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Control of mitochondrial motility and distribution 
by the calcium signal: a homeostatic circuit

 

Muqing Yi, David Weaver, and György Hajnóczky

 

Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107

 

itochondria are dynamic organelles in cells.
The control of mitochondrial motility by signal-
ing mechanisms and the significance of rapid

changes in motility remains elusive. In cardiac myoblasts,
mitochondria were observed close to the microtubu-
lar array and displayed both short- and long-range
movements along microtubules. By clamping cytoplasmic
[Ca

 

2

 

�

 

] ([Ca

 

2

 

�

 

]

 

c

 

) at various levels, mitochondrial motility
was found to be regulated by Ca

 

2

 

�

 

 in the physiologi-
cal range. Maximal movement was obtained at resting
[Ca

 

2

 

�

 

]

 

c

 

 with complete arrest at 1–2 

 

�

 

M. Movement was

M

 

fully recovered by returning to resting [Ca

 

2

 

�

 

]

 

c

 

, and inhibi-
tion could be repeated with no apparent desensitization.
The inositol 1,4,5-trisphosphate– or ryanodine receptor-
mediated [Ca

 

2

 

�

 

]

 

c

 

 signal also induced a decrease in mito-
chondrial motility. This decrease followed the spatial and
temporal pattern of the [Ca

 

2

 

�

 

]

 

c

 

 signal. Diminished mito-
chondrial motility in the region of the [Ca

 

2

 

�

 

]

 

c

 

 rise promotes
recruitment of mitochondria to enhance local Ca

 

2

 

�

 

 buff-
ering and energy supply. This mechanism may provide a
novel homeostatic circuit in calcium signaling.

 

Introduction

 

Until recently, mitochondria were envisioned to serve as cellular

power plants, but current research has also revealed mitochondria

as fundamental elements in intracellular signaling. Among

other contributions, mitochondria play a role in shaping cal-

cium signals (for reviews see Duchen, 2000; Rizzuto et al.,

2000, 2004; Hajnóczky et al., 2002; Petersen, 2002; Parekh

2003) and serve as the integration site of cell survival and

death-promoting signals in many paradigms of apoptosis and

necrosis (for reviews see Kroemer and Reed, 2000; Bernardi et

al., 2001; Jacobson and Duchen, 2001; Martinou and Green,

2001; Demaurex and Distelhorst, 2003; Scorrano and Korsmeyer,

2003). Evidence has also been emerging that mitochondria

need to be strategically localized at particular subcellular sites

both for providing energy supply and for participating in intra-

cellular signaling (Park et al., 2001). For example, a close asso-

ciation between subdomains of the ER and mitochondrial sur-

face appears to be necessary for the propagation of ER Ca

 

2

 

�

 

release to the mitochondria (Rizzuto et al., 1993; 1998; Csordás

et al., 1999), close associations between subdomains of the

plasma membrane and mitochondria seem to be important for

the control of Ca

 

2

 

�

 

 entry (Lawrie et al., 1996; Hoth et al., 1997;

Montero et al., 2000), and local interactions between adjacent

mitochondria allow for the regeneration and spreading of apop-

totic signals between mitochondria in some models of apoptosis

(Pacher and Hajnóczky, 2001).

Distribution of mitochondria to strategic sites is likely

to be established by a cytoskeleton-based transportation

system. Mitochondria have been visualized in association

with the microfilaments (MFs; Drubin et al., 1993; Morris

and Hollenbeck, 1995), microtubules (MTs; Ball and Singer,

1982), and intermediate filaments (Summerhayes et al., 1983;

Stromer and Bendayan, 1990) in various cell types. For the

binding of cytoskeletal elements, docking proteins have been

identified on the mitochondria (e.g., dynactin for the microtu-

bular motor protein, cytoplasmic dynein [Habermann et al.,

2001; Varadi et al., 2004], or for both dynein and kinesin

[Deacon et al., 2003]). Mitochondria-bound molecular motors

provide a means for the organelles to move along the cyto-

skeletal fibers. Mice lacking Kif1B, the kinesin motor that

binds to the mitochondria, are embryonic lethal and in their

cells mitochondria are clustered around the nucleus (Tanaka

et al., 1998). However, mitochondrial motility is not re-

stricted to the delivery of organelles from the site of biogene-

sis to their destinations. In fact, mitochondria exist as highly

dynamic structures in the cells (for review see Yaffe, 1999).

Mitochondrial motility appears in the form of both long-dis-

tance travel and complex local movements, mostly wiggling.
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Movements may result in a change in the distribution of mito-

chondria in the cell and, in turn, rearrange the spatial pattern

of ATP production and Ca

 

2

 

�

 

 buffering. Mitochondrial move-

ments may also increase the chance of dynamic interactions

between discrete organelles and may aid the transport of mol-

ecules between the cytoplasm and mitochondria. However,

movements may interfere with the rapid transport of mole-

cules from an organelle to a neighboring one if the transport

depends on activation of the acceptor transport site by a short-

lasting concentration surge that is confined to the vicinity

of the donor site. A bidirectional coupling has also been

proposed between mitochondrial motility and morphology,

whereby the dynein–dynactin complex contributes to the mi-

tochondrial targeting of Drp1 that promotes mitochondrial

fission to make possible anterograde transport of the mito-

chondria by kinesin family motors (Varadi et al., 2004). Thus,

mitochondrial motility and dynamic changes in motility may

affect in many ways the signaling pathways and cell function.

Recently, inhibition of mitochondrial motility was de-

scribed as an early and Ca

 

2

 

�

 

-dependent event during the

NMDA receptor-mediated excitotoxic injury in primary fore-

brain neurons (Rintoul et al., 2003). Furthermore, evidence

has been presented that the direction of movement of mito-

chondria along the MTs is affected by the level of phosphati-

dyl inositol 4,5-bisphosphate (De Vos et al., 2003). Cleavage

of phosphatidyl inositol 4,5-bisphosphate to produce inositol

1,4,5-trisphosphate (IP

 

3

 

) and IP

 

3

 

-induced mobilization of Ca

 

2

 

�

 

to establish [Ca

 

2

 

�

 

]

 

c

 

 oscillations are fundamental steps in the

signaling cascade induced by a variety of hormones, neu-

rotransmitters, and growth factors. These observations raise

the possibility that mitochondrial motility may be controlled

in a dynamic manner by the messenger molecules that mediate

the effect of agonists on cell function.

The aims of the present work were to determine how

physiological calcium signals affect mitochondrial motility

and to study the mechanisms that may relay the effect of cal-

cium to mitochondrial motor proteins. We have established

a fluorescence imaging approach to monitor mitochondrial

movement activity simultaneously with calcium spikes and

oscillations. Using this approach, we show that mitochondrial

movement is effectively stopped during both IP

 

3

 

 receptor–

and ryanodine receptor (RyR)–mediated [Ca

 

2

 

�

 

]

 

c

 

 spikes and

oscillations in H9c2 myoblasts. Inhibition of motility fol-

lowed the spatial and temporal pattern of the [Ca

 

2

 

�

 

]

 

c

 

 signal.

Although the decay of each [Ca

 

2

 

�

 

]

 

c

 

 spike was followed by

recovery of mitochondrial motility, during high frequency

[Ca

 

2

 

�

 

]

 

c

 

 oscillations sustained inhibition of mitochondrial mo-

tility occurred. Our results also indicate that depression of mi-

tochondrial movement promotes the [Ca

 

2

 

�

 

]

 

c

 

 signal propaga-

tion into the mitochondria. Thus, diminished mitochondrial

motility in the region of the [Ca

 

2

 

�

 

]

 

c

 

 rise would support re-

cruitment of the mitochondria to enhance local Ca

 

2

 

�

 

 buffering

and ATP production. The increase in local mitochondrial

Ca

 

2

 

�

 

 uptake and in the energy supply of Ca

 

2

 

�

 

 pumps facilitate

the decay of the [Ca

 

2

 

�

 

]

 

c

 

 rise, serving as a feedback mecha-

nism in calcium signaling.

 

Results

 

Arrest of mitochondrial movement 

induced by calcium mobilizing agonists

 

Rapid motility of the mitochondria was visualized in H9c2 myo-

blasts expressing enhanced-YFP targeted to the mitochondrial

matrix via a fusion with the targeting sequence of cytochrome 

 

c

 

oxidase subunit VIII (mitoYFP; Video 1, available at http://

www.jcb.org/cgi/content/full/jcb.200406038/DC1). Mitochon-

dria exhibited both short- and long-range movements. Strik-

ingly, when vasopressin (VP), a Ca

 

2

 

�

 

 mobilizing hormone, was

added to the cells, mitochondria were promptly stopped and

subsequently gradually regained motility (Video 1). Similar

to the mitoYFP-expressing cells, the vigorous mitochondrial

movement and inhibition of motility by VP was also observed

in mitoDsRed-expressing or in Mitotracker green–loaded cells

(unpublished data).

As a first approach to evaluate the mitochondrial motility,

two images obtained 10 s apart from each other were colored

green and red, respectively, and were subsequently overlaid

(Fig. 1 A, i). In the overlay, the yellow (green

 

�

 

red) pixels rep-

resent the mitochondria that maintained their position, whereas

the green and red pixels indicate the sites of movement. One

way to show only the sites of movement is to calculate the dif-

ference of the two images (F

 

�

 

13.3s 

 

� 

 

F

 

�

 

23.2s

 

; Fig. 1 A, ii, nega-

tive values shown in green, positive values in red, respec-

tively). The amount and distribution of green and red pixels in

the difference image corresponds with that in the overlay im-

age (Fig. 1 A, i and ii). Green and red pixels are mostly side-

by-side, indicating lateral movement of the organelles, whereas

the single green or red pixels are likely to reflect movement

into or out of the focus plane. Similar analysis was performed

with two images recorded after addition of VP. In this case,

very few green and red pixels were obtained, confirming a de-

crease in mitochondrial mobility (Fig. 1 A, iii and iv).

To show the time course of the VP-induced decrease in

mitochondrial motility, the difference image protocol was ex-

tended. By subtraction of sequential images (3.3-s interval), the

fluorescence change for each pixel was calculated, and pixels

that exhibited a change (positive or negative) greater than a

threshold were counted for each time point. Changes in the

pixel number were normalized to the initial value calculated for

cells before stimulation. As shown in Fig. 1 A (v), the number

of pixels with a fluorescence change exhibited a sharp decrease

when the stimulation with VP started and subsequently showed

a gradual increase. To test the effect of VP on slow directional

movements, we have also calculated difference images using

40 s interval and counted the 

 

�

 

3 

 

�

 

m shifts. In the prestimula-

tion period, 8.3 

 

�

 

 2.7 events per cell were counted, whereas

during both the VP-induced calcium spike (0 to 40 s of the

stimulation) and the gradual decay phase of the calcium signal

(40 to 80 s of the stimulation) 0 events per cell were counted

(

 

n

 

 

 

� 

 

3). These data suggest that both the directional movement

and the wiggling of the mitochondria were essentially elimi-

nated immediately after addition of VP and then, gradually,

partially recovered.
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Figure 1. Stimulus-induced inhibition of mitochondrial motility. (A) Measurement of mitochondrial movement in H9c2 cells. Green/red overlay of two time-lapse
confocal images (�t � 10 s) of mitoYFP fluorescence in a live cell before (i) and after (iii) stimulation by 100 nM VP. (ii and iv) Processed images showing only the
pixels whose values differ by more than a threshold value (� and �) between the two time points. (v) Graph of the number of pixels that change more than the
threshold value for this cell, calculated with consecutive images (�t � 3.3 s), and normalized as the percentage of loss from the average before stimulation. (vi–x)
Two cells stimulated by addition of 10 �M Iono. Graph shown is the mean of the two cells. (B) Simultaneous measurements of mitochondrial motility and [Ca2�]c
in an H9c2 cell expressing mitoYFP and loaded with fura2. Top row of images shows both mitoYFP fluorescence (grayscale; i scaled with higher contrast to show
the structure of the mitochondria) and at each time point, the sites of mitochondrial movement calculated by subtraction of sequential images (red, positive
changes; green, negative changes). Bottom row of images shows fura2 fluorescence measured using excitation of both the Ca2�-bound (340 nm, red) and the
Ca2�-free form (380 nm; green). Thus, [Ca2�]c elevations evoked by addition of VP (81 s) and CaCl2 (426 s) appear as an increase in the red component. In the
histogram, the decrease in mitochondrial motility (calculated as in A) and [Ca2�]c (ratio of the fluorescence of the Ca2� bound and Ca2�-free forms of fura2) are
plotted in red and black, respectively. The cell was treated sequentially with 100 nM VP, 5 mM EGTA, 10 mM CaCl2, and 5 mM EGTA. (C) Lack of change in
mitochondrial motility in the absence of the VP-induced [Ca2�]c rise. The cell was preincubated with 2 mM EGTA, 2 �M Tg, and 10 �M Iono in Ca2�-free ECM to
remove extracellular Ca2� and to deplete the intracellular Ca2� stores before stimulation with 100 nM VP. Mitochondrial motility and [Ca2�]c are plotted as in B.
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A fundamental second messenger mobilized by VP is

Ca

 

2

 

�

 

 that controls many forms of motility. To test the possibil-

ity that the Ca

 

2

 

�

 

 signal was important for the VP effect on mi-

tochondrial motility, cells were also treated with ionomycin

(Iono), a Ca

 

2

 

�

 

 ionophore that allows both Ca

 

2

 

�

 

 release from in-

tracellular stores and Ca

 

2

 

�

 

 entry from the bathing medium to

elevate [Ca

 

2

 

�

 

]

 

c

 

. Iono triggered a rapid and almost complete loss

of motility (Fig. 1 A, v–x). Thus, a rise in [Ca

 

2

 

�

 

] is likely to ac-

count for the arrest of mitochondrial movement.

To determine the relation between the [Ca

 

2

 

�

 

]

 

c

 

 signal

and mitochondrial motility, cells expressing mitoYFP were

loaded with fura2/AM, a Ca

 

2

 

�

 

-sensitive fluorescent probe,

and [Ca

 

2

 

�

 

]

 

c

 

 was monitored simultaneously with YFP fluores-

cence. As shown in Fig. 1 B, the VP-induced decrease in mi-

tochondrial motility (Fig. 1 B, top row) was closely coupled

to the rising phase of the [Ca

 

2

 

�

 

]

 

c

 

 spike (Fig. 1 B, bottom row)

and the recovery of mitochondrial motility lagged slightly be-

hind the decay of the [Ca

 

2

 

�

 

]

 

c

 

 signal. During the [Ca

 

2

 

�

 

]

 

c

 

 sig-

nal, removal of extracellular Ca

 

2

 

�

 

 by EGTA caused [Ca

 

2

 

�

 

]

 

c

 

to return to the resting level and at the same time, mitochon-

drial motility to return to the original activity (Fig. 1 B).

When Ca2� was added back to the bathing medium, Ca2� en-

try provided for a substantial [Ca2�]c increase. This [Ca2�]c

signal was also closely followed by inhibition of mitochon-

drial movement. Again, the [Ca2�]c rise and the inhibition

could be reversed by addition of EGTA (Fig. 1 B). To ascer-

tain the role of Ca2� in the effect of VP, VP was also added to

Ca2�-depleted cells. In the absence of a [Ca2�]c rise, no VP-

induced change in mitochondrial movement was recorded

(Fig. 1 C). Together, these results show that the mitochon-

drial motility is dynamically controlled by the VP-induced,

IP3-linked [Ca2�]c signal.

Control of mitochondrial motility in the 

physiological range of global [Ca2�]c

When EGTA and Iono were added together to nonstimulated

cells to lower the [Ca2�]c no change in mitochondrial move-

ment activity was observed (n � 4; unpublished data), suggest-

ing that the motility was maximal at the resting level of [Ca2�]c

(50–100 nM). To quantitate the [Ca2�]c dependence of the inhi-

bition of mitochondrial motility, [Ca2�]c and motility were

measured in cells that were incubated in a Ca2� free buffer sup-

plemented with EGTA, thapsigargin (Tg), an inhibitor of the

sarco-endoplasmic reticulum Ca2� pump and Iono to ensure

rapid equilibration of the cytosol with the extracellular [Ca2�],

and then varying amounts of CaCl2 were added (Fig. 2, A and

B). As shown in Fig. 2 A, stepwise increases in [Ca2�]c were ac-

companied with stepwise decreases in mitochondrial motility.

The inhibition of motility was plotted against the [Ca2�]c (Fig. 2

B, filled circles). The majority of the Ca2�-induced attenuation

of mitochondrial motility was obtained in the sub-micromolar

range of [Ca2�]c (IC50 � 400 nM), indicating that mitochondrial

motility is controlled in the physiological range of [Ca2�]c.

In VP-stimulated cells, the inhibition of mitochondrial

motility was also in proportion to the agonist dose and the size

of the [Ca2�]c elevation (Fig. 2 C). Low doses of VP (e.g., 0.1

nM) were sufficient to cause considerable inhibition of the

movement (Fig. 2 C). When the VP-induced inhibition of mo-

tility was plotted against the VP-induced [Ca2�]c rise, the data

points were close to the curve obtained by the in situ [Ca2�]c ti-

tration (Fig. 2 B, filled circles). In other words, the competence

of VP to attenuate mitochondrial movement was in proportion

to the [Ca2�]c signal. Thus, inhibition of mitochondrial move-

ment during IP3-mediated Ca2� mobilization can be attributed

to the [Ca2�]c signal.

Figure 2. Relationship between [Ca2�]c and
mitochondrial motility. (A) Stepwise increases
in [Ca2�]c induce stepped decreases in mito-
chondrial motility. MitoYFP-expressing and
fura2-loaded cells were incubated in Ca2�-
free ECM supplemented with 2 mM EGTA, 2
�M Tg, and 10 �M of Iono for 12 min. Simul-
taneous measurements of [Ca2�]c and mito-
chondrial motility were performed in single cells
exposed to stepped increases in extracellular
CaCl2 from 0 to 15 mM. [Ca2�]c was cali-
brated in terms of nanomoles using in vitro
calibration of fura2. (B) Dose–response rela-
tionship between [Ca2�]c and mitochondrial
motility. Simultaneous measurements of
[Ca2�]c and mitochondrial motility were per-
formed in single cells as described for A.
Mean mitochondrial motility inhibition and
mean [Ca2�]c were calculated for each
[CaCl2]. Mean � SEM are marked by filled
circles (n � 68 cells from 40 experiments).
The IC50 � 400 nM, indicating that mitochon-
drial motility is controlled in the physiological
range of [Ca2�]c. (C) Mitochondrial motility (red
line) and [Ca2�]c (black line) were recorded in
single cells stimulated by varying doses of VP
(0.1–100 nM). In addition, the mean mitochon-
drial motility inhibition and mean [Ca2�]c were
calculated for each VP concentration and are
plotted in B (empty circles and dashed line;
n � 44 cells from 28 experiments).
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No role for mitochondrial Ca2� uptake 

and mitochondrial membrane potential 

(��m) in the arrest of mitochondrial 

motility by Ca2�

The IP3-induced [Ca2�]c signal is propagated to the mitochon-

dria, giving rise to a mitochondrial matrix [Ca2�] ([Ca2�]m) rise

that controls the activity of Ca2�-dependent enzymes and ion

channels (for review see Duchen, 2000). The primary driving

force of the mitochondrial Ca2� uptake is the ��m that also

drives mitochondrial ATP synthesis. To determine whether the

[Ca2�]m signal or ��m is necessary for the Ca2�-dependent inhi-

bition of mitochondrial motility, we treated cells with an uncou-

pler (FCCP added with the ATPase inhibitor, oligomycin to pre-

serve cytosolic ATP; Fig. 3 A). This treatment has been shown

to cause rapid dissipation of the ��m (Pacher and Hajnóczky,

2001) and to reduce mitochondrial Ca2� uptake in H9c2 cells

(Szalai et al., 2000). Uncoupler induced a slow attenuation in

mitochondrial motility (Fig. 3 A), which may reflect a fall in

perimitochondrial ATP that is likely to be needed for move-

ment. However, the VP-induced arrest of mitochondrial move-

ment was preserved in uncoupler-pretreated cells (Fig. 3 A).

Thus the [Ca2�]m signal and ��m appears to be dispensable for

the Ca2�-mediated inhibition of mitochondrial movement.

Spatio-temporal control of the 

mitochondrial movement by [Ca2�]c 

oscillations and waves

Our data have shown that the control of mitochondrial motility

can respond to repetitive stimulation by an IP3-linked agonist

(Fig. 2 C). Along this line, Fig. 3 B shows that the [Ca2�]c rise-

induced inhibition of mitochondrial movement can be reversed

by termination of the [Ca2�]c elevation and subsequently, re-

produced by a second step of [Ca2�]c elevation. This suggests

that no desensitization of the Ca2� regulation of mitochondrial

motility occurred. If there is no desensitization and the rever-

sal of the movement inhibition is slower than the decay of the

[Ca2�]c spike, [Ca2�]c oscillations may be able to cause a pro-

longed depression of mitochondrial motility. In differentiated

H9c2 myotubes, RyR-mediated [Ca2�]c oscillations have been

demonstrated (Szalai et al., 2000). As shown in Fig. 4, [Ca2�]c

oscillations were also observed in H9c2 myoblasts transfected

with RyR1 (Bhat et al., 1997) and stimulated with caffeine

(Caff). Similar to the IP3-linked [Ca2�]c spikes, the RyR-medi-

ated [Ca2�]c spikes also triggered inhibition of mitochondrial

motility and the oscillations of [Ca2�]c were often associated

with oscillations in movement activity (Fig. 4 A, cell marked

by an arrow). Each burst of RyR1-mediated Ca2� release could

result in maximal inhibition of mitochondrial motility (Fig. 4,

A and B). Isolated spikes of mitochondrial movement inhibi-

tion were observed during low frequency [Ca2�]c oscillations

(unpublished data). However, if the frequency of [Ca2�]c spik-

ing was higher and the recovery of motility was slow, [Ca2�]c

oscillations could produce an essentially sustained maximal

inhibition in movement activity (Fig. 4 B). Thus the fre-

quency-modulated [Ca2�]c signals are translated into a time-

averaged motility response. Notably, at supramaximal stimula-

tion the [Ca2�]c oscillations run together and fuse into a large

and slowly decaying single [Ca2�]c spike (Szalai et al., 2000),

but this [Ca2�]c signal could not provide for sustained inhibi-

tion of the mitochondrial motility (e.g., Fig. 1 B). In this way,

the control of mitochondrial motility may serve as a model

whereby [Ca2�]c oscillations are an effective signal for long-

term modulation, but a nonoscillatory [Ca2�]c signal is unable

to maintain inhibition.

Figure 3. Spatio-temporal pattern of the calcium signal and inhibition of
mitochondrial motility. (A) Calcium signal propagation to the mitochondria
is not required for the inhibition of motility. Uncoupler (5 �M FCCP and 5
�g/ml Oligo; solid line) or solvent (dashed line) was added to the cells 5
min before stimulation with VP. The uncoupler causes dissipation of the
��m in 	1 min and in turn decreases the driving force of the mitochondrial
Ca2� uptake in H9c2 myoblasts (Szalai et al., 2000). Mitochondrial motil-
ity showed a slowly developing decrease (red solid line) compared with the
control (red dash line). However uncoupler did not prevent the effect of VP
on mitochondrial motility, indicating that mitochondrial Ca2� uptake and
��m were not necessary for the control of motility by the calcium signal. In
another set of experiments, the cells were pretreated with uncoupler for 10
min before the recording was started. The inset shows that the residual mo-
tility was effectively inhibited by 100 nM VP. Data are the means of nine
experiments with uncoupler and four experiments for the control. (B) Revers-
ible and reproducible inhibition of mitochondrial motility by Ca2�. To eval-
uate the effect of pulsatile increases of [Ca2�]c (black traces) on mitochon-
drial motility (red traces), the 10 �M of Iono-induced [Ca2�]c elevation was
recorded for 10 min (solid lines) or was reversed by addition of 5 mM
EGTA and, subsequently, was reestablished by addition of 10 mM CaCl2
(dashed lines). Data are the means of 36 cells from 22 experiments.
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Figure 4. Control of mitochondrial motility by [Ca2�]c oscillations and waves. Mitochondrial motility was evaluated simultaneously with [Ca2�]c in cells
cotransfected with constructs encoding mitoYFP and RyR1 and loaded with fura2. To promote RyR-mediated Ca2� mobilization, the cells were exposed to
10 mM of caffeine (Caff). (A) In the image series, mitochondrial movements are visualized in a cell that showed [Ca2�]c oscillations in response to stimula-
tion by Caff (arrow) and in a cell that did not show a Caff-induced [Ca2�]c rise (top left corner) as described for Fig. 1. Also shown is the effect of 100 nM
VP that elicited a [Ca2�]c signal in both cells. The time course of [Ca2�]c (black trace) and mitochondrial motility (red trace) for the Caff-sensitive cell is plotted.
(B) Sustained inhibition of mitochondrial motility in a cell that displayed a relatively high frequency [Ca2�]c oscillation in response to stimulation by Caff. (C)
Calcium waves were induced in mitoYFP-expressing cells by treatment with 75 �M thimerosal (TM) and 0.1 nM VP. The image series shows the mitoYFP
fluorescence (i) and the first two calcium waves after addition of VP and TM (t � 60 s; ii–ix). The first wave begins simultaneously at the ends of the cell and
converges in the center as indicated by the arrows (iv). The second wave begins at the lower end of the cell and weakens as it propagates to the top
(vi–viii, arrow marks the direction of the wave propagation in vii). Measurement of [Ca2�]c (x) and mitochondrial movement (ix) in three distinct regions of
the cell, labeled 1–3 in panel ii, reveals spatio-temporal heterogeneity in the inhibition of movement corresponding to the local calcium concentration.



MITOCHONDRIAL MOTILITY AND CALCIUM SIGNALING • YI ET AL. 667

The [Ca2�]c signal often displays regional heterogeneity

that may also result in heterogeneity in the mitochondrial

motility. To test this possibility, we studied mitochondrial

motility in cells that showed spatial heterogeneity in the

[Ca2�]c rise. In the cell shown in Fig. 4 C, the first [Ca2�]c

wave started simultaneously at the ends of the cell (regions 1

and 3) and converged in the center (region 2) as indicated by

the arrows (iv). The [Ca2�]c rise was relatively large in the

center (Fig. 4 C, x). Reproducing the spatial pattern of the

[Ca2�]c signal, inhibition of the mitochondrial motility was

substantially larger in the center than at the ends of the cell

(Fig. 4 C, ix). The second [Ca2�]c wave began at the lower

end of the cell and weakened as it propagated to the top (Fig.

4 C, vi–viii). Similarly, the inhibition of mitochondrial motil-

ity was substantial at the lower end, smaller in the center,

and hardly noticeable at the upper end (Fig. 4 B, ix). This ex-

periment revealed intracellular spatio-temporal heterogeneity

in the inhibition of movement corresponding to the local

[Ca2�]c concentration. Such differences in the movement

may affect the spatial distribution of mitochondria. Mito-

chondria would be stopped in the vicinity of the active Ca2�

release sites. If mitochondria stay in high [Ca2�]c areas for a

relatively long time and cross quickly through low [Ca2�]c ar-

eas, this also provides a mechanism for the redistribution of

mitochondria to the regions of high [Ca2�]c. Notably, one or

two localized [Ca2�]c spikes did not result in an obvious in-

crease in the mitochondrial density (unpublished data). Ac-

quisition of mitochondria from low [Ca2�]c zones may re-

quire prolonged or repetitive Ca2� release because it would

not be driven by an attractive force but would use immobili-

zation of mitochondria that move into the region of the

[Ca2�]c rise on their own. However, stabilization of the posi-

tion of the mitochondria in the areas of Ca2� release seems to

be sufficient to promote the delivery of [Ca2�]c spikes to the

mitochondria (see Arrest of the mitochondria supports rapid

Ca2� delivery to the mitochondria). Thus, through the control

Figure 5. Spatial relationship between MTs, MFs, and mitochondria. (A) H9c2 cells expressing tubulinGFP and mitoDsRed and incubated in the absence
(i) or presence (ii) of 10 �M of an MT-stabilizing agent, taxol. (iii–v) Magnified time-lapse images of a peripheral region of the taxol-pretreated cell.
Arrowheads mark the mitochondria that move substantially from the previous image. (vi–ix) Further magnified region showing a single mitochondrion sliding
along an MT. (x and xi) A naive and a nocodazole-pretreated cell after permeabilization with digitonin. (B) Inhibition of mitochondrial motility and
enhancement of the VP-induced mitochondrial [Ca2�] signal in nocodazole-pretreated cells. (top left) Mitochondrial motility and [Ca2�]c in nocodazole-
treated cells (solid lines, 23 cells in 10 measurements) as compared with control cells (dashed lines, 22 cells in 11 measurements). The effect of 100 nM
VP is also shown. (top right) Resting [Ca2�]c and the peak value of the VP-induced [Ca2�]c signal in control and nocodazole-pretreated (10 �M for 25–30
min) cells. (bottom) Nuclear matrix and mitochondrial matrix [Ca2�] measured in cells expressing both nuclear and mitochondrial pericam using fast,
ratiometric imaging (2 ratio/s). Cells were pretreated with nocodazole (10 �M for 25–30 min) or solvent (control) and stimulated by 100 nM VP. The VP-
induced initial [Ca2�]c signal was measured (change in nuclear pericam fluorescent ratio at the first point of the [Ca2�] rise, 	25% of the maximal change)
and the corresponding change in [Ca2�]m (change in mitochondrial pericam fluorescent ratio) was calculated for each cell (mean � SEM; n � 16). (C)
MFs and mitochondria in H9c2 cells expressing actinGFP and mitoDsRed. Cells were incubated in the absence or presence of 10 �M of nocodazole.
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of motility, the spatial distribution of the mitochondrial Ca2�

buffering and ATP production may be dynamically regulated

by the local [Ca2�]c.

Organization of mitochondrial motility by 

the MTs

Long-range mitochondrial movements are facilitated by the

MTs and certain forms of local movement may use the MFs

(Couchman and Rees, 1982; Nangaku et al., 1994; Morris and

Hollenbeck, 1995; Varadi et al., 2004). In H9c2 myoblasts ex-

pressing tubulinGFP and DsRed targeted to the mitochondria,

green fluorescence both marked a complex network of fibers

and appeared as a homogeneous signal throughout the cells

(Fig. 5 A, i). Labeling of the fibers became more intense, and

the homogeneous signal effectively disappeared when the cells

were pretreated with taxol, a drug that promotes the polymer-

ization of tubulin (Fig. 5 A, ii). The fibers were retained and the

homogeneous signal was promptly eliminated if the cells were

permeabilized (Fig. 5 A, x). Based on these data, the fibers rep-

resent the MTs and the homogeneous fluorescence is likely to

be accounted by monomeric tubulinGFP.

Distribution of the red fluorescence showed colinearity of

the long axis of tubular mitochondria and MTs (Fig. 5 A, i–iii

and x; Video 2, available at http://www.jcb.org/cgi/content/

full/jcb.200406038/DC1). Furthermore, the time series of im-

ages shows that mitochondria move along MTs (Fig. 5 A, iii–v,

arrows point to the sites of movement). Similar to the mito-

chondrial movement shown in a taxol-pretreated cell (Fig. 5 A,

vi–ix), in control cells, the average rate was 0.31 � 0.05 �m/s

(n � 19) for mitochondria that showed continuous movement

along a straight track for 
10 s. The dynamics of mitochon-

drial motility along the MTs is further illustrated by a movie

sequence (Video 2). To quantify the MT-associated movement,

for each mitochondrion that moved 
3.5 �m, it was evaluated

whether or not the movement was along an MT. In four cells,

49 out of 68 mitochondria (72%) followed the track of MTs

and no mitochondrion (0%) moved clearly independent of the

MTs. For the remaining 17 mitochondria (28%), it was not pos-

sible to discern if the movement was along an MT, due to the

homogeneous tubulinGFP fluorescence in some regions of the

cells. Exposure of the cells to nocodazole (10 �M), a drug dis-

rupting the tubulin polymers resulted in loss of the MTs with-

out inducing a major change in mitochondrial morphology

(Fig. 5 A, x and xi). However, mitochondrial motility displayed

a progressive decrease in nocodazole-treated cells (Fig. 5 B).

Strikingly, the nocodazole-induced inhibition of mitochondrial

motility occurred in the absence of a [Ca2�]c elevation (Fig. 5

B). However, nocodazole evoked a decrease in ER Ca2� stor-

age because the VP-induced Ca2� mobilization was smaller in

nocodazole-pretreated cells (Fig. 5 B, histograms).

In cells expressing actinGFP and mitoDsRed, the green

fluorescence showed fibers (Fig. 5 C, left) that were also la-

beled with rhodamine-phalloidin, an MF-specific tracer (n � 4;

not depicted). Although the red fluorescent mitochondria often

appeared close to the MFs, usually mitochondria were not

aligned to the MFs (Fig. 5 C, left). In the time series of images,

the movement of the mitochondria along the MFs was quanti-

fied as described for the movement along the MTs above. In

four cells, only 10 out of 66 mitochondria (15%) followed the

track of an MF, whereas 37 mitochondria (56%) appeared to

move independent of the MFs. In the remaining 19 cases

(29%), it was not possible to discern whether or not the move-

ment was along an MF. In regard to the role of MFs in mito-

chondrial motility it is also relevant that the MFs were undam-

aged in nocodazole-treated cells (Fig. 5 B, right), which did not

display considerable mitochondrial movement activity (Fig. 5

B). Collectively, the aforementioned data suggest that mito-

chondrial movement depends on the integrity of the MTs and

closely follows the tracks provided by the MTs. Furthermore,

MFs alone do not appear to provide the primary track for mito-

chondrial movements.

In the movement of mitochondria along MTs, cytoplas-

mic dynein and kinesin (Kif1b)-based motors are likely to play

a role. Mitochondrion-specific kinesin heavy and light chains

have been identified in mammalian cells (Nangaku et al., 1994;

Khodjakov et al., 1998). However, recent resolution of the mo-

lecular structure of the mammalian cytoplasmic dynein and ki-

nesin did not reveal any Ca2� or CaM binding site (for review

see Vale, 2003). Furthermore, we have observed that neither

inhibitors of the Ca2�/CaM-dependent kinases (KN-62, 10 �M,

n � 5; KN-93, 5 �M, 30 min pretreatment, n � 5; myristoy-

lated-autocamtide-2–related inhibitory peptide, 10 �M, 1 h pre-

treatment, n � 5) nor inhibitors of calcineurin, the Ca2�-depen-

dent protein phosphatase (cyclosporine A, 5 �M, n � 3;

FK506 10 �M, 30 min, n � 5; deltamethrin 10 �M, 30 min

pretreatment, n � 5) prevented the VP-induced inhibition of

mitochondrial motility. Based on these data, the Ca2� signal is

not likely to control mitochondrial movement through phos-

phorylation or dephosphorylation of dynein or kinesin. Thus, it

seems that a distinct Ca2� sensor molecule is required to trans-

late the Ca2� signal for the microtubular motor proteins.

Arrest of the mitochondria supports 

rapid Ca2� delivery to the mitochondria

Movement is important for the delivery of mitochondria from

the site of biogenesis to the sites where energy is needed. Fur-

thermore, the present data on the spatio-temporal control of the

movement by the [Ca2�]c signal shows immobilization of mito-

chondria in the regions that display a [Ca2�]c rise (Fig. 4 C).

Because mitochondria have the capacity to accumulate Ca2�,

another role of the movement and Ca2�-induced inhibition of

the movement may be to dynamically control the distribution

of the mitochondrial Ca2� buffer to the spatial pattern of the

ER/SR Ca2� release or Ca2� entry. In many paradigms, Ca2�

signal propagation to the mitochondria depends on exposure of

the mitochondrial Ca2� uptake sites to the high [Ca2�] micro-

domains generated in the vicinity of the ER/SR Ca2� release

sites (Rizzuto et al., 1993; 1998; Szalai et al., 2000; Pacher et

al., 2002; for comparison see Collins et al., 2001). Movement

may affect the distance between ER/SR and mitochondria and

may affect the alignment between the Ca2� release and uptake

sites if there is physical coupling between the two organelles.

We postulated that rapid inhibition of the mitochondrial

movement may promote the mitochondrial Ca2� uptake during
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the brief Ca2� release events. We first sought for a means to

prevent the inhibition of mitochondrial movement by the cal-

cium signal and to study [Ca2�]m in mitochondria that are not

arrested by the [Ca2�]c signal. However, no approach has been

identified to uncouple the inhibition of mitochondrial move-

ment from the [Ca2�]c rise. Therefore, we tried to use the

[Ca2�]c-independent decrease in mitochondrial movement in-

duced by nocodazole (Fig. 5 B). Because the arrest of mito-

chondrial movement appears after the onset of the [Ca2�]c sig-

nal, we speculated that inhibition of mitochondrial motility by

nocodazole-pretreatment may enhance the initial phase of the

[Ca2�]m signal. To test this idea, cells were transfected with

two constructs encoding ratiometric pericam, a Ca2�-sensitive

fluorescent protein targeted to the nucleus and mitochondria,

respectively (Nagai et al., 2001). Before stimulation, the cells

were pretreated with nocodazole (10 �M for 20–30 min) or

with solvent (DMSO) and were stimulated with VP, while

ratiometric imaging of pericam fluorescence was performed.

By measuring separately the extranuclear and nuclear areas,

[Ca2�]m was determined simultaneously with nuclear ma-

trix [Ca2�]. Nuclear matrix [Ca2�] was used as a surrogate

of [Ca2�]c that was not feasible to monitor simultaneously

with [Ca2�]m. In separate experiments, no difference was no-

ticed between the kinetics of the [Ca2�] signals recorded in VP-

stimulated cells by cytosolic and nuclear pericam, respectively

(n � 4; unpublished data).

The initial nuclear [Ca2�] rise was determined for both

control and nocodazole-pretreated cells and the simultaneously

measured [Ca2�]m rise response was also evaluated for the

same cells (Fig. 5 B, bottom). The nuclear [Ca2�] rise was

smaller in the nocodazole-pretreated cells than in the control

cells. In contrast, the [Ca2�]m elevation was �60% greater in

the nocodazole-pretreated cells than in the control cells (P 	

0.01; n � 16). Thus, at the beginning of Ca2� mobilization, the

efficacy of the [Ca2�]c signal delivery to the mitochondria was

increased in nocodazole-pretreated cells. Although it remains

to find a more specific inhibitor of the mitochondrial motility,

our result seems to support the idea that the arrest of mitochon-

drial motility during the [Ca2�]c signal promotes the [Ca2�]c

signal propagation to the mitochondria. During repetitive stim-

ulation or during [Ca2�]c oscillations (Fig. 5), the movement in-

hibition evoked by the first [Ca2�]c spike may last until the sec-

ond [Ca2�]c spike rises and may facilitate the effect of the

second [Ca2�]c spike on the mitochondria. Thus, inhibition of

motility may provide a mechanism underlying the enhance-

ment of mitochondrial calcium signaling during [Ca2�]c oscil-

lations, a phenomenon that has been documented in several

paradigms (for review see Csordás and Hajnóczky, 2003). The

effective propagation to the mitochondria enables frequency-

modulated [Ca2�]c oscillations to control the Ca2�-sensitive en-

zymes of ATP production over the full range of potential activ-

ities (Hajnóczky et al., 1995; Robb-Gaspers et al., 1998).

Discussion

The present work described for the first time the control of mi-

tochondrial motility by the calcium signal and has provided ev-

idence that the Ca2�-induced inhibition of mitochondrial motil-

ity may be important for optimal delivery of the calcium signal

to the mitochondria. We have shown that physiological [Ca2�]c

can control mitochondrial movement over the full range of po-

tential activities. Maximal movement appears at the resting

level of [Ca2�]c, but complete suppression of mitochondrial

motility occurs during agonist-induced [Ca2�]c spikes and os-

cillations. The motor mechanism promptly responds to [Ca2�]c

increases and recovery follows the decay in [Ca2�]c, still the

delay in recovery is sufficiently long to allow the motility inhi-

bition spikes to run together during [Ca2�]c oscillations. Thus,

frequency-modulated [Ca2�]c oscillations are particularly ef-

fective to exert dynamic control over mitochondrial motility.

During the calcium signal, the mitochondrial motility also

shows subcellular heterogeneity that reflects the spatial pattern

of Ca2� release. Depression of the movement results in immo-

bilization and recruitment of the mitochondria in the vicinity of

the most active Ca2� release sites. We have also demonstrated

that mitochondria preferentially localize to and move along the

MTs. Movement of the mitochondria is likely to be primarily

facilitated by dynein and kinesin, and the Ca2� sensitivity of

the motor mechanism is likely to be conferred by a distinct

Ca2� sensor molecule. Finally, we provided evidence that the

propagation of Ca2� spikes to the mitochondria is accelerated if

mitochondrial motility is attenuated.

The scheme in Fig. 6 and the animation in Video 3

(available at http://www.jcb.org/cgi/content/full/jcb.200406038/

DC1) show the mechanism of the Ca2�-dependent control of

mitochondrial movement determined in the present work. At

resting [Ca2�]c (Fig. 6, left), mitochondria display maximal

movement activity and the majority of the movements occur

along the MTs (Fig. 6 left, arrows). Movements of the mito-

chondria toward the plus end are promoted by kinesin motors,

whereas movements to the minus end are facilitated by dynein

motor proteins (Tanaka et al., 1998; Habermann et al., 2001;

Deacon et al., 2003; Varadi et al., 2004). When a [Ca2�]c rise

occurs due to either Ca2� mobilization or Ca2� entry, the mito-

chondrial movement decreases. Even a modest increase in

[Ca2�]c is sufficient to attenuate mitochondrial motility and the

elevation of global [Ca2�]c to 1 �M, a level that is commonly

attained during [Ca2�]c spikes and oscillations results in almost

complete loss of mitochondrial movement (Video 3, right

panel). Ca2� does not seem to activate Ca2�/CaM-dependent

kinases or the Ca2�-dependent protein phosphatase to establish

control over mitochondrial motility because several inhibitors

of these enzymes failed to interfere with the movement inhibi-

tion by Ca2�. Furthermore, Ca2� does not seem to target di-

rectly the microtubular motors because the molecular structure

of mammalian cytoplasmic dynein and kinesin does not indi-

cate the presence of a site for binding of Ca2� or CaM (Vale,

2003). Thus, we propose that a distinct Ca2� sensor molecule is

required to translate the Ca2� signal for the microtubular motor

proteins. Binding of Ca2� to the Ca2� sensor would induce the

MT-bound motors to lock in a stationary position or to detach

from the MTs (Video 3, red symbol). One potential candidate

for the Ca2� sensor is myosin Va, a motor protein that binds

CaM and is controlled by Ca2� (for reviews see Reck-Peterson
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et al., 2000; Vale, 2003). Myosin Va displays a Ca2�-depen-

dent interaction with actin-filaments (Tauhata et al., 2001; Kre-

mentsov et al., 2004) and MTs (Cao et al., 2004). Interaction of

the head domain of myosin Va with actin provides a motor for

movement along the MFs but the tail domain-based interaction

with MTs does not present by itself a microtubular motor.

However, recent papers have raised the possibility that myosin

V can interact directly with dynein and kinesin and through this

interaction may affect motor function at the MTs (Benashski et

al., 1997; Huang et al., 1999; Stafford et al., 2000; Lalli et al.,

2003). Immunocytochemistry studies indicate that myosin Va

is present on the mitochondria in H9c2 cells, and myosin Va

is also retained on isolated mitochondria (unpublished data).

However, to clarify the role of myosin V in the Ca2�-dependent

control of mitochondrial motility and to explore alternative

mechanisms, further studies are needed.

A primary source of the [Ca2�]c rise for [Ca2�]c spikes

and oscillations is Ca2� mobilization from the ER/SR (Fig. 6,

right). Ca2� release from the ER appears to control the mito-

chondrial motility through elevation of the [Ca2�]c (Fig. 6, long

red arrows). The inhibition of movement appears almost in-

stantaneously as the [Ca2�]c rises and gradually and completely

disappears after the decay of the [Ca2�]c signal. Owing to the

relatively slow recovery of mitochondrial motility, the attenua-

tion of motility induced by a global [Ca2�]c spike may persist

until the rise of the next [Ca2�]c spike during [Ca2�]c oscilla-

tions (Video 3). However, the calcium signal is often spatially

heterogeneous or Ca2� release events remain confined and do

not give rise to a global [Ca2�]c signal. Based on our observa-

tion that the inhibition of the motility corresponds to the spatial

pattern of the [Ca2�]c rise (Fig. 4 C), the Ca2�-induced inhibi-

tion of motility mitochondria appears to provide a mechanism

to sustain mitochondria close to Ca2� release sites that are par-

ticularly active. Interestingly, elevation of [Ca2�]c to �1 �M

has been shown to cause enhanced association of the mitochon-

dria with the ER in permeabilized cells (Wang et al., 2000).

The dynamic positioning of the mitochondria may cooperate

with permanent tethering structures (Filippin et al., 2003; un-

published data) to maintain the close associations between ER/

SR Ca2� release sites and the mitochondria (Rizzuto et al.,

1998; Marchant et al., 2002; Pacher et al., 2002). Along this

line, propagation of the calcium signal to the mitochondria,

which appears to depend on the local communication between

IP3 receptors and mitochondrial Ca2� uptake sites was more

effective when mitochondrial movement was abolished by

pretreatment with an MT-disruptive agent (Fig. 5 B). Thus, an

important feature of the present model is the creation, by in-

hibition of movement, of the condition for a stable ER–mito-

chondrial interface that may facilitate the back-and-forth Ca2�

transport between ER and mitochondria. Freezing of mitochon-

dria should be preceded by alignment of the mitochondrial

Ca2� uptake sites with the ER Ca2� release sites, but this pro-

cess was not possible to resolve by the present approaches.

Recruitment of mitochondria to the sites of Ca2� release

by Ca2�-induced immobilization may form the basis for a

novel homeostatic mechanism in calcium signaling. Targeting

of mitochondria to the sites of Ca2� release results in an in-

crease in the local Ca2� buffering capacity. Also, mitochondrial

Ca2� uptake serves as a means for stimulation of mitochondrial

ATP production that provides a localized energy source for

Ca2� reuptake by the ER/SR (Landolfi et al., 1998). The in-

crease in local Ca2� buffering and in ATP production repre-

sents a feedback mechanism that contributes to the control of

the [Ca2�]c rise and strengthening of the Ca2� scavenger mech-

anisms may also be important to avoid Ca2�-dependent cell in-

jury. Once Ca2� release stops, motility is recovered and the mi-

tochondria may be recruited by Ca2� release in other regions of

the cell. Thus, the Ca2�-dependent control of mitochondrial

Figure 6. Decoding of [Ca2�]c signals by the
mitochondrial motor machinery. The proposed
mechanism for the [Ca2�]c signal-dependent
control of mitochondrial motility is shown.
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motility offers a means to adjust the subcellular spatial arrange-

ments of the Ca2� buffering and energy production as needed.

In conclusion, mitochondrial movement along the MTs

ensures that mitochondria are available throughout the cell,

whereas regulation by Ca2� targets mitochondria to the sites

where mitochondrial Ca2� uptake and ATP production may be

required to ensure the handling of Ca2�. Dynamic control of

mitochondrial motility and distribution presents a powerful,

novel mechanism to optimize the use of the mitochondrial pool

in cellular Ca2� transport and signaling.

Materials and methods

Cells
H9c2 cells were cultured for 4 d in DME supplemented with 10% FBS, 2
mM glutamine, 1 mM pyruvate, 100 U/ml penicillin, and 100 �g/ml
streptomycin in humidified air (5% CO2) at 37�C. For imaging experi-
ments, cells were plated onto poly-D-lysine–coated glass coverslips.

Transient expression
When the cell culture reached 70% confluency (2 d after plating), transfec-
tion was performed using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions with 2 �g/ml of each vector. One or two of
the vectors that encode pEYFP-mito, pDsRed-mito, pEGFP-tubulin, pEGFP-
actin (BD Biosciences), or ratiometric-pericams targeted to the cytoplasm,
nucleus, or mitochondria (provided by A. Miyawaki, RIKEN, Wako City,
Japan) or RyR1 (a gift from J. Ma, University of Medicine and Dentistry of
New Jersey, Piscataway, NJ) were used. Transfected cells were further in-
cubated in the culture for 24–36 h before the imaging experiments.

Live cell imaging
Fluorescence imaging was performed using an inverted microscope
(model IX70; Olympus; 40�, UApo340, NA 1.35) fitted with a cooled
CCD camera (Pluto; Pixelvision) and a high speed wavelength switcher
(model Lambda DG; Sutter Instruments) controlled by Spectralyzer (cus-
tom) software. Simultaneous detection of fura2 (340 and 380 nm excita-
tion) and mitoYFP (495 nm excitation) fluorescence was achieved using a
multiwavelength beamsplitter/emission filter combination (Chroma Tech-
nology Corp.). Pericam was excited at 415 and 495 nm. The data acqui-
sition rate was 0.4 triplet per second in the fura2 and mitoYFP imaging
and 2 duplet per second in the pericam imaging experiments. To correct
for the camera noise, the dark (excitation path closed) image was ob-
tained and was subtracted from each image.

Confocal imaging of the fluorescent proteins targeted to the mito-
chondria, MFs, and MTs was performed using an imaging system (model
Radiance 2100; Bio-Rad Laboratories) equipped with a Kr/Ar-ion laser
source (488 and 568 nm excitation) fitted to an inverted microscope
(40�, UApo340, NA 1.35). Mitotracker green, GFP, and YFP were ex-
cited at 488 nm, and DsRed at 568 nm. Images were obtained every
3.1–3.3 s using LaserSharp software (Bio-Rad Laboratories).

To simultaneously measure [Ca2�]c with mitochondrial motility, mi-
toYFP-transfected cell cultures were preincubated for 20 min in an extracel-
lular medium (ECM; 2% BSA, 121 mM NaCl, 5 mM NaHCO3, 10 mM
Na-Hepes, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2 mM
CaCl2, and 10 mM glucose, pH 7.4), and then loaded with 5 �M fura2/
AM for 25–30 min at RT in the presence of 0.003% (wt/vol) pluronic acid
and 200 �M sulfinpyrazone. After washing of the dye-loaded cells, imag-
ing measurements were performed in ECM containing 0.25% BSA at
35�C. Imaging of pericam, mitoYFP, actinGFP�mitoDsRed, and tubulin-
GFP�mitoDsRed was also performed in 0.25% BSA-ECM at 35�C.

To calibrate the changes in [Ca2�]c, the ratio of 340/380 nm fluo-
rescence values was calculated for the fura2-loaded cells after subtraction
of background fluorescence. The ratio was converted to nanomole values
using in vitro calibration of fura2-free acid (Kd � 224 nM). To quantitate
mitochondrial motility a difference image protocol was used. By subtrac-
tion of sequential images, the fluorescence change for each pixel was cal-
culated, and then pixels that exhibited a change after 3 � 3 median filter-
ing (positive or negative) greater than an empirically determined threshold
(2.5% of the mean fluorescence intensity/pixel) were counted for each
time point. Changes in the pixel number were normalized to the initial
value calculated for cells before stimulation.

All image analysis was done in Spectralyzer imaging software. Ex-
periments were performed with 
3 different cell preparations. Traces rep-
resent single cell responses unless indicated otherwise. Data are presented
as means � SEM. Significance of differences from the relevant controls
was calculated by t test.

Online supplemental material
Video 1 shows the inhibition of mitochondrial motility in an H9c2 cell stim-
ulated with VP; Video 2 demonstrates the movement of mitochondria
along MTs; and Video 3 is an animated representation of the proposed
mechanism for calcium control of mitochondrial motility. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/
jcb.200406038/DC1.
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