the origin the Jacobian of has eigenvalues with zero
real part and eigenvalues with negative real part. Then
we have the following:

• is a center manifold for (2);
• there are compact neighborhoods and of the origin

such that is locally exponentially stable
and for each there is a point such that

.
We shall prove Theorem 5 with the aid of the following

lemma.
Lemma 1: Consider (3) where has eigenvalues with zero

real part, has eigenvalues with negative real part, and and
satisfy (4). Suppose that the equilibrium set is a smooth -di-

mensional manifold . Then there exists a smooth function
such that , and in

a suitably small neighborhood of the origin, the equilibrium
set can be represented as .

Proof: Consider the equation

(8)

As is nonsingular and (4) holds, then by the implicit function
theorem, for any suitably small , there exists , expressible as

, for a smooth satisfying ,
and such that (8) holds.

Note that to prove lies on the equilibrium
manifold, we must show in addition to (7) that the following
equation holds:

(9)

To do this, we now appeal to the fact that is an -dimen-
sional manifold. As a result, there exists a neighborhood of
the origin in and a diffeomorphism such that
for

(10)

Then the set of equilibria include , for
all . Because an equilibrium point necessarily satisfies
(8), it is necessary that the function identified above is
such that . The mapping from

to the set of equilibria is then , and it is
invertible, being a diffeomorphism. Therefore,
itself must be invertible. Let . Then the equilibria
are . This establishes the
claim of the lemma.

Proof of Theorem 5: By assumption, there exists a similarity
transformation and a neighborhood of the origin, such that
for each , we can write

(11)

Therefore, for any equilibrium point , we can write
(2) in the form given by (3). The first part of the theorem is then
immediate, for , being an equilibrium manifold, is invariant,
and Lemma 1 demonstrates the local representation condition
required for to be a center manifold.
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Now, we turn to the second part of the theorem. Since is
a center manifold, the dynamics restricted to are stationary.
Therefore, from (6) we have , which implies

. Thus, the reduced-order system is stable. Theorem 4 then
mandates that the origin is locally stable. This together with
the stated conditions of the Jacobian, ensures that there exist
compact neighborhoods and of the origin such that a)
all trajectories starting in remain in , b) with defined
in the theorem statement, the Jacobian of has eigenvalues
with zero real part and eigenvalues with negative real
part everywhere in , and c) there is a such that for
each , . (The compactness of
is crucial.) The exponential convergence mandated by Theorem
4 implies that and can be chosen to have the additional
property that trajectories starting in converge exponentially
to a point on the center manifold and thus to a point in
(though not necessarily to the origin).

Finally, this argument is valid for any point in . For each
point in , there is an open neighborhood of attraction . Fur-
ther, is a compact subset of . By the Heine–Borel The-
orem, there is a finite subcover of constructible from a
finite union of these neighborhoods. The smallest exponential
convergence rate associated with the neighborhoods of the fi-
nite subcover is valid to bound the speed of convergence for all
trajectories starting in . The final part immediately follows.

In the formation shape maintenance problem, the manifold
of equilibria will correspond to formation positions with the
desired shape. In the plane, the manifold is three-dimensional
due to the three possible Euclidean motions of the formation in
the plane (two translational and one rotational). In the following
section, we develop equations of motion and apply Theorem 5
to show local exponential stability of the desired shape.

IV. EQUATIONS OF MOTION

In this section, we present equations of motion for the for-
mation shape maintenance problem and study the local stability
properties of the desired formation shape. Suppose the forma-
tion is initially in the desired shape. Then the position of each
agent is perturbed by a small amount and all agents (except for
the leader in a LRF formation) move under distance control laws
to meet their distance specifications in order to restore the de-
sired formation shape. This shape is realized by every point on
a smooth three-dimensional equilibrium manifold. For LRF and
coleader formations, we show that a direct application of The-
orem 5 proves local exponential convergence to the invariant
manifold, whether or not the equilibrium manifold is compact.

A. Nonlinear Equations of Motion

Consider a minimally persistent formation of
agents in the plane. For LRF formations the leader and remote
follower are agents and , respectively. For coleader for-
mations the coleaders are agents , , and . Recall the
rigidity function from (1) and let represent
a vector of the squares of the desired distances corresponding
to each edge of . We assume that there exist agent positions
such that , i.e., the set of desired interagent distances
is realizable. Formation shape is controlled by controlling the
interagent distance corresponding to each edge.

Following [11] and [12], we adopt a single integrator model
for each agent:

(12)

Consider an ordinary follower agent denoted by that is required
to maintain constant distances and from agents and ,
respectively, and can measure the instantaneous relative posi-
tions of these agents. We use the same law as in [11] for ordi-
nary followers:

(13)

where is a gain matrix and is the closest instantaneous
target position for agent in which its distances from agents
and are correct. Since the perturbations from the desired shape
are small, these instantaneous target positions are well-defined
and unique. For the remote follower or the coleaders

, we have

(14)

where is a gain matrix and agent is the agent from which
the remote follower or coleader is maintaining the constant
distance (note that each coleader may follow a different
agent). For the leader, we have

(15)

For a LRF formation, (13), (14), and (15) represent the dynamics
of the autonomous closed-loop system, which may be written in
the form

(16)

where is smooth almost everywhere
including a neighborhood of the desired formation. For a
coleader formation, (13) and (14) represent the dynamics of the
autonomous closed-loop system, which may be written in the
form

(17)

where is smooth almost everywhere including
a neighborhood of the desired formation.

There is a smooth manifold of equilibria for (16) and (17)
given by

(18)

corresponding to formations where all distance constraints
are satisfied. The manifold is a three-dimensional manifold
because a formation with correct distances has three degrees
of freedom associated with the planar Euclidean motions
(two for translation and one for rotation). Given these degrees
of freedom, it is evident that is not compact. For LRF
formations, we can define a reduced-order system by fixing
the position of the leader and obtain a compact equilibrium
manifold.
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B. Linearized Equations

We represent the position of the formation as
, where is any equilibrium position with desired shape close

to the perturbed formation, and the displacements are as-
sumed to be small. In particular, for agent we have

. Let , , and
in a global coordinate system to be

defined later.
From [11], the linear part for the ordinary followers is given

by

(19)

where

and

The matrix is nonsingular because the equilibrium positions
of are not collinear (collinearity would violate minimal
rigidity). Similarly, the linearized equation for the remote fol-
lower or the coleaders is given
by

(20)

where is a 2 2 gain matrix,

and

For a LRF formation, the leader equations are of course

(21)

Putting the equations together, we have for LRF

(22)

and we have for coleaders

(23)

where with 2 2 to be speci-
fied, with each being a 2
2 submatrix of the rigidity matrix . For coleaders

is the rigidity matrix.

C. A Reduced-Order System for LRF Formations

For LRF formations, we define a reduced-order system by
neglecting the stationary leader dynamics since . Let
the global coordinate basis have the leader at the origin and let
the -axis be an arbitrary direction. Let

, , and where is assumed
to be small. The reduced-order nonlinear system may then be
written in the form

(24)

The rigidity function associated with (24) is
where the th entry of corresponds to

an edge connecting two vertices and . If a vertex is
connected to the leader, then the corresponding entry in is

. The equilibrium manifold associated with (24) is given
by

(25)

is a one-dimensional manifold that can be characterized by
a rotation around the leader since the position of the leader is
fixed. Therefore, since is a closed and bounded subset of
Euclidean space, it is compact.

Now, expanding in a Taylor series about the equilibrium po-
sition, we can rewrite (24) near the equilibrium position in the
form

(26)

where the first term represents the reduced-order linear system
and the second term represents the nonlinear part of order two
or higher. The reduced-order linear system may be written in
the form

(27)

where
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and is the submatrix of the rigidity matrix with the last two
columns associated with the leader removed.

Observe that the Jacobian is rank deficient by one be-
cause of the row of zeros below the rigidity matrix. Thus, one of
its eigenvalues is zero. Thus, the equilibrium position is nonhy-
perbolic, and we can apply center manifold theory as developed
in Section II to try to determine local stability of the equilib-
rium position. Since has one zero eigenvalue, there exists
an invertible matrix such that

(28)

where is a nonsingular matrix. Let
where and . Then (26) can be written in

the form

(29)

where is the first entry of and satisfies
and , and is the last

entries of and satisfies and
. This is in the normal form for center manifold

theory.
To apply Theorem 5 we simply need the matrix to be Hur-

witz. Here, due to cycles in the graph presenting the possibility
of instability, must be made Hurwitz by a suitable choice of
the gain matrices . It is not however obvious that
this can be done, or how to do it.

D. Full-Order System for Coleader Formations

Expanding in a Taylor series about an equilibrium position,
we can express (17) in the form

(30)

where the first term represents the linearized system given by
(23) and the second term represents the nonlinear part of order
two or higher. The Jacobian is rank deficient by three be-
cause of the three rows of zeros; consequently, three of its eigen-
values are zero. Thus the equilibrium position is nonhyperbolic.
Since has three zero eigenvalues, there exists an invert-
ible matrix such that

(31)

where is a nonsingular matrix. Let
where and . Then

(30) can be expressed in the form

(32)

where comprises the first three entries of
and satisfies and

, and comprises the last entries
of and satisfies and

. This is in the normal form for center manifold
theory.

Again, to apply Theorem 5 we simply need the matrix to
be Hurwitz, and due to cycles in the graph presenting the pos-
sibility of instability, must be made Hurwitz by a suitable
choice of the gain matrices . Showing that such a
choice of gains is indeed possible for both LRF and coleader
formations is the topic of the next section.

V. CHOOSING GAINS AND THE PRINCIPAL MINOR CONDITION

In this section, we show that it is possible to choose the gain
matrices for each agent such that all nonzero eigenvalues of the
linearized system have negative real parts. This is the case if a
certain submatrix of the rigidity matrix has all leading principal
minors nonzero. That this condition is satisfied by all LRF and
coleader formations is shown in the following. The arguments
are similar but not identical to those of [11].

A. LRF Formations

Let the gain matrices be chosen as follows:

(33)

where is a diagonal matrix. Then we have

(34)

where is a diagonal matrix where the diag-
onal entries can be chosen independently. The linearized system
then has the following form:

(35)

where is a diagonal matrix whose diagonal
entries can be chosen independently and is
the rigidity matrix with the last three columns removed. We
have the following result from [11].

Theorem 6 ([11]): Suppose is a nonsingular ma-
trix with every leading principal minor nonzero and let

with diagonal and
. Then there exists a diagonal matrix such that the

real parts of all nonzero eigenvalues of the linearized system
are negative.

Thus, eigenvalues of have negative real part
and clearly the remaining eigenvalue is zero due to the rank de-
ficiency of . To make use of Theorem 6, we now need to
show that satisfies the principal minor condition for LRF for-
mations. Let represent the set of ordinary
followers, and let agents and correspond to the remote
follower and leader, respectively.

Theorem 7: Consider any minimally persistent LRF forma-
tion of agents at generic positions in the plane. Then
there exists an ordering of the vertices of and an ordering of
the pair of outgoing edges for each vertex such that all leading
principal minors of the associated are generically nonzero.

The proof is nearly identical to the proof in [11]. We note the
following partition of , which contrasts with the LFF partition
in [11]:
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(36)

is the principal submatrix of obtained by retaining
columns corresponding to the elements of . The vector
has nonzero entries in the columns associated with and is zero
elsewhere. The vector has nonzero entries in the rows associ-
ated to edges that are pointing to the remote follower (there may
be one or many nonzero entries), and is zero elsewhere. Addi-
tionally, consider a subset of ordinary follower vertices
and define as the principal submatrix of obtained by
retaining columns corresponding to the elements of . We have
the following result, which is stated in [11] for LFF formations
and extends to LRF formations with identical proof.

Lemma 2: For any minimally persistent LRF formation,
is generically nonsingular and is generically nonsingular
for every .

Remark: The proof of Lemma 2 for the LFF case in [11] is
stated for and trivially extends to the case for .

Lemma 2 establishes that is generically nonsingular and
that all even-order principal minors are nonzero. Finally, the
proof that all odd order principal minors are also nonzero re-
lies on an appropriate ordering of edges and is identical to the
proof in [11].

This result shows that one can choose the diagonal matrix
such that the real parts of all nonzero eigenvalues of the re-

duced-order linearized system (27) are negative (and accord-
ingly the matrix in (29) is Hurwitz). The stabilizing gains
are designed for a particular equilibrium point in the equilib-
rium manifold . It is important to note here that the control
gains proposed in (33) may not be stabilizing for all other points
in . Theorem 5 can be directly applied to show that for each

, there is a neighborhood of such that for any
initial formation position there is a point
such that at an exponential rate, i.e., the for-
mation converges locally exponentially to the desired shape.

B. Coleader Formations

Let the gain matrices be chosen as follows:

(37)

where the are diagonal matrices. Reorder the coleader coor-
dinates as

An equilibrium position is defined from in the same manner
as is defined from . Then the linearized system has the form

(38)

where is a diagonal matrix whose diagonal en-
tries can be chosen independently and is
a submatrix of the rigidity matrix that we will now define.
Recall that has two columns associated with each agent: one
comprised of -coordinates and one of -coordinates. The ma-
trix is obtained by removing the three columns from the

rigidity matrix as follows: one associated with each coleader
and not all of or -type (i.e., one must remove two -type and
one -type or vice versa). Theorem 6 extends to the coleader
case; in particular, if is nonsingular with every leading prin-
cipal minor nonzero, then can be chosen such that all nonzero
eigenvalues of the linearized system have negative real parts.
Exactly three eigenvalues are necessarily zero. Again, to make
use of this fact we now need to show that satisfies the prin-
cipal minor condition for all coleader formations. Let

represent the set of ordinary followers, and let
agents , , and correspond to the coleaders. We have
the following result.

Theorem 8: Consider any minimally persistent coleader for-
mation of agents at generic positions in the plane.
Then there exists an ordering of the vertices of and an or-
dering of the pair of outgoing edges for each vertex such that all
leading principal minors of the associated are generically
nonzero.

We note the following structure of

(39)

is defined as before. Also, consider a
subset of ordinary follower vertices and define
as before. Again, we have the following result from [11], which
is stated for LFF formations and also extends to coleader for-
mations with identical proof.

Lemma 3: For any minimally persistent coleader formation,
is generically nonsingular, and is generically nonsin-

gular for every .
Lemma 3 establishes that the largest leading principal minor

is generically nonzero and that all even order leading principal
minors up to size are generically nonzero. The proof that
all odd order leading principal minors up to size are also
generically nonzero relies on an appropriate ordering of edges
and is identical to the proof in [11]. It now remains to show that
the second and third largest leading principal minors (of size

an ) are generically nonzero. We have the following
two results that treat separately the case where the coleaders are
connected and the case where the coleaders are not connected.

Lemma 4: Suppose at most one coleader has its outgoing
edge to , the set of ordinary followers. Then the second and
third largest leading principal minors of are generically
nonzero.

Proof: If at most one coleader, say that labeled , has its
outgoing edge to , then another coleader, say that labeled

, has its outgoing edge to , and the remaining coleader, labeled
, has its outgoing edge to either or (suppose without

loss of generality it is to ). This situation is illustrated
in Fig. 4. Then the second and third largest leading principal
submatrices of have the structure

where is a “don’t care” vector (only may have an edge
to ). Since is generically nonsingular, then
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Fig. 4. Coleader formation with only one coleader having its outgoing edge
to the set of ordinary followers � . There may be other edges from � to the
coleaders.

is generically nonsingular, which then implies that is
generically nonsingular.

Before considering the case where the coleaders are not con-
nected, we shall need the following result.

Lemma 5: Let be the graph of a minimally persistent
coleader formation with agents and denote the coleaders ,

, and . Suppose we obtain a new graph as
follows. Introduce two new agents labeled and .
Suppose that has only one outgoing edge and that to ;

has no outgoing edge; (which was a coleader) has
an additional outgoing edge to , an additional edge
to and an additional edge to either or . Then

is minimally persistent with LFF structure, with the
leader and the first follower.

Proof: First, we show that the underlying undirected graph
is minimally rigid. Since is minimally persistent, the un-

derlying undirected graph is minimally rigid and satisfies the
conditions of Theorem 1 with . To obtain ,
we have added to two new vertices and four new edges; thus,

and so satisfies the first condition of The-
orem 1 for minimum edge count. Further, it is easy to check that
no induced subgraph of involving vertices and
violates the second condition of Theorem 1. Thus, the under-
lying directed graph of is minimally rigid.

Next, since is minimally persistent with coleader structure,
the coleaders each have exactly one outgoing edge, and all re-
maining vertices have exactly two outgoing edges. To obtain

Fig. 5. Coleader formation with two coleaders having outgoing edges to the set
of ordinary followers � . There may be other edges from � to the coleaders.

we have added one outgoing edge from each coleader and
so these vertices now have exactly two outgoing edges. Vertex

has exactly one outgoing edge to , and has no out-
going edges. Thus, is minimally persistent by Theorem 3,
and it has LFF structure with the leader and the first
follower.

Now we have the following result where the coleaders are not
connected.

Lemma 6: Suppose at least two coleaders have their out-
going edges to , the set of ordinary followers. Then the second
and third largest leading principal minors of are generically
nonzero.

Proof: Assume that coleaders labeled and have
outgoing edges to vertices and , respectively, both in . This
situation is illustrated in Fig. 5. Observe that the hypothesis per-
mits . The argument below applies regardless of whether

and regardless of whether the sole outgoing edge of is
to an element of . Obtain a new LFF graph as described in
Lemma 5 by introducing two artificial agents labeled and

. Call this new graph . Consider the matrices
below where is the th-order principal submatrix of the ma-
trix obtained by removing the three last columns of the rigidity
matrix of the artificial graph of , where the precise values
of and are immaterial to the argument to be presented, as
seen in the equation at the bottom of the next page. We note
that all the even-dimensioned submatrices above are generically
nonsingular, since they are the even-dimensioned leading prin-
cipal submatrices of a LFF structure (see [11]).
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The third largest leading principal submatrix of is given
by . Suppose is not generically non-
singular. Then it is singular everywhere. Then because of the
underlying symmetry of the and columns, the same would
be true of the matrix

But this implies that is singular, which establishes a con-
tradiction. Therefore, is generically nonsingular.

The second largest leading principal submatrix of is

We now argue that this matrix is generically nonsingular. Since
is generically nonsingular, we assert the generic nonsin-

gularity of , which implies the generic nonsingularity of

Indeed, suppose is singular for all positions. Then the
symmetry of the and coordinates implies that the matrix ob-
tained by replacing the last column of , by the first four el-
ements of the last column of must also be singular for all
positions. Consequently must be singular, establishing a
contradiction. Thus, is generically nonsingular and so is

.
Now we assert that is generically nonsingular. To es-

tablish a contradiction suppose is singular everywhere.
Then again, the matrix obtained by replacing the second column
of by the first three elements of the third column of
must be singular everywhere. Thus, is singular. The contra-
diction proves the generic nonsingularity of .

Thus, all leading principal minors of are generically
nonzero for all coleader formations. Therefore, again one can
choose the diagonal matrix such that the real parts of all
nonzero eigenvalues of the linearized system (38) are negative
(and accordingly the matrix in (32) is Hurwitz). The
stabilizing gains are designed for a particular equilibrium point
in the equilibrium manifold . It is important to note here that
the control gains proposed in (37) may not be stabilizing for all
other points in . Theorem 5 can be directly applied to show
that for each , there is a neighborhood of such
that for any initial formation position there is a
point such that at an exponential
rate, i.e., the formation converges locally exponentially to the
desired shape.

Remark: There is an important distinction to be made be-
tween decentralized design and decentralized implementation.
The control laws in this paper are based on minimally persis-
tent information architectures, and selecting stabilizing gains re-
quires a suitable ordering of the vertices and edges. Therefore,
the design of our control laws is inherently centralized. How-
ever, persistent information architectures provide a basis from

Fig. 6. LRF formation in unstable agent positions for identity gain.

Fig. 7. Agent trajectories in the plane: the circles represent the initial desired
formation shape, the triangles represent the perturbed agent positions, and the
X’s represent the final agents positions under the formation shape maintenance
control laws. The desired shape has been restored. The leader does not move.

which we can design control laws with decentralized implemen-
tation. Once the design is established, our control laws require
only local information.

VI. SIMULATION

A. LRF Formations

In this section, we demonstrate the performance of our
algorithm via simulation. Fig. 6 shows a LRF formation in
the plane where agents 1 and 2 are ordinary followers, agent
3 is the remote follower, and agent 4 is the leader. Suppose
the agents are in the desired formation shape in the position

.
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Fig. 8. Interagent distance errors, defined as � � �� � � � � � , all con-
verge to zero, thus recovering the desired formation shape.

Fig. 9. Coleader formation in the plane in unstable agent positions for identity
gain.

We note that if the gain matrices are all chosen to be iden-
tity, the nonzero eigenvalues of the linearized system are

, which implies in-
stability. Suppose the gain matrices are chosen with the
structure given by (33) where the diagonal multipliers are

, , and .
Then the nonzero eigenvalues of the linearized system are
given by ,
and the desired formation shape is stable via the analysis in
the previous sections. Fig. 7 shows the agent trajectories in the
plane under the formation shape maintenance control laws. The
desired formation shape is restored, though not to the initial
unperturbed formation. Fig. 8 shows that the interagent distance
errors all converge to zero. Simulations for large perturbations
are explored for coleader formations.

B. Coleader Formations

Fig. 9 shows a coleader formation in the plane
where agent 1 is an ordinary follower and agents

Fig. 10. Agent trajectories in the plane: the circles represent the initial desired
formation shape, the triangles represent the perturbed agent positions, and the
X’s represent the final agents positions under the formation shape maintenance
control laws. The desired shape has been restored, though the final formation is
translated and rotated from the original unperturbed formation.

Fig. 11. Interagent distance errors all converge to zero, thus recovering the de-
sired formation shape. That � , which does not correspond to an edge of the
formation graph, goes to zero is due to the underlying rigidity and the conver-
gence of the other � to zero.

2, 3, and 4 are coleaders. Suppose the agents are
in the desired formation shape in the position

.
If the gain matrices are all chosen to be identity,
the nonzero eigenvalues of the linearized system are

, which implies
instability. Suppose the gain matrices are chosen with the
structure given by (37) where the diagonal multipliers
are , ,

, and . Then
the nonzero eigenvalues of the linearized system are given
by , and
the desired formation shape is stable via the analysis in the
previous sections. Fig. 10 shows the agent trajectories in the
plane under the formation shape maintenance control laws. The
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Fig. 12. Agent trajectories after a larger perturbations: the desired shape has
been restored, though the final formation is translated and rotated from the orig-
inal unperturbed formation. The circles, triangles and X’s are as for Fig. 7.

Fig. 13. Interagent distance errors all converge to zero, thus recovering the de-
sired formation shape.

desired formation shape is restored, though the final formation
is translated and rotated from the original unperturbed
formation. Fig. 11 shows that the interagent distance errors all
converge to zero.

The stability result is local; thus, convergence is only guaran-
teed for formations that are initially close enough to the desired
shape. The following simulations investigate potential outcomes
for larger perturbations from the desired shape. Fig. 12 shows
convergence to the desired shape despite initial perturbations as
large as 50% of the desired interagent distance, which indicates
a sizable region of attraction. Fig. 13 shows the corresponding
interagent distance errors converging to zero. Another possible
outcome is shown in Fig. 14 where the agents converge to a for-
mation that is equivalent, but not congruent, to the desired for-
mation. In Fig. 15 all interagent distance errors corresponding to
an edge in the graph converge to zero, whereas the only intera-
gent distance error that does not correspond to an edge, viz. ,
converges to a nonzero value. The position of agent 2 (green) has

Fig. 14. Agent trajectories in the plane after large perturbations: the formation
converges to an equivalent, but not congruent, shape.

Fig. 15. All interagent distance errors except one converge to zero.

been reflected about the line connecting agents 1 and 3 (blue and
red). Despite the fact that the linearized system is locally stable,
we have observed instability in simulations for sufficiently large
initial perturbations.

VII. CONCLUSION

In this paper, we have addressed the -agent formation shape
maintenance problem for minimally persistent leader-remote-
follower and coleader formations. We presented decentralized
nonlinear control laws that restore the desired formation shape
in the presence of small perturbations from the desired shape.
The nonlinear system has a manifold of equilibria, which im-
plies that the linearized system is nonhyperbolic. We applied
center manifold theory to show local exponential stability of
the equilibrium formation with desired shape. We have also
shown that a principal minor condition holds for all LRF and
coleader formations, which allows a choice of stabilizing gain
matrices. Finally, we demonstrated our results through numer-
ical simulation.
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There are many directions for future research. First, the sta-
bility results here are local, and an immediate task would be to
determine the size of the region of attraction. Second, one can
show that the stability properties of our control law are trans-
lationally, but not rotationally invariant. One could investigate
whether or not it is possible to constrain the gain matrices in
order to obtain rotational invariance. Preliminary calculations
suggest that this will not always be possible. Third, non-min-
imally persistent formations will eventually be of interest be-
cause it may be desirable to control more than the minimum
number of distances for formation shape maintenance in order to
obtain a level of robustness. Finally, the impact of time-varying
information architectures could be considered.
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