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M. Fernando PEREIRA FEUP, Portugal Rapporteur

Mme. Cristina STOICA SUPELEC, France Co-encadrante





Thanks

The work presented in this thesis was conducted as a collaboration between the Au-
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Supélec, with funding from the EADS Foundation. During these last three years I have

succeeded to accomplish my objectives due to the help, support and friendship of many

people. I would like to take this opportunity to express again all my gratitude to each

one of them.

First of all, I wish to thank my supervisor, Professor Sorin Olaru for his effort in guiding

me in all research issues, his enthusiasm for research and his academic support. To him

and to my co-supervisors Assistant Professor Cristina Stoica and Professor Silviu-Iulian

Niculescu I am grateful for their help and continuous encouragement to explore new

research challenges and pursue them successfully.

I thank to Professor Patrick Boucher, the former Head of the Automatic Department for

welcoming me in the laboratory and for making sure that my thesis is developing in an

optimal way. Beyond these aspects, I am honored by the interest he has always shown

for my work and his presence in my thesis committee as the president of the jury. I am

thankful to Professor Didier Dumur, the current Head of the Automatic Department and

all the professors in the department for their constant support. Furthermore, I would like

to thank Ms Marie-Claire Certiat who has regularly attended my work as representative

of the EADS Foundation and for her encouragement.

My deepest appreciation goes also to all the other members that agreed to be part of

the committee: Professor Morten Hovd, Professor Fernando Pereira, Research Engineer

Eva Cruck, Associate Professor Rudy Negenborn, Professor Georges Bitsoris, Professor

Fernando Fontes and Research Engineer Sthépane Le Menec. In particular, I am grateful

ii



to the reviewers Professor Morten Hovd and Professor Fernando Pereira for their careful

reading of the manuscript and all the provided remarks which helped in improving the

overall quality of the exposition.

During these three years I had the chance to work with a large number of people and to

visit different laboratories. In particular, I thank Professor Georges Bitsoris, Professor

João Sousa, Dr. Ricardo Bencatel, Professor Fernando Fontes for the fruitful discussions

I had with them. Also, I enjoyed working with Dr. Florin Stoican and I have benefited

greatly from the clarity of vision he brings to his work. I am most grateful for the time

I spent at the Underwater Systems and Technology Laboratory from the University of

Porto in Portugal, a collaboration initiated by my supervisor. I enjoyed there everyone’s

friendliness and support, in particular Catarina Morais who I thank for giving up a few

hours from her schedule to show me the beautiful city of Porto. Thanks to Professor

João Sousa I had the chance to go at the Portuguese Air Force Academy, OTA, for the

flight experiments, which proved to be a unique experience for me. Also, I would like to

thank Professor Anders Rantzer for giving me the privilege to spend some time in the

Automatic Department from University of Lund in Sweden.

When I look back during my scientific study, I am grateful to many, many people who

have given me challenges and believed in my competence. My thanks go to Professor

Cristian Oara and Professor Radu Stefan from University “Polithenica” of Bucarest, as

well as to my highschool math professor Iuliana Turcu.

My warmest thanks go to my friends and colleagues: Vali, Catalin, Emanuel, Georgi,

Florin, Ana, Warody, Safta, Anca, Nam, Nikola, Andreea, Daniel, Julien, Antoine,

Christophe, Stefan, Dorin, Adriano, Raluca, Bogdan, Cristina, Ali.

I would not be here if it wasn’t for my parents, to whom I owe the greatest debt of

gratitude. I am also blessed to have my sisters Daniela and Iuliana, my life together

with them is an enormous joy, and it is, above all, my greatest source of strength. This

work is dedicated to them.



Pentru surorile mele Daniela si Iuliana,

parintilor mei.

******

“Satisfaction lies in the effort, not in the attainment; full effort is full victory.”

Mahatma Gandhi
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Abstract

SPECIALITE : AUTOMATIQUE

Doctorate degree

by Ionela Prodan

The goal of this thesis is to propose solutions for the optimal control of multi-agent

dynamical systems under constraints. Elements from control theory and optimiza-

tion are merged together in order to provide useful tools which are further applied to

different problems involving multi-agent formations.

The thesis considers the challenging case of agents subject to dynamical constraints.

When designing control decisions, it becomes thus natural to take into account not only

exogenous factors (e.g., obstacles, reference tracking, etc.) but also the internal (state)

dynamics of the agents and their structural properties (as settle-time or nonholonomic

characteristics).

To deal with these issues, well established concepts like set-theory, differential flatness,

Model Predictive Control (MPC), Mixed-Integer Programming (MIP) are adapted and

enhanced. Using these theoretical notions, the thesis concentrates on understanding

the geometrical properties of the multi-agent group formation and on providing a novel

synthesis framework which exploits the group structure. In particular, the formation

design and the collision avoidance conditions are casted as geometrical problems and

optimization-based procedures are developed to solve them. Moreover, considerable ad-

vances in this direction are obtained by efficiently using MIP techniques (in order to

derive an efficient description of the non-convex, non-connected feasible region which

results from multi-agent collision and obstacle avoidance constraints) and stability prop-

erties (in order to analyze the uniqueness and existence of formation configurations).
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The existence and uniqueness of a tight formation of agents is further linked with con-

straints over the eigenstructure of the state matrices of the agents.

Lastly, some of the obtained theoretical results are applied on a challenging practical

application. A novel combination of MPC and differential flatness (for reference gener-

ation) is used for the flight control of Unmanned Aerial Vehicles (UAVs).
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Résumé

SPECIALITE : AUTOMATIQUE

Diplôme de doctorat

par Ionela Prodan

L’objectif de cette thèse est de proposer des solutions aux problèmes liés à la com-

mande optimale de systèmes dynamiques multi-agents en présence de contraintes.

Des éléments de la théorie de commande et d’optimisation sont appliqués à différents

problèmes impliquant des formations de systèmes multi-agents.

La thèse examine le cas d’agents soumis à des contraintes dynamiques. Il devient donc

naturel de tenir compte non seulement des facteurs exogènes (par exemple les obstacles,

le suivi de référence, etc.), mais aussi de la dynamique interne (l’état) d’agents et de

leurs propriétés.

Pour faire face à ces problèmes, les concepts bien établis tels que la théorie des ensembles,

la platitude différentielle, la commande prédictive (Model Predictive Control - MPC),

la programmation mixte en nombres entiers (Mixed-Integer Programming - MIP) sont

adaptés et améliorés. En utilisant ces notions théoriques, ce travail de thèse a porté

sur les propriétés géométriques de la formation d’un groupe multi-agents et propose un

cadre de synthèse original qui exploite cette structure.

http://www.supelec.fr/
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En particulier, le problème de conception de formation et les conditions d’évitement

des collisions sont formulés comme des problèmes géométriques et d’optimisation pour

lesquels il existe des procédures de résolution. En outre, des progrès considérables dans

ce sens ont été obtenus en utilisant de façon efficace les techniques MIP (dans le but

d’en déduire une description efficace des propriétés de non convexité et de non connexion

d’une région de faisabilité résultant d’une collision de type multi-agents avec des con-

traintes d’évitement d’obstacles) et des propriétés de stabilité (afin d’analyser l’unicité

et l’existence de configurations de formation de systèmes multi-agents). L’existence et

l’unicité d’une formation étroite d’agents sont, en outre, liées à des contraintes sur la

structure propre des matrices d’état des agents.

Enfin, certains résultats théoriques obtenus ont été appliqués dans un cas pratique très

intéressant. On utilise une nouvelle combinaison de la commande prédictive et de la plat-

itude différentielle (pour la génération de référence) dans la commande et la navigation

de véhicules aériens sans pilote (UAVs).

Systèmes dynamiques multi-agents du point de vue de la

commande théorique

Tout d’abord, afin de percevoir les bénéfices retirés de l’emploi des systèmes multi-agents

dans l’ingénierie de la commande, il est nécessaire de s’attarder un peu sur la définition

de ces systèmes. Il existe plusieurs définitions d’un agent, ce qui est dû principalement à

l’universalité de ce mot et au fait qu’il ne peut pas être propre à une seule communauté.

La plupart des définitions proviennent de la communauté informatique et ils ont tous

trois concepts de base : la notion d’agent, de son environnement et de son autonomie.

La définition suivante est souvent citée : “un agent est une entité matérielle ou logicielle

qui se trouve dans un certain environnement, et qui est capable d’actions autonomes

dans l’environnement afin de répondre à ses objectifs”. Comme l’indique la définition,

les agents sont soit des entités physiques (matérielles), ce qui est le cas des robots, des

véhicules ou des piétons, dans un environnement physique (par exemple, un système de

commande), soit des entités virtuelles dans un environnement informatique (par exemple,

des sources de données, des sources informatiques), ce qui est le cas des agents logiciels.

Cependant, dans le contexte des agents de commande, seul le premier cas est intéressant



ici, car il y a des applications directes en ingénierie de la commande. Par agent, on

désigne “tout système de commande”, comme par exemple un dispositif de thermostat

qui est une instance d’un système de commande. Il est situé dans son environnement,

il réagit aux changements de température de l’environnement et présente également un

certain degré d’autonomie.

Les systèmes multi-agents sont des systèmes dynamiques qui se décomposent en de multi-

ples sous-systèmes (véhicules par exemple), comprenant des capteurs et des actionneurs,

qui ont la capacité de communiquer entre eux pour accomplir différentes tâches. La

clé de l’étude des systèmes multi-agents réside dans la formalisation de la coordination

entre les agents. Cette coordination peut être décrite soit comme une coopération entre

plusieurs agents en vue d’accomplir une tâche commune, soit comme une négociation

entre des agents ayant des intérêts différents. Un exemple de coopération de systèmes

multi-agents est constitué par un ensemble d’avions sans pilote, exécutant des opérations

de recherche et de surveillance comme des patrouilles au-dessus de zones boisées afin de

détecter d’éventuels incendies.

Actuellement, de grands groupes d’agents peuvent être coordonnés et commandés de

manière efficace dans l’exécution des tâches diverses, par exemple, le comportement des

piétons dans une foule, problématique essentielle dans l’évaluation de la sécurité des

infrastructures sociales, la commande en eau des canaux d’irrigation, la distribution de

l’eau et la gestion des réseaux d’égouts, l’observation de l’espace et la fluidité de la

circulation automobile.

Il est devenu évident que l’étude des systèmes dynamiques est essentielle dans le domaine

de la commande des systèmes. Dans la commande des systèmes dynamiques, les décisions

devraient être déterminées et mises en œuvre en temps réel. La rétroaction est largement

utilisée pour faire face aux incertitudes sur le système et son environnement.

Les problèmes qui apparaissent dans le contexte de la commande coopérative de systèmes

dynamiques multi-agents incluent :

• la planification de mouvements qui répond à la question classique “comment y

arriver ?” ;



• la commande de la formation afin de positionner chaque agent de façon fixe par

rapport à chacun des autres agents ;

• la commande centralisée, distribuée ou décentralisée qui gère le problème de la

communication entre l’agent et la structure de la loi de commande ;

• la manipulation des contraintes qui doivent habituellement être intégrées dans la

conception de la commande ;

• la stabilité en fonction de la nature du problème (la stabilité peut être comprise

comme la stabilité de la formation, le suivi dans certaines limites ou simplement

le fait que les agents restent dans une région bornée) ;

• la robustesse par rapport aux perturbations qui affectent le système et qui doivent

être prises en compte ; des problématiques spécifiques multi-agents doivent également

être prises en compte (par exemple, la présence d’obstacles mobiles, l’estimation

de l’état des autres agents).

Une approche basée sur l’optimisation pour la commande

des systèmes coopératifs

Cette thèse se propose de créer un cadre unifié pour la commande optimale de systèmes

multi-agents en présence des contraintes physiques, économiques ou de communication.

Les principaux objectifs de notre recherche sont :

• l’utilisation des méthodes ensemblistes pour le traitement des systèmes sous con-

traintes (par exemple, liées à l’évitement des collisions avec les éventuels obstacles

et des collisions entre les agents) ;

• le développement de lois de commande d’un groupe d’agents afin d’accomplir un

mouvement en formation (par exemple la planification et le suivi de trajectoire).

Les outils qui permettent la réalisation de ces objectifs et qui ont été utilisés dans le

cadre de cette thèse sont les méthodes ensemblistes, la platitude, la programmation

mixte en nombres entiers (Mixed-Integer Programming - MIP), la commande optimale



et la commande prédictive (Model Predictive Control - MPC) avec des contraintes non-

convexes. Un aspect important de l’approche de la commande prédictive est caractérisé

par sa capacité à gérer des contraintes génériques d’état et de commande et représente

une notion prédominante dans le travail de thèse qui est présenté dans ce manuscrit. La

commande à horizon glissant étant une technique basée sur l’optimisation représente un

candidat naturel à la résolution problèmes associés aux systèmes multi-agents. Cette

technique peut viser des objectifs très généraux, comme par exemple, la convergence

vers une formation, le suivi d’une trajectoire, tout en prenant en compte les contraintes

anti-collisions.

Les systèmes dynamiques considérés, qui sont utilisés via leurs modèles dans un but

de prédiction, peuvent être à temps continu ou discret dans le temps, homogènes ou

hétérogènes, linéaires ou non-linéaires, et avec ou sans contraintes. Dans ce manuscrit,

nous travaillons la plupart du temps avec une dynamique généralement héritée de la

dynamique du véhicule, simplifiée dans le cas des (sous-) systèmes, Ce sont des modèles

de type double intégrateur, linéaires invariants dans le temps et non linéaires monocycles,

mis en présence de perturbations bornées et de contraintes. Il faut noter que nous avons

choisi les dynamiques simplifiées et leurs analogies afin de faciliter l’interprétation des

résultats numériques. Le traitement des contraintes, la conception de la commande et

les techniques résultantes sont valables pour des formulations générales de la dynamique

et des contraintes.

Pour les tâches impliquant une coopération entre un groupe d’agents, le suivi de trajec-

toire est souvent crucial dans la réalisation de l’objectif de coopération. Il arrive souvent

qu’une trajectoire de référence doive être pré-calculée. Quand on parle de signaux de

références, il est important de souligner la différence entre deux notions proches : tra-

jectoire de référence et chemin de référence. Le chemin de référence prévoit seulement

une route souhaitée pour les agents pour lesquels il ne peut pas exister d’entrée possi-

ble. En ce sens, la trajectoire de référence est supérieure parce qu’elle permet à la fois

une entrée et un état faisable. Son inconvénient réside dans sa dépendance temporelle

qui impose souvent une contrainte supplémentaire sur le fonctionnement en temps réel,

tandis que le chemin de référence reste indépendant du temps. Bien sûr, trouver des

références d’entrée et des signaux d’état faisables est généralement une tâche difficile.

Nous avons choisi d’utiliser dans le présent manuscrit un outil générique, celui basé sur la



platitude différentielle pour la construction d’une trajectoire de référence. Les systèmes

différentiellement plats sont bien adaptés aux problèmes nécessitant une planification de

trajectoires. Un des intérêts de la platitude est qu’elle simplifie le problème de génération

de trajectoire, en le ramenant à la recherche d’une trajectoire de sortie plate (par le fait

que la sortie plate décrit complètement le comportement du système).

Si on accepte la commande MPC comme cadre de conception et si on dispose d’une

trajectoire de référence, on peut en principe concevoir une boucle de régulation nomi-

nale, mais la robustesse doit être prise en compte par des outils d’analyse et des notions

spécifiques. Pour une approche robuste, nous utilisons la théorie des ensembles. Chaque

fois que les bruits et les perturbations sont bornés nous chercherons à construire des en-

sembles invariants bornés qui caractérisent la dynamique du système. Par exemple, nous

pouvons construire des régions de sécurité autour des agents afin de garantir l’évitement

des collisions pour toutes les valeurs des bruits bornés. Pour des raisons numériques, les

ensembles que nous choisissons sont des ensembles polyédraux. Ils offrent un excellent

équilibre entre flexibilité de la représentation et facilité de mise en œuvre numérique des

algorithmes. Plus précisément, nous allons les utiliser dans le cadre de systèmes multi-

agents pour décrire des régions de sécurité, des obstacles et des régions de faisabilité.

Une notion connexe, la norme polyédrale, sera également utilisée afin de construire ce

qu’on appelle une fonction polyédrale et une fonction somme, qui vont constituer la base

pour la construction de fonctions d’exclusion (ou fonctions de pénalité).

Contribution à la description de régions de faisabilité non-

convexes via la programmation mixte en nombres entiers

L’évitement des collisions est souvent le problème le plus difficile dans le contexte de la

gestion des agents multiples, car certaines contraintes (statiques ou dynamiques) sont

non-convexes. Cela arrive parce que l’évolution d’un système dynamique, dans un envi-

ronnement présentant des obstacles, ne peut être modélisée que sous forme de régions

non-convexes possibles, c’est-à-dire que la trajectoire de l’agent doit éviter une région

convexe (union de régions convexes) représentant un obstacle (contraintes statiques) ou

un autre agent (contraintes dynamiques - menant à un paramétrage de l’ensemble des

contraintes par rapport à l’état actuel).



La plus grande partie de la littérature traite du problème d’évitement des collisions des

systèmes multi-agents punctiformes, un cas éloigné de la réalité. En effet, dans beaucoup

d’applications, le positionnement relatif entre les agents est important : par exemple,

dans la gestion du trafic aérien, deux avions ne sont pas autorisés à s’approcher l’un

de l’autre à moins d’une distance de sécurité spécifique. Afin de prendre en compte ce

degré supplémentaire de difficulté, nous avons proposé d’associer à chaque agent punc-

tiforme une région de sécurité qui permet la formulation de contraintes non-convexes

d’évitement des collisions. Nos études ont ainsi conduit à de nouvelles méthodes perme-

ttant de résoudre des problèmes d’optimisation sous contraintes qui apparaissent dans

la commande des systèmes multi-agents.

Du point de vue de la mise en œuvre, les solveurs purs d’optimisation non convexe

peuvent être utilisés pour les problèmes de commande évoqués ici, mais, à notre avis, sont

sujets à des erreurs numériques et difficiles à manipuler. Les études effectuées ont montré

que les techniques dites de “programmation mixte en nombres entiers” (Mixed Integer

Programming - MIP) sont appropriées dans le traitement des problèmes d’optimisation

sous contraintes non convexes. Malgré leurs capacités de modélisation, des difficultés

liées au traitement numérique sont souvent rencontrés dans la résolution des problèmes

MIP. Des travaux existent dans la littérature, qui permettent de réduire les exigences

de calcul des méthodes de programmation mixte en nombres entiers, afin de rendre ces

méthodes plus attractives en ce qui concerne les applications en temps réel. Dans ce

cadre, nous avons développé une technique originale afin de reformuler le problème sous

contraintes linéaires. Cette nouvelle formulation réduit le nombre de variables binaires

nécessaires à la description unitaire des ensembles convexes non-connectés (ou de leurs

compléments) en utilisant des variables binaires auxiliaires. De plus, l’approche proposée

a été étendue au traitement des régions non connectées non convexes. Les principaux

apports de ce travail mettent en relief quelques-uns des aspects importants de l’approche,

soit :

• une représentation convexe dans l’espace étendu d’état ainsi que des variables

binaires en utilisant la notion d’hyperplan associé ;

• une réduction de la complexité du problème en utilisant des techniques d’algèbre

booléenne (à cause de la complexité du problème, il faut seulement un nombre

polynomial de sous-problèmes (Programmation Linéaire (LP) ou Programmation



Quadratique (QP) des problèmes) qui doivent être résolus avec des avantages

évidents dans l’effort de calcul) ;

• une propriété remarquable d’association optimale entre les régions et la représenta-

tion binaire conduit à la minimisation du nombre de contraintes.

La commande de formation des systèmes dynamiques multi-

agents

La commande de formation d’agents est devenue l’un des problèmes bien connus dans

les systèmes multi-agents. Par rapport à un seul agent, un groupe d’agents travaillant

ensemble présente de nombreux avantages ; cela a été démontré dans de nombreuses

applications impliquant la commande des systèmes coopératifs. La formation est un

cas particulier de coopération. Dans notre cadre d’étude, nous proposons la définition

suivante d’une formation : une formation est une organisation d’un groupe d’agents se

déplaçant ensemble sous certaines contraintes, dans un espace restreint, avec des objectifs

communs.

La caractérisation et la convergence vers une formation constituent des questions clas-

siques pour la commande des systèmes coopératifs. En outre, le problème spécifique de

maintenir une formation devient encore plus difficile si l’on doit faire en sorte que tous

les agents évitent les collisions au sein du groupe et/ou avec des obstacles.

La contribution apportée par cette thèse vise à améliorer la compréhension des propriétés

géométriques et permet de dessiner un cadre de synthèse novateur (à notre connaissance)

exploitant la structure géométrique proposée. La conception de formation et les con-

ditions d’évitement des collisions sont formulées comme des problèmes géométriques et

des procédures d’optimisation sont élaborées pour les résoudre. De plus, nous avons

obtenu des avancées considérables dans ce sens en utilisant efficacement les techniques

MIP (afin d’en tirer une description cohérente de la région de faisabilité dans l’espace des

solutions) et les propriétés de stabilité (pour analyser le caractère unique et l’existence

de configurations de formation).



Nous nous concentrons sur la commande fondée sur l’optimisation de plusieurs agents

ayant chacun une dynamique autonome, ainsi qu’un objectif global à atteindre, comme

une formation étroite avec les spécifications désirées et les comportements sans collision.

Pour réduire le temps de calcul, nous utilisons le comportement “nominal” des agents

et nous considérons des régions de sécurité autour d’eux afin de compenser les effets

des perturbations affectant les systèmes “réels”. En outre, ces régions sont définies en

utilisant la théorie des ensembles invariants pour éviter de devoir les recalculer pendant

le fonctionnement en temps réel. Il faut noter que ce choix garantit également un degré

de robustesse certain, en dépit du fait que la commande en temps réel est réalisée en

utilisant des modèles de prédiction nominaux.

L’approche proposée consiste à décomposer le problème de commande de la formation

en deux problèmes distincts.

• Tout d’abord, la configuration idéale est définie hors ligne. Une configuration

minimale est déterminée par rapport à une fonction de coût proposée avec des

contraintes imposées par les régions de sécurité. Une contribution particulière,

ici, est l’introduction d’une contrainte de point fixe supplémentaire (à savoir, les

positions cibles sont aussi des points d’équilibre pour la dynamique considérée)

afin d’assurer la convergence vers la configuration prédéfinie.

• Ensuite, en temps réel, une optimisation, avec un horizon glissant, est utilisée

conjointement avec l’attribution des tâches relatives à la configuration minimale.

La commande en temps réel est alors fondée sur une procédure en deux étapes.

• La première étape est de déterminer où doit aller chaque agent dans la formation.

Celle-ci est équivalente à la résolution d’un problème standard d’affectation de

tâches. Ce problème n’est pas nouveau dans le domaine de l’optimisation com-

binatoire, cependant, dans le cadre de la commande des systèmes multi-agents,

l’affectation optimale en temps réel apporte une nouvelle dimension (dynamique)

en intégrant des cibles variables dans le temps.

• La seconde étape est de résoudre un problème d’optimisation mixte en nombres

entiers en fonction de la géométrie de la formation prédéfinie et des régions de



sécurité associés, afin d’obtenir des lois de commande efficaces pour les agents

individuels.

Enfin, ces deux problèmes différents sont incorporés dans la commande prédictive, ce

qui conduit à un problème d’optimisation destiné à guider le groupe d’agents vers une

formation prédéfinie avec des cibles associées.

Un autre point abordé dans ce manuscrit a été le problème de la commande prédictive

(centralisée, distribuée et décentralisée) de systèmes multi-agents en formation. Malgré

toutes les améliorations de la formulation MIP, le problème de la commande prédictive

centralisée pour les systèmes multi-agents est toujours difficile à résoudre. Afin de pro-

poser une solution plus performante, la solution MIP a été étendue dans le contexte de

la commande prédictive distribuée. Plus précisément, le groupe d’agents a d’abord été

partitionné en voisinages et ensuite une description MIP de la région de faisabilité, dans

laquelle se trouve chaque agent, a été élaborée. Avec une communication adéquate entre

les sous-groupes d’agents voisins, les demandes de performance et de stabilité imposées

par le cahier des charges peuvent être respectées. Pour ces systèmes multi-agents, la

charge de calcul est réduite considérablement dans le cas de la commande prédictive

distribuée basée sur des techniques MIP, en comparaison avec les formulations plus clas-

siques de la commande prédictive..

Pour offrir une alternative à l’utilisation de techniques MIP dans ce projet, nous avons

également exploré des stratégies améliorées de commande prédictive décentralisée basées

sur la méthodologie du champ de potentiel. Cette approche a été utilisée afin de

synthétiser une loi de commande prédictive uniquement à partir des informations locales

au sein du groupe d’agents. L’utilisation de différents champs de potentiel, attractifs ou

répulsifs, autour des agents, permet à la fois de garder les agents en formation et d’éviter

les collisions entre eux. Cette approche a l’avantage de réduire la complexité de calcul

par rapport aux techniques précédentes basées sur les techniques MIP. En revanche, la

preuve formelle de stabilité de la formation des systèmes multi-agents s’avère difficile si

on utilise des techniques de différents champs de potentiel.



Les évaluations de la commande sous contraintes de systèmes

dynamiques multi-agents

Un autre aspect théorique traité dans cette thèse est la description du comportement

limite d’un agent en présence de contraintes adverses. Plus précisément, ce type de

contraintes rend la convergence de la trajectoire d’un agent vers l’origine1 impossible à

réaliser. Á notre connaissance, dans la littérature il n’existe pas de résultats traitant le

cas de contraintes qui ne sont pas satisfaites lors de la convergence vers l’origine. Nous

avons ainsi développé une stratégie de commande duale afin que l’agent converge vers

un point fixe unique et stable qui se trouve sur la frontière de la région interdite2, et non

pas vers l’origine.

Par conséquent, dans un premier temps, nous effectuons une analyse détaillée du com-

portement limite pour un système dynamique linéaire en présence de contraintes géomé-

triques adverses. Plus précisément, il nous faut définir les points fixes et les pro-

priétés d’invariance de la trajectoire d’état du système, tout en évitant une région con-

vexe contenant l’origine strictement à l’intérieur de cette région. Dans le contexte de

systèmes multi-agents, cette région peut, en fait, représenter un obstacle (contraintes

statiques), mais peut être étendue à la zone de sécurité d’un autre agent (conduisant à

une paramétrisation de l’ensemble des contraintes à l’égard de l’état global actuel).

Dans un deuxième temps, nous cherchons à assurer la stabilité dans la région de fais-

abilité de l’espace d’état en utilisant une stratégie de commande duale. Les principes

fondamentaux sont ceux de la commande prédictive y compris les contraintes d’évitement

de collision. Les liaisons entre points fixes, invariance et lois de commande affines nous

permettent d’offrir les conditions nécessaires et suffisantes pour l’existence d’un point

d’équilibre stable ayant toute la région de faisabilité comme bassin d’attraction.

Nous avons ensuite étendu cette analyse pour une formation multi-agents. La condition

d’unicité dès les derniers points fixes se traduit dans la formulation multi-agents par une

condition de configuration unique. Il est important de s’assurer qu’une loi de commande

1Nous considérons par la suite que l’origine est le point d’équilibre du système dynamique à comman-
der. L’existence d’une contrainte adverse signifie que ce point n’est pas accessible au système considéré.

2La région interdite à l’agent représente une région polyèdrale qui contient le point d’équilibre naturel.



ne conduira pas à un comportement cyclique pour les agents, ce qui impliquerait une sur-

consommation d’énergie. Formellement, le fait qu’un ensemble d’agents reste dans (ou

converge vers) une configuration unique et stable, à la suite d’une stratégie de commande

appropriée, est équivalent à dire que dans un espace étendu, il existe de façon unique

un point qui peut être fixé par la même stratégie de commande. Par conséquent, nous

pouvons garantir la stabilité d’une formation multi-agents, mais bien sûr, cela dépend

de la façon le problème d’optimisation est résolu.

Il existe de nombreuses applications à ce travail présentant un intérêt particulier, à savoir

celles où les contraintes statiques ou dynamiques doivent être respectées. Parmi celles-ci

on peut citer en exemple la commande et la coordination d’une plateforme mobile sur

l’océan. Les modules homogènes de base doivent être en mesure d’accomplir le maintien

du poste sur la mer à long terme, en présence de vagues, de vents et de courants. Par

conséquent, les modules indépendants doivent être commandés de manière efficace pour

maintenir le poste aligné. Cette tâche peut être facilement accomplie si chaque module

converge vers différents points fixes convenablement choisis. Par ailleurs, il est bien

connu que l’Atlantique Nord est l’un des environnements les plus inhospitaliers de la

planète. Pourtant, c’est ici que le pétrole (au large des côtes de la Norvège notamment)

et le gaz ont été exploités pendant des années avec un succès remarquable. Afin d’assurer

sa prospérité dans des conditions difficiles, l’industrie offshore repose sur une variété de

technologies innovantes. Un exemple est le vaisseau cargo brise-glace et/ou camion-

citerne qui a besoin de briser la glace autour d’une plateforme. Par conséquent, le

navire brise-glace doit manœuvrer le plus près possible de la plateforme, tout en évitant

la collision avec celle-ci (c’est-à-dire que le navire doit converger vers un cycle limite).

Application réelle - commande de vol de véhicules aériens

sans pilote

Nous avons appliqué et validé les méthodes théoriques proposées dans le suivi de trajec-

toire de plusieurs drones (Unmanned Aerial Vehicles - UAVs) en utilisant le matériel mis

à notre disposition par le Laboratoire des Systèmes et de la Technologie Sous-marine

(LSTS), de l’Université de Porto, au Portugal, au sein duquel j’ai été invitée à séjourner

pendant deux mois.



Les drones sont des appareils volants sans pilote qui ont beaucoup attiré l’attention ces

dernières années, notamment après les tragiques événements survenus le 11 septembre

2001, lorsque le monde entier a remis en question la sécurité à bord des avions et d’autres

moyens de transport aérien. Actuellement, la plupart des drones sont utilisés dans la

planification de missions militaires de soutien de combat sans pilote, la surveillance du

trafic, la surveillance et la recherche de survivants. La gamme des applications civiles

possibles en matière de drones est actuellement en train de s’étendre. Les nombreuses

technologies développées pour les drones militaires sont de plus similaires, voire même

identiques, à celles requises pour les drones civils.

L’un des défis principaux de la recherche est d’améliorer et d’augmenter leur autonomie,

en particulier de permettre l’application de méthodes avancées de commande. Celles-

ci doivent respecter les contraintes de la dynamique du véhicule et de permettre la

reconfiguration de la trajectoire du véhicule dans le cas où des événements inattendus

se produiraient dans le système. L’utilisation combinée de la commande prédictive avec

les concepts de la platitude représente une combinaison importante dans l’état de l’art,

laquelle permet de gérer le contrôle en temps réel, la génération de trajectoire, et peut

faire face aux problèmes de robustesse en utilisant la théorie des ensembles. Par ailleurs,

à notre connaissance, une telle stratégie n’a pas été évaluée dans des essais en vol sur

des véhicules réels.

Au cours des essais sur les drones mis à notre disposition au Portugal, nous avons testé

les différents algorithmes et techniques développés pendant ce projet et les résultats des

tests réels se sont révélés tout à fait satisfaisants.

Les essais en vol ont eu lieu à la Base Aérienne Portugaise OTA en mai 2012 sur les

plateformes appartenant à l’Air Force Académie et le LSTS, laboratoire de l’Université

de Porto. Ainsi, en utilisant des lois de commande prédictive élaborées au cours de

cette thèse et des techniques de platitude différentielle3, l’objectif a été de commander

un drone afin de respecter des points de passage imposés. Pour chaque drone testé,

nous avons, tout d’abord, généré une trajectoire plate4 passant par les points de passage

3Les techniques basées sur la platitude ont permis de générer des trajectoires entre un point de départ
et un point d’arrivée, en passant par plusieurs points de passage imposés par le cahier de charge.

4Les drones sont des systèmes différentiellement plats donc bien adaptés aux problèmes nécessitant
une planification de trajectoires. Un des intérêts de la platitude est de simplifier le problème de génération
de trajectoire, en le ramenant à la recherche d’une trajectoire de la sortie plate par le fait que la sortie
plate décrit complètement le comportement du système.



intermédiaires et ensuite nous avons commandé le drone afin de suivre la trajectoire

imposée en utilisant les techniques de commande la prédictive.

Conclusions

En ce qui concerne les travaux connexes, nous avons constaté une grande variation dans

la définition de la notion d’ “agent”. Les entités hétérogènes dans les systèmes coopératifs

pourraient être aussi simples que les agents scalaires sans aucune dynamique ou bien une

dynamique du second ordre au point de masse des modèles ou même une dynamique non

linéaire avec contraintes de mouvement non holonomes. Pour notre étude, nous avons

considéré le cas plus difficile d’agents avec une dynamique, puisque nous nous intéressons

à la classe d’applications pertinentes dans un contexte de commande. Inutile de dire que

cela signifie que les décisions de commande doivent tenir compte, non seulement des

facteurs exogènes (par exemple, la présence d’obstacles, suivi de références, etc.), mais

également de la dynamique interne (état) des agents et de leurs contraintes dynamiques

(comme le réglage des temps, des caractéristiques non holonomes ou des retards de

transmission).

Ayant appliquée la théorie ensembliste aux systèmes multi-agents, il était naturel d’envisa-

ger des outils spécifiques dans ce contexte. Par exemple, les obstacles et les agents eux-

mêmes ont été décrits comme des ensembles (généralement convexes) et la collision et

les contraintes d’évitement d’obstacles ont été formulées avec les opérateurs ensemblistes

comme l’inclusion d’un élément dans un ensemble ou l’intersection entre les ensembles.

Rappelons également que nous avons fait une série d’hypothèses qui, sans des notions

telles que la région de sécurité, auraient perdu leur sens. En particulier, nous avons

supposé que les perturbations et les incertitudes peuvent être délimitées. Même s’il est

parfois nécessaire de fournir une limite théorique pour les bruits et les perturbations

agissant sur un système, dans la pratique, il est naturel de considérer de telles bornes

ainsi que des contraintes dures.

L’utilisation de la théorie des ensembles est non seulement un moyen pratique de décrire

les contraintes et les comportements, mais elle mène aussi à des résultats intéressants

en soi. Par exemple, l’une des notions fondamentales de la théorie des ensembles est

l’invariance d’un ensemble. Nous avons utilisé cette notion pour décrire les régions



invariantes de sécurité autour d’agents touchés par des perturbations. Ainsi, nous avons

évité de devoir recalculer l’ensemble à chaque pas de temps (comme c’est généralement

le cas dans la littérature).

Un autre élément important de notre approche, les techniques de programmation mixte

en nombres entiers, nous a permis de décrire sous une forme exploitable la région de fais-

abilité non-convexe et non connectée, résultant des contraintes d’évitement d’obstacles

et des autres agents. Des éléments tels que les arrangements d’hyperplans et la fusion de

cellules ont permis de décrire efficacement une telle région de faisabilité. Nous croyons

que les résultats et les idées sur la description d’une région de faisabilité non-convexe

sont utiles non seulement pour le sujet multi-agents, mais aussi dans le cadre plus général

des problèmes d’optimisation non convexes avec contraintes.

Nous avons également lié l’existence et l’unicité d’une formation étroite des agents à

des contraintes sur la structure propre des matrices d’état des agents. Cette analyse

formelle nous a permis de formuler d’intéressantes remarques et montre le lien profond

entre des notions telles que les cycles limites, les points fixes et la conception de la

formation et la commande. Il est important de souligner que ces propriétés dépendent

de la stratégie d’optimisation utilisée, mais du moins dans le cas centralisé (et, dans

certaines conditions, dans le cas distribué), elles peuvent être garanties.

Enfin, nous avons appliqué certains de ces résultats théoriques à une application pra-

tique. Nous avons évalué une combinaison de la commande prédictive et de la platitude

différentielle pour la commande de vol de véhicules aériens sans pilote (UAV). Dans une

première étape, les contrôleurs de vol MPC ont été affinés et testés en simulation tan-

dis que dans une deuxième étape, nous avons exécuté des essais en vol avec des drones

réels (lors d’une visite au laboratoire de LSTS à Porto). Nous signalons qu’il n’est pas

facile de passer de la conception d’un correcteur sur papier à la mise en œuvre en temps

réel. Par conséquent, nous croyons que les résultats en temps réel sont extrêmement

prometteurs et méritent une recherche approfondie.



Perspectives et directions futures

D’autres directions envisagées impliquent d’autres approches théoriques devant être

étudiées et comparées, notamment en termes de robustesse face à un environnement

difficile.

Dans la littérature, résoudre des problèmes d’optimisation dans des régions non convexes

n’est pas une question nouvelle et nous avons montré que les techniques de program-

mation mixte en nombre entiers constituent l’un des meilleurs moyens de faire face à ce

type de problème. Avec toutes les améliorations importantes que nous avons réalisées,

la complexité de calcul est encore très dépendante de la formulation MIP et limite son

utilisation pour les problèmes de taille relativement petite. Nous croyons que nous pou-

vons aller plus loin dans la promotion de la nouvelle interprétation géométrique des

contraintes non convexes, à l’origine les problèmes rencontrés avec les systèmes multi-

agents. La concentration sur les manières compactes de décrire la région de faisabilité

permettra d’éviter de faire des détours inutiles en direction de la formulation “entier-

mixte”. En particulier, nous voulons éviter de décomposer explicitement l’arrangement

des hyperplans dans des cellules car cette opération entraine une charge importante de

calcul.

Nous pensons également que des améliorations significatives peuvent être apportées dans

l’étude de l’existence et de l’unicité des formations multi-agents. En particulier, nous

aimerions approfondir les liens entre l’assignation de structure propre, induisant des

contraintes d’invariance, et le comportement limite du point de vue de la formation

multi-agent. Par exemple, dans le présent manuscrit nous nous sommes concentrés sur

l’existence et l’unicité d’un point fixe. Cela peut effectivement ne pas être possible dans

certains cas (un drone ne peut pas avoir une position stable en vol). Dans un tel cas, nous

aimerions pouvoir déterminer un cycle limite (optimal ou économique) et en déduire les

propriétés qui le caractérisent : unicité, bassin d’attraction, stabilité, etc.

Pendant les essais expérimentaux en Portugal, nous avons remarqué l’influence du re-

tard de communication sur la boucle de commande. Ainsi, une perspective intéressante

s’avère être la prise en compte de ce retard de communication dans la loi de commande.

Une autre piste intéressante est de faire voler plusieurs drones en formation afin de

valider toutes les théories développées au cours de ce travail de thèse.
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Notation

The conventions and the notations used in the manuscript are classical for the control
literature. A detailed description is provided in order to increase the coherence

among chapters and facilitate comparing the techniques discussed.

Let R, Z and N denote the field of real numbers, the set of integers and the set of non-
negative integers, respectively. Notations R

n and R
m×n denote the vector field and the

matrix field of real numbers, respectively. The same notation adopted for the sets of
integer and non-negative integers.

For the signals manipulated in the manuscript the index t is used for continuous time
and the index k, for discrete time, respectively. For the time index as parameter of
variable, bracketed behind variable is used, e.g., x(k) ∈ R

n.

Absolute values and vector inequalities are considered elementwise (unless otherwise
explicitly stated), that is, |T | denotes the elementwise magnitude of a matrix T and x ≤ y
(x < y) denotes the set of elementwise (strict) inequalities between the components of
the real vectors x and y. The ceiling value of x ∈ R, denoted by ⌈x⌉, is the smallest
integer greater than x.

For a set S ∈ R
n we denote with s̄ = max

s∈S
s the elementwise maximum, where each

element is computed as s̄i = max
s∈S

si. In addition, the elementwise minimum, s = min
s∈S

s,

is defined in a similar way. ‖z‖M is the weighted Euclidean norm, i.e.,
√

(zTMz).

For a matrix A ∈ R
n×m and a set S ⊆ R

m, we define the set:

AS = {z ∈ R
n : z = Ax for some x ∈ S} .

The closure of a set S is denoted by cl(S).

B
n
p = {x ∈ R

n : ‖x‖p ≤ 1} denotes the unit ball of norm p, where ‖x‖p is the p-norm
of vector x. The notation Bn

∞ represents the ∞-norm ball in R
n of radius one (p = ∞

in B
n
p ). In addition, given a compact set S ⊂ R

n, Bn
∞(S) denotes the set of the form

Bn
∞(S) = {x : s ≤ x ≤ s}, where the vector s, respectively s, is the elementwise

xxxvi
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minimum, respectively maximum, of S defined above (note that Bn
∞(S) is the “smallest

box” containing S).

Notations lp(n, d) and qp(n, d) represent the complexity of solving a linear program,
quadratic program respectively, with n constraints and d variables.

The collection of all possible N combinations of binary variables will be denoted by:

{0, 1}N = {(b1, . . . , bN ) : bi ∈ {0, 1} , i = 1, . . . , N} .

For a binary signal f with values in {0, 1}, notation f̄ denotes f̄ = 1− f .

ei denotes the ith standard basis vector.

A Voronoi region, Vi associated to a collection of points pi is defined by:
Vi = {x ∈ R

n : d(x, pi) ≤ d(x, pr),∀i 6= r}, where d(x, y) denotes the distance between
the points x and y.

Minkowski’s addition of two sets X and Y is defined by:

X ⊕ Y =
{

x+ y : x ∈ X, y ∈ Y
}

.

Let x(k+1|k) denote the value of x at time instant k+1, predicted upon the information
available at time k ∈ N. It is written R ≻ 0 to denote that R is a positive definite matrix
and Q � 0 a positive semidefinite matrix. The length of the prediction horizon is denoted
as Np and the time step within prediction horizon is denoted by l.

The set of agents is represented by Na and I , {1, . . . , Na} defines the collection of all
agents indices.

The set of fixed obstacles is denoted by No and Io , {1, . . . , No} defines the collection
of all obstacles indices.

The target/reference values for x is denoted by xref and the target/reference for sub-
system i is denoted xref,i.

The spectrum of a matrix M ∈ R
n×n is the set of its eigenvalues, denoted by Λ(M) =

{λi : i =, . . . , n}. A point xe is a fixed point of a function f if and only if f(xe) = xe
(i.e., a point identical to its own image).



Acronyms

BMI - Bilinear Matrix Inequalities

DOF - Degree Of Freedom

IMC - Inter-Module Communication

LMI - Linear Matrix Inequalities

LP - Linear Programming

LQ - Linear Quadratic

LTI - Linear Time Invariant

MIP - Mixed-Integer Programming

MPC - Model Predictive Control

mRPI - minimal Robust Positive Invariance

NP-hard - Non-Polynomial hard

PWA - Piecewise Affine

QP - Quadratic Programming

RPI - Robust Positive Invariance

TP - Transportation Problem

UAV - Unmanned Aerial Vehicle

xxxviii



LIST OF ALGORITHMS 1



Chapter 1

Introduction

Nowadays, multi-agent systems have been identified as a new paradigm for a wide
array of applications in control including, among others, scheduling and planning

[Colombo et al., 2006], [Zhang et al., 2006], networked control [Dimeas and Hatziargyriou,
2005], hybrid control [Khosla and Dillon, 1997], [Fierro et al., 2001], condition monitor-
ing [McArthur et al., 2007], automation [Buse et al., 2003], traffic and transportation
networks [Burmeister et al., 1997], [Negenborn et al., 2008], water distribution networks
[Overloop et al., 2010]. The multi-agent systems can be interpreted as a comparably
recent concept with its origin in artificial intelligence, a branch of computer science.
Following their transition in history, in the mid to late 1990’s, multi-agent systems have
replaced single agents as the computing paradigm in artificial intelligence [Wooldridge
et al., 1995]. In the last twenty years, such systems started to be widely applied in
different areas and for various purposes [Shen et al., 2006], from internet software to
networked power stations, from the study of macro and micro biological interactions to
complex physical phenomena and, most of all, allowing to industry to gain experience
in the use of multi-agent systems technology and to evaluate its effectiveness [Marik
and McFarlane, 2005]. Another important reason for their current ubiquity is that the
complexity of the systems to be controlled is increasing more and more. It is often the
case that a system is distributed in space, as well as in time and its treatment as a
unique entity is not feasible anymore. Hence, the motivation for the increasing interest
in multi-agent systems research is represented by their ability to enhance performance
along the dimensions of computational efficiency, reliability, extensibility, robustness,
maintainability, flexibility and reuse.

First of all, in order to find the benefits of multi-agent systems in control engineering, it
is necessary to appropriately define them. There are various definitions of an agent, the
foremost reason for this is due to the universality of the word and the fact that it cannot
be owned by a single community. Most of the definitions come from computer science
community and they all share three basic concepts, the notion of agent, its environment

2
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and its autonomy. The definition of [Wooldridge et al., 1997] is often cited: “an agent is
a hardware or a software entity that is situated in some environment, and that is capable
of autonomous action in the environment in order to meet its design objectives”. As the
definition indicates, the agents are either physical (hardware) entities, which is the case
of robots, vehicles or pedestrians, in a physical environment (e.g., the control system) or
virtual entities in a computing environment (e.g., data sources, computing resources),
which is the case of software agents. However, for a discussion of agents in control, only
the first case is of interest here, since there are direct applications in control engineering.
[Wooldridge et al., 1997] also cites the first example of an agent as “any control system”
using the thermostat device as an instance of a control system. It is situated in its
environment, it reacts to temperature changes of environment and also exhibits a degree
of autonomy.

A multi-agent system can be defined as a three-tuple comprising of a set of agents (ho-
mogeneous or heterogeneous), an environment and the ability to negotiate and interact
in a cooperative manner [Wooldridge, 2002]. According to this definition we need to dif-
ferentiate from the cases when we have several agents but the behavior is hostile (and not
cooperative). Such a situation is to be found in adversary situations (e.g., a anti-missile
trying to catch with a missile) or zero-sum games [Basar and Olsder, 1995] where the
gain of one agent comes at the detriment of another agent. In other words, multi-agent
systems represent a network of individual agents that share knowledge and communicate
with each other in order to solve a problem that is beyond the scope of a single agent
[Srinivasan, 2010]. In a multi-agent system, the action of an agent not only modifies its
own environment but also the environment of its neighbors. This necessitates that each
agent must predict the action of the other agents or receive meaningful information from
them in order to compute its future control actions.

As the multi-agent systems community has established itself as an important area of com-
puter science, there is much to be learned by seeking connections to control engineering.
Nevertheless, the growing awareness of multi-agent systems in the research community
rises in the same time basic questions related to their role in control engineering:

• are there dynamical systems which can be handled naturally in the multi-agent
framework? In what circumstances do this make sense?

• are there specific advantages of using these constructions ? what strategies/ideas
can be adapted from the computer science field?

• how to design such a system and how to implement it in a control engineering
framework?

The presence of these questions leads to a number of challenging issues that need to be
taken into account. The next step is to identify details about these challenges in order
to provide the appropriate design methodologies and implementation approaches which
are currently available.
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In the sequel, we will present the state of the art in multi-agent dynamical systems from
a control theoretic point of view, the main sources of inspiration in this endeavor being
the comprehensive bibliographical study [Shamma, 2007] and the monograph of [Qu,
2009].

1.1 Multi-agent dynamical systems from a control theo-

retic perspective

Innovations in control engineering are crucial for many of today’s challenges, such as
improving data communication, information, processing, creating a sustainable energy
and water supply, preventing and treating diseases. As already mentioned, multi-agent
systems are becoming a staple topic of control research. To enumerate just a few of
the success stories we may mention: The work of the Caltech team who conceived, de-
signed, build and optimized the autonomous vehicle called “Alice” at the 2005 DARPA
Grand Challenge [Murray et al., 2005]. Alice used a highly networked control system
architecture to provide high performance, autonomous driving in unknown environment
[Cremean et al., 2006]. The exploration of Mars started in 2003 by robots “Spirit” and
“Opportunity”, where the robots did an excellent job providing a fascinating descrip-
tion of the characteristics of the Mars soil [Norris et al., 2005]. Nowadays, the NASA
planetary robotic missions are very well developed succeeding to performed many ac-
tions under autonomous control and with some kind of intelligence embedded in the
robotic system of “Curiosity”, the rover which explores now the planet. Other exam-
ples include, the control of formation flying satellites, also a DARPA project [Alfriend,
2010], the PITVANT flight operations using different types of Unmanned Aerial Vehicles
(UAVs) [Gonçalves et al., 2011], [Sousa et al., 2004] and many other examples.

It has became obvious that the study of dynamical systems is essential in the control
systems area. In the control of dynamical systems, control decisions are expected to
be derived and implemented over real time. Feedback is used extensively to cope with
uncertainties about the system and its environment.

It is often the case that a group of agents can seek together to achieve a global objective,
or they can individually have their own objectives to pursue. Therefore, the coordination
of the agents is required, that is, they need to coordinate their actions for improving
the global efficiency. This is foremost called cooperative control of multi-agent systems
and it refers to a group of dynamical agents that share information or tasks in order
to accomplish a common (maybe not singular) objective [Murphey and Pardalos, 2002].
Just to give one example of cooperative multi-agent systems consider unmanned aircrafts
patrolling wooded areas for fire or executing search and rescue operations [Valavanis,
2007].
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The issues faced when dealing with the cooperative control of multi-agent dynamical
systems include:

motion planning which responds to the classical question “how to get there?”;

formation control in order to position themselves in a fixed position relative to each
other;

centralized, distributed or decentralized control which handles the inter-agent com-
munication problem and the structure of the control law;

constraints handling which usually need to be integrated in the design control;

stability depending on the nature of the problem (the stability may be understood as
formation stability, tracking within some bounds or simply that the agents remain
in a bounded region);

robustness with respect to disturbances and perturbations which affect the system
needs to be considered; multi-agent specific issues also have to be handled (e.g.,
moving obstacles, estimation of other agents’ state).

1.1.1 Multi-agent dynamical systems motion planning and real-time

control

The objective in the multi-agent systems motion planning problem is to generate real-
time trajectories to guide a collection of agents to their destination while avoiding ob-
stacles and also avoiding each other. The destinations can be specified as absolute or
relative locations, a certain coverage diagram or a general direction of flow [Shamma,
2007]. The most common examples include formation keeping problem [Tillerson and
How, 2002], rendevouz problem [Dimarogonas and Kyriakopoulos, 2007] or swarm of
vehicles [Olfati-Saber, 2006]. Next, the different approaches used in the literature are
presented.

Graph theoretic methods model the execution of a multi-agent system as a graph
which contains high-level description of the system topology in terms of objects re-
ferred to as vertices and edges [Mesbahi and Egerstedt, 2010]. This approach employs
connections between graphs and their algebraic representation in terms of adjacency,
Laplacians and edge Laplacian matrices as well as different aspects of the spectrum of
graph Laplacian [Blondel et al., 2009].

Game theory approaches are concerned with the interactions between multiple decision-
makers, and there are clearly relevant to cooperative control [Marden and Shamma,
2007]. The convergence to the Nash equilibrium in zero sum or general sum games is
of great interest in game theory. There is also a variety of important concepts, such as
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mechanism design, bargaining, coalition theory, and correlated equilibrium. All these
concepts are developed with the intention of being models of social phenomena. The ad-
versarial interactions between the agents are often tackled using game theory approaches.
In adversarial situation the agents must address the possibility of other adversary agents
that are also capable of strategic planning [Bauso et al., 2008].

Potential field approaches consists in constructing a scalar function called the poten-
tial that has a minimum, when the agent is at the goal configuration, and a high value
on obstacles. Everywhere else, the function is decreasing towards the goal configuration,
so that the agent can reach the goal by following the negative gradient of the potential.
A shortcoming of the method is the possibility of traps (local minima), a problem that
can be overcome by using ideas such as a randomized potential field. In [Koditschek,
1992] a historical review of the potential field approach can be found.

Viability theory designs and develops mathematical and algorithmic methods for in-
vestigating the adaptation to viability constraints of complex systems that combine both
continuous and discrete dynamics and both control inputs and disturbances [Aubin et al.,
2011]. Such uncertain, hybrid systems systematically appear in the control of large scale
multi-agent systems such as automated highways or air traffic management. In this
context, problems as controlled invariance represent challenging issues which needs to
be taken into account [Crück and Saint-Pierre, 2004]. For example, in an automated
highway system the controller of each car should be design such that, without regard of
the uncertainty about the actions of the other cars, collisions between cars are avoided
[Gao et al., 2004].

Optimization-based control approaches in general terms cover the control design
based on optimization techniques. These can cover the classical optimal control, the
LMI-based techniques, model predictive control or interpolation-based techniques. From
a methodological point of view, a particularly useful approach of control for collaborative
systems is receding horizon optimization-based control, also known as Model Predictive
Control (MPC) [Goodwin et al., 2005], [Rawlings and Mayne, 2009]. An important
aspect of the predictive control approach is its ability to handle generic state and control
constraints. This issue will also be the main focus of the present thesis.

The last class of methods deserves a special attention. It is known that MPC is not a
new design approach and it has extensively been applied to systems with slow dynamics
(e.g., chemical process plants), allowing the use of a sampling rate large enough with
respect to the optimal control computations between samples [Murray, 2009]. Moreover,
these systems are governed by constraints on states, inputs or a combination of both.
In recent years, it has become possible to apply receding horizon strategy to systems
with faster dynamics, due to cheap computational power and theoretical advances on the
optimization algorithms and their specific tailoring for the structure of MPC problems
[Bock et al., 2007], [Diehl et al., 2009]. There is a broad variety of practical applications
that can be treated by receding horizon control in process control and related industrial
applications [Qin and Badgwell, 2003], [Morari et al., 2002], road traffic networks [Hegyi
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et al., 2005], [Baskar et al., 2006], water control for irrigation canals, water supply and
sewer networks [Negenborn et al., 2009], [Ocampo-Martinez and Puig, 2009], [Overloop
et al., 2010]. Also, this technique is gaining an increasing attention in other fields as
mine planning [Goodwin et al., 2008], [Goodwin et al., 2006], food processing [Shaikh
and Prabhu, 2007], drug delivery [Parker et al., 2001], [Bleris et al., 2007] to cite only
a few. Analyzing this broad field of application, the natural conclusion is that, the
receding horizon control is, by its optimization-based approach a natural candidate for
multi-agent problems, in that such a technique can admit very general objectives, as
for example, convergence to a formation, trajectory tracking, while taking into account
collision avoidance constraints.

1.1.2 Multi-agent formation description and management

The characterization and the convergence towards a formation represents classical issues
for the control of cooperative systems. Research on formation control dealt with ground
vehicles [Fax and Murray, 2004], [Lin et al., 2005], surface and underwater autonomous
vehicles (AUVs) [Fossen, 1994], [Aguiar et al., 2006], unmanned aerial vehicles (UAVs)
[Scharf et al., 2004], [Schouwenaars et al., 2005], micro and macro satellite clusters
[Schaub et al., 2000]. The definition of formation is specified in many different ways
in the literature, as for example, the rigid formation [Saber et al., 2003], [Fontes et al.,
2009] or a desired figure in the plane [Balch and Arkin, 1998]. According to [Qu, 2009], a
formation represents an organization of a group of agents moving together under certain
constraints, in a confined space, with common goals. Control to formation is in a way a
consensus1 problem, since in order to converge to formation the vehicles have to achieve,
among other things, the same velocity, which is called flocking motion 2 in the literature.

Several important elements are needed for solving the formation control problem:

• how to characterize the formation?

• what are the control strategies used for formation control?

• how to guarantee the convergence to a predefined formation?

• how to preserve the formation?

Usually the formation is specified through desired inter-agent distances (e.g., diamond,
wedge, line, triangle) in the static case and then, in real-time the specified distances

1Consensus problem is being understood as having the agents brought to a global agreement on a
state value [Shamma, 2007].

2Flocking motion is being understood technically as a convergence property on the agent velocity and
their relative distances, while a mission will be the convergence of the flock to a specified point in the
workspace [Shamma, 2007].
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need to be maintained while the agents are in motion. There are also cases where
a scale invariant formation is necessary [Mesbahi and Egerstedt, 2010]. This type of
formation specification makes sense in applications where the environment is cluttered
and a scaled contraction or expansion of the formation may be required to negotiate the
environment3. An alternative approach to this type of formation specification is given for
example in [Fontes et al., 2009], where a switch among a collection of a priori predefined
formations is employed. Using graph theory approaches, examples of various ways by
which formations can be specified include deviations from desired positions, as is the
case in the work of [Ogren et al., 2001], deviations from desired inter-agent distances
[Jadbabaie et al., 2003], or as dissimilarities between graphs encoding the desired and
actual formations [Ji and Egerstedt, 2007].

In a more general framework, the formation control problems can be defined first by a
desired geometric shape and second, as an assignment problem [Mesbahi and Egerstedt,
2010]. Once, a set of agents is to achieve a predefined configuration, one has to decide
if the identity of each individual agent has a particular importance (i.e., the indices in
the predefined target configuration need to correspond to particular indices associated
with the actual agents). If it is the case, then an assignment problem needs to be in-
tegrated in the formation control design in order to decide which agent should take on
what role in the formation. It is well known that the standard static assignment prob-
lem is a special case of the so-called Hitchcock Transportation Problem (TP) [Palekar
et al., 1990], [Burkard, 2002]. Furthermore, the Transportation Problem is a combinato-
rial optimization problem, with a potentially prohibitive computational requirement for
large formation. In the case of linear assignment problem, the optimal assignment can
in fact be efficiently computed. One classical method to do this is the so-called “Hun-
garian algorithm” [Kuhn, 1955], [Hallefjord Kurt, 1993] with a polynomial complexity of
O(n3). In the dynamic assignment problem, agent locations, target locations, and target
constraint sets are all time-varying, which induces time-variations in the overall utility
function. The problem is then to design dynamic agent-target assignment policies whose
performance is measured by time-aggregated behavior such as the rate of successful tar-
get assignments. The assignment problem formulation has received much attention in
cooperative control studies therefore many algorithms of polynomial complexity exists
to solve it [Bertsekas, 1998], [Bertsekas and Castanon, 1991], [Bertsekas, 1992]. In [Schu-
macher et al., 2002], multiple assignment problems with evolving subsets of the agents
and tasks are iteratively solved, thus allowing their algorithm to produce a multiple task
tour solution that simulations show to be close to optimal for their scenario. The work
uses a centralized approach in which each agent solves the same problem independently
and then implements its own part of the resulting assignment. It is therefore highly
dependent on the agents starting from the same information in order to guarantee that
they arrive at the same solution.

3Consider the example of three agents which are to traverse a narrow passage while maintaining a
desired shape. The way this can be achieved is by scaling the formation through the maneuver so that
a tighter formation is used while going through the passage.
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One of the most used approaches to formation control is the so-called leader-follower
[Das et al., 2002], [Mariottini et al., 2009] where one agent designed as the leader provides
a route towards the destination for the whole group. The other agents follow the leader
and regard it as the reference point while maintaining a desired distance and orientation
to the leader. Due to the very important role of the leader, any failure on its part will
affect the whole system. Nevertheless, the leader-follower structure is easy to implement
since a reference trajectory is clearly defined by the leader and the internal formation
stability is induced by the stability of the individual vehicles control laws [Consolini
et al., 2009]. A practical framework for on-line planning and control of multiple mobile
robots moving in a leader-follower formation in a dynamically changing environment was
proposed in [Hao, 2004]. The authors develop trajectory plans for the leader and use
a graph search method to find a collision free and deadlocks free paths quickly for the
formation group. There is also virtual-structure formation approach where the entire
formation is treated as a single rigid body and the agents maintain a specific geometry
among each other [Tan and Lewis, 1996], [Ren and Beard, 2004], [Beard et al., 2001].
For example, in [Tan and Lewis, 1996], a strategy is presented to arrange a large-scale
homogeneous group of agents in a geometric formation by using potential functions with
preset attachment sites. However, there is a limited number of formations that can be
achieved and the method is computationally expensive.

Regarding the stability analysis, the Lyapunov method is extensively used to study the
asymptotic behavior of multiple agent formation. [Jadbabaie et al., 2003], [Tanner et al.,
2005] investigate the motions of vehicles modeled as double integrators. Their goal is
for the vehicles to achieve a common velocity while avoiding collision. The control laws
involve graph Laplacians for an associated undirected graph but also nonlinear terms
resulting from artificial potential functions. Rather than reaching a predetermined for-
mation, the vehicles converge to an equilibrium formation that minimizes all individuals
potentials. Furthermore, [Tanner et al., 2007] prove that the stability of motion and
convergence to the destination is not affected by the control discontinuities induced by a
dynamically changing interconnection topology, and are being established using results
from algebraic graph theory and Lyapunov stability analysis for nonsmooth dynamical
systems.

1.1.3 Constraints handling

In many multi-agent control engineering problems, collision avoidance represents a fun-
damental issue that needs to be integrated in the design strategy. Usually, these issues
are addressed as soft or hard constraints. In the first case, usually are used Potential
Filed approaches, where the constraints are penalties in the cost function, and the second
case, refers to constrained optimization problems where the constraints appear explicitly.
The choices are dual, the first approach considers a more complicated cost function and
simple (or no-) constraints and the second approach considers a simple cost function but
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relatively complicated constraints. Actually, the big problem comes not from the exis-
tence of the constraints but from their nature. Imposing collision and obstacle avoidance
gives rise to non-convex constraints. This means in turn, a non-convex and (possibly) a
non-connected feasible region, which is known to loose some important computational
advantages of the established (optimization or design) techniques, which are effective
under some appropriate convexity assumptions [Boyd and Vandenberghe, 2004].

In the literature, various control methods for solving the collision avoidance problem are
related to the potential field approach [Tanner et al., 2007], graph theory [Lafferriere
et al., 2004] or other optimization-based approaches which handle indirectly the con-
straints by penalty terms in the cost function. One shortcoming of all these methods is
that the constraints may not be satisfied. A common point of most publications dealing
with the collision avoidance problem is the hypothesis of “punctiform” agents, which is
far from the conditions in real world applications. In many of them, the relative po-
sitioning between agents becomes important, such as large interferometer construction
from multiple telescopes [Schneider, 2009] or the air traffic management, two aircraft are
not allowed to approach each other closer than a specific alert distance [Dimarogonas
et al., 2006]. Spherical shape for the agents is considered in [Dimarogonas and Kyri-
akopoulos, 2006] and a navigation function is used in order to guarantee collision free
behavior in the group formation, [Barnes et al., 2009] consider ellipsoid safety regions
for the agents moving in a potential field environment. Other works, as for example,
[Patel and Goulart, 2011] propose a gradient-based optimization algorithm for trajectory
generation for aircraft avoidance maneuvers where the obstacles are defined as convex
regions. Nevertheless, it is important to mention that none of these works do not con-
sider obstacles or safety regions which cover the natural equilibrium position zero (for
example the origin for linear time invariant dynamics).

Methods based on Mixed-Integer Programming (MIP) (see the comprehensive monogra-
phy [Jünger et al., 2009]) have the ability to include explicitly non-convex constraints
and discrete decisions in the optimization problem. There is a growing literature about
optimization problems, which can be formulated through the use of MIP techniques.
For example, [Schouwenaars et al., 2001], [Richards and How, 2005], [Ousingsawat and
Campbell, 2004] focused their work on optimization of agent trajectories moving by the
obstacles. Multi-vehicle target assignment and intercept problems are studied by [Earl
and D’Andrea, 2001], [Beard et al., 2002]. MIP, was also useful to coordinating the
efficient interaction of multiple agents in scenarios with many sequential tasks and tight
timing constraints (see, [Richards et al., 2002], [Schumacher et al., 2003]). In Bemporad
and Morari [1999], [Bemporad et al., 2000], the authors used a combination of MIP and
Model Predictive Control (MPC) to stabilize general hybrid systems around equilibrium
points. [Bellingham et al., 2002] introduced MIP in a predictive control framework to
plan short trajectories around nearby obstacles.

However, despite its modeling capabilities and the availability of versatile solvers, MIP-
based approach has some serious numerical drawbacks. As stated in [Garey and Johnson,
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1979], mixed-integer techniques are classified as being NP-hard, i.e. the computational
complexity increases exponentially with the number of binary variables used in the prob-
lem formulation. Consequently, these methods could not be fast enough for real-time
control of systems with large problem formulations. There has been a number of at-
tempts in the literature to reduce the computational requirements of MIP formulations
in order to make them attractive for real-time applications. In [Earl and D’Andrea,
2005], an iterative method for including the obstacles in the best path generation is pro-
vided. Other references, like [Vitus et al., 2008], consider a predefined path constrained
by a sequence of convex sets. In all of these papers, the binary variables reduction is not
tackled at the MIP level, but, instead, the original decision problems are reformulated
in a simplified MIP form.

1.1.4 Centralized vs. distributed vs. decentralized control

From the point of view of inter-agent communication we can differentiate between several
strategies [Scattolini, 2009]. They are on one hand determined by numerical difficulties
(too hard to solve a certain optimization) or by communication limits/geographical dis-
tribution. Centralized control is, from a theoretical point of view, the easiest way to
handle such problem, since it assimilates the multi-agent system with a single extended
system. Needless to say this increases the computational effort and make some possibly
unrealistic assumptions about communication range and capacity. The other extreme is
represented by the decentralized control where the communication and inter-dependence
in general is reduced to a minimum. In between, and maybe the most challenging case
is the distributed control which aims for the optimality of the centralized approach with
the costs of the decentralized one. More precisely, the distributed control usually means
a decomposition of a large scale system into a set of several smaller subsystems (“neigh-
borhoods”). The rationale of this approach is to provide subsystems which have fewer
decision variables and are affected by fewer constraints (thus making the optimization
problems easier to solve). This design requirement means that we aim for subsystems
which are loosely inter-coupled, i.e., a given subsystem is affected by only a few other
subsystems [Scattolini, 2009].

As a field of application, the design of vehicle formation through the use of centralized
MPC is detailed in [Dunbar and Murray, 2002], where the authors formulate and nu-
merically solve a nonlinear, constrained MPC problem, where the terminal state consists
of a family of equilibria. In their approach there is no leader/follower architecture, al-
though a formation reference is defined and a virtual leader could be considered. The
control objective is to steer the set of states to an equilibrium formation, therefore the
vehicles are stabilized to an asymptotically stable invariant terminal set, rather than a
precise location for each vehicle in the formation. In [Keviczky et al., 2006] and [Dun-
bar and Murray, 2006], decentralized and distributed MPC algorithms are developed
for systems with nonlinear, decoupled dynamics and the focus is on the synthesis of a
control law, not the solution of optimization problems. The authors present first the
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centralized problem and then, for the decentralized and distributed problems break the
centralized one into distinct MPCs of smaller size. Next, [Li et al., 2005] presents an
algorithm for distributed MPC of linear systems without constraints, where the sub-
problems are solved in parallel until the Nash equilibrium is reached. Furthermore,
[Venkat et al., 2005] reports a cooperative-based distributed MPC algorithm for linear
systems that converges to a centralized solution and gives appropriate conditions for
closed-loop stability. Similar results on optimization are obtained in [Camponogara and
De Oliveira, 2009], where a decomposition of the global problem is consider in order
to ensure cooperative behavior of the agents. Furthermore, [Negenborn et al., 2008]
addresses the solution of optimization problems within a distributed predictive control
framework, where Lagrangian duality is applied in order to handle coupling variables
among neighboring agents. Finally, other works consider the decentralized navigation
using gradient-based methods [Dimarogonas et al., 2006], [Tanner et al., 2007], [Barnes
et al., 2009].

1.2 Thesis orientation

From the literature review presented above it is clear that the multi-agent domain is
extremely large and heterogeneous. Thus, in this thesis we will limit to a certain area
an explore what can be done under certain limitations and assumptions.

The main idea of the present work is to use optimization-based decision making and
the set-theoretic tools and apply them to all aspects of the multi-agent problem. This
is of course, not entirely new but here we employ these principles in a systematic man-
ner. In this context is normal to have some limiting assumptions. For example, we
consider bounded perturbations, disturbances and sometimes, obstacles. Without this
basic assumptions is not possible to have bounded set representation and thus, part of
the developments cannot reach final stability/boundedness conditions. Still, such as-
sumptions are not excessively harsh since, in practice, it is natural to have bounds for
noises and perturbations, and even for the neighborhood on which a specific system is
able to deploy sensing capacities.

Since we use sets in the problem (and specifically model description) it is also natural to
consider hard constraints. This means that, usually, the optimization problems under
consideration are constrained. The alternative will be to consider them implicitly via
some appropriate penalty functions - as they are e.g., in the Potential Field methods.
Still, they can be adapted and we have shown this in the manuscript. The set-theoretic
framework allows the analysis of fundamental properties as the invariance of a set for
some dynamics. Using this notion, it will be possible to describe safety regions around
each agent and these regions will not be recomputed at each instant of time because
they are time invariant.
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We are also interested characterizing formations from a geometrical point of view. The
issues of existence, stability and uniqueness of a formation can be rephrased as the
existence, stability an uniqueness of a fixed point in some appropriate extended space.
In the presence of non-convex constraints (as imposed for example, by obstacle and
collision avoidance), the fixed point becomes restricted by adversary constraints making
thus the natural equilibrium infeasible. We consider this analysis interesting both, as a
theoretical result and because of the links it provides with set theory and limit behavior
of an agent.

1.3 Contributions of the thesis

This thesis can be placed in a line of research containing the results [Richards and How,
2002], [Richards and How, 2005], [Tanner et al., 2007]. More precisely, we are focusing
on a multi-agent systems optimization-based control scheme based on the combination
of Model Predictive Control (MPC) and set theoretic methods. With respect to these
studies, we enhance the construction methods (with contributions towards the geomet-
rical interpretation) and open new directions in the exploration of formation control
problem of multiple agents in the presence of non-convex constraints. In particular, we
put the formation design and the collision avoidance conditions as geometrical problems
and proceed to solve them into a mixed integer programming context. Of course, this
is not entirely new but we try in this manuscript to look at the geometrical meaning of
the problem and to optimize in regards to it (from complexity and performance points
of view). This will allow reducing the computational cost and the efficient handling of
an increased number of constraints.

Not in the least, we give a significant amount of attention to the generation and conver-
gence towards a formation. Moreover, we proceed to provide guarantees of uniqueness
and existence of such a formation as conditions on the eigenstructure of the state ma-
trices of the agents. These properties are dependent on the optimization scheme to
be considered, but at least, in the centralized (and, in certain conditions, distributed)
setting, they can be guaranteed.

It is worth mentioning that all these constructions have a practical justification. There
are situations where a tight/predefined formation is required [Sousa et al., 2000], [Girard
et al., 2001], [Girard et al., 2005] and where our results can be applied.

In [Prodan et al., 2011b] we decomposed the formation control problem in two separate
problems. First, the ideal configuration was described starting from the definitions of
ultimate bounds for the agents dynamics in the presence of additive disturbances. This
choice is adopted in order to guarantee a degree of robustness despite the fact that the
real-time control is performed using nominal prediction models. Once the positions in the
formation are established, safety regions are defined around the nodes of the formation.
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Second, in real-time, a receding horizon combined with task assignment relative to the
minimal configuration is employed.

Furthermore, in [Prodan et al., 2012c], we brought enhancements in the previously de-
scribed control design method, which enables the stabilization of the multi-agent for-
mation. We show that, for the convergence to the predefined formation an additional
fixed point constraint (i.e., the target positions are also equilibrium points for the con-
sidered dynamics) must be taken into account. Moreover, we have obtained considerable
advances in this direction by using efficiently Mixed-Integer Programming (MIP) tech-
niques in order to derive a coherent description of the feasible region in the solution
space. A novel method of reducing the number of binary variables for representing
the non-convex feasible region was first presented in [Stoican et al., 2011b] and then
extended to non-convex non-connected feasible regions in [Stoican et al., 2011c]. The
notable improvements which enabled the minimization of the number of constraints were
all gathered in the paper [Prodan et al., 2012e].

We have explored the formation control problem from a centralized [Prodan et al., 2011b],
[Prodan et al., 2012c], distributed [Prodan et al., 2012f] and decentralized [Prodan et al.,
2012d] point of view. In each of these papers, we highlighted the strengths and weak-
nesses of theses approaches. The centralized MPC implementation offers the best theo-
retical guarantees for the multi-agent formation stability but is numerically cumbersome.
On the other hand, we partitioned the set of agents into neighborhoods and solve a dis-
tributed control problem [Prodan et al., 2012f].

Since the MIP formulation is inherently difficult to solve, in [Prodan et al., 2012d] we
discuss a decentralized approach for the formation control problem using a Potential
Field methodology [Tanner et al., 2007]. In this case, the constraints are no longer hard
but rather soft in the sense that we impose penalties in the cost function. A particular
contribution here was represented by the use of polyhedral norm in order to construct
penalty functions that take into account the shape of the safety region associated to each
agent.

As previously detailed, there are various methods for formulating and solving the multi-
agent optimization problem. The common factor of all these methods is the presence
of non-convex constraints. Hence, solving problems over non-convex regions does not
represent a new issue in the literature, but in [Prodan et al., 2011a] and [Prodan et al.,
2012b] we go further, in the sense that the natural unconstrained equilibrium point (the
origin for the case of linear dynamic systems) becomes infeasible. More precisely, the
type of constraints that we consider makes the convergence of an agent dynamics towards
the origin impossible to fulfill. In [Prodan et al., 2011a] we propose an explicit solution
to this problem for second-order dynamical systems and extend [Prodan et al., 2012b]
by using a dual-mode control approach.

The theoretical methods detailed above were tested on several benchmarks, simulations
and practical examples. In [Prodan et al., 2012a], we presented software-in-the-loop
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simulations for the predictive control for trajectory tracking of Unmanned Aerial Vehi-
cles (UAVs). In order to generate a feasible trajectory we made use of the differential
flatness concepts [Fliess et al., 1995]. The proposed trajectory tracking mechanism takes
into account way-point conditions and also allows to obtain off-line linearizations by the
use of a precomputed Voronoi diagram of the linearized models along the flat trajec-
tory. Furthermore, the predictive control approach was validated through real flight test
results for the control of an autonomous UAV.

In [Prodan et al., 2010] we solve the trajectory tracking problem for multi-agent forma-
tion under collision avoidance constraints. Besides maintaing a safety distance between
the agents, we were also interested in imposing velocity constraints for an agent. These
represent, for example, safety limits, such as a minimum maneuvering velocity near an
obstacle or another agent. Based on the information received from the MPC formula-
tion, the constraints are taken into account, leading the agents to follow the reference
trajectory in a formation which depends on the geometry of the non-convex constraints.

We provide in the sequel the complete list of publications accepted/submitted to various
conferences and journals:

Accepted journal papers:

• I. Prodan, F. Stoican, S. Olaru, S.-I. Niculescu: Enhancements on the Hyperplanes
Arrangements in Mixed-Integer Programming, Journal of Optimization Theory and Ap-
plications, Vol. 154, No.2, pp. 549-572, DOI 10.1007/s10957-012-0022-9, August 2012.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Path following with collision avoid-
ance and velocity constraints for multi-agent group formations. Annals of the Univer-
sity of Craiova, Series: Automation, Computers, Electronics and Mechatronics, ISSN:
1841-0626, volume 7(34) no.2, pp. 33-38, 2010, http://www.ace.ucv.ro/analele/

content2010vol7nr2.html (a short version was presented at Sinaia, Romania).
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Predictive control for trajectory track-
ing and decentralized navigation of Multi-Agent formations. International Journal of
Applied Mathematics and Computer Science, accepted, to appear in 2012.
Submitted journal papers:

• I. Prodan, S. Olaru, R. Bencatel, J.B. Sousa, C. Stoica, S.-I. Niculescu: Predictive
Control for Autonomous Aerial Vehicles Trajectory Tracking. Control Engineering Prac-
tice, 2012 (second round review).
Book chapters:

• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: On the Tight Formation for Multi-
Agent Dynamical Systems. Agents and Multi-agent Systems - Technologies and Appli-
cations, Vol. LNAI 7327, pp. 554-565, DOI 10.1007/978-3-642-30947-2, Springer, 2012.
• I. Prodan, F. Stoican, S. Olaru, C. Stoica, S.-I. Niculescu: Mixed-Integer Program-
ming Techniques in Distributed MPC Problems, Distributed MPC Made Easy, Springer,
accepted, to appear in 2013, http://distributedmpc.net/.

http://www.ace.ucv.ro/analele/content2010vol7nr2.html
http://www.ace.ucv.ro/analele/content2010vol7nr2.html
http://distributedmpc.net/
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Accepted conference papers:

• I. Prodan, R. Bencatel, S. Olaru, J.B. Sousa, C. Stoica, S.-I. Niculescu: Predic-
tive Control for Autonomous Aerial Vehicles Trajectory Tracking. The IFAC Nonlinear
Model Predictive Control Conference, IFAC NMPC’11, Noordwijkerhout, The Nether-
lands, 23-27 August 2012.
• I. Prodan, G. Bitsoris, S. Olaru, C. Stoica, S-I. Niculescu: On the Limit Behavior
for Multi-Agent Dynamical Systems. The IFAC Workshop on Navigation, Guidance and
Control of Underwater Vehicles, NCUV’12, Porto, Portugal, 10-12 April 2012.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Predictive control for trajectory
tracking and decentralized navigation of Multi-Agent formations. The 4th International
Conference on Agents and Artificial Intelligence, ICAART’12, Vilamoura, Portugal, 6-8
February 2012.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Predictive control for tight group
formation of Multi-Agent Systems. The 18th World Congress of the International Fed-
eration of Automatic Control, IFAC’11, Milan, Italy, 28 August-2 September 2011.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: On the limit behavior of Multi-agent
Systems. The 8th International Conference on Informatics in Control, Automation and
Robotics, ICINCO’11, Noordwijkerhout, The Netherlands, 28-31 July 2011.
• F. Stoican, I. Prodan, S. Olaru: On the hyperplanes arrangements in Mixed-integer
techniques. The 30th American Control Conference, ACC’11, California, USA, 29 June
-1 July 2011.
• F. Stoican, I. Prodan, S. Olaru: Enhancements on the hyperplanes arrangements
in Mixed-Integer techniques. The 50th IEEE Conference on Decision and Control and
European Control Conference, CDC-ECC’11, Orlando, Florida, USA, 12-15 December
2011.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Collision avoidance and path follow-
ing for multi-agent dynamical systems. The 9th International Conference on Control,
Automation and Systems, ICCAS’10, Gyeonggi-do, Seoul, Korea, 27-30 October 2010.
• I. Prodan, S. Olaru, C. Stoica, S.-I. Niculescu: Path following with collision avoid-
ance and velocity constraints for multi-agent group formations. The 14th International
Conference on System Theory, Control and Computing, ICSTCC’10, Sinaia, Romania,
17-19 October 2010.
• I. Prodan, G. Bitsoris, S. Olaru, C. Stoica, S.-I. Niculescu: Dual-Mode Constrained
Control for Dynamical Systems with Geometric Adversary Constraints. The 5th IFAC
Symposium System Structure and Control, IFAC SSSC’13, Grenoble, France, 4-6 Febru-
ary 2013.
Submitted conference papers:

• I. Prodan, S. Olaru, F. Fontes, C. Stoica, S.-I. Niculescu: From trajectory tracking
to path following in view of optimization-based control for autonomous aerial vehicles,
The 13th IEEE European Control Conference, ECC’13, Zurich, Switzerland, 17-19 July
2013.
• F. Stoican, I. Prodan, S. Olaru: Further Enhancements on the Hyperplane Arrange-
ments in Mixed-Integer Programming Techniques. The 13th IEEE European Control
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Conference, ECC’13, Zurich, Switzerland, 17-19 July 2013 (invited session).

1.4 Organization of the manuscript

This thesis (excluding the present chapter) is partitioned into six chapters:

Chapter 2 presents the optimization-based control approach that we adopt in order
to deal with the control of multi-agent systems in the presence of constraints.
Firstly, a short overview of receding horizon control and its capability to handle
state and control constraints is provided. Secondly, the main ingredients needed in
the multi-agent predictive control context are motivated and described one by one.
Differential flatness concepts play an important role in the resolution of a trajectory
planning problem and it occupies an important part of the presentation. Further-
more, for a robust approach, the use of set-theoretic methods is invoked. Finally,
the last part of the chapter, presents an important contribution towards an effi-
cient geometric description of non-convex non-connected feasible regions through
the use of Mixed-Integer Programming (MIP).

Chapter 3 concentrates on the optimization-based control of multiple agents having
independent dynamics while achieving a global objective, such as a tight forma-
tion with desired specifications and collision free behavior. Invariant safety regions
around the agents are constructed in order to compensate the effects of the distur-
bances affecting their dynamics. The formation control problem is decomposed in
two separate problems. “Off-line”, a minimal configuration is constructed taking
into account the non-convex constraints imposed by the safety regions. In “real-
time”, a receding horizon optimization combined with task assignment relative to
the minimal configuration is employed. MIP techniques are efficiently used here
in order to achieve a coherent description of the feasible region in the state space.
Furthermore, the proposed formation control approach is presented from central-
ized, distributed and decentralized points of view. In the last part of the chapter,
a potential field approach is employed.

Chapter 4 presents a detailed analysis of the limit behavior for a linear dynamical
system in the presence of geometric adversary constraints. This type of constraints
makes the convergence of an agent dynamics towards the origin impossible to fulfill.
Therefore, first, the fixed points and the invariance properties for the system state
trajectory are described while avoiding a convex region containing the origin in its
strict interior. Second, the attention is focused on ensuring the stability over the
feasible region of the state-space using a dual-mode strategy. Finally, the last part
of the chapter extends this analysis to multi-agent formations.

Chapter 5 provides in a first section, software-in-the-loop simulations and real-time
flight tests results for the predictive control of Unmanned Aerial Vehicles (UAVs).
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A specified trajectory is generated by taking into account way-point conditions
and furthermore, allowing the use of off-line linearizations of the nonlinear vehi-
cle model. Discussions, concluding remarks and improvements directions on the
results obtained are presented in the last part of the section. Furthermore, in a
second section, simulations results for trajectory tracking of multi-agent formation
are presented.

Chapter 6 completes the thesis with conclusions and discussions of future directions.

Pictorially, one can view the previously described chapters as shown in Figure 1.1, where
the edges suggest dependencies between the various chapters.
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Chapter 2

An optimization-based approach

for control of cooperative systems

The present chapter builds on the foundation of optimization-based control and grad-
ually paves the way towards the integration of set-theoretic concepts in the con-

text of cooperative systems. Moreover, several particularities of the constrained control
of Multi-Agent Dynamical Systems will be carefully examined and discussed. From a
methodological point of view, a particularly useful approach of control for collaborative
systems is the so-called receding horizon control, also known as Model Predictive Control
(MPC) [Goodwin et al., 2005], [Rawlings and Mayne, 2009]. An important aspect of pre-
dictive control approach is represented by the ability to handle generic state and control
constraints and will represent the mainstream of the present thesis. As detailed in the In-
troduction chapter, the receding horizon control is, by its optimization-based approach,
a natural candidate for multi-agent problems. This technique can admit very general
objectives, as for example, convergence to a formation, trajectory tracking, while taking
into account collision avoidance constraints. In the first part of the present chapter we
will come back to these statements in a formal manner by providing a brief overview of
optimization-based control.

The dynamical systems under consideration, represented by their models for the pre-
diction purposes, can be either continuous-time or discrete-time, either homogeneous or
heterogeneous, either linear or non-linear, and constrained. In the present manuscript
we work, for the most part, with simplified dynamics for the (sub-)systems generally
inherited from vehicle dynamics, that is, those with double integrator-type of mod-
els, linear time-invariant models and unicycle nonlinear models, also in the presence of
bounded disturbances and constraints. Note that we have chosen simplified dynamics
and their transportation analogy in order to make the interpretation of the numerical
results straightforward. However, the constraints handling, the control design and the
resulting techniques hold for general formulations of dynamics and constraints.

20
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For tasks involving cooperation among a group of agents, trajectory tracking is often
crucial for achieving the cooperation objective. It is often the case that a reference tra-
jectory has to be precomputed. When talking about references signals, it is important
to point out the difference between two “close” notions: reference trajectory and ref-
erence path. The latter only provides a desired route for the agents for which it may
not necessarily exist a feasible input. In this sense, the former appears more appealing,
since it provides simultaneously both feasible input and state, the disadvantage being its
time-dependence which often impose an additional constraint on the real-time function-
ing, while the reference path remains time-independent. Of course, computing feasible
reference input and state signals is, generally, a difficult task. We choose to use in the
present work one of the few generic tools, those based on differential flatness [Fliess
et al., 1995], [Lévine, 2009] in constructing a reference trajectory.

If one accepts MPC as a design framework and have a defined reference trajectory avail-
able, it can basically design a nominal control loop, but robustness needs to be taken
into account with appropriate analysis tools and notions. For a robust approach, the
use of sets will be advocated in the present work. Whenever the noises and disturbances
are bounded, we will pursue the construction of bounded invariant sets characterizing
thus the system dynamics. For example, we can construct safety regions around agents
in order to guarantee collision avoidance for any values of the bounded noises. There-
fore, in the present chapter, a particular emphasis will be put on set-theoretic concepts
[Schneider, 1993], [Aubin et al., 2011] in control and invariance notions [Blanchini and
Miani, 2008]. For numerical reasons, the family of sets that we choose are the polyhedral
sets. They strike an excellent balance between flexibility of representation and numeri-
cal implementation of the algorithms. More specifically, we will use them in the context
of multi-agent systems for describing safety regions, obstacles and feasible regions. A
related notion, the polyhedral norm will be also employed in order to construct a so-
called polyhedral function and sum function, which will further represent the basis for
the construction of “exclusion” functions (or penalty functions).

Collision avoidance is often the most difficult problem in the context of managing mul-
tiple agents, since certain (static or dynamic) constraints are non-convex. This happens
because the evolution of a dynamical system in an environment presenting obstacles can
be modeled only in terms of a non-convex feasible region, i.e., the agent state trajectory
has to avoid a convex (union of convex) region(s) representing an obstacle (static con-
straints) or another agent (dynamic constraints - leading to a parameterization of the
set of constraints with respect to the current state).

From the implementation point of view, the pure non-convex optimization solvers can be
employed for the control problems mentioned here, but, in our opinion, they are prone
to numerical errors and difficult to handle. As such, we find appropriate to use Mixed-
Integer Programming (MIP) [Jünger et al., 2009] techniques, which have the advantage
of explicitly including non-convex constraints and discrete decisions in the optimization
problem [Osiadacz, 1990]. More than that, they have proven their usefulness in various
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applications. Among them, we cite [Richards et al., 2002] for task allocation and tra-
jectory planning for multiple agents, [Prodan et al., 2012c], [Prodan et al., 2011b] for
task assignment with coordinated control of multiple agents, subject to dynamics and
collision avoidance constraints, and [Stoican et al., 2012] for fault detection and isola-
tion. Also, in [Bemporad and Morari, 1999], [Bemporad et al., 2000], the authors used
a combination of MIP and MPC to stabilize general hybrid systems around equilibrium
points.

The MIP is not the ultimate solution for the non-convex optimization problems: a
sensitive aspect of MIP techniques is the computational complexity which can increase
exponentially with the number of binary variables used in the problem formulation.
There are some contributions in the literature where the original decision problems are
reformulated in a simplified MIP form [Earl and D’Andrea, 2005], [Vitus et al., 2008],
but the complexity still remains significant. Other results try to reduce the number
of binary variables, e.g., a logarithmic number of binary variables is recapitulated in
[Vielma and Nemhauser, 2011].

In the last part of the present chapter, of particular focus will be the MIP description
of non-convex regions. We believe that some geometric insights are helpful to reduce
the conservatism of existing results. Such an approach was adopted in [Prodan et al.,
2012e]. Furthermore, we point out the use of hyperplane arrangements which provide a
formal way of describing a non-connected and non-convex feasible region. Some of the
noteworthy aspects of the approach can be resumed as follows:

• convex representation in the extended space of state plus binary variables using
the associated hyperplane arrangement;

• reduced complexity of the problem using boolean algebra techniques (the prob-
lem complexity will require only a polynomial number of subproblems (Linear
Programming (LP) or Quadratic Programming (QP) problems) that have to be
solved with obvious benefits for the computational effort);

• notable property of optimal association between regions and their binary represen-
tation leading to the minimization of the number of constraints.

2.1 Optimization-based control

Optimization-based control in general terms refers to the control design using an opti-
mization criterion and the respective resolution techniques in order to obtain the param-
eters of the control law, the optimality being generally equivalent to a certain desired
property as for example, stability, reactivity or robustness. This rather broad defini-
tion can cover the classical optimal control, the LMI-based techniques, model predictive
control or interpolation-based techniques. In the present work, this terminology refers
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to the use of on-line, optimal cost function as part of the feedback stabilization of a
(typically nonlinear) system [Murray, 2009]. A widely used optimization-based control
technique in this class is Model Predictive Control (MPC)1 also called, receding horizon
control 2.

The idea behind MPC is to exploit in a receding manner the simplicity of the open-loop
optimization-based control [Olaru et al., 2009]. The control action u(k) for a given state

x(k) is obtained from the control sequence u ,
{

u(k|k), u(k + 1|k), . . . , u(k +Np − 1|k)
}

as the result of the optimization problem:

arg
u

min Vf (x(k +Np|k)) +

Np−1
∑

s=0

Vn(x(k + s|k), u(k + s|k)), (2.1)

subject to:







x(k + s+ 1|k) = f(x(k + s|k), u(k + s|k)), s = 0, . . . , Np − 1,

h(x(k + s|k), u(k + s|k)) ≤ 0, s = 0, . . . , Np − 1,

hf (x(k +Np|k)) ≤ 0,

(2.2)

over a finite horizonNp. The cost function is comprised of two basic ingredients; namely a
terminal cost function Vf (·) : Rn → R and a cost per stage function Vn(·) : Rn×Rm → R.
Typically, in MPC, the objective (or cost) function (2.1) penalizes deviations of the states
and inputs from their reference values, while the constraints are treated explicitly [Mayne
et al., 2000]. By solving (2.1), each optimization generates an open-loop optimal control
trajectory taking into account the system dynamics described by f(·, ·), generally with
the additional property that f(0,0)=0, the constraints on the states and control inputs
h(·) and terminal constraint hf (·). Then, applying only the first part of the trajectory
to the system, based on measurement and recomputing, results in closed-loop control
(see, Figure 2.1 which illustrates very well the receding horizon strategy).

The restrictions (2.2) of the optimization problem (2.1) can be written in a more explicit
form, stated in terms of hard constraints on the internal state variables and input control
action (whenever these are separable):







x(k + s+ 1|k) = f(x(k + s|k), u(k + s|k)), s = 0, . . . , Np − 1,

x(k + s|k) ∈ X , s = 0, . . . , Np − 1,

u(k + s|k) ∈ U , s = 0, . . . , Np − 1,

(2.3)

where, usually, X is a convex, closed subset of Rn and U is a convex, compact subset of
R
m, each set containing the equilibrium point in their strict interior (generally f(0, 0) = 0

and 0 ∈ X , 0 ∈ U). A terminal constraint could also be imposed for stability reasons

1The terminology “Model Predictive” comes from the use of the model to predict the system behavior
over the planning horizon at each update.

2The terminology “receding horizon” comes from the fact that the planning horizon, which is typically
fixed, moves ahead in time with each update.
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Figure 2.1: Receding horizon control philosophy.

[Rawlings and Mayne, 2009]:

x(k +Np|k) ∈ Xf ⊂ X . (2.4)

MPC represents one of the few methods in control that can handle generic state and
control constraints. More precisely, it has the ability to include generic models (i.e.,
nonlinear and linear) and constraints in the optimization-based control problem (2.1)–
(2.2). In addition, to this main advantage, it is worth mentioning its’ capacity to redefine
the cost function and the constraints to account for the changes in the system and/or
the environment. In our opinion, the major inconvenient of receding horizon strategy is
represented by the computational demand, i.e., it is prohibitive the requirement that an
optimization algorithm must run and terminate at every update of the controller block
(generally synchronous with the sampling clock).

The first solution to the stability problem in MPC was provided for the unconstrained
case, where stability is achieved by having a sufficiently long prediction horizon [Garcia
et al., 1989]. Actually, an interesting link has been provided in the MPC understanding
by the fact that the unconstrained predictive control problem can be solved by using
Linear Quadratic (LQ) or Linear Quadratic Gaussian (LQG) control techniques [Bitmead
et al., 1991]. In this direction, the stability theory for the constrained case is based on
the existence of an invariant terminal set [Gilbert and Tan, 1991] and the use of a cost
function as a Lyapunov function [Vassilaki et al., 1988], [Rossiter, 2003], for the closed
loop system. The terminal invariant set is also called the target set for the system
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trajectory over the prediction horizon [Chmielewski and Manousiouthakis, 1996]. A
survey on the predictive control stability theory can be found in [Mayne et al., 2000],
[Goodwin et al., 2005], [Rawlings and Mayne, 2009]. Here, the control policy consists in
two distinctive parts:

• to ensure constraints satisfaction and evolution towards an invariant set3;

• to find some local control law satisfying the constraints and ensuring the positive
invariance of the terminal set with respect to the closed-loop dynamic system.

The interdependence between feasibility, invariant sets and stability of constrained pre-
dictive control is summarized by the following theorem providing sufficient stability
conditions [Mayne et al., 2000]:

Theorem 2.1. For a given optimal control law u(x(k)) obtained by solving the opti-
mization problem:

arg
u

min Vf (x(k +Np|k)) +

Np−1
∑

s=0

Vn(x(k + s|k), u(k + s|k)), (2.5)

subject to:







x(k + s+ 1|k) = f(x(k + s|k), u(k + s|k)), s = 0, . . . , Np − 1,

x(k + s|k) ∈ X , s = 0, . . . , Np − 1,

u(k + s|k) ∈ U , s = 0, . . . , Np − 1,

x(k +Np|k) ∈ Xf ⊂ X ,

(2.6)

the feasibility at time instant 0 implies the feasibility at all future time instances and the
stability of the closed-loop system x(k + 1) = f(x(k|k),u(x(k))) is guaranteed if:

1. f(·, ·), Vn(·, ·) and Vf (·) are continuous;

2. f(0, 0) = 0, Vn(0, 0) = 0 and Vf (0) = 0;

3. U is compact and contains the origin;

4. X is closed and contains the origin in its strict interior;

5. Xf is closed and contains the origin in its strict interior;

�

In the present work the constraints represent some dominating factor to be appropriately
taken into account. Consequently, based on the considerations above, we find appropriate
the use of MPC as a design method for the control of Multi-Agent Dynamical Systems.

3Invariance notions will be presented in the forthcoming sections.
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In these particular settings, we identify four main ingredients in the Model Predictive
Control techniques:

• the model of the system used for prediction purposes;

• the reference trajectory4;

• the constraint sets representation;

• the optimization solver.

Each one of the necessary ingredients will be detailed in the forthcoming sections in
order to gain an insight of the elements needed at the design stage.

2.2 A generic prediction model

In the present section, we present different models used throughout the manuscript to
predict the behavior of individual agents. The model of the systems used for the pre-
diction purposes, can be either continuous-time or discrete-time, either homogeneous
or heterogeneous, either linear or non-linear and/or affected by disturbances. We in-
troduce here the discrete-time case for uniformity of notation, but the continuous-time
case can be also used under certain conditions (unless explicitly stated, the discrete-time
models will be exploited in the optimization problems). Indeed, the receding horizon
control builds on discrete-time optimal control problem solved at each sampling instant,
therefore, we need to be able to handle the discretized and linearized model of the sys-
tems. In many situations throughout the manuscript we will restrict ourselves to linear
time-invariant models and nonlinear unicycle models.

First, consider the following discrete-time autonomous system:

x(k + 1) = f(x(k)), x(k) ∈ X , (2.7)

where x(k) ∈ R
n is the current state and the mapping f(·) : Rn → R

n is assumed to
be continuous on R

n satisfying the condition f(0) = 0. The state constraint set X is a
compact set containing the origin in its interior.

Second, adding additive disturbances to the previous model (2.7), we have:

x(k + 1) = f(x(k), w(k)), (x(k), w(k)) ∈ X ×W, (2.8)

4Note that the second item is not mandatory, it becomes so only in tracking problems as for example,
in the context of multi-agent systems with trajectory tracking objectives. Alternatively, this trajectory
is replaced by a set-point (an equilibrium point, the origin in most of the LTI regulation studies).
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where, the disturbance w(k) is bounded, i.e. w(k) ∈ W and W ⊂ R
p is a convex and

compact set containing the origin. The function f(·, ·) : Rn×R
p → R

n is assumed to be
continuous and satisfying the condition f(0, 0) = 0.

Consider also the following discrete-time invariant system:

x(k + 1) = f(x(k), u(k)), (x(k), u(k)) ∈ X × U , (2.9)

where, in addition to the first system, u(k) ∈ R
m is the current control input and the

mapping f(·, ·) : Rn × R
m → R

n is assumed to be continuous with f(0, 0) = 0. The
control constraint set U is a compact sets containing the origin in its interior.

Lastly, the discrete-time, time-invariant dynamics affected by additive disturbances is
written in the following form:

x(k + 1) = f(x(k), u(k), w(k)), (x(k), u(k), w(k)) ∈ X × U ×W. (2.10)

The function f(·, ·, ·) : Rn × R
m × R

p → R
n is assumed to be continuous, f(0, 0, 0) = 0

and the sets X , U and W are compact sets and each of them contains the origin in their
respective interior.

In the following section we provide a short description of the technique we choose for
the generation of a reference trajectory, the second necessary ingredient in the MPC
formulation.

2.3 Generation of a reference trajectory

One of the important issues arising in multi-agent motion planning is “how to get there?”
or “what is the appropriate pattern to align to?”. The answer is given by the resolution
of a trajectory planning problem that is. in principle, an open-loop control problem.
The objective here is to generate a real time trajectory to guide a group of agents to
their destination while avoiding their neighboring agents and other possible obstacles.
We make the difference here between the reference trajectory and reference path. The
reference path only provides a desired geometric route for the agents, without a tim-
ing control law assigned to it. The reference trajectory has a time representation, in
the sense that it provides simultaneously both input and state signals. In the present
work we choose appropriate differential flatness tools to derive input and state reference
trajectories.

The flatness was studied as a generalization of the structural properties of the linear
systems, which exhibit a state representation obtained via derivatives of the input and
output signals. The class of systems that exhibit the property of differential flatness
were first studied by [Fliess et al., 1995]. Other contributions to the topic were presented
in [Rouchon et al., 2003], [Sira-Ramı́rez and Agrawal, 2004], [Lévine, 2009], [De Doná
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z = γ(x, u, u̇, . . . )

x = Φ0(z, ż, . . . )

u = Φ1(z, ż, . . . )

Input/State space Flat Output space

Figure 2.2: Differentially flat systems.

et al., 2009]. The interested reader is referred also to [Murray, 1997] for a description
of the role of flatness in control of mechanical systems in close relation with the way
these properties will be employed in the present work. In the sequel, we provide a brief
overview of differential flatness based primarily on the technical report of [Murray, 2009]
and the monograph of [Lévine, 2009].

Consider the general system5:

ẋ(t) = f(x(t), u(t)), x(0) = x0, x(T ) = xf , (2.11)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the input vector.

Definition 2.1. The system (2.11) is called differentially flat if there exist variables
z(t) ∈ R

m such that the states and inputs can be algebraically expressed in terms of z(t)
and a finite number of its higher-order derivatives:

x(t) = Φ0(z(t), ż(t), · · · , z(q)(t)), (2.12)

u(t) = Φ1(z(t), ż(t), · · · , z(q)(t)),

5We note that models (2.9) and (2.11) describe similar dynamics, one in discrete time, and the other,
in continuous time. The correspondence between the continuous and the discrete signals can be made
by a large class of discretization techniques [Deuflhard et al., 1987].
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where z(t) = γ(x(t), u(t), u̇(t), · · · , u(q)(t)) is called the flat output6 and q is the maximum
order of z(t) arising in the problem. �

Remark 2.1. One of the observation made in the differential flatness literature is that,
for any linear and nonlinear flat system, the number of flat outputs equals the number of
inputs [Lévine, 2009] (see also Figure 2.2 which simply illustrates the concept of flatness).
�

Remark 2.2. Note also that (as discussed in [Sira-Ramı́rez and Agrawal, 2004]), for
linear systems, the flat differentiability (existence and constructive forms) is implied by
the controllability property. �

Differentially flat systems are well suited to problems requiring trajectory planning as
for example MPC which builds on a prediction capability over a finite horizon. The
most important aspect of flatness is that it reduces the problem of trajectory generation
for the original system modeled by an ordinary differential equation, to finding a tra-
jectory of the flat outputs via the resolution of an algebraic system of equations. The
trajectories are planned for z(t) and then, transformed via Ψ0(·) and Φ1(·) in (2.12) to
obtain the trajectories of states and inputs. The most important aspect from the subse-
quent feedback control is that these trajectories are consistent with the system dynamic
equation. Practically, any trajectory for z(t) satisfying the boundary conditions:

x(0) = Φ0(z(0), ż(0), · · · , z(q)(0)) = x0, (2.13)

x(T ) = Φ0(z(T ), ż(T ), · · · , z(q)(T )) = xf ,

u(0) = Φ1(z(0), ż(0), · · · , z(q)(0)) = u0,

u(T ) = Φ1(z(T ), ż(T ), · · · , z(q)(T )) = uf ,

will be a feasible trajectory for the system that passes through the given initial and final
conditions.

One objection that can be raised is that equation (2.13) still contains the derivatives of
z(t) and as such is not purely algebraic expression. However, the flat output in (2.13)
can be parameterized using a set of smooth basis functions Λi(t) in order to allow the
derivatives manipulation:

z(t) =
Nα∑

i=1

αiΛ
i(t), αi ∈ R. (2.14)

The set of coefficients αi in (2.14), with i = 1, · · · , Nα represents practically the unknown
variables in the system described by the equations (2.13) which lead in this specific form
(2.13)–(2.14) to a system of linear equations. In this framework the derivatives of the

6The definition proposed here do not provide an insight on the existence conditions and the related
qualitative problems that can appear in the definition of the nonlinear functions. We assume that the
characteristics necessary for the existence of a flat trajectory (practically controllability) are respected
for the manipulated dynamical system.
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flat output can be computed in terms of the derivatives of the basis functions:

ż(t) =
Nα∑

i=1

αiΛ̇(t), (2.15)

...

z(q)(t) =
Nα∑

i=1

αiΛ
(q)(t).

Subsequently, the conditions on the flat outputs and their derivatives are written as
follows: 
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. (2.16)

The formulation (2.16) takes the form of a system of linear equation, which can be
rewritten in the form Mα = z̄. Finally, assuming that M has a sufficient number of
columns and it is a full column rank (classical well-possedness conditions), the trajectory
generation problem is solved by finding the coefficient α (possibly non-unique).

Remark 2.3. Note that, the equations (2.13) represent typical conditions which appear
in flat trajectory generation and can be solved as a classical system of equations as
a function of parameters in the generation of the signal z(t). This basic boundary
problem can be modified and enhanced in several ways, if necessary. Firstly, additional
constraints can be applied upon the derivatives of the state and the input, thus reducing
the feasible set of solutions. Finally, we can consider conditions not only at the initial
and the final times but also at any intermediate time instant, by increasing the number
of equations (and adequately adjusting the number of parameters in order to ensure the
well-posedness) [Wilkinson, 1965]. �

Note that in (2.16) the conditions on the initial and final time instants can be extended
for simplicity to the introduction of a set of way-points through which the flat trajectory
must pass (as also mention in Remark 2.3). This in equivalent to the introduction
of additional rows in (2.16). Since a continuous trajectory (and smooth, usually) is
needed, there are two ways of accomplishing it in the current framework. One is to apply
(2.13)–(2.16) as they are, and then force the resulting “segments” to link (by matching
conditions on the intermediary points) or, otherwise, as mentioned in Remark 2.3, to
solve everything as a single problem where we add conditions on intermediate time
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instants. As it can be seen, both approaches have shortcomings and strengths which will
be discussed on a practical example in Section 5.1.

For the global trajectory planning it is important to point out that, there are different
basis functions used for parametrization of the flat output (Λi(t) in (2.14)), each with
their advantages and disadvantages.

• A class of functions commonly used is represented by polynomials in the time
variable– t, which are capable of representing curves in a flexible way. However,
they have a poor numerical performance, their dimension depends on the number
of conditions imposed on the inputs, states and their derivatives. Moreover, small
variations in their coefficients may affect the curve’s shape in ways impossible to
foretell(see for more details on the numerical performance and comparison with
other methods [Farouki and Rajan, 1987], [Daniel and Daubisse, 1989], [Suryawan,
2012]). These are known difficulties in the numerical methods associated to linear
algebra, the interesting reader may refer to conditioning problems in Vandermonde
systems of equations [Demmel and Koev, 2005].

• A different class of polynomials for representing a curve is given by Bésier basis
functions. The equivalence in terms of degrees of freedom is enhanced from the
numerical condition point of view. This equivalence ensures that one represen-
tation can be translated into the other without loss of information [Farin, 2001],
[Yamaguchi, 1988]. The limitation of Bésier curves is related again to the need of
higher degrees to satisfy a large number of inequality and/or equality constraints
(for more details, see for instance [Suryawan, 2012]).

• It is more convenient to represent the flat output z(t) using B-splines [Schumaker,
2007], because of their ease of enforcing continuity across way-points and ease of
computing their derivatives. Moreover, their degree depends only up to which
derivative is needed to ensure continuity, this being in contrast with the polyno-
mial basis functions previously mentioned. The studies [De Doná et al., 2009],
[Suryawan et al., 2010], [Suryawan, 2012] developed a parameterization based on
B-spline curves for the flat output matching thus the properties of differentially flat
linear systems. Based on this fact, they also considered the problem of generating
constrained flat trajectories for receding horizon control.

2.4 Set-theoretic elements

For a robust approach we invoke the use of set-theoretic methods in the feedback control
design. Whenever the noises and disturbances affecting the systems under consideration
are bounded, they can be represented set-wise and consequently bounded invariant sets
which characterize their dynamics can be practically constructed. For example, we
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can construct safety regions around agents in order to guarantee collision avoidance for
any values of the bounded noises or reachable sets for reaching a target position for a
formation.

The foundation of set-theoretic methods in control are inherited from the well-developed
mathematical set theory, particularly from the Brunn-Minkowski algebra [Schneider,
1993], [Aubin et al., 2011]. Their role has been already discussed in the constraint
control synthesis (see for example the tube MPC) [Mayne et al., 2005], [Rakovic et al.,
2011], [Artstein and Raković, 2008], the characterization of the minimal invariant sets
[Raković et al., 2005], [Kouramas et al., 2005] and also fault tolerant control [Seron et al.,
2008], [Stoican et al., 2011a], [Stoican, 2011], [Stoican et al., 2012]. The elements we
refer to in the present manuscript are the positive and control invariance in the presence
of disturbances (see, for instance, the comprehensive paper survey of [Blanchini, 1999]
and the monography [Blanchini and Miani, 2008]). In particular, we are interested in
characterizing the positive invariance of a subset of the state-space of a dynamical system
[Bitsoris, 1988], [Bitsoris and Truffet, 2006]. Also, we are interested in their construction
using ultimate bounds notions [Kofman et al., 2007b] and robust positive invariant set
representation [Raković, 2007]. Furthermore, the reachable set computation [Bertsekas,
1995] will be useful in characterizing a visibility region around agents in the context of
a distributed MPC schema.

We can choose between various classes of sets in control, their strengths and weaknesses
being primarily related to the numerical representation and computational complexity.
A standard class is represented by the ellipsoidal sets. Due to their simple numerical
representation, they are extensively used in a broad variety of applications [Kurzhanskĭı
and Vályi, 1997]. Their main inconvenient is represented by their conservatism when
it comes to algebraical operations (intersection, convex hull and other). Among other
classes of sets, we mention the Linear/Bilinear Matrix Inequalities (LMI/BMI), that
appears to be more attractive in the structure flexibility to the ellipsoidal sets [Nesterov
and Nemirovsky, 1994].

For numerical reasons, the family of sets preferred in the present work is that of poly-
hedral sets. They provide a good balance between flexibility of representation and nu-
merical implementation of the algorithms [Blanchini, 1999], [Motzkin et al., 1959]. More
precisely, they can be classified somewhere in the “middle”, that is, they are flexible in
the sense that they can approximate arbitrary well any convex shape and numerically
manageable in the sense that they are relatively7 easy to use (mainly due to their dual
formulation, both in half-space and vertex form [Fukuda, 2004]).

In the forthcoming chapters, we will make use of the polyhedral sets for describing safety
regions around agents, obstacles and corresponding feasible regions.

7Note that the polyhedral sets are relatively easy to use in low dimensional systems via their dual
representation. For high dimensions, the double-representation algorithms scale badly, suffering from
the course of dimensionality.
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Finally, the link between set-theoretic analysis and MPC becomes straightforward by
using the above elements, i.e., (robust) positively invariant sets, reachable sets, terminal
sets and feasible sets.

In order to provide some formal basis for the set manipulations, we present first the
polyhedral sets description. Starting from their representation, we will further define
polyhedral function and sum function which will represent the basis for the construction
of “exclusion” functions (or penalty functions) in the forthcoming chapter. Finally, a
particular emphasize will be put on set-theoretic concepts in control and invariance
notions.

2.4.1 Polyhedral sets description

Let us define a bounded convex set in its polyhedral approximation, a polytope S ⊂ R
n

through the implicit half-space description:

S =
{

x ∈ R
n : hix ≤ ki, i = 1, . . . , N

}

, (2.17)

with (hi, ki) ∈ R
1×n × R and N the number of half-spaces. We focus on the case where

ki > 0, meaning that the origin is contained in the strict interior of the polytopic region,
i.e. 0 ∈ Int(S).

By definition, every supporting hyperplane for the set S in (2.17):

Hi = {x : hix = ki} (2.18)

will lead to a partition of the space into two disjoint8 regions:

R+(Hi) = {x : hix ≤ ki} , (2.19)

R−(Hi) = {x : −hix ≤ −ki} , (2.20)

with i = 1, . . . , N . Here R+
i and R−

i denote, in a simplified formulation, the comple-
mentary regions associated to the ith inequality of (2.17). In order to have the ideas
clear, the above relations can be represented as in Figure 2.3.

Let us also recall a general result relative to convex sets which will be used in the
optimization problems of the forthcoming chapters:

Proposition 2.1. For any two convex sets S1, S2 ∈ R
n the next relations are equivalent:

1. S1 ∩ S2 = ∅
8The relative interiors of these regions do not intersect but their closures have as common boundary

the affine subspace Hi.
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Figure 2.3: Bounded convex set S.

2. {0} /∈ S1 ⊕ {−S2}.

�

Proof: It suffices to note that if the origin is inside the set S1⊕{−S2} then, necessarily,
there exists x1 ∈ S1 and x2 ∈ S2 such that x1 − x2 = 0. �

In the sequel, using the representation of the bounded polyhedral set in (2.17), we will
define the polyhedral function and sum function such that they preserve the shape of
the polyhedral set.

2.4.2 Polyhedral function

Consider the class of (symmetrical) piecewise linear functionals defined using the specific
shape of a polyhedral set. The following definitions will be instrumental in the present
section.

Definition 2.2 (Minkowski function – [Blanchini, 1995]). Any bounded convex set S
induces a Minkowski function µ(x) : Rn → R defined as:

µ(x) = inf
{

α ∈ R, α ≥ 0 : x ∈ αS
}

(2.21)

�
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Definition 2.3 (Polyhedral function – [Blanchini, 1995]). A polyhedral function is the
Minkowski function of the polyhedral bounded convex set S defined in (2.17). This func-
tion µ(x) : Rn → R has the following expression:

µ(x) = ‖Fx‖∞, (2.22)

where F ∈ R
N×n is a full column matrix with Fi = hi

ki
, i = 1, . . . , N . �

In fact, any polytope can be defined in terms of the Minkowski function (2.21). Indeed,
there always exists a full column matrix F ∈ R

N×n such that the corresponding polytope
S in (2.17) is equivalently defined as:

S =
{

x ∈ R
n : µ(x) ≤ 1

}

, (2.23)

with µ(x) defined by (2.22). From the avoidance point of view, the Minkowski function
(2.21) denotes the inclusion of a value x to the given polytope (2.23) if µ(x) ∈ [0, 1].
Conversely, if µ(x) > 1 then x is outside the polytope (2.23).

Remark 2.4. Note that if ki ≤ 0 in (2.17), the origin is not contained in the strict interior
of the polytopic region, i.e. 0 /∈ Int(S), then the polyhedral function can be brought to
the form (2.22) by imposing:

Fi =
hi(x− xs)
ki − hixs

, i = 1, . . . , N, (2.24)

with xs ∈ R
n the analytic center of the polytope (2.17). �

Notice that the polyhedral function (2.22) is piecewise affine and continuous. This
means that each of the inequalities composing its definition can provide the maximum,
an explicit description of these regions being of the form:

Xi =
{

x ∈ R
n : hi

ki
x >

hj

kj
x,∀ i 6= j, i, j = 1, . . . , N

}

. (2.25)

The entire space can thus be partitioned in a union of disjoint regions Xi which are
representing in fact cones with a common point in the origin (respectively in xs for the
general case evoked in Remark 2.4).

Practically, the polyhedral function (2.22) can be represented in the form:

µ(x) = Fix, ∀ x ∈ Xi, i = 1, · · · , N. (2.26)

The piecewise affine gradient of (2.26) is defined as:

▽ µ(x) = Fi, ∀ x ∈ Xi, i = 1, . . . , N. (2.27)

and will be referred in the forthcoming chapter upon this noation.
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Remark 2.5. Strictly speaking, the generalized gradient (2.27) is multivalued (the Minkowski
function induced by a polytope is not differentiable in the classical sense, rather it is dif-
ferentiable almost everywhere). However, an univocal candidate can be selected for the
computations and such an approach is used in the rest of the manuscript. We mention
that, alternatively, the explicit use of multivalued expression of the gradient would not
bring computational difficulties as long as the range of variation is bounded and can be
represented by the extreme values in practice. �

An illustrative representation of the above construction can be depicted in Figure 2.4,
where we represent first a bounded convex set and then, its polyhedral function defined
accordingly to (2.26).

(a) Bounded polyhedral set. (b) Polyhedral function of the bounded poly-
hedral set.

Figure 2.4: Polyhedral function representation.

2.4.3 Sum function

Consider again the polytope defined in (2.17), and a piecewise linear function (introduced
in [Camacho and Bordons, 2004]):

ψ(x) =
N∑

i=1

(hix− ki + |hix− ki|). (2.28)

The function (2.28) is zero inside the convex region (2.17) and increases linearly in the
exterior, as the distance to the frontier is increased.

The definition (2.28) describes in fact a continuous piecewise affine function over a
partition of the state-space. Over each of the polyhedral cells composing this partition,
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the absolute values of |hix− ki| are constant resulting in a fixed affine form for ψ(x). In
order to explicitly describe the regions composing the partition, additional theoretical
notions related to the arrangements of the hyperplanes will be introduced in the sequel.
The interested reader may consult on advanced or classical results on this topic in the
well known books [Orlik and Terao, 1992] and [Ziegler, 1995], as well as some recent
related articles [Orlik, 2009], [Pardalos, 2009] and the references therein.

Definition 2.4 (Hyperplane arrangements – [Ziegler, 1995]). A collection of hyperplanes
H = {Hi}, with a = i, . . . , N , partitions the space in an union of disjoint cells defined
as follows:

A(H) =
⋃

l=1,...,γ(N)




⋂

i=1,··· ,N

R
σl(i)
i (Hi)





︸ ︷︷ ︸

Al

, (2.29)

where σl ∈ {−,+}N denotes all feasible combinations of regions (2.19) and (2.20) ob-
tained for the hyperplanes in H and γ(N) denotes the number of feasible cells. �

Note that the number of regions in the hyperplane arrangement is usually much greater
than the number of regions (2.25) associated to the polyhedral function (2.26). Therefore,
the piecewise affine function (2.28) can be alternatively described as:

ψ(x) = 2
N∑

i=1
σl={+}

(hix− ki), ∀ x ∈ Al, l = 1, . . . , γ(N). (2.30)

The piecewise affine gradient of (2.30) is defined as:

▽ ψ(x) = 2
N∑

i=1
σl={+}

hTi , ∀ x ∈ Al, l = 1, . . . , γ(N). (2.31)

As in the previous case, we illustrate in Figure 2.5 the same bounded convex set and the
sum function defined accordingly to (2.30).

2.4.4 Characterization and construction of invariant sets

For future use, we define several fundamental notions associated to sets in control. We
will use the models description given in Section 2.2 or a simplified form of them.

Definition 2.5. [Blanchini, 1999] A set S ∈ R
n is called positively invariant for a

system of the form (2.7) if for all x(0) ∈ S the solution, x(k) ∈ S, for k > 0. If x(0) ∈ S
implies x(k) ∈ S for all k ∈ Z, then we say that S is invariant. �
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(a) Bounded polyhedral set. (b) Sum function of the bounded polyhedral
set.

Figure 2.5: Sum function representation.

In other words, a set S is (positively) invariant if it is guaranteed that, if the current
state lies within S, all future states also lies within S. For example, any equilibrium
point is an invariant set as long as, in the absence of external perturbation, the state
remains at equilibrium at all future instants. The domain of attraction of an equilibrium
point is also an invariant set upon the same argument.

Definition 2.6. [Blanchini, 1999] A set S is called Robustly Positively Invariant (RPI)
for a system of the form (2.8) if for all x(0) ∈ S and all w(k) ∈W the solution is such
that x(k) ∈ S for k > 0. �

Remark 2.6. Note that in general, when the control law is not a priori fixed, we have
controlled (robust) invariance (see also [Blanchini, 1999]), but this is out of the scope of
the present work. �

Another fundamental notion from set theory is the one of the reachable set, that is the
set that all the trajectories can reach in a predefined number of steps, starting from an
initial set and under dynamics (2.8). A formal definition along the lines in [Girard et al.,
2006] follows.

Definition 2.7. Consider an initial set S. Then, the k-step reachable set from S un-
der the dynamics (2.8) is denoted as Rk(f(x(k), w(k)), S) and is given by the recursive
relation:

Ri = f(Ri−1, w), ∀i = 1, . . . , k, and R0 = S. (2.32)

Definition 2.8. [Blanchini and Miani, 2007] A set Ω∞ is called minimal Robustly
Positively Invariant (mRPI) for a systems of the form (2.8) if it is a RPI set in R

n

contained in every RPI set for (2.8). �
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Remark 2.7. Note that the mRPI set can be seen as the ∞-step reachable set starting
from {0}.

There are various algorithms able to offer arbitrary close outer approximation of the
mRPI set associated to (2.8) (as, for example, the approaches proposed by [Raković
et al., 2005], [Olaru et al., 2008]). It is worth mentioning that these algorithms avoid
the exponential increase in the complexity of the representation. To overcome this
inconvenience, an ultimate bound construction (as proposed in [Kofman et al., 2007a])
can be used, due to its low computational effort.

The following theorem from [Kofman et al., 2007a] is recalled here as an instrumental
result for the linear class of systems (2.8). Furthermore, we can express the system
dynamics (2.8) in a simplified form:

x(k + 1) = Ax(k) + w, w ∈W, (2.33)

where A is assumed to be diagonalizable and stable.

Theorem 2.2. [Kofman et al., 2007a] Consider the system (2.33) and let A = V JV −1

be the Jordan decomposition of A, with J a diagonal matrix and V an invertible matrix.
Consider also a nonnegative vector w such that |w| ≤ w elementwise, ∀w ∈ W ⊂ R

n.
Then the set:

ΩUB =
{

x ∈ R
n : |V −1x| ≤ (I − |J |)−1)|V −1|w

}

(2.34)

is robustly positive invariant with respect to the dynamics (2.33). �

Note that construction methods can be developed using Theorem 2.2 [Kofman et al.,
2007a] and further adapted for nonlinear dynamics [Haimovich et al., 2007], state-
dependent perturbations [Kofman et al., 2008], optimizations for implicit/
explicit bounds [Haimovich et al., 2008], generalizations through a perturbation signal
[Kofman et al., 2008]. A contribution for ultimate bounds with zonotopic disturbances
is presented in [Stoican et al., 2011a], where less conservative constraints are employed.

Finally, the invariance of a set can be equivalent with the feasibility of simple Linear
Programming (LP) problem (which makes use of the Farkas Lemma [Ziegler, 1995]),
as stated in [Bitsoris, 1988]. The following lemma provides an insight in the relation
between linear algebra and set invariance. It holds in the Linear Time Invariant (LTI)
case for polytopic sets, but the notions have been extended in order to deal with more
general shapes [Loskot et al., 1998], [Bitsoris and Athanasopoulos, 2011].

Lemma 2.1. [Bitsoris, 1988] The set R(F, θ) with F ∈ R
s×n and θ ∈ R

s is a contractive
(positively invariant) set for the autonomous system

x(k + 1) = Ax(k), (2.35)
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if there exists an elementwise positive matrix H ∈ R
s×s and a scalar ǫ ∈ (0, 1] such that:

HF = FA, (2.36)

Hθ ≤ ǫ θ. (2.37)

�

Up to now we have assumed bounded convex shapes. We have introduced notions which
are naturally linked with convex shapes (polytopic sets, polyhedral norms, invariance
conditions). However, we also need to consider non-convex shapes, as they arise naturally
in the control and coordination of multi-agent systems. To this end, we propose next to
describe non-connected and non-convex regions by using mixed-integer techniques.

2.5 A contribution for mixed-integer description of non-

convex feasible regions

For safety and obstacle avoidance problems (to take just a few examples), the feasible
region in the space of solutions is a non-convex set. Usually, this region is considered
as the complement of a convex region which describes (contains) an obstacle and/or a
safety region, prohibited for the trajectories of the dynamical system.

Considering the definition of the bounded polyhedral set S in (2.17) we define its com-
plement as:

CX(S) , cl(X \ S), (2.38)

with the reduced notation C(S) whenever X is presumed known or is considered to be
the entire space R

n. In an explicit form, the non-convex region C(S), denoted by (2.38),
may then be described as a union of regions that cover all space excepting S:

C(S) =
⋃

i

R−(Hi), i = 1, . . . , N, (2.39)

with Hi defined as in (2.18). We note that the complement of a bounded polyhedron
(2.17) is covered in (2.39) by an union of overlapping regions (obtained as elementwise
complement of the regions (2.20) associated to the ith inequality of (2.17)).

Even if mathematically self-contained, the definition (2.39) is not attractive for the ex-
pression of feasible domains of optimization problems, in order to obtain such a tractable
problem formulation, mixed-integer techniques can be used, with the aim of defining a
polyhedron in the extended space of state and auxiliary binary variables of the form:
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− hix ≤ −ki +Mαi, i = 1, . . . , N, (2.40)
N∑

i=1

αi ≤ N − 1, (2.41)

with M a constant chosen appropriately (that is, significantly larger9 than the rest of
the variables in the hyperplane definitions and playing the role of a relaxation constant)
and (α1, . . . , αN ) ∈ {0, 1}N the auxiliary binary variables (which can activate or not the
relaxation).

Remark 2.8. The set of solutions for (2.40)–(2.41) can be projected on the original space
R
n, leading to a coverage of the non-convex region, which corresponds to the implicit

definition in (2.38). A region R−
i can be obtained from (2.40), with an adequate choice

of binary variables:
αi , (1, . . . , 1, 0

︸︷︷︸

i

, 1, . . . , 1). (2.42)

Note also that no choice of binary variables can lead to the description of a region R+
i

as in (2.19). Indeed, if a binary variable is “1”, the corresponding inequality degenerates
such that it covers any point x ∈ R

n (this represents the limit case for M → ∞). The
condition (2.41) is thus required to ensure that at least one binary value be “0” and,
consequently, at least one inequality be verified. �

As it can be seen in the representation (2.40)–(2.41), the use in an optimization problem
is straightforward by the linear expression of the inequalities. However, a binary variable
is associated to each inequality in the description of the polytope (2.17). Obviously, for
a big number of inequalities, the number of binary variables becomes exceedingly large.
Since their number exponentially affects the resolution of any mixed integer algorithm
(usually based on branch-and-cut techniques and, thus very sensitive to the number
of binary terms), the goal to reduce their number is worthwhile. A first step would
be to eliminate from the half-space representation of the polytope all the redundant
constraints, see Olaru and Dumur [2005]. We suppose that this pre-treatment has been
performed, and we are dealing with a non-redundant description of the polyhedral set
in (2.17).

2.5.1 Basic ideas for improvements in non-convex regions representa-

tion

By preserving a linear structure of the constraints, we propose in the sequel a generic
solution towards the binary variables reduction. To each of the regions in (2.39), we have

9There exists a finite M sufficiently large if and only if the polyhedra of type (2.17) are bounded. In
the remaining of the manuscript, all the polyhedra of type (2.17) are assumed to be bounded for this
reason.
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associated in (2.40) a unique binary variable. Consequently, the total number of binary
variables is N , the number of supporting hyperplanes (see (2.17)). However, a basic
calculus shows that the minimum number of binary variables necessary to distinguish
between these regions understood as logical alternatives is:

N0 = ⌈log2N⌉. (2.43)

The value of N0 is reached by observing that each of the N regions in (2.40) can be
linked to a unique number. Taking these numbers successively (starting from zero), it
follows that we need N0 bits to codify them into a binary representation.

The question that arises is the following:
How to describe the regions in a linear formulation similar to (2.40) through a reduced
number of binary variables?

We impose firstly that the binary expression appearing in the inequalities has to remain
linear for computational advantages related to the optimization solvers. This structural
constraint is equivalent with saying that any variable αi should be described by a linear
mapping in the form:

αi(λ) = ai0 +
N0∑

k=1

aikλk, (2.44)

where the symbols
(λ1, . . . , λN0

) ∈ Λ , {0, 1}N0 . (2.45)

In the reduced space of Λ, we will arbitrarily associate a tuple:

λi ,
(

λi1 . . . λ
i
N0

)

(2.46)

to each region R−
i . Note that this association is not unique, and various possibilities can

be considered: in the following, unless otherwise specified, the tuples will be appointed
in lexicographical order.

The problem of finding a mapping in Λ, which describes region R−
i , reduces then to

finding the coefficients
(

ai0, a
i
1, . . . , a

i
N0

)

for which αi(λ
i) = 0 and αi(λ

j) ≥ 1, ∀j 6= i

under mapping (2.44). This translates into the following conditions for any λi, λj ∈
{0, 1}N0 :







ai0 +
N0∑

k=1
aikλ

i
k = 0,

ai0 +
N0∑

k=1
aikλ

j
k ≥ 1, ∀j 6= i,

(2.47)

with λik the kth component of the tuple, λi, associated to R−
i .

Remark 2.9. Note that, in (2.47), the equality constraints for j 6= i were relaxed to
inequalities since the value of Mαi(λ

j) needs only to be sufficiently large (any αi(λ
j) ≥ 1
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being a feasible choice). Furthermore, the condition “≥ 1” can be relaxed to an arbitrary
small positive constant by means of counterbalancing through an increase in constant
M . �

Nothing is said a priori about the non-emptiness of the set described by (2.47). We need
at least a point in the coefficient space (a0, a1, . . . , aN0

), which verifies conditions (2.47)
in order to prove the non-emptiness. To this end, we present the following proposition:

Proposition 2.2. [Prodan et al., 2012e] A mapping αi(λ) : {0, 1}N0 → {0} ∪ [1,∞[
which verifies (2.47), is given by:

αi(λ) =
N0∑

k=1

tk, where tk =

{

λk, if λik = 0,

1− λk, if λik = 1,
(2.48)

where λk denotes the kth variable and λik its value for the tuple, λi, associated to region
R−
i .

The coefficients
(

ai0, . . . , a
i
N0

)

of the linear mapping (2.44) can be then obtained as:

ai0 =
N0∑

k=1

λik, aik =

{

1, if λik = 0

−1, if λik = 1
, k = 1, . . . , N0. (2.49)

Proof. The claim is constructive; by introducing mapping (2.49) in (2.47), it can be
verified by simple inspection that the conditions are fulfilled.

Remark 2.10. Note that the problem of finding parameters αi is independent of the
actual shape of the polytope S. The coefficients obtained in (2.48) can be used for any
topologically equivalent polytope (that is, with the same number of half-spaces). �

2.5.1.1 Prohibited tuples

By the choice of the cardinal N0 as in (2.43), the number of tuples generated by the
reduced set of binary variables (2.45) may be greater than the actual number of regions.

The tuples left unallocated will be labeled as prohibited, and additional inequalities will
have to be added to the extended set of constraints (2.40) in order to effectively rander
them infeasible to an optimization routine. These restrictions are justified by the fact
that, under construction (2.49), an unallocated tuple will not enforce the verification
of any of the constraints of (2.40) (see Remark 2.8). It then becomes evident that the
single constraint of (2.41) has to be substituted by a set of constraints that implicitly
make all the unallocated tuples infeasible.

The next corollary of Proposition 2.2 provides the means to construct an inequality
which renders a tuple infeasible:
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Corollary 2.1. [Prodan et al., 2012e] Let there be a tuple λi ∈ {0, 1}N0. The N-
dimensional point that it describes, and exclusively this tuple is made infeasible by the
combinations in (2.46), with respect to the constraint:

−
N0∑

k=1

tik ≤ −ǫ, (2.50)

with tik defined as in Proposition 2.2 and ǫ ∈ (0, 1) a scalar. �

Proof. The left side of the inequality (2.50) will vanish only at tuple λi, and for the rest
of the tuples in the discrete set {0, 1}N0 will give values greater than or equal to 1. Thus,
the only point made infeasible by inequality (2.50) is λi.

The number of unallocated tuples may be significant, relationship in this sense being
given by:

0 ≤ Nint ≤ 2⌈log2N⌉ − 2⌈log2N⌉−1 − 1 = 2⌈log2N⌉−1 − 1, (2.51)

with the bound reached for the most unfavorable case of N = 2⌈log2N⌉−1 + 1.

If we associate to each of the unallocated tuples an inequality as in Corollary 2.1, the
efficiency of the associated optimization algorithm may still be improved. Indeed, such a
feasible set representation can further be improved by noting (as previously mentioned)
that the association between regions and tuples is arbitrary. One could then choose
favorable associations which will permit more than one tuple to be removed through a
single inequality. To this end, we present the next proposition:

Proposition 2.3. [Prodan et al., 2012e] Let there be a collection of tuples
{
λi
}

i∈1,...,2d ∈
{0, 1}N0, which completely spans a d-facet10 of hypercube {0, 1}N0. Let I be the set of the
N0 − d indices, which retain a constant value over all the tuples

{
λi
}

i∈1,...,2d composing
the facet. Then, there exists one linear inequality

−
∑

k∈I

t∗k ≤ −ǫ, (2.52)

which renders the tuples of the given facet (and only these ones) infeasible.

Variables t∗k and ǫ are taken as in Corollary 2.1 with t∗k associated to λ∗
k, the common

value of variable λk over the set of tuples
{
λi
}

i∈1,...,2d. �

10Here, d denotes the degree of the facet, ranging from 0 for extreme points to N0 − 1 for faces of the
hypercube.
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Proof. Geometrically, the tuples are extreme points on the hypercube {0, 1}N0 and the
inequalities we are dealing with are half-spaces, which separate the points of the hy-
percube. If a set of tuples completely spans a d-facet, it is always possible to isolate a
half-space that separates the points of the d-facet from the rest of the hypercube.

By a suitable association between feasible cells and tuples, we may label as unallocated
the extreme points which compose entire facets on the hypercube {0, 1}N0 , which permits
to apply Proposition 2.3 in order to obtain constraints (2.59).

Remark 2.11. By writingNint as a sum of consecutive powers of 2 (Nint =
⌈log2Nint⌉−1∑

i=0
bi2

i),

an upper bound Nhyp for the number of inequalities (2.59) can be computed:

Nhyp =

⌈log2Nint⌉−1
∑

i=0

bi ≤ ⌈log2Nint⌉, (2.53)

where bi ∈ {0, 1}. �

Remark 2.12. Note that (2.53) offers an upper bound for the number of inequalities,
but practically the minimal value can be improved depending on the method used for
constructing the separating hyperplanes and of the partitioning of the tuples between
the allocated and unallocated subsets. �

2.5.1.2 Illustrative example

As an illustration of the notions described in Section 2.5.1, we take the following square:








0 1
0 −1
1 0
−1 0








[

x1

x2

]

≤








1
1
1
1







. (2.54)

As stated in this section, the number of binary variables (similar to the formulation
(2.40)) is N = 4, equal to the number of half-spaces described in (2.54). The reduced
number of variables will be N0 = ⌈log24⌉ = 2, according to (2.43). Following the problem
formulation (2.48), the variables αi can be expressed, as in (2.44), by:

αi(λ) = ai0 + ai1λ1 + ai2λ2.

We associate to each region a tuple of two values (λ1, λ2) in lexicographical order.

The case of the 2nd half-space, associated to tuple (λ2
1, λ

2
2) = (0, 1), is detailed in Fig-

ure 2.6(a). Using (2.47) we obtain, as depicted in Figure 2.6(b), the feasible set of the
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R−2 : −h2x ≤ −k2

(λ2
1, λ2

2) = (0, 1)

(a) R−(H2) and its tuple

a0

a1

a2
(b) Feasible region for coefficients

Figure 2.6: Outer regions and their associated tuples

coefficients described by:

a2
0 + a2

2 = 0, a2
0 ≥ 1, a2

1 ≥ 1.

This represents a polytopic region in the coefficients space (a0, a1, a2) ∈ R
3 and, ac-

cording to (2.48), the non-emptiness is assured by the existence of at least one feasible
combination of coefficients leading to the mapping:

α2(λ) = 1 + λ1 − λ2.

This means that the region R−
2 is projected from

[

0 1
]
[

x1

x2

]

≤ −1 +M(1 + λ1 − λ2),

by taking (λ2
1, λ

2
2) = (0, 1) (see Remark 2.8).

Furthermore, the same computations will be performed for the rest of the regions, re-
sulting in an extended system of linear inequalities over mixed decision variables:








0 −1
0 1
−1 0

1 0








[

x1

x2

]

≤








−1 +M( λ1 + λ2)
−1 +M(1− λ1 + λ2)
−1 +M(1 + λ1 − λ2)
−1 +M(2− λ1 − λ2)







.

As an exemplification of the considerations in Subsection 2.5.1.1, let there be a polytope
with 5 hyperplanes. This means that the number of binary variables has to be N0 =
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⌈log25⌉ = 3 and then, Nint = 23− 5 = 3 tuples will remain unallocated; we choose these
to be (0, 0, 1), (1, 0, 1) and (1, 1, 1).

By applying Corollary 2.1, we observe in Figure 2.7 (a) the 3 inequalities that separate
the unallocated tuples from the rest (for simplicity, in the rest of the subsection, we will
use ǫ = 0.5):

−(1 + λ1 + λ2 − λ3) ≤− 0.5,

−(2− λ1 + λ2 − λ3) ≤− 0.5,

−(3− λ1 − λ2 − λ3) ≤− 0.5.

We observe in Figure 2.7 (b) that the tuples are positioned onto 2 edges, and conse-
quently, using Proposition 2.3, 2 inequalities suffice for separation:

−(1 + λ2 − λ3) ≤− 0.5,

−(2− λ1 − λ3) ≤− 0.5.

Lastly, recalling Remark 2.12, we note that, in this particular case, a single inequality
(as seen in Figure 2.7 (c)), is enough for separating the unallocated tuples from the rest:

−(0.32λ1 + 1.76λ2 + 2.13λ3) ≤ −0.5.

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

(a)

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

(b)

λ1

λ2

λ3

(1, 1, 0)

(1, 1, 1)

(0, 1, 0)

(c)

Figure 2.7: Exemplification of separating hyperplanes techniques

2.5.2 Description of the complement of a union of convex sets

In the previous section, the basic reduction method was applied for treatment of the
complement of a convex set. A generalization of this important result case will be
detailed in the following by considering the complement of a union of convex (bounded
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polyhedral) sets S ,
⋃

l

Sl:

CX(S) , cl(X \ S), (2.55)

with11 Sl ,
Kl⋂

kl=1
R+ (Hkl

) and N ,
∑

l

Kl, with the limits of the sum such that the entire

number of subregions defining S is covered.

This type of regions arises naturally in the context of obstacle/collision avoidance when
there is more than a single object to be taken into account. In order to deal with the
complement of a non-convex region in the context of mixed-integer techniques, we recall
here and make use of the hyperplane arrangements definition, Definition 2.4 presented
in Section 2.4.3.

Several computational aspects are of interest. The number of feasible cells, γ(N), (in
relation with the space dimension – d and the number of hyperplanes – N) is bounded
by Buck’s formula Buck [1943]:

γ(N) ≤
d∑

i=0

(

N

i

)

, (2.56)

with the equality satisfied if the hyperplanes are in general position12 and X = R
n.

An efficient algorithm for describing (2.29), based on reverse search that runs in
O(Nγ(N)lp(N, d)) time and O(N, d) space, was presented in Avis and Fukuda [1996]
and implemented in Ferrez and Fukuda [2002].

Note that there exists a subset {Bl}l=1,...,γb(N) of feasible polyhedral cells from (2.29)

(with γb(N) ≤ γ(N)) which describes region (2.55):

CX(S) =
⋃

l=1,...,γb(N)

Bl, (2.57)

such that, for any l, there exists a unique i for which, Bl = Ai and Ai ∩ S = ∅.

In (2.40), a single binary variable was associated to a single inequality, but the mechanism
can be applied similarly to more inequalities (e.g., the ones describing one of the cells
of (2.57)). Thus, (2.29) can be described in an extended space of state and auxiliary

11The “+” superscript was chosen for the homogeneity of notation, equivalently one could have chosen
any combination of signs in the half-space representation (2.19) in order to describe the polyhedral
regions Sl.

12We call a hyperplane arrangement to be “in general position” whenever a variation in the position
of the composing hyperplanes does not change the number of cells.
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binary variables as follows:

...

σl(1)h1x ≤ σl(1)k1 +Mαl
...

σl(N)hNx ≤ σl(N)kN +Mαl







Bl

...

(2.58)

and condition
l=γb(N)
∑

l=1

αl ≤ γb(N)− 1, (2.59)

which implies that at least a set of constraints will be verified.

Construction (2.58)–(2.59) will permit, through projection along the binary variables αl
(see (2.42)), to obtain any of the cells of the union (2.57).

Analogously to Section 2.5.1, we propose, in the following, the reduction of the number
of binary variables by associating to each of the cells a unique tuple. The binary part will
be computed following the constructive result in Proposition 2.2 and used accordingly
in (2.58). Additional inequalities, that render infeasible the unallocated tuples, are
introduced as in Proposition 2.3. A few remarks relating to the number of hyperplanes
and their corresponding arrangement are in order:

Remark 2.13. The number of inequalities in (2.58) can be reduced by observing that not
all the hyperplanes of H are active in a particular cell, and thus they can be discarded
from the final representation. �

Remark 2.14. Note that a relaxation of the linear structure is allowed, when a nonlinear
formulation involving products of binary variables can be employed and the hyperplane
arrangements (2.29) can be represented as:

...

−hix ≤ −ki +M ·
∏

l=1,...,γb(N)
σl(i)=

′−′

αl,

hix ≤ ki +M ·
∏

l=1,...,γb(N)
σl(i)=

′+′

αl,

...

(2.60)

for all sign tuples σl associated to cells Bl from covering (2.57). We have used the fact
that the cells of (2.57) use the same half-spaces (up to a sign), and thus they can be
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concatenated. The method presented in [Kobayashi and Imura, 2006] transforms an
inequality with nonlinear binary components into a set of inequalities with linear binary
components. However, this can be made only at the expense of introducing additional
binary variables, which in the end gives a larger problem than the one presented in
(2.58)–(2.59). �

2.5.2.1 Exemplification of hyperplane arrangements

Consider the following illustrative example depicted in Figure 2.8, where the complement
of the union of two triangles (S = S1 ∪ S2) represents the feasible region. We take
H = {Hi}i=1:4 the collection of N = 4 hyperplanes (given as in (2.18)) which define S1,
S2.

+-

-
+

+ -

+
-

H1 H2

H3

H4

B1 → (0, 0, 0, 0)

B2 → (0, 0, 0, 1)B3 → (0, 0, 1, 0)B4 → (0, 0, 1, 1)

B5 → (0, 1, 0, 0)

B6 → (0, 1, 0, 1)

B7 → (0, 1, 1, 0)

B8 → (0, 1, 1, 1)

B9 → (1, 0, 0, 0)

P1

P2

P1 = R+
1 ∩R+

2 ∩R+
3

P2 = R−
1 ∩R−

2 ∩R+
4

Figure 2.8: Exemplification of hyperplane arrangement

We observe that the bound given in (2.56) is reached, that is, we have 11 cells (obtained as
in the arrangement (2.29)). From them, a total of 9, which we denote here as B1, . . . , B9,
describe the not convex region (2.55). To each of them, we associate a unique tuple from
{0, 1}N0 as seen in Figure 2.8 with N0 = ⌈log29⌉ = 4.

As per Proposition 2.2 and (2.58), we are now able to write the set of inequalities (2.61).
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−h3x ≤ −k3

h4x ≤ k4
+M ( λ1 + λ2 + λ3 + λ4)

}

B1

−h2x ≤ −k2

−h3x ≤ −k3

h4x ≤ k4

+M (1 + λ1 + λ2 + λ3 − λ4)







B2

h1x ≤ k1

h2x ≤ k2

−h3x ≤ −k3

+M (1 + λ1 + λ2 − λ3 + λ4)







B3

−h1x ≤ −k1

−h3x ≤ −k3
+M (2 + λ1 + λ2 − λ3 − λ4)

}

B4

−h1x ≤ −k1

−h2x ≤ −k2

h3x ≤ k3

h4x ≤ k4

+M (1 + λ1 − λ2 + λ3 + λ4)







B5

h2x ≤ k2

−h4x ≤ −k4
+M (2 + λ1 − λ2 + λ3 − λ4)

}

B6

h1x ≤ k1

h2x ≤ k2

−h4x ≤ −k4

+M (2 + λ1 − λ2 − λ3 + λ4)







B7

h1x ≤ k1

h3x ≤ k3

−h4x ≤ −k4

+M (3 + λ1 − λ2 − λ3 − λ4)







B8

h1x ≤ k1

h2x ≤ k2

h3x ≤ k3

h4x ≤ k4

+M (1 + λ1 − λ2 + λ3 + λ4)







B9.

(2.61)

Note that, in the above set, we have simplified the description by cutting the redundant
hyperplanes in a cell representation(e.g., for cell A1, 2 hyperplanes suffice for a complete
description).

Since only 9 tuples, from a total number of 16, are associated to cells, we need to add
constraints to the problem such that the remaining 7 unallocated tuples will never be
feasible. Using Corollary 2.1 we obtain:
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− (2− λ1 − λ2 + λ3 + λ4) ≤ −0.5,

− (3− λ1 − λ2 − λ3 + λ4) ≤ −0.5,

− (3− λ1 − λ2 + λ3 − λ4) ≤ −0.5,

− (4− λ1 − λ2 − λ3 − λ4) ≤ −0.5,

− (2− λ1 + λ2 − λ3 + λ4) ≤ −0.5,

− (3− λ1 + λ2 − λ3 − λ4) ≤ −0.5,

− (2− λ1 + λ2 + λ3 − λ4) ≤ −0.5.

(2.62)

We observe that for the 7 unallocated tuples, 4 of them, (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)
and (1, 1, 1, 1), form a 2-facet of the hypercube {0, 1}4. Tuples (1, 0, 1, 0) and (1, 0, 1, 1)
form an edge and (1, 0, 0, 1) is on a vertex. We can now apply Proposition 2.3 and obtain
the following constraints:

− (2− λ1 − λ2 ) ≤ −0.5,

− (2− λ1 + λ2 − λ3 ) ≤ −0.5,

− (2− λ1 + λ2 + λ3 − λ4) ≤ −0.5.

(2.63)

Note that we were able to diminish the number of inequalities from 7 in (2.62) to only 3
in (2.63): the first 4 constraints of (2.62) are replaced by the 1st constraint of (2.63). The
same holds for the next 2 that correspond to the 2nd, and for the last that is identical
with the 3rd.

2.5.3 Refinements for the complement of a union of convex sets

As presented in [Stoican et al., 2011b], palliatives for reducing the computational load
exist but ultimately, the computation time is in the worst case scenario exponentially
dependent on the number of binary variables, which in turn depends on the number
of cells of the hyperplane arrangements (see (2.56)). We conclude then, that the prob-
lem becomes prohibitive for a relatively small number of polyhedra in S, and that any
reduction in the number of cells is worthwhile and should be pursued.

This can be accomplished in two complementary ways. Firstly, we note that bound
(2.56) is reached for a given number of hyperplanes if and only if they are in general po-
sition. As such, particular classes of polyhedra may somewhat reduce the actual number
of cells in arrangement (2.29) and, consequently, the number of auxiliary binary vari-
ables. In increasing order of their versatility, we may mention hypercubes, orthotopes,
parallelotopes and zonotopes as classes of interest (for a computation of the number of
cells (see, [Zaslavsky, 1975])).
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The other direction, which we chose to pursue in the rest of this section, is reducing the
number of cells that describe (2.55).

In Stoican et al. [2011b], we have proposed a hybrid scheme which permits to express
(2.55) as a union of the cells of (2.57) which intersect S◦, and of the regions (in the sense
of (2.19)) which describe C(S◦), where S

◦ denotes the convex hull of S.

Alternatively, the merging of adjacent cells into possibly overlapping regions, which
describe (2.55), is discussed in Stoican et al. [2011c]. This results in a reduced represen-
tation, both in number of cells and of interdicting constraints. In the next subsection,
we detail the merging techniques used and show how the complexity of the problem is
reduced.

2.5.4 Cell merging

Recall that any of the cells of (2.57) is described by a unique sign tuple (Bl ↔ σl). As
such, we obtain that the cells are disjunct and cover the entire feasible space. For our
purposes, we are satisfied with any collection of regions not necessarily disjoint which
covers the feasible space. In this context, we may ask if it is not possible to merge the
existing cells of (2.57) into a reduced number of regions which will still cover region
(2.55). Note that by reducing the number of regions, the number of binary auxiliary
variables will also decrease substantially.

We can formally represent the problem by requiring the existence of a collection of
regions,

CX(S) =
⋃

k=1,...,γc(N)

Ck, (2.64)

which verifies next conditions:

• the new polyhedra are formed as unions of the old ones (i.e., for any k there exists
a set Ik which selects indices from 1, . . . , γb(N) such that Ck =

⋃

i∈Ik

Bi),

• the union is minimal, that is, the number γc(N) of regions is minimal.

Existing merging algorithms are usually computationally expensive, but here we can
simplify the problem by noting two properties of the cells in (2.57):

• the sign tuples σl describe an adjacency graph since any two cells whose sign tuples
differ at only one position are neighbors,

• the union of any two adjacent cells is a polyhedra.
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In order to construct (2.64), we may use merging algorithms (see, for example, [Geyer
et al., 2004], which adapts a “branch and bound” algorithm to merge cells of a hyper-
plane arrangement), or we can pose the problem in the boolean algebra framework. The
merging problem of regions from (2.57) is functionally identical to the minimization of a
boolean function given in the “sum of products” form. A cell describing the (in)feasible
region (2.55) corresponds to a “1” (“0”) value in the truth table at the position deter-
mined by its associated sign tuple, whereas infeasible sign tuples correspond to “don’t
care” values. It is then straightforward to apply minimization algorithms (Karnaugh
maps, the Quine-McCluskey algorithm or the Espresso heuristic logic minimizer) in or-
der to obtain boolean minterms who describe the merged cells of (2.64). We note that a
similar approach was proposesd in [Geyer et al., 2008] in order to deal with polyhedral
piecewise affine systems.

Remark 2.15. Note that a region Ck is described by at most N − f hyperplanes, where
f denotes the number of indices in the sign tuples which flip the sign. It makes sense
then to, not only reduce the number of regions, but also to maximize the number of cells
that go into the description of a region from (2.64). �

In Algorithm 2.1 we sketch the notions presented in this section.

Algorithm 2.1: Scheme for representing C (S)

Input: S

1 obtain the cell arrangement as in (2.29) for H;
2 obtain the feasible cells (2.57) and merge them in representation (2.64);
3 get the number γc(N) of feasible regions and the number N0 of auxiliary binary

variables;

4 partition the tuples of {0, 1}N0 such that Proposition 2.3 can be efficiently applied;
5 create the extended polyhedron (2.58) and add the constraints (2.59)

Note that the steps 1 and 2 are the most computationally expensive. For the first
step, an efficient algorithm for describing (2.29), based on reverse search that runs in
O(Nγ(N)lp(N, d)) time and O(N, d) space, was detailed in [Avis and Fukuda, 1996] and
implemented in [Ferrez and Fukuda, 2002]. For the second step, boolean algebra tech-
niques have been used: for a small number of hyperplanes, exact methods like Karnaugh
maps prove to be effective. For higher numbers, the heuristic Espresso logic minimizer
can be used. The latter provides solutions very close to the optimum while being more ef-
ficient and reducing memory usage and computation time by several orders of magnitude
relative to classical methods (see, [Rudell and Sangiovanni-Vincentelli, 1985]).

2.5.4.1 Exemplification of hyperplane arrangements with cell merging

We revisit here the example provided in Subsection 2.5.2.1 and apply the results pre-
sented in Subsection 2.5.4 in order to show the improvements.
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For this simple case we apply, as seen in Figure 2.9, a Karnaugh diagram and obtain
that the feasible region (2.55) is expressed by a union as in (2.58).

h1, h2

h3, h4

- - - + + + + -

- -

- +

+ +

+ -

B1

B2B3B4

B5

B6B7 B8

B9P1P2

∗

∗

∗ ∗

∗

Figure 2.9: Karnaugh diagram for obaining the reduced cell representation

As seen from the Karnaugh diagram from Figure 2.9, we obtain 4 overlapping regions:
C1 = B1 ∪ B2 ∪ B3 ∪ B4, C2 = B4 ∪ B5 ∪ B6, C3 = B6 ∪ B7 ∪ B8 ∪ B1 and C4 =
B8 ∪B9 ∪B1 ∪B2, which we depict in Figure 2.10. Consequently, we note that N0 = 2
auxiliary binary variables suffice in coding the regions. As for Proposition 2.2 and (2.58),
we are now able to write the following set of inequalities (we attach to each of the regions
a tuple in lexicographical order):

−h3x ≤ −k3 +M ( λ1 + λ2)
}

C1,

−h1x ≤ −k1

−h4x ≤ −k4
+M (1 + λ1 − λ2)

}

C2,

−h4x ≤ −k4 +M (1− λ1 + λ2)
}

C3,

h1x ≤ k1

−h2x ≤ −k2
+M (2− λ1 − λ2)

}

C4.

(2.65)

Note that, in addition to reducing the number of regions in (2.65) comparative with
(2.61), we also have reduced the number of hyperplanes appearing in the region’s half-
space representation (see Remark 2.11).

2.5.5 Numerical considerations

In this section, we will test the computation time improvements for our approach versus
the standard technique encountered in the literature. As previously mentioned, a MIP
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H1 H2

H3

H4

B1

B2B3B4

B5

B6

B7

B8

B9

C1 → (0, 0)

C2 → (0, 1)

C3 → (1, 0)

C4 → (1, 1)

P1

P2

Figure 2.10: Exemplification of hyperplane arrangement with merged regions

problem is NP-hard in the number of binary variables (due to the fact that the algorithms
implement “branch-and-bound” techniques and as such, in the worst case scenario, they
need to iterate through all the branches defined by the binary search tree variables).
Therefore, even a small reduction will render sensible improvements.

The complexity of the MIP optimization algorithm with constraints in the classical form
(2.40)–(2.41) will be of the order of O(2N · p(N + 1, d)), where p(n, d) denotes either
lp(n, d) or qp(n, d), as it is required. Using the alternative formulation proposed in
Section 2.5.1, we obtain the complexity as:

O(2⌈log2N⌉ · p(N + ⌈log2N⌉ − 1), d) = O(N · p(N, d)). (2.66)

We consider the worst case scenario for the mixed-integer problem, that is, the opti-
mization algorithm will need to pass through each of the possible combinations provided
by the binary variables. In the case of formulation (2.40)–(2.41), this leads to a NP
complexity in the number of lp/qp problems to be solved. On the other hand, the
formulation shown in (2.66), through the reduction of binary variables, provides a poly-
nomial complexity.

To illustrate these computational gains, we will compare the times of execution for
both schemes as follows: the computational time will be measured and averaged for 10
samples of 2D polytopes with the same number of support hyperplanes; furthermore,
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no. of hyperplanes 5 10 15 20 25 50 100

classical 9.91 64.06 91.74 511.47 306.04 · · · · · ·
enhanced 1.14 0.81 0.59 4.84 4.18 3.66 2.94

Table 2.1: Numerical values for the solution time of an MI optimization problem
under classical and enhanced methods.

the procedure will be iterated by changing the number of hyperplanes from 4 to 25. The
results are depicted in Figure 2.11 on a semilogaritmic scale and, as it can be seen, there
are significant improvements. In fact, the differences may be even more pronounced since,
under default settings, the MI algorithm over the classical method stopped computing
the optimum value after a maximum number of iterations was reached (the MI algorithm
used was the one described in [Bemporad and Morari, 1999]).
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Figure 2.11: Comparative test for computation time for classical and enhanced
method – time axis in logarithmic scale

Similar results are shown in Table 2.1, where we observe the evident improvement of our
method relative to the classical technique.

In Section 2.5.2, a method for describing in the MI formalism of the complement of a
possibly not connected union of polytopes was presented. The main drawback is that
in both classical and reduced formulation, the problem depends on the number of cells.
Supposing that the hyperplanes from the hyperplane arrangement (2.57) be in random
position, we obtain, for formulation (2.58)–(2.59), a complexity of order

O(2γ
b(N) · p(N ·Nd + 1), d), (2.67)



Chapter 2. An optimization-based approach for control of cooperative systems 58

which can be further reduced, using the techniques from Section 2.5.1, to

O(2⌈log2γ
b(N)⌉ · p(N ·Nd + 1, d)) = O(γb(N) · p(Nd+1, d)). (2.68)

Again, we observe that the mixed-integer problem becomes polynomial in the number of
branches: in the worst case, we have γb subproblems to solve, and γb ≤ γ which in turn is
given by the polynomial expression (2.56). However, the problem is still challenging due
to the number of cells (see (2.56)). By reducing the number of cells as in Section 2.5.3,
it is possible to significantly reduce the computation time. For exemplification, take the
example depicted in Figures 2.8 and 2.10. We observe that in this particular case, we
were able to reduce the representation from 9 cells to only 4. Presumably, for a higher
number of hyperplanes, the gain will be even more pronounced.

2.6 Concluding remarks

In this chapter we introduced a global optimization-based approach combined with set-
theoretic methods in order to deal with the problems appearing in the control of multi-
agent dynamical systems. Note that this approach can always be considered as a solution
for basic control problems with collision avoidance constraints and trajectory planning.
However, there are a lot of challenging issues that arise in the context of cooperative
systems. In the forthcoming chapters, we will show how the proposed approach can be
adapted in order to solve them.

For example, when dealing with basic tasks as trajectory tracking of multiple agents,
we will use differential flatness tools. Also, for having a robust approach we will con-
struct invariant sets which characterize the dynamics of the agents. Furthermore, these
invariant sets will represent safety regions around agents in order to avoid collisions for
any values of the bounded disturbances affecting the agents. A particular contribution
is envisaged by the use of polyhedral norm in order to construct the so called polyhedral
function and sum function, which, in the next chapter, will represent the basis for the
construction of penalty functions.

Since in our particular context the non-convex constraints are ubiquitous, the most
part of this chapter presents a novel approach based on Mixed-Integer Programming
(MIP), for describing in a linear form non-convex, non-connected feasible regions. More
precisely, we were able to transform the feasible region into a polyhedron in an augmented
space (state and auxiliary binary variables) through the use of hyperplane arrangements.
Furthermore, using cell merging techniques we minimized the number of cells describing
the feasible region, thus bringing a notable improvement in the constraints handling for
mixed-integer optimization problems. These numerical improvements will give an extra
weight on the approach chosen in the next chapters for solving obstacle and collision
avoidance control problems in the context of multi-agent systems.
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Chapter 3

Multi-agent formation control

Formation control has become one of the well-known problems in multi-agent dy-
namical systems. Compared with a single agent, many advantages of a group of

agents working together have been shown in various applications involving the control
of cooperative systems [Grundel et al., 2007], such as object transportation [Burmeister
et al., 1997], [Negenborn et al., 2008], mobile sensor networks [Olfati-Saber, 2006], coop-
erative classification and surveillance where the sensor assets are limited [Pavón et al.,
2007]. Here, the agent formations allow each member of the team to concentrate its sen-
sors across a specified region of the workspace, while their neighboring members cover
the rest of the workspace. Furthermore, in applications like search and rescue, coverage
tasks and security patrols, the agents direct their visual and radar search responsibilities
depending on their positions in the formation [Balch and Arkin, 1998]. Other appli-
cations include coordinated ocean platform control for a mobile offshore base [Girard
et al., 2001]. In this case, the homogeneous modules forming the offshore base must be
able to perform long-term station keeping at sea, in the presence of waves, winds and
currents. Consequently, the independent modules have to be controlled in order to be
maintained aligned (i.e., secure their convergence to a tight formation).

The characterization and the convergence towards a formation represent classical issues
for the control of cooperative systems. Moreover, the specific problem of maintaining
a formation becomes even more challenging if one needs to ensure that all the agents
avoid collisions inside the group and/or with obstacles [Richards and How, 2002]. The
primary challenge in solving collision avoidance problems is often a result of the non-
convex constraints appearing in the real-time optimization problem related to the control
(see, for more details Chapter 2 of the present manuscript).

Needless to say there exists extensive research in the area of multi-agent systems and
more specifically, on the directions of formation control and collision avoidance (see also
the Introduction chapter of the present manuscript). The contribution of the present
manuscript on these directions is towards an understanding of the geometrical properties

60
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and a novel (to the best of the authors’ knowledge) synthesis framework which exploits
the same geometrical structure of the issues discussed here. The formation design and
the collision avoidance conditions are casted as geometrical problems and optimization-
based procedures are developed to solve them. Moreover, we have obtained considerable
advances in this direction by using efficiently MIP techniques (in order to derive a co-
herent description of the feasible region in the solution space) and stability properties
(in order to analyze the uniqueness and existence of formation configurations). This
results were first presented in [Prodan et al., 2011b], [Prodan et al., 2012c], [Prodan
et al., 2012d].

In the present chapter we concentrate on the optimization-based control of multiple
agents having independent dynamics while achieving a global objective, such as a tight
formation with desired specifications and collision free behavior. For reducing the com-
putation time we use the “nominal” behavior of the agents and consider safety regions
around them to compensate for the effects of the disturbances affecting the “real” sys-
tems. Further, these regions are defined within the theory of invariant sets in order to
avoid recomputations during the real-time functioning. Note that this choice guarantees
also a degree of robustness despite the fact that the real-time control is performed using
nominal prediction models.

The proposed approach is to decompose the formation control problem in two separate
problems:
• The “off-line” definition of the ideal configuration. A minimal configuration is de-
termined with respect to a given cost function under the constraints imposed by the
safety regions. A particular contribution here is the introduction of an additional fixed
point constraint (i.e., the target positions are also equilibrium points for the considered
dynamics) in order to ensure convergence towards the predefined configuration.
• In real-time, a receding horizon optimization combined with task assignment relative
to the minimal configuration will be employed.
The real-time control is designed based on the following two-stage procedure:

1. Determine “who-goes-where” in the formation. This is equivalent with solving
a standard assignment problem. As detailed in the Introduction chapter of the
present manuscript, this problem is not new in the field of combinatorial optimiza-
tion [Hallefjord Kurt, 1993]. However, in the multi-agent control framework, the
optimal assignment in real-time brings a novel (dynamical) dimension in terms of
time-varying target.

2. Solve a mixed-integer optimization problem according to the target geometry of
the formation and the associated safety regions in order to obtain the effective
control actions for the individual agents.

Finally, these two separate problems are embedded within a receding horizon optimization-
based control, leading to an optimization problem for driving the group of agents to a
specified formation with associated target locations.
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In the present chapter, we propose to tackle the above construction from a centralized and
then, distributed implementation point of view. With all the improvements considered
in the enhancements of MIP formulation, the centralized multi-agent problem is still
difficult to solve, even more so when a predictive control scheme is applied. Consequently,
in the second part of the chapter we extend the MIP solution in the context of distributed
predictive control. Providing the same geometric description of the feasible region, a
distributed MPC approach will be presented, upon the principles in [Dunbar and Murray,
2006], [Scattolini, 2009]. More precisely, we consider neighborhoods which partition the
agents into groups and give a MIP description of the feasible region in which they stand.
With an adequate communication between the resulting groups of agents, we are able to
respect performance and stability constraints while in the same time we greatly reduce
the computational load.

In the last part of the chapter, we introduce a decentralized control strategy which is
a combination of MPC and Potential Field approach. Arguably, the potential field-
based methods offer a less complex implementation with a smaller computational effort.
However, in this case the constraints are no longer “hard” but rather “soft”, in the sense
that we impose penalties in crossing them through the cost function. We emphasize that
our interest (and the main contribution here) is mainly in taking into account the shape
of safety region of an agent navigating by the obstacles and/or other moving entities.
The constructions (2.26), (2.30) proposed in the previous sections (see, Section 2.4.2 and
Section 2.4.3, respecively, from Chapter 2) based on the class of (symmetrical) piecewise
linear functionals defined using a specific shape of a polyhedral set as in (2.4.1) will
be employed as various potential or navigating functions along the classical principles
existing in the literature. Furthermore, the solution we give is decentralized, the steering
policy for each agent is based only on local state information from its nearest neighbors.

Throughout the rest of the chapter we will detail the theoretical results with illustrative
examples and simulations meant to highlight the ideas provided here. Lastly, we will
draw the conclusions and end with a comparison of the a priori discussed methods.

3.1 System description

Consider a set of Na linear systems (vehicles, pedestrians or agents in a general form)
which model the behavior of individual agents.

Let us define
I , {1, . . . , Na}, (3.1)

as the collection of all agents indices.

The ith system is described by the following discrete LTI dynamics affected by additive
disturbances (which represents in fact, a simplified form of the model (2.9) described in
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Section 2.2, Chapter 2):

xd,i(k + 1) = Aixd,i(k) +Biud,i(k) + wi(k), i ∈ I, (3.2)

where xd,i(k) ∈ R
n are the state variables, ud,i(k) ∈ R

m is the control input and
wi(k) ∈ R

n represents a bounded disturbance for the agent i. Henceforth, we assume
the following:

1. The pair (Ai, Bi) is stabilizable, with Ai ∈ R
n×n, Bi ∈ R

n×m.

2. The disturbance wi is bounded, i.e. wi ∈ Wi, where Wi ⊂ R
n is a convex and

compact set containing the origin.

Theoretically, the dynamics (3.2) suffices to address any typical multi-agent control
problem (e.g., formation stability, trajectory tracking and so forth). However, the pres-
ence of additive noises makes the numerical computation difficult and severely limits
the practical implementability. This is particularly true for centralized schemes where
the computations are to be made into an extended state-space generated as a cartesian
product of the individual states of the Na agents.

The control design principle followed here is based on the ideas in [Mayne et al., 2005].
As a first step, we consider the nominal systems associated to (3.2):

xi(k + 1) = Aixi(k) +Biui(k), i ∈ I. (3.3)

The real system described by (3.2) will be used in oder to describe the characteristics
of the minimal group formation at the “off-line” stage. The control defines the target
positions and the shape of safety region around them. The nominal system (3.3) is used
“on-line” for the optimization-based real-time control. This will provide a computational
efficient nominal trajectory. The state of the real system is then expected to reside in a
tube around this nominal trajectory [Raković et al., 2005], [Mayne et al., 2005].

Furthermore, the existence of a stabilizable pair (Ai, Bi) implies the existence of an
optimal control law for each agent i, Ki ∈ R

n×m such that the matrices Ai + BiKi are
stable, where the controller Ki, i ∈ I is constructed either by a LQ design using the
solution of the discrete algebraic Riccati equation or alternatively by pole placement
technique. In both cases the existence of a quadratic Lyapunov function is supposed to
account for the infinite-time cost function:

V (xi) = xTi Pxi, (3.4)

with P = P T ≻ 0.
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Taking into account the above remarks, the control laws associated to dynamics (3.2)
and (3.3), respectively, can be linked through the relation:

ud,i(k) = ui(k) +Ki(xd,i(k)− xi(k)), (3.5)

such that the tracking error of the ith nominal system (3.3), which is described by
zi(k) , xd,i(k)− xi(k), has the dynamics:

zi(k + 1) = (Ai +BiKi)zi(k) + wi(k), i ∈ I. (3.6)

Remark 3.1. The existence of a stabilizing gain Ki in (3.5)–(3.6) is assured by the
existence of the Lyapunov function (3.4). Needless to say, if (3.4) does not exist, the
tracking error (3.6) is not bounded and thus the tube-MPC approach is not applicable.
�

Since we have assumed matrix Ki to stabilize the dynamics (3.3), it follows that the
tracking error dynamics (3.6) are also stabilizable. Consequently, the resulting trajecto-
ries will converge towards a RPI set (see Definition 2.6 in Section 2.4.4, Chapter 2) Si,
which can be determined such that the following expression holds:

zi(k) = xd,i(k)− xi(k) ∈ Si, i ∈ I, (3.7)

as long as1 zi(0) ∈ Si for any k ≥ 0.

With these basic remarks we observe that it is sufficient to adjust the trajectory based
on the nominal system (3.3), which does not depend on disturbance. Practically, the
existence of this invariant set guarantees that the real system (3.2) resides in a tube

xd,i(k) ∈ xi(k)⊕ Si, i ∈ I, (3.8)

along the reference trajectory xi(k) for all ui(k), with i ∈ I.

As mention in Section 2.4.4, Chapter 2 the set Si in (3.8) can be constructed as an in-
variant approximation of the minimal robustly invariant set (mRPI) (see Definition 2.8).
In most of our constructions we will use an ultimate bound construction, due to its low
computational demands (the reader is referred to Theorem 2.2 for the construction of
the RPI set using ultimate bounds).

Hence, the above manipulations allow us to consider the nominal system in the subse-
quent optimization problems and thus, minimize the necessary numerical computations.
Moreover, for the collision avoidance problem, the nominal dynamics (3.3) will be used,
but it is required that the safety region of the real agents do not intersect. Their true

1The assumption that the tracking error starts inside the set is made for simplification reasons. As
long as the set is contractive, after a finite number of steps, any trajectory starting “outside” will enter
inside the set.
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position is unknown (due to the disturbance affecting them), but a collision avoidance
policy will be based on the fact that an agent i will always reside in a region:

Si , xi(k)⊕ ΩUB,i, (3.9)

where ΩUB,i is the RPI set under the dynamics (3.6), as in Theorem 2.2, with i ∈ I.

Remark 3.2. For the ease of the computation, the agents are considered as unidimen-
sional points in the position space. Even if they are characterized by a nonempty region
Ri ⊂ R

n, one can define the set in (3.9) as S̃i , Si ⊕Ri. �

Exemplification for construction of RPI sets

For illustration purposes let us consider a set of Na heterogeneous agents in two spatial
dimensions with the dynamics described by 2 ξ̇i = Aiξi +Biui + wi:

Ai =








0 0 1 0
0 0 0 1
0 0 − µi

mi
0

0 0 0 − µi

mi







, Bi =








0 0
0 0
1
mi

0

0 1
mi








(3.10)

affected by the additive disturbances:

|wi| < [0.5 0.3 0.5 0.2]T , (3.11)

where ξ̇i = [xi yi vx,i vy,i]
T , ui = [ux,i uy,i]

T are the state and the input of each system.
The components of the state are: the position (xi, yi) and the velocity (vx,i, vy,i) of the
ith agent, i ∈ I. The parameters mi, µi are the mass of the ith agent and the damping
factor, respectively.

The dynamics (3.10) are stated in the continuous domain to better emphasize the struc-
ture of the problem but, further on, we will use a discretization of the system using a
first order discretization method leading to:

Ad,i =








1 0 0.09 0
0 1 0 0.09
0 0 0.96 0
0 0 0 0.96







, Bd,i =








0.001 0
0 0.001
0.016 0
0 0.016








(3.12)

obtained with a sampling time h = 0.1 and m = 60, µ = 3.

For the sake of illustration, we construct the RPI set (i.e., the safety region around an
agent) for a single agent affected by disturbances. Using pole placement methods we

2In the simulations results presented throughout the present chapter the agents are described by
(3.10), which is a model used frequently in pedestrian flow applications [Fang et al., 2010].
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(a) Projection of the RPI set on the
position subspace.
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(b) Trajectories of the “real” (in red)
and “nominal” (in blue) system.

Figure 3.1: Exemplification for construction of RPI sets.

derive the feedback gain matrix:

K1 =

[

3 2.2 −2 0.1
0.1 −1.3 0.5 1

]

.

The RPI set S1 is obtained using the techniques presented in Section 2.4.4, Chapter 2
and the projection on the position subspace is depicted in Figure 3.1 (a). For this system
a nominal trajectory (3.3) (in blue) is constructed and one observes in Figure 3.1 (b)
that any trajectory of system (3.2) affected by disturbance will verify relation (3.8) (i.e.,
resides in a tube described by the RPI set S1).

To summarize, once a robustly positive invariant set (3.9) around each agent (3.2) is
defined, one can deal with the collision avoidance problem within the multi-agent for-
mation control using these invariant sets as a safety regions around the nominal position
of the agents.

3.2 Collision avoidance formulation

A typical multi-agent problem is represented by the minimization of some cost problem
with constraints. As stated before, the original formulation, with dynamics (3.2) is not
optimal since it requires to take into account the bounded disturbances affecting the
dynamics. Hereafter, we will use the “nominal” dynamics (3.3) and we will analyze how
conditions on the “real” dynamics (3.2) are transposed to the “nominal” dynamics case.
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For further use, let us define
Io , {1, . . . , No}, (3.13)

as the collection of all fixed obstacles indices. Furthermore, we describe the collection
of obstacles through a union of polyhedra {O}o=1:No , with No denoting the number of
polyhedra Oo.

Considering the “real” dynamics (3.2), the collision/obstacle avoidance conditions trans-
lates into3:

{xd,i} ∩ {xd,j} = ∅, ∀i, j ∈ I, i 6= j, (3.14a)

{xd,i} ∩Oo = ∅, ∀i ∈ I, o ∈ Io, (3.14b)

with I and Io defined as in (3.1) and (3.13), respectively. Furthermore, using the nota-
tion from (3.3) and assuming that the conditions validating relation (3.8) are verified,
we reach the equivalent formulation of the collision avoidance:

({xi} ⊕ Si) ∩ ({xj} ⊕ Sj) = ∅, ∀i, j ∈ I, i 6= j, (3.15a)

({xi} ⊕ Si) ∩Oo = ∅, ∀i ∈ I, o ∈ Io. (3.15b)

These conditions take explicitly (through the use of the sets Si, Sj) into account the
uncertainties introduced by the bounded perturbation in (3.2).

Using Proposition 2.1 in Section 2.4.1, Chapter 2, we obtain the equivalent formulation
for (3.15):

(xi − xj) /∈ ({−Si} ⊕ Sj) , i, j ∈ I, i 6= j (3.16a)

xi /∈ ({−Si} ⊕Oo) , i ∈ I, o ∈ Io, (3.16b)

Remark 3.3. The set relationships inclusions (3.16) assume that the obstacles are static,
an alternative solution using parametrized polyhedra (see, for instance, [Loechner and
Wilde, 1997] for detailed notions on the parametrized polyhedra) to describe the safety
regions of the agents is presented in [Prodan et al., 2011b]. For guaranteeing that two (or
more) agents do not superpose, the parametrized intersections of the invariant sets are
considered and then, the domain for which the intersections are void is described [Olaru
and Dumur, 2004]. However, we note that this approach is computationally demanding
by the need of an explicit parameterized vertices construction. �

The main technical difficulty encountered in the formulation of the collision avoidance
conditions (3.16) is the fact that, often, the feasible regions are non-convex and con-
sequently, they cannot lead to an explicit expression of the feasible trajectories in the
state-space. It is clear that this problem rises naturally from the separation conditions
(3.16). The solution is to use the mixed-integer programming techniques (detailed in

3Whenever the time instant is clear we abuse the notation and denote the current state, xd,i(k), as
xd,i. The same notation is applied to the nominal system state and input vectors (3.3).
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Section 2.5, Chapter 2), which allows us to express the original non-convex feasible re-
gion as a convex set in an extended space. A method for reducing the computational
time was detailed in the previous chapter, where we propose a technique for making the
time of computation P-hard in the number of Linear/Quadratic Programming (LP/QP)
subproblems that have to be solved. In the following we present an illustrative exam-
ple which considers a non-convex non-connected feasible region described through MIP.
Elements like hyperplane arrangements and cell merging from the previous chapter are
recalled and used here. We also detail the notable improvements in representation and
reduction of computation time. These techniques will be implemented for dealing with
the collision avoidance problem in the multi-agent setting.

Exemplification of a mixed-integer representation of the feasible region

For illustration purpose we consider the position component of an agent state to be
constrained by 4 obstacles as shown in Figure 3.2, which may also represent safety
regions around agents. We can also characterize these convex sets as interdicted regions
in the context of multi-agent systems. The goal is to represent (in a tractable and
minimized form) the non-convex feasible region using MIP as detailed in Section 2.5,
Chapter 2.
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Figure 3.2: Prohibited regions in the state space.

Considering the 14 hyperplanes which describe the polyhedra associated with the ob-
stacles, we have γ(14) = 106 regions obtained as in (2.29). Additionally, we observe
that 10 of the cells will describe the interdicted regions, and the rest, γb(14) = 96 will
describe the feasible region, as shown in (2.57). Furthermore, we apply the notions from
Subsection 2.5.4, Chapter 2 to obtain a reduced representation for the feasible region as
in (2.64). We observe that the number of cells is substantially reduced, from γb(14) = 96
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to γc(14) = 11, which warrants in turn a reduction of the auxiliary binary variables from
7 to 4 that, for a worst case scenario, equals to an eightfold speed up. In Figure 3.3
(a), we depict the cells of (2.57) and the obstacles, while in Figure 3.3 (b) we show the
covering (2.64) of merged cells.
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(a) Partitioning with disjoint cells ob-
tained as in (2.57)
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(b) Partitioning with merged cells (2.64)

Figure 3.3: Cell partitioning of the feasible region.

A last aspect of interest is the scalability of the problem for a larger number of agents
and/or obstacles. Obviously, the results depend greatly on the number of sets, the num-
ber of hyperplanes defining them and their relative positions. We depict in Table 3.1 a
few cases (showing the number of obstacles, hyperplanes, and regions (2.40)–(2.42) and
(2.53) respectively) and observe that the improvements are (at least for the examples
considered) significant. We recall that in Table 3.1, #P represents the number of ob-
stacles, #Hi denotes the number of hyperplanes, #Ai denote all the cells, #Bi all the
feasible cells and #Ci represent the merged cells.

#P #Hi #Ai #Bi #Ci

5 19 210 191 13

7 24 295 266 16

9 30 496 449 23

Table 3.1: Complexity analysis with increased numbers of obstacles.

Taking into account all the above considerations, we propose in the following to handle
the multi-agent formation control problem.
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3.3 A tight configuration of multi-agent formation

Once the description and representation of the obstacles and their geometry is realized,
we are able to couple these properties with the dynamics and ask in a first instance a
“static” question: which is the desired formation?, or in a more general sense, which is
the equilibrium point for the multi-agent system taking into account collision avoidance
constraints?.

3.3.1 Minimal configuration of the multi-agent formation

Suppose that the individual objective of each agent is the convergence to the origin of
the state space. The global goal of clustering the agents as close as possible to the
origin is realized through a minimal configuration for the group of agents (3.3) due
to the adversary constraints of collision avoidance. We formulate the problem as an
optimization-based problem, with a cost function defined by the sum of the square
distances of each agent from the origin and the collision avoidance constraints (3.15):

min
xi, i∈I

Na∑

i=1

‖xi‖22, (3.17)

subject to: (xi − xj) /∈ ({−Si} ⊕ Sj), ∀i, j ∈ I, i 6= j, (3.18)

with I defined as in (3.1).

Note that the objective of points placement as close as possible to the origin is purely
a geometrical condition and it can be easily described in a quantitative cost by the
minimization of the sum of Euclidean norms as in (3.17). However, this constraint leads
to some interesting implications from the point of view of the dynamics of the agents.
This is because the final destination points are actually equilibrium points for each
individual dynamics and may not be fixed points for their associated linear mapping
(3.3). If the result of such an optimization problem is provided as reference for a multi-
agent formation, the agents may not reach the target points or even if they passes through
them, they will not converge to these a priori defined target positions. This will result
in a chaotic behavior for the agents, with the actual final positions being indeterminate
or inexistent (the case of limit cycles).

The solution needs to differentiate a “logistic solution” of the type (3.17)–(3.18) from a
control solution which imposes an additional constraint upon the target points, namely,
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to add fixed points constraints for their associated dynamics4. Therefore, the mixed-
integer optimization problem (3.17) is expanded to:

min
(xi,ui), i∈I

Na∑

i=1

‖xi‖22, (3.19)

subject to:

{

(xi − xj) /∈ ({−Si} ⊕ Sj), ∀i, j ∈ I, i 6= j,

xi = Aixi +Biui, ∀i ∈ I.
(3.20)

Solving the non-convex optimization problem (3.19), a set of target positions and the
associated control laws are obtained:

T =
{

(xf,1, uf,1), (xf,2, uf,2), . . . , (xf,Na
, uf,Na

)
}

, (3.21)

where every pair (xf,i, uf,1) is a fixed state/input of the ith agent. As seen in Chapter 2, a
natural way to solve non-convex optimization problem is to rewrite it in a mixed-integer
formulation. In such a case, the binary part resulting from the resolution of (3.19)–(3.20)
provides a description of the active constraints.

Remark 3.4. Note that the optimization problem (3.19) will provide only pairs (xf,i, uf,i),
i ∈ I which are also a fixed point for the considered dynamics, (3.3). Geometrically, this
means that the points xf,i will find themselves on the associated subspaces spanned by
(In − Ai)−1Bi. In particular, if the agents have the same dynamics (i.e., homogeneous
agents), they will have a common subspace over which to select the fixed points xf,i. �

Exemplification for minimal configuration

In order to illustrate the above multi-agent minimal configuration construction let us
consider first Na = 4 homogeneous agents described by the following dynamics in a two
dimensional state-space:

Ai =

[

0.97 −0.04
0.81 0.42

]

, Bi =

[

0.30
0.72

]

,

with i = 1, . . . , 4. Similarly with the example illustrated in Figure 3.1 and as explained
in Section 3.1, we construct safety regions around the agents (which in this particular
case are identical) in order to proceed with the resolution of the minimal configuration
problem. By solving the optimization problem (3.17)–(3.18) we obtain the set of target
positions T = {(−4, 0), (0,−4), (0, 4), (4, 0)} and the minimal configuration as described
in Figure 3.4 (a).

4Once this additional condition (linked to the dynamics) is fulfilled we can guarantee that a trajectory
can actually be steered towards that point and once there, it can remain in it.
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Furthermore, by solving the optimization problem (3.19)–(3.20) we obtain the set of tar-
get positions T = {(6, 10.7, 2, 03), (2, 3.91, 0.7), (−2,−3.91,−0.7), (−6,−10.7,−2, 03)}
and the minimal configuration as depicted in Figure 3.4 (b). Usually, the collection
of feasible fixed points is degenerate with respect to the state-space (since it depends on
the input which is usually lower dimensional than the state). Consequently, the fixed
points can stay only on a certain subspace of the state-space (as detailed also in Re-
mark 3.4). To exemplify, consider Figure 3.4 (b) where, for the case of agents with the
same dynamics the equilibrium points of (3.21) stay on the same subspace, which, in
this particular case is a line passing through the origin (i.e., xf,i = [2.91 5.35]T uf,i,
with i = 1, . . . , 4). This means that the result of optimization (3.19) gives a “beans on
a string” formation5.
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(a) Minimal configuration of 4 homo-
geneous agents when solving (3.17)–

(3.18).
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(b) Minimal configuration of 4 homo-
geneous agents when solving (3.19)–

(3.20).

Figure 3.4: Minimal configuration of 4 homogeneous agents with their safety regions.

Following the same computations, in Figure 3.5 we consider the minimal configuration
of Na = 4 heterogeneous agents in a two dimensional state-space described by:

A1 =

[

1.15 −0.14
0.81 0.44

]

, B1 =

[

0.71
0.22

]

, A2 =

[

5.54 −12.65
1.77 3.94

]

, B2 =

[

0.04
0.75

]

,

A3 =

[

0.68 0.05
−0.07 0.91

]

, B3 =

[

0.13
0.94

]

, A4 =

[

0.45 0.20
−0.54 1.14

]

, B4 =

[

0.08
0.85

]

.

Safety regions around each of the agents are constructed as detailed in Section 3.1. Then,
by solving the optimization problem (3.17)–(3.18) we obtain the set of target positions

5Note that we consider here a two dimensional system with a scalar input because it provides illus-
trative results, i.e., the subspace defining the fixed points is a line and thus, easily representable. More
precisely the dashed line denotes the subspace of fixed points (note that it passes through the origin,
regardless of the dynamics, the origin is always an equilibrium point in the LTI case.
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T = {(−4.48, 0), (−1.8, 0), (1.78, 0), (4.5, 0)} and the minimal configuration illustrated in
Figure 3.5 (a).

Furthermore, by solving the optimization problem (3.19)–(3.20) we obtain the set of
target positions T = {(−3.94,−5.9,−0.32), (5.09, 1.83,−0.01), (−0.72,−3.19,−0.33),
(1.68, 4.34, 0.3)} and the minimal configuration as depicted in Figure 3.5 (b). The place-
ment of the target positions (i.e., the equilibrium points) is no longer evident, but still,
each of the agents moves only along its equilibrium points line which passes through the
origin, see Figure 3.5 (b).
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(a) Minimal configuration of 4
heterogeneous agents when solving

(3.17)–(3.18).
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(b) Minimal configuration of 4
heterogeneous agents when solving

(3.19)–(3.20).

Figure 3.5: Minimal configuration of 4 heterogeneous agents with their safety regions.

An important observation for the case of homogeneous agents is that an interchange in
the assignment of a target position in between the agents will not modify the global
optimality (because the safety regions are identical) with respect to the optimization
problem (3.19)–(3.20). This means that the optimum is not unique, although all the op-
timal solutions are equivalent from the dynamical point of view. This allows us to detail
in the following the procedure of optimal task assignment. Introducing this procedure
during the real-time functioning of the agents will increase the flexibility of the scheme
and reduce the overall optimization cost.

3.3.2 Task assignment formulation

In the particular case of homogeneous6 agents (understood here as agents with the
same safety regions) we can intercalate an additional step in the control mechanism.

6In the heterogeneous case the reassignment of the final destination points is no longer feasible since
the swapping of the safety regions will result in collisions of the agents.
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Since the agents have the same safety regions, we can adapt in real-time the response
to the question, “who goes where in the minimal configuration?”, as computed in the
previous subsection. This is equivalent with finding the best permutation over the set
of the final positions in the target formation, T from (3.21). This idea is not new
in the logistics problems and, is known under the name of optimal assignment problem
encountered in the field of combinatorial optimization [Hallefjord Kurt, 1993], [Osiadacz,
1990]. However, in the multi-agent control framework, the optimal assignment in real-
time brings a novel (dynamical) dimension in terms of time-varying target.

If one associates a cost with the assignment of agent j to target xf,i as cij , the problem
of finding the best assignment is defined as:

min
δij , i,j∈I

Na∑

i=1

Na∑

j=1

cijδij , (3.22)

subject to:







Na∑

i=1
δij = 1, ∀i, j ∈ I,

Na∑

j=1
δij = 1, ∀i, j ∈ I,

δij ∈ {0, 1}, ∀i, j ∈ I,

(3.23)

where δij are the decision variables:

δij =

{

1 , if target xf,i is assigned to agent j,

0 , otherwise,
(3.24)

and I defined as the collection of all agents indices (3.1). These binary variables ensure
that each agent is assigned to one unique target position.

The problem is defined by the choice of the cost weights cij , the simplest way is to choose
it as the distance between the actual position of agent j and the desired target position
in the formation. Hence, the problem would be to determine the minimal distance that
an agent has to travel to establish the optimal assignment in the specified formation. A
more insightful way is to use the unconstrained dynamics (3.3) of the agents to describe
the cost of reaching from the initial position to the desired position. Then, cij can be
described by a weighted norm:

cij = (xj − xf,i)TP (xj − xf,i), ∀i, j ∈ I (3.25)

with the matrix P = P T ≥ 0 given by the Lyapunov function or the infinite time
cost-to-go, as long as the agents follow the unconstrained optimum through the control
action:

uj = −Kj(xj − xf,i) + ūj , ∀i, j ∈ I, i 6= j, (3.26)
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where ūj is chosen such that xf,j = Ajxf,i + Bj ūj , with ūj = B−1
j (I − Aj)xf,i, if the

matrix Bj is invertible (or the alternative pseudo-inverse which allows the definition of
a fixed point for the nominal trajectory). This optimization problem can be reduced to
a simple LP problem, hence it can be efficiently computed.

Note that, the task assignment can be seen as either an off-line or on-line procedure. Off-
line, it simply means that we assign the agents to the target points at the beginning and
then, they remain in the same configuration. On the other hand, the on-line approach
means that at each time instant (or several time instances) the assignment is re-evaluated
according to the current position.
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(a) Assignment with a non-minimal
cost.
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(b) Assignment with a minimal cost.

Figure 3.6: Exemplification for optimal task assignment.

Exemplification for optimal task assignment

Consider the set of 4 target positions (blue dots) obtained as in Figure 3.4 (b) (i.e.,
T = {(6, 10.7), (2, 3.91), (−2,−3.91), (−6,−10.7)} ) and a set of 4 initial positions (red
dots) for the agents, depicted in Figure 3.6 (a) with a random assignment. Figure 3.6
(b) illustrates the optimal assignment for comparison. It can be observed that the cost
of reaching the target positions is smaller in the second case.

Finally, before passing to the on-line optimization-based control problem for the feed-
back control design, we present in Figure 3.7 a schematic view of the methods presented
above. The interdependence between the methodologies and mathematical/optimization
formulations is stressed with a particular decomposition in on-line vs. off-line compo-
nents.

In the following we detail the on-line part of the control problem. The centralized MPC
optimization problem is described first and subsequently used in a latter section in order
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Consider the discrete time
model (2.1) affected by
bounded disturbances

Construct the RPI
safety regions as in (2.8)

Determine the minimal con-
figuration by solving the opti-
mization problem (2.16)–(2.17)

Solve the task assignment
problem (2.19)–(2.20)

Centralized MPC

Distributed MPC Decentralized MPC

O
F
F
−
L
I
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N

−
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Figure 3.7: General multi-agent formation control approach

to construct and analyze a particular distributed MPC approach, all by exploiting the
MIP formalism provided in the previous chapter.

In the last part of the present chapter we propose a control strategy which is a combina-
tion of MPC and Potential Field approach. The solution is decentralized as the steering
policy for each agent is based only on local state information from its nearest neighbors.

3.4 Centralized MPC

In the centralized approach perfect knowledge of each agent dynamics is available to
all the other agents. The agents are seen as a single block where there exists perfect
communication and the control action is designed by taking into account the states and
constraints at a global level. The main advantage of the centralized approach is that it
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provides the best performances with the price of an excessive communication between
the agents.

As it can be seen from Figure 3.8 there exists a centralized control mechanism which
takes as inputs information (past inputs and states) from all agents and them provides
each of them with updated inputs.

K

Figure 3.8: Centralized MPC architecture.

3.4.1 Centralized prediction model

Let us consider the set of Na constrained sub-systems (agents) as a global system defined
as:

xI(k + 1) = AIxI(k) + BIuI(k), (3.27)

with the corresponding vectors which collects the states and the inputs of each individual
nominal system (3.3) at time k:

xI(k) = [x(k)T1 |· · · |x(k)TNa
]T , uI(k) = [u(k)T1 |· · · |u(k)TNa

]T (3.28)

and the matrices AI ∈ R
Nan×Nan, BI ∈ R

Nan×Nam which describe the model:

AI = diag[A1, . . . , ANa ], BI = diag[B1, . . . , BNa ]. (3.29)

and the set I defines collection of all agents indices as in (3.1).

So far the subsystems belonging to the global system are completely decoupled from the
dynamical point of view. Also, perfect knowledge of each agent dynamics described by
equation (3.3) is available to all the other agents. Furthermore, the global model will
be used in a predictive control context which permits the use of non-convex constraints
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for collision avoidance behavior, this being the principal coupling effect. In order to
describe a minimal configuration for the group of agents, the result of a mixed-integer
optimization problem is supposed to be available. The results will be further used such
that the agents will converge towards the predefined formation without colliding.

3.4.2 Centralized optimization-based control problem

The goal is to drive the agents to a minimal configuration (3.21) (if possible, adapting it
on-line via the optimization (3.22)) while in the same time avoiding collisions along their
evolution towards the formation. To this end, we consider an optimal control problem
for the global system defined in (3.27) where the cost function and the constraints couple
the dynamic behavior of the individual agents. Also, perfect knowledge of each agent
dynamics described by equation (3.3) is available to all the other agents. Consequently,
the global model will be used in a predictive control context which permits the use of
non-convex constraints for collision avoidance behavior.

A finite receding horizon implementation is typically based on the solution of an open-
loop optimization problem. We consider a cost function Vn(x,u) : RNa·n × R

Na·m → R

which aims at maintaining a formation, following a reference path or simply to gather
the agents towards the minimal formation. The centralized optimization problem under
collision avoidance constraints is formulated as follows7:

u∗
I = arg min

uI(k|k),...,uI(k+Np−1)|k)
Vn(xI(k|k),uI(k|k), . . . ,uI(k +Np − 1|k)

(3.30a)

subject to:

{

xI(k + s+ 1|k) = AIxI(k + s|k) + BIuI(k + s|k), s = 0, . . . , Np − 1,

(Pi − Pj) xI(k + s|k) /∈ ({−Si} ⊕ Sj) , ∀i, j ∈ I, i 6= j, s = 1, . . . , Np,

(3.30b)

where matrix Pi , [0 . . . I
︸︷︷︸

i

. . . 0] projects the individual agent state xi from the

extended state x (i.e., xi(k) = Pix(k), i ∈ I). With an abuse of notation we use
the non-convex constraints in (3.30b) rewritten with the help of MIP techniques (as in
Section 2.5, Chapter 2) into the following form:

xI(k + s|k) /∈ S, C(S) =
⋃

l=1,...,γc(N)

Cl, s = 1, . . . , Np, (3.31)

7Using the elements provided in Section 2.5, Chapter 2, the computational complexity of (3.30) can
be assessed to a polynomial number of QP problems.
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where S represents the union of convex (bounded polyhedral) safety regions S ,
⋃

i∈I

Si,

with Si the RPI sets with respect to the dynamics in presence of additive disturbance
defined as in (3.9).

The optimization problem (3.30) requires the minimization of the cost function over a
finite prediction horizon Np. From the optimal sequence of inputs uI(k)∗, . . . ,uI(k +
Np−1|k)∗ the first control input, u(k)∗, is selected and applied to the centralized system,
thus closing the loop. In order to assure that the target positions (3.21) are reached, we
require a cost function which is minimized in the destination points (and not the origin):

Vn(xI(k|k),uI(k|k), . . . ,uI(k +Np − 1|k) =

(xI(k +Np|k)− xf,i(k))
TP(xI(k +Np|k)− xf,i(k))+

+

Np−1
∑

s=1

(xI(k + s|k)− xf,i(k))
TQ(xI(k + s|k)− xf,i(k))+

+

Np−1
∑

s=0

(uI(k + s|k)T − uf,i(k))R(uI(k + s|k)− uf,i(k)), (3.32)

where (xf,i(k), uf,i(k)) represents the optimal target positions and the associated control

laws at current time k, i ∈ I. Here Q = QT � 0, R ≻ 0 are the weighting matrices
with appropriate dimensions, P = PT � 0 defines the terminal cost and Np denotes
the length of the prediction horizon. Through the task assignment mechanism, the
association between an agent and a target position may change at any moment in time
updated accordingly. This means that the affine terms defining the cost function must
be updated accordingly.

Remark 3.5. The conditions for the centralized obstacle avoidance problem can be rewrit-
ten in a similar way as in (3.30b):

Pix /∈ ({−Si} ⊕Oo) , i ∈ I, o ∈ Io, (3.33)

with the matrix Pi defined as in (3.30b) and I, I≀ defined as in (3.1) and (3.13), respec-
tively. �

Let us summarize in the following algorithm the receding horizon strategy together with
task assignment mechanism:

Due to the fact that we use invariant sets, steps 1 and 2 can be executed in an off-line
procedure. In the on-line part of the algorithm, we apply a finite horizon trajectory
optimization: in step 5 we execute a task assignment if possible (only if the safety
regions are identical) and then proceed with the actual computation of the receding
horizon control (step 7). Finally, the first component of the resulting control sequence
is effectively applied to the global system (step 8) and the optimization procedure is
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Algorithm 3.1: Centralized scheme strategy for the tight formation control problem

Input: initial positions of the agents
1 -construct the safety regions associated to each agent;
2 -construct the minimal configuration as in (3.19)–(3.20);
3 for k = 1 : kmax do

4 if the safety regions are identical then

5 -execute task assignment xi(k)→ xf,i as in (3.22);
6 end

7 -find the optimal control action u∗
I as in (3.30);

8 -compute the next value of the state:

xI(k + 1) = AIxI(k) + BIuI(k).

9 end

reiterated using the available measurements based on the receding horizon principle
[Mayne et al., 2000].

Remark 3.6. Although functional, this scheme will not scale favorably with an increased
number of agents or a large prediction horizon due to the numerical difficulties of the
optimization in large dimensional spaces. In particular, the mixed-integer algorithms
are very sensitive to the number of binary auxiliary variables. In this case a distributed
approach is to be envisaged in order to minimize the numerical computations. �

Remark 3.7. Note that although desirable, an increase in the length of the prediction
horizon is not always practical, especially when using mixed-integer programming. We
observed that a two-stage MPC, where in the first stage a task assignment procedure is
carried and in the second, the usual optimization problem is solved offers good perfor-
mances with a reduced computational effort. �

3.4.3 Exemplification for the convergence towards the tight formation

We apply the receding horizon scheme (3.30) for the global system with a prediction
horizon Np = 2 and the tunning parameters P = 5I4, Q = I4, R = I2. The optimal
trajectories for the agents are obtained such that the set of target points is reached
through task optimization and under (anti-collision) state constraints. The effectiveness
of Algorithm 3.1 is confirmed by the simulation depicted in Figure 3.9 (b), where the
evolution of the agents is represented at three different time instances. The agents
successfully reach their target positions in the predefined formation (illustrated again in
Figure 3.9 (a)) without violating the constraints and with a minimum cost.

For comparison purposes we execute Algorithm 3.1 with and without the task assignment
stage. As it can be seen in Figure 3.9 (c) for a prediction horizon of Np = 2 and without
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the task assignment procedure, the agents do not converge to the desired configuration
(two agents, depicted in blue and red, respectively switch places with respect to the
predefined optimum, which means that the cost function only decrease to a constant non-
zero value). The poor performances of example Figure 3.9 (c) are due to the “untuned”
prediction horizon. Choosing a small prediction horizon makes the control “blind” in the
sense that the trajectories “do not see” the need for a a control effort in order reach the
desired configuration. Of course, these problems can be mitigated with an increase of the
prediction horizon. Note that if the prediction horizon is long enough (in this particular
case Np = 8) the desired configuration is achieved but the computational complexity of
the mixed-integer optimization problem (3.30) increases significantly.

For a second illustration, let us consider Na = 4 heterogeneous agents with different
values of the parameters mi and µi, i = 1, . . . , 4. The prediction horizon is Np = 7 and
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(a) Target configuration of 4 homo-
geneous agents.
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(b) Actual motion of 4 homogeneous
agents with task assignment.
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(c) Actual motion of 4 homogeneous
agents without task assignment.

Figure 3.9: Tight formation of 4 homogeneous agents.
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(a) Target configuration of 4 heteroge-
neous agents.
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(b) Actual motion of 4 heterogeneous
agents.

Figure 3.10: Tight formation of 4 heterogeneous agents.

the tunning parameters are P = 50I4, Q = I4, R = I2. Following the same procedure
we depict in Figure 3.10 (a) the agents with the associated safety regions in a minimal
configuration. Furthermore, in Figure 3.10 (b) we illustrate the evolution of the agents
at two different time instances. Note that, in this particular case, the task assignment
problem can not be employed since the safety regions of the agents are different and
moreover, the target positions will be changing at each time instant.

Note that the problem at hand might still be difficult to solve by meeting the real-time
constraints, even more so when a MPC scheme is applied (both the dimension of the
solution space and the difficulty of describing the feasible region become larger with an
increase in the length of the prediction horizon). Naturally, distributed MPC can be
used to tackle this problem and the forthcoming section aims to offer a MIP solution in
the context of distributed predictive control.

3.5 Distributed MPC

Recalling equation (2.56) from Section 2.5.2, Chapter 2 we note that, the increase in
space dimension and number of obstacles reflects negatively into the computational
complexity of the MIP problem. More precisely, the increase in the number of cells
(as in (3.31)) makes their enumeration more difficult and further increases (even after
applying merging algorithms) the number of necessary binary variables. Therein lies
the main issue which plagues the centralized formulation: the mixed-integer algorithms
increase in worst case situations exponentially with respect to the number of binary
auxiliary variables and the computation reliability decreases for high dimensions (we
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emphasize here the negative effects of dimension increases for MIP techniques, but the
same holds for any optimization problem which deals with centralized implementation,
whenever the number of agents increases).

We shall concentrate in this section on applying distributed optimization concepts to
the formation multi-agent problem with collision avoidance capacities. To alleviate the
issues plaguing the centralized description we propose two enhancements:

• to reduce the complexity of the problem and the dimension of the space in which
the problem is solved, we consider a distributed MPC approach. We partition the
agent collection into neighborhoods and compute the solutions locally while using
information provided by the other neighborhoods. The stability of the overall
formation and a reasonable performance of the agents also needs to be verified;

• to reduce the complexity of the feasible region representation we decompose only
the “visible” part of the feasible region (i.e., the region which is reachable along
the prediction horizon of the agents from a given neighborhood).

Figure 3.11 illustrates the distributed approach that we adopt here, that is, the agents
are partitioned into neighborhoods. At the level of such a neighborhood there exists a
control mechanism which provides inputs for the agents of the group. Moreover, each
controller assumes a certain behavior of the other neighborhoods. In order to reach a
consensus, they exchange communication and converge towards a common solution.

K K

Figure 3.11: Distributed MPC architecture.

In the forthcoming subsections we will detail these improvements and show that the
computational load is reduced significantly while the performance of the scheme remains
within acceptable bounds.

3.5.1 Distributed system description

For further use, we introduce the following definition of a neighborhood of agents.
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Definition 3.1. Let N ,
⋃

i
{Ni} be the collection of neighborhoods Ni ⊆ I which are

considered to be disjoint (for any i 6= j, Ni∩Nj = ∅) and to cover I (for any i ∈ I there
exists j such that i ∈ Nj), with I defined as in (3.1). �

In the distributed case, the optimization problem is solved at the level of each neigh-
borhood and then, the results are communicated externally to the other neighborhoods.
Usually the procedure is repeated until a consensus is reached (sometimes the iterations
can be avoided by, e.g., assuming a hierarchical structure). The dynamics corresponding
to a neighborhood Ni are given by:

xNi
(k) = ANi

xNi
(k) + BNi

uNi
(k), (3.34)

with the corresponding vectors which collects the states and the inputs of each individual
nominal system (3.3) at time k as follows:

xNi
(k) =

[

. . . |xj(k)T | . . .
]T
, uNi

(k) =
[

. . . |uj(k)T | . . .
]T
, j ∈ Ni, (3.35)

and the matrices ANi
∈ R

Nin×Nin, BNi
∈ R

Nin×Nim which describe the model:

ANi
= diag[. . . , Aj , . . . ], BNi

= diag[. . . , Bj , . . . ], j ∈ Ni, (3.36)

for all i ∈ I, with I defined as in (3.1).

For each optimization involving the agents of a given neighborhood, the feasible region
can be obtained from conditions (3.16) by selecting only the constraints involving the
agents of the current neighborhood and taking the other agents (of the remaining neigh-
borhoods) as additional obstacles. This approach has the drawback of necessitating
a continuous recalculation of decomposition (2.64) from Section 2.5.4, Chapter 2. An
alternative solution which uses the previously calculated C(S) to compute the feasible
region corresponding to Ni is proposed in the following statement.

Proposition 3.1. Let the variable xNi
,
[

xTi1 xTi2 . . .
]T

denote the agents of the

neighborhood Ni and xI\Ni
denote the remaining agents. With the notation of (3.30b)–

(3.31) and assuming that xI\Ni
is bounded by a set XI\Ni

we have that the feasible region
characterizing xNi

is defined as:

C(S)|XI\Ni
=

⋃

l=1,...,γc(N)

Cl|XI\Ni
, (3.37)

with

Cl|XI\Ni
,

{

xNi
:

[

xNi

xI\Ni

]

∈ Cl, ∀xI\Ni
∈ XI\Ni

}

. (3.38)

�
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Proof. The proof is constructive. By intersecting every cell Cl with R
n·|Ni| × XI\Ni

and then projecting along the xNi
subspace we obtain the restrictions Cl|XI\Ni

, thus
concluding the proof.

Recalling the results from Section 2.5, Chapter 2 and the illustrative example provided
in Section 3.2, we observe that in the centralized description, the feasible space for the
extended state (3.27) is obtained as the union of cells Cl in (3.31). For the distributed
approach we have a reduced feasible space where the variables are the states of the agents
of the current neighborhoods and the rest of the agents are considered as obstacles. Of
course, we could use the techniques of Section 2.5 to obtain the feasible region but
this would imply a continuous recalculation of the region as the “mobile obstacles”
(i.e., the other agents) will move from one instant to the other. Instead, we use the
centralized feasible region (3.31) and observe (as shown above) that the feasible region
characterizing neighborhood Ni can be obtained through simple set operations (as seen
in (3.37)–(3.38)). Alternatively, we can say that this approach is an “explicit” one since
it requires the off-line computation of a region (3.31), which is then particularized for
various values of the states of the agents which are not in the current neighborhood.

3.5.2 Distributed optimization-based control problem

As detailed in the introduction, the distributed approach has obvious computational
benefits. Consequently, we reformulate problem (3.30) into a distributed form. For the
agents of neighborhood Ni, the local optimization problem becomes:

u∗
Ni

= arg min
uNi

(k|k),...,uNi
(k+Np−1)|k)

Np−1
∑

s=0

VI\Ni
(xNi

(k + s|k),uNi
(k + s|k)) (3.39a)

s.t.: xNi
(k + s+ 1|k) = ANi

xNi
(k + s|k) + BNi

uNi
(k + s|k), s = 0, . . . , Np − 1,

(3.39b)

xNi
(k + s|k) ∈ C(S)|XI\Ni

, s = 1, . . . , Np. (3.39c)

The use of indexing “Ni” in (3.39) is to be understood as in Proposition 3.1, e.g., ANi

denotes the concatenation (block-diagonal in this case) of state matrices Aj where the
indices j are found in the neighborhood Ni.

The local cost function VI\Ni
(xNi

,uNi
) : R|Ni|·n × R

|Ni|·m → R is defined as

VI\Ni
(xNi

,uNi
) = min

uI\Ni
∈UI\Ni

xI\Ni
∈XI\Ni

V (x,u), (3.40)

where UI\Ni
denotes the values taken by the inputs uI\Ni

(similarly with the definition
of set XI\Ni

).
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Remark 3.8. The use of operator “min” assumes a cooperative approach (the agents ex-
terior to the current neighborhood will try to accommodate the inputs/states suggested
by the optimization problem). If replacing with the “max” operator we assume instead
an adversarial or indifferent approach where the worst combination of inputs/states of
the exterior agents has to be taken into account. �

Both the cost function (3.39a) and the feasible domain (3.39b)–(3.39c) depend explicitly
upon the values found in the sets UI\Ni

and XI\Ni
which characterize the behavior

(input and state) of the agents exterior to the current neighborhood. Consequently, the
content of these sets can accommodate a large span of distributed control strategies.
If no information is forthcoming from the exterior, then these sets are defined using
reachable analysis, thus resulting in a decentralized control. At the other extreme, when
the exact state of the exterior agents is communicated we have a distributed cooperative
approach.

Usually, distributed approaches necessitate several iterations in-between consecutive dis-
cretization steps. That is, at discretization step k for a state x(k)i we may have p̄ itera-
tions with the intermediate values xpi where p = 0 : p̄ and x0

i ← x(k) and x(k+1)i ← xp̄i .
The computations stop after some predefined number of iterations or when a consensus
is reached.

Here we propose a hierarchical implementation which avoids by construction consensus
verification and requires only one iteration. To this end we consider a hierarchical
ordering of the neighborhoods8. For neighborhood Ni, the remaining indices, represented
by I \Ni, are partitioned into N−

i and N+
i which denote the neighborhoods with lower,

respectively higher, priority. Then, the sets UI\Ni
and XI\Ni

are constructed as follows:

UI\Ni
=






⋃

j∈N
−
i

{u0
j}




 ∪






⋃

j∈N
+

i

{u1
j}




 , (3.41a)

XI\Ni
=






⋃

j∈N
−
i

{x0
j}




 ∪






⋃

j∈N
+

i

{x1
j}




 , (3.41b)

where superscript “0” and “1” denote the current iteration for a certain variable (e.g., u0
j

means that the state is not yet updated and the initial value u(k)j will be used, whereas
u1
j means that we use the updated value, the one which will define the next discretization

step, u(k + 1)j).

Under the aforementioned constructive assumptions we state the following lemma dealing
with constraints verification.

8Note that in the hierarchical implementation the neighborhoods are disjoint, see also the definition
of neighborhoods Ni in Section 3.
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Lemma 3.1. Let the agents be in a feasible agent formation at discretization step k:

x(k) ∈ C(S). (3.42)

By applying optimization problems (3.39) with sets (3.41) for each of the neighborhoods
Ni which partition I, we preserve the formation feasibility at the next discretization step
k + 1:

x(k + 1) ∈ C(S). (3.43)

�

Proof. We proceed by induction. Consider neighborhood Ni and its attached optimiza-
tion problem (3.39). Due to the construction of sets UI\Ni

and XI\Ni
as in (3.41), the

optimization problem “sees” the agents of higher order in their updated positions and
the ones of lower order in their initial positions. Then, the resulting control uNi

(k + 1)
will lead to a state xNi

(k + 1) which respects the new states of the higher order agents
(since they are explicitly included in the constraint set) and the un-updated states of
the lower-order agents. On the other hand, the lower-order agents will not break the
constraints involving agents with index in Ni because from their point of view, this
neighborhood has a superior position in the hierarchy.

The presence of the constraints associated to the lower order agents guarantees the
feasibility of x(k + 1). At the ith optimization problem, the initial state of the lower
order agents is respected, thus, if no movement is possible for them, they can at lest
keep the same state. This final argument completes the global recursive feasibility proof
of the control scheme.

Remark 3.9. As mentioned in the proof of Lemma 3.1 we consider for lower order agents
the un-updated state and thus we guarantee the existence of a solution (at worse, the
lower priority agent will be able to keep the same state9). This approach can be general-
ized by assuming not a single point (issued from the prediction) is provided as informa-
tion to the lower priority neighborhoods, but rather all the points that can be reached
by that agents with higher priority. In other words, this means that agents situated
lower in the hierarchy could be “pushed-around” within acceptable bounds in a robust
control manner. �

Remark 3.10. Note that the partitioning between neighborhoods needs not to be time
invariant. If we consider that the neighborhoods have a geometric meaning (for example
the indices of agents which are physically close) it may be necessary to change their
content at every (few) discretization steps. In this sense, we point toward the k-means
clustering algorithms, which permit partitioning a collection of agents into a predefined

9Not necessarily true when the dynamics describe systems which have a minimal velocity – unmanned
aerial vehicles (UAVs) for example. However, in the present result, such limitations on the control action
are not taken into account and the theoretical results holds.
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number of groupings and partitions the state space into Voronoi cells [Kanungo et al.,
2002]. �

To clarify the exposition we provide in Algorithm 3.2 a sketch of the distributed control
problem.

Algorithm 3.2: Distributed MPC scheme

Input: obstacles {Oo}, safety regions Si, neighborhoods N, initial inputs and states
UI\Ni

,XI\Ni
, agent dynamics (Ai, Bi) and global cost function V (·, ·)

1 -describe the feasible cells Cl (3.31) partitioning the feasible region defined by the
collision avoidance conditions (3.16) as in Section 2.5, Chapter 2;

2 for k = 1 : kmax do

3 foreach Ni ∈ N do

4 -for neighborhood Ni calculate UI\Ni
and XI\Ni

as in (3.41);

5 -construct the feasible region C(S)|XI\Ni
as in Proposition 3.1;

6 -write C(S)|XI\Ni
in MIP formulation as in Section 2.5, Chapter 2;

7 -solve optimization problem (3.39);

8 end

9 - k = k + 1;

10 end

3.5.3 Exemplification of a hierarchical distributed approach

For illustrative purposes let us consider the following example. Consider 3 agents, each
one of them its own neighborhood: Ni = {i}, i = 1 : 3. We order these neighborhoods
lexicographically, that is, N1 < N2 < N3 in the hierarchical point of view and apply
the optimization procedure (3.39). For clarity of the exposition we keep a one-step
MPC problem (i.e., Np = 1), such that only one step-ahead has to be considered in the
constraints.

In Figure 3.12 we consider the 3 agents and show their evolution. Note that the first and
last frames represent the current step k and next discretization step (k+ 1) respectively,
and that the 3 intermediate frames represent the single iteration executed in-between
the discretization steps (inter-sample negociation). Further, we detail the execution of
this iteration. In the second frame, we solve optimization (3.39) for N1. Since this
neighborhood is the highest in the ordering (N+

1 = ∅ and N−
1 = {2, 3}) all the other

agents are kept in their initial position and agent 1 positions itself as depicted by the
dashed red contour. At the next frame, the third, we solve the optimization problem
for N2 to which correspond N+

2 = {1} and N−
2 = {3}. In this case, N+

2 is not empty
and thus the agent’s 1 updated state is used and agent 3 has its initial state. It can
be seen that agent 2 finds a better state which respects both the updated and the
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initial constraints. The same procedure is repeated at the next frame for N3 to which
correspond N+

3 = {1, 2} and N−
3 = ∅. In the last frame it can be seen that each of the

agents has changed its position and that the constraints were respected.
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Figure 3.12: Exemplification of the hierarchical distributed approach.

As mention in the introduction of the present chapter, various control methods for solving
the collision avoidance problem are related to the potential field approach [Tanner et al.,
2007], graph theory [Lafferriere et al., 2004] or other optimization-based approaches
which handle indirectly the constraints by penalty terms in the cost function. For ex-
ample, the potential field-based methods offer an arguably less complex implementation
with a smaller computational effort. In the following we investigate such a decentralized
control strategy which is a combination of MPC and Potential Field approach as an al-
ternative for the explicit collision avoidance approach presented up to this point. Beside
the comparison value, the main contribution of the following work is oriented towards
the construction of polyhedral potential functions and the decrease of the computational
complexity since the MIP formulation is inherently difficult to solve.

3.6 Decentralized MPC

As seen in the preceding section, a main motivation for changing the optimization prob-
lem is the computational difficulty of the centralized problem. A first step was to decom-
pose the optimization problem (to “distribute” it), and solve iteratively the subproblems
until a consensus is reached. Here, we go further and assume that the agents do not seek
consensus, that is, they are decentralized (“everybody for itself”). To better exemplify
the decentralized approach that we adopt, Figure 3.13 depicts the main idea. Therefore,
each agent has an associate controller. The exchange of information is reduced to a
minimum, that is, the controller may receive information from the agents neighborhoods
but does not adapt its solution with respect to the other solution provided by the rest
of the controllers. A very simple visualization would be: two agents reach for the same
one-agent-wide entrance, in centralized (and in a well constructed distributed) approach,
one of the agents will cede the priority and let the other pass first. For the decentralized
case with limited communication and lack of global optimality, it will be entirely possible
that both agents will try to pass simultaneously and block each other.
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Even tough it lacks the theoretical guarantees characterizing the centralized and dis-
tributed approaches, in practice, the proposed decentralized method exhibits effective
performances by avoiding the centralized design which can be computationally demand-
ing10. As such it deserves a certain attention at least for understanding the advantages
and the sensitive aspects.

K

K

K

Figure 3.13: Decentralized MPC architecture.

3.6.1 MIP-based solution

3.6.1.1 A naive approach

The simplest (naive) approach when having a multi-agent system is to simply ignore the
inter-agent interaction and obstacle collisions. Obviously, this will lead to a bad behavior
for the system with irreversible damages. There are ways to improve the behavior while
still not considering the non-convex constraints. The simplest one is to provide references
(or some offsets) which will force the agents to stay away from each other. The problem
with this approach is that the formation cannot be tight and that, any unpredictable
disturbance can still lead to intersections of the agents’ safety regions.

A partial consideration of the constraints, but without any consensus, may also help. For
example, let’s say that the agent looks around and constructs its trajectory accordingly.

10Besides computational expenses, the logistic difficulties can be mentioned: a centralized approach
means that there exists a central processing unit which needs information from all the agents and has
to send the control action to all agents. Such a construction may be difficult to implement and be prone
to errors (e.g. the case of a radio-linked system of agents and a non-neglected physical obstacle which
cuts the communication inside a subgroup).
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Since its control action is based only on what it can “see” (position) and estimate (speed
for example), we still do not have any guarantee of collision avoidance.

We have mentioned these two directions because even if they do not provide guarantees
in practice they work reasonably well. However, what we want to stress is that, if
collisions do not have disastrous consequences, such a scheme can be considered for
implementation (consider the example of small robots playing football, since their speed
is limited and they are robust from the point of view of mecatronic construction, eventual
collisions will not destroy them).

3.6.1.2 Adjustment for a recursive collision avoidance

Here we go further and decompose the global system (3.27) of Na agents into Na(Na−1)
2

subsystems of two agents, with similar objective function and state constraints (3.30).
An optimization problem is associated with each subsystem and computes the local
control inputs based only on the states of the agents and a subset of selected neighbors
(with states available for measurements).

The set of neighbors of a given subsystem q can be defined as:

- Nq = {r ∈ {1, . . . , Na} : q-th subsystem has at its disposal the measured state of
the agents and has to impose a constraint involving the predicted state for the r-th
subsystem.

- Each local MPC algorithm provides a sequence of control moves for the local
subsystem and its neighbors.

- Only the first component of such control sequence is applied to the respective
subsystem, no information about the control actions being exchanged at a global
level.

Using the same structure as in the centralized case, for the discrete model of the q-
th subsystem (and its neighbors), the local receding horizon optimization problem is
the one used in the centralized case (3.30), while respecting the constraints imposed
by the dynamics of the subsystem and the collision avoidance constraints defined as
in Section 3.2. Due to the fact that a subsystem has restricted information about the
global state and since the agents are in motion, the preservation of a relative distance
between the agents of neighboring subsystems can not be guaranteed (mainly during
transitory motion). This behavior imposes a modification of the constraints bounds
leading to cooperative configurations similar with the one depicted in Figure 3.14, where
the agents are ordered and the safety region of each agent is expanded (by homothety)
according to its cardinal. For example, the first agent must be at a distance d from the
second agent in each direction. The safety region of the first agent is expanded with d,
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and imposes a 2d distance with respect to the 3rd agent, which consequently implies a
certain distance (d in this case) between the third and the second agent. We continue
by expanding the safety region of the first agent with d up to (Na − 1)d.

Such a control scheme can guarantee constraints-free behavior but the “tightness” of
the formation is far from being optimal, the control strategy being over precautions.
This conclusion can be in fact generalized: “in the collision free guaranteed strategies,
the tightness of the formation has to be negotiated in terms of the communication
capabilities”.
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Figure 3.14: Cooperation constraints of the decentralized MIP-based solution.

3.6.2 Potential field-based solution

We choose here to combine two novel elements: the decentralized approach and the
Potential field method, as an alternative to the usual MPC approach.

A different class of methods for collision avoidance problems uses artificial potential fields
[Khatib, 1986] to directly obtain feedback control actions steering the agents over the
entire workspace. One shortcoming of this approach is that the value of the gradient can
be too large, which can enforce the possible generation of traps (local minima). Relevant
research on generating so-called navigation functions that are free from local minima is
available in the literature [Rimon and Koditschek, 1992]. However, generating a navi-
gation function is computationally involved and thus not suitable for many navigation
problems.

The solution we propose here is to consider the combined use of MPC and Potential field
method in a decentralized implementation. More precisely, we add input constraints
which will limit the gradient and by looking ahead on a certain number of prediction
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steps we can minimize the chances of blocking into a local minima. We have in effect
discarded the non-convex constraints appearing in the combined use of MPC and MIP
and, relocated them into the potential field (the non-convex cost function of the MPC).
The proposed solution is decentralized, the steering policy for each agent is based only
on local state information from its nearest neighbors. Whenever the agent employs
a continuous cycle of sensing and acting, a collision-free control law for the agent is
computed in each cycle based on the local communication with its neighbors on a certain
radius.

Until now we have presented solutions to a formation control problem where all the agents
in the group had the same characteristics and goals. In the present section, we will deal
with the decentralized control of a typical leader-follower formation. Here, the leader
has the responsibility of guiding the group, while the followers have the responsibility of
maintaining the inter-agent formation.

3.6.2.1 Decentralized system description

Consider the same set of Na constrained systems, each individual nominal system being
described by (3.3). We assume that the components of the state are11: the position pi(t)
and the velocity vi(k) of the ith agent such that xi(k) = [pTi (k) vTi (k)]T . For further use,
we will make the difference between the leader agent and the followers by indexing it
with l ∈ I, where I defines the collection of all agents indices (3.1).

Let us assume the steering policy for each follower agent based only on local state
information from its nearest neighbors.

Definition 3.2. [Neighboring graph [Tanner et al., 2007]] An undirected graph G =
{V, E} represents the nearest neighboring relations and consists of:

- a set of vertices (nodes) V = {n1, n2, · · · , nNa} indexed by the agents in the group;

- a set of edges E = {(ni, nj) ∈ V × V : ni ↔ nj}, containing unordered pairs of
nodes that represent neighboring relations.

If we simplify and consider the inter-agent distance, the single limiting factor for their
communication we can define the observation neighborhood of agent i ∈ I and i 6= l as
follows:

Ni(k) , {j ∈ I : ‖pi(k)− pj(k)‖ ≤ r, i 6= j}, (3.44)

where r is the radius of the ball centered in pi.

11We consider a particular form with respect to the previous sections with a specific structure for
the state. This is required by the method we wish to employ: Potential Field approaches are usually
considered for systems which have position and velocity as components of the state.
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Remark 3.11. Note that in Definition 3.2 we introduce a new notion, which can be
interpreted as “observation neighborhood”, which can be different than the neighborhood
notion described in Definition 3.1 for the distributed case. The first one has a physical
meaning: it concentrates the agents, which are close enough, to be observed by the
current agent. On the other hand, the neighborhoods, as they were defined in the
distributed case (see Definition 3.1 in Section 3.5.1) stand for a grouping of agents
whose control actions are given by the same optimization problem12. �

In a potential field approach the collision avoidance problem is treated by considering
penalty terms in the cost function. Since in our approach the agents have associated
safety regions, in the following we construct repulsive potential functions which take into
account their shape. Note that the proposed polyhedral potential field description can
be adapted to most of the existing control architectures and thus is generic.

3.6.2.2 Repulsive potential functions for collision avoidance

Our interest is mainly in taking into account the shape of the safety region (in terms
of (3.9)) of an agent navigating by the obstacles and/or other moving entities. As
we have seen in previous sections, the collision avoidance conditions are described by
the equations (3.14)–(3.16), that is the intersection between the agents safety regions
and/or obstacles needs to be void. As such, in the sequel we employ the use of the
polyhedral function (2.26) and sum function (2.30) (see Section 2.4.2 and Section 2.4.3
from Chapter 2) for the construction of repulsive potential functions, which have a high
value inside the convex safety regions and a progressively increasing value outside them.

In order to exemplify their influence in the collision avoidance problem, we propose
several repulsive potential functions constructed through the use of the formulations
(2.26) and (2.30).

First, the construction based on the polyhedral function defined in (2.26) is proposed
for the generation of a repulsive potential:

Vµ(µ(x)) = c1e
−(µ(x)−c2)2

, (3.45)

where the parameters c1 and c2 are positive constants representing the strength and
effect ranges of the repulsive potential.

Second, an alternative repulsive potential using the sum function described in (2.30) is
given by:

Vψ(ψ(x)) =
c3

(c4 + ψ(x))2
, (3.46)

12Strictly speaking the notion could be used in the development of the results in the distributed control
section but we have preferred to keep the problem simpler at that stage and thus we assumed an infinite
range of communication.
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with c3 and c4 positive constants representing the strength and effect ranges of the
repulsive potential (3.46).

(a) Polyhedral function (2.30) of the
bounded polyhedral set in Figure 2.4.

(b) Repulsive potential using the polyhe-
dral function.

Figure 3.15: Repulsive potential construction using polyhedral function.

(a) Sum function (2.26) of the bounded
polyhedral set in Figure 2.5.

(b) Repulsive potential using the sum func-
tion.

Figure 3.16: Repulsive potential construction using sum function.

As an illustration we recall here the polyhedral function depicted in Figure 2.4 (also
depicted in Figure 3.15 (a)) and using (3.45) we construct the repulsive potential function
depicted in Figure 3.15 (b). A similar construction is provided in Figure 3.16 by using
the repulsive potential function (3.46). As it can be seen, both functions have a high
value inside the polytopes and a low value outside them.
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The repulsive potential will be further used in order to derive a control action such
that the collision avoidance inside the formation is satisfied. Next, we proceed to the
description of the decentralized optimization problem.

3.6.2.3 Decentralized optimization-based control problem

The proposed control approach will be applied for solving a typical leader-follower for-
mation control problem. The goal is to coordinate the agents designed as followers to
achieve a formation while following the agent designed as the leader.

The repulsive potential functions introduced in (3.45) and (3.46) produce a potential
field. The negative gradient of this potential is the key element towards a collision free
behavior for the agents. Globally, an attractive component of the potential function
aims at maintaining a given formation. In this context, we provide a practical control
design method which enables the decentralized decision making for a leader-followers
group of agents. If not otherwise specified, we choose randomly (off-line) the leader
from the available agents and solve a simple tracking problem for it. A finite receding
horizon implementation of the optimal control law is typically based on the real-time
construction of the control sequence ul = {ul(k|k), ul(k + 1|k), · · · , ul(k +Np,l − 1|k)}
that minimizes the finite horizon quadratic objective function:

u∗ = arg
ul

min(xl(k +Np,l|k)TPxl(k +Np,l|k) +

Np,l−1
∑

s=1

xl(k + s|k)TQxl(k + s|k)+

(3.47)

+

Np,l−1
∑

s=0

ul(k + s|k)TRul(k + s|k)),

subject to:







xl(k + s+ 1|k) = Alxl(k + s|k) +Blul(k + s|k), s = 0, . . . , Np,l − 1,

xl(k + s|k) ∈ Xl, s = 1, . . . , Np,l,

ul(k + s|k) ∈ Ul, s = 1, . . . , Np,l.

(3.48)

Note that the optimization problem for the leader is a restricted form of the optimization
problem (3.30) in the case that the target position is the origin (which is admissible in
the absence of the remaining agents). Here Q = QT � 0, R ≻ 0 are positive definite
weighting matrices, P = P T � 0 defines the terminal cost and Np,l denotes the predic-
tion horizon for the leader. The optimization problem (3.47) has to be solved subject
to the dynamical constraints (3.48). In the same time, other security or performance
specifications can be added to the system trajectory. The sets Xl, Ul have to take into
account the reference tracking type of problem delineated in (3.47).
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In the following, we concentrate our attention on the coordination of the rest of the
agents denoted as followers (all the agents besides the leader). Since the agents are in
motion, their relative distances can change with time, affecting their neighboring sets
(3.44). For each agent i, we define an inter-agent potential function which aims to
accomplish the following objectives:

1) collision avoidance between agents;

2) convergence to a group formation while following the leader.

More precisely, in the proposed problem, the following inter-agent potential function is
used:

Vi(pi, vi) = βrV
r
i (pi) + βaV

a
i (pi, vi), ∀i ∈ Ni. (3.49)

The two components of the potential function account for the objectives presented above
and βr, βa are weighting coefficients for each objective. For the ith agent the total poten-
tial is formed by summing the potentials terms corresponding to each of its neighbors.
Consequently, in the present approach, the potential functions are designed as follows:

1) V r
i (pi) denotes the repulsive potentials that agent i sense from its neighbors:

V r
i (pi) =

∑

j∈Ni

V r
ij(pi) (3.50)

To implement this, the concepts introduced in Section 3.6.2.2, specifically the
potential functions (3.45) or (3.46) are taken into account:

V r
ij(pi) =

c3

(c4 + ψij(pi))2
, i 6= j, i 6= l, (3.51)

where ψij(pi) is the sum function (2.30) (see, Section 2.4.3, Chapter 2) induced by
the the safety regions (3.9) associated to both the followers and the leader.

2) V a
i (pi, vi) denotes the attractive component between agents in order to achieve a

formation and to follow the leader agent:

V a
i (pi, vi) =

∑

j∈Ni

V a
ij(pi, vi) + ‖pl − pi‖, (3.52)

for all i ∈ Ni and i 6= l.
The second component denotes the relative distance between the leader and the
followers. The first component V a

ij(xi) has the following form:

V a
ij(pi, vi) = log(ψ2

ij(pi)) + βv(vi − vj), (3.53)

where βv denotes a weighting coefficient for which the agents velocities are syn-
chronizing.
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Note that the issue of choosing appropriate weights in the above relations (3.49), (3.51),
(3.53) is of greatest importance and highly depends on the model (inertia, maneuverabil-
ity, disturbance levels etc), generally following the basic rules of energy versus tracking
performance compromise, their computational aspects being beyond the scope of this
work. In the implementation of the present approach we choose empirical values which
satisfied our requirements, for the convergence purpose, the potential function being re-
quired to have a unique minimum when agents i and j are located at a desired distance.
In practice, we usually choose values for the weights c1, c2, c3, c4 of the repulsive poten-
tials (3.45)–(3.46) in a range between 0.1 and 1 as well as for the weight βr in (3.49).
Furthermore, for the weights βa and βv of the attractive potentials (3.49)–(3.53) we
choose higher values, between 10 and 20. Similar works based on potential filed meth-
ods provide insightful discussions on the tuning of the parameters. Among these papers
we cite [Wu et al., 2010], [Barnes et al., 2009] where a procedure to set the parameters
to accomplish convergence of multi-agents systems is presented.

Note also that for a potential function, a piecewise affine gradient can be computed
(see the gradient of the polyhedral and sum functions in Chapter 2). As in [Rimon
and Koditschek, 1992], [Tanner et al., 2007] the negative value of the gradient can be
applied in order to derive a control action for agent i. The direct approach has several
shortcomings mentioned in the Section 3.6.

In the following, we formulate the optimization problem (3.47) for the followers, by
using the potential-based cost function described in (3.49). A control sequence ui =
{ui(k|k), ui(k + 1|k), · · · , ui(k +Np − 1|k)} which minimizes the finite horizon nonlinear
objective function:

u∗ = arg
ui

min





Np∑

s=0

Vi(pi(k + s|k), vi(k + s|k)



 . (3.54)

subject to:







xi(k + s+ 1|k) = Aix
l(k + s|k) +Biu

l(k + s|k), s = 0, . . . , Np,f − 1,

xi(k + s|k) ∈ Xf , s = 1, . . . , Np,f ,

ui(k + s|k) ∈ Uf , s = 1, . . . , Np,f .

(3.55)

Here Np,f denotes the prediction horizon for the followers. The sets Xf , Uf denote in a
compact formulation the magnitude constraints on states and inputs.

In the optimization problem (3.54) we need to know the future values of the neighboring
graph and the values of the state for the corresponding neighbors. All these elements
are time-varying and difficult to estimate. For computational reasons the following
assumptions will be made:
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- The neighboring graph is considered to be constant along the prediction horizon,
that is,

Ni(k + s|k) , Ni(k). (3.56)

- The future values of the followers state are considered constant

xj(k + s|k) , xj(k). (3.57)

- An estimation of the leader’s state is provided by the equation 13

xl(k + s|k) , 0. (3.58)

The equations (3.56)–(3.58) represent only rough approximation of the future state of
the agents. Obviously, the MPC formulation can be improved by using prediction of the
future state of the neighboring agents (leading to a min-max MPC strategy). Where
feasible, the conservatism of the prediction may be improved by the agents themselves
via communication of their optimization results [Dunbar and Murray, 2006]. Here a sim-
plified approach was implemented for the followers (by assuming constant predictions)
and using the reference trajectory for the leader.

Remark 3.12. The time-varying nature of the neighboring graph and the fact that the
future values of the neighboring states and the leader state are unknown represent some
of the computational limitations of the presented scheme. Moreover, the resulting cost
function is nonlinear and, more than that, non-convex. This means that the numerical
solution may suffer from the hardware limitations and may not correspond to the global
optimum. �

We want also to mention that the stability issues are in some sense still open and this
particular work has a formal contribution principally towards the use of polyhedral
functions and only secondly towards their integration in the global control strategy.
Furthermore, the introduction of the invariant safety region in the repulsive part of the
potential function limits the collision occurrences. Recall that for the collision avoidance
problem, the nominal dynamics of the agent is used, but it is require that the safety
region of the real agents do not intersect. The constraints being “soft” means that we
have no absolute guarantee of collision avoidance but in practice, we observe that such
constraints are respected.

Before exemplifying the Potential Field-based formation control approach, let us validate
the use of the proposed repulsive potential functions in an obstacle avoidance example.

13The leader state is estimated to be 0 since it does not have a reference trajectory to follow, otherwise
xl(k +s|k) = x̃

ref

l (k +s), where x̃
ref

l (k +s) may represent the reference trajectory followed by the leader
agent.
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(a) Potential filed in a workspace with 3
obstacles.
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(b) Agent trajectories using predictive con-
trol.

Figure 3.17: Collision avoidance using repulsive potential functions.

Exemplification for obstacle avoidance using repulsive potentials

Let us consider a punctiform agent (i.e. Na = 1 in (3.10) with m1 = 45kg, µ1 = 15Ns/m)
operating in a two spatial dimensions environment with three obstacles defined by (3.9)
(represented by the blue convex regions in Figure 3.17). We consider a potential function
defined by (3.49) (βr = 1, βa = 1), with two components: a repulsive potential (3.46)
with c3 = 1, c4 = 0.25 and an attractive potential (3.53). The potential function
generates a potential field depicted in Figure 3.17 (a). First, we calculate the gradient
of the potential function which is piecewise affine as in (2.31), Section 2.4.3, Chapter 2.
The negative value of the gradient is applied in order to derive a control action for
the agent. We obtain that the obstacles are usually avoided, with a reduce rate of
violation (90% in the presence of random noise in the aditive disturbance). There are,
however, situations when the constraints are not satisfied, or the control action obtained
through the negative gradient has unrealistic values. For these reasons, we introduce the
potential function in a predictive control framework as in (3.54) leading to a constrained
free MPC, with a prediction horizon Np,f = 2. We obtain that the obstacles are always
avoided. Figure 3.17 (b) illustrates several trajectories of the agent with a random initial
position.

Exemplification for the decentralized navigation of multi-agent formation

Consider five homogeneous agents (i.e. Na = 5 in (3.10)) described by the dynamics
(3.10), with m1 = 45kg, µ1 = 15Ns/m. The initial positions and velocities of the agents
are chosen randomly. We take arbitrarily l = 1 to be the leader which has to be followed
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by the rest of the agents i = 2, . . . , 5 (i 6= l). A quadratic cost function as defined in
(3.47) is used for the leader over a prediction horizon Np,l = 10.
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Figure 3.18: Evolution of a leader/followers formation at different time instances with
their safety regions (leader in red, followers in magenta).

For the followers we consider a potential function as the cost function in the optimization
problem (3.54), with a prediction horizon Np,f = 2. The potential will be constructed
such that both the tracking of the leader and the maintaining of a formation are re-
spected. The neighborhood radius is set to r = 8m, the weighting coefficients are
βr = 1, βa = 10, c3 = 1, c4 = 0.25, βv = 15. The effectiveness of the present algorithm is
confirmed by the simulation depicted in Figure 3.18, where the evolution of the agents is
represented at three different time instances. The agents successfully reach a formation
and follow the leader without colliding.

We note that we prefer a smaller prediction horizon for the followers than the one used
for the leader. This is justified by the fact that the trajectory of the leader has a higher
priority and that any additional prediction step for the potential function (which is not
quadratic) incurs significant computational complexity.

3.7 Concluding remarks

In this chapter, we first present several tools in order to provide a systematic off-line
procedure for the control of a group of agents towards a minimal configuration. Secondly,
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in real-time a two stage receding horizon control design is adopted for driving the agents
to the predefined formation. For the convergence to the predefined formation is shown
that an additional fixed point constraint (i.e., the target positions are also equilibrium
points for the considered dynamics) must be taken into account.

The Mixed-Integer Programming (MIP) technique presented in the previous chapter
enables the geometric description of the feasible region resulting from the typical multi-
agent collision and obstacle avoidance constraints.

The formation control problem is also discussed from a centralized, distributed and
decentralized point of view. Each of these approaches has different strengths and weak-
nesses. The centralized MPC implementation offers the best theoretical guarantees for
multi-agent formation stability but it is numerically cumbersome.

On the other hand, the set of agents can be portioned into neighborhoods and a dis-
tributed predictive control problem can be solved. Here we have concentrated on the
geometrical aspects of the feasible region and preferred a simple hierarchical strategy.
Thus, we avoid inter-sample iterations which seek consensus. While quite flexible, this
scheme raises interesting and challenging questions. For example, it is not yet clear how
to efficiently implement a non-hierarchical distributed approach which would make effi-
cient use of the MIP constructions. Further, set-theoretic elements can be added and we
estimate that they can significantly improve upon the scheme (e.g., the use of reachable
sets to limit the feasible domain).

As a last element, we discuss a decentralized approach and show that, even with the
lack of theoretical guarantees of stability, the simulations results exhibit a functioning
within parameters. Also here we analyze an alternative to the MIP construction used
until now. The MIP formulation is inherently difficult to solve, as such, in the las part
of the present chapter we choose the Potential Field methodology as alternative design
where the constraints are no longer “hard” but rather “soft”, in the sense that we impose
penalties in crossing them in the cost function. The solution is decentralized, the steering
policy for each agent is based only on local state information from its nearest neighbors.
We emphasize that our interest in using potential field approach was mainly in taking
into account the shape of safety region of an agent navigating by the obstacles and/or
other moving entities. The proposed constructions use repulsive potentials based on
special class of (symmetrical) piecewise linear functionals. More precisely, here we use
both the sum function and polyhedral function in order to provide constructions for the
repulsive potential.
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Chapter 4

Assessments of the constrained

control of multi-agent dynamical

systems

The previous chapters highlight the importance of collision avoidance in multi-agent
control problems. This fundamental problem turns out to be difficult, one of the

main reasons being the non-convexity of the resulting feasible region.

As already detailed along the first part of the thesis, there is a wealth of methods for
formulating and solving the multi-agent optimization problem. The common and dom-
inating factor of all these methods is the presence, in a form or another, of non-convex
constraints. They are used explicitly in the MIP formulations and implicitly in the Po-
tential Field formulations, but no matter the approach, they are always present from the
design stage. What we want to emphasize is that, non-convex constraints are not just
an artifact of the problem, but rather an intrinsic property which cannot be avoided (as
it was a long tradition with convex constraints via anti-windup strategies for example).
Solving problems over non-convex regions is not a new issue in the literature (at least
from the optimization point of view), but in the present chapter we fix as objective to go
further in the analysis of the limit behavior and the selection of appropriate orbit for the
closed-loop trajectories. The first remark in this sense is that, the natural unconstrained
equilibrium point (the origin in the case of LTI dynamics) becomes infeasible. More
precisely, the type of constraints that we consider makes the convergence of an agent
dynamics towards such an equilibrium point impossible to fulfill.

In the literature, the problem of the avoidance of convex fixed obstacles is examined in
[Rakovic et al., 2007] from a set-theoretic point of view. The authors propose to deal with
the non-convex control problem by considering approximation procedures which “inner
and outer convexify” the exact capture sets. Furthermore, in [Raković and Mayne, 2007]

104
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the same problem is tackled by using set computations and polyhedral algebra. Other
work, [Patel and Goulart, 2011] reports a gradient-based optimization algorithm for
trajectory generation for aircraft avoidance maneuvers where the obstacles are defined
as convex regions. However, in all of these papers the origin is part of the feasible region.
To the best of the authors knowledge, there does not exists any results treating the case
of constraints which are not satisfied by the origin (understood as the equilibrium point
of the dynamical system to be controlled).

The first part of the present chapter is twofold. In a first stage, we perform a detailed
analysis of the limit behavior for a linear dynamical system in the presence of geometric
adversary constraints. More precisely, we need to define the fixed points and the invari-
ance properties for the system state trajectory while avoiding a convex region containing
the origin in its strict interior. In the context of multi-agent systems, this region can, in
fact, represent an obstacle (static constraints) but can be extended to the safety region
of a different agent (leading to a parameterization of the set of constraints with respect
to the global current state).

In a second stage, our interest is to ensure the stability over the feasible region of the
state space using a dual-mode strategy. The basic principles are those of Model Predic-
tive Control (MPC) technique including avoidance constraints. There is a fundamental
difference to the classical MPC which rely on the assumption that the origin is in the
relative interior of the feasible region (see, for example, [Mayne et al., 2005], [Seron et al.,
2000], [Bemporad et al., 2002]) or on the frontier of the feasible region [Pannocchia et al.,
2003].

The links between fixed points, invariance and affine feedback laws allow us to provide
necessary and sufficient conditions for the existence of a stable equilibrium point having
the entire feasible region as a basin of attraction.

Alternatively, similar conditions can be formulated in order to guarantee that the closed-
loop system is unstable over the entire feasible region. These conditions can be subse-
quently used for the design of unstable control laws [Chetaev, 1952] with the ultimate
goal of “repelling” the trajectories from a certain sensitive region of the state space.
However, these considerations are out of the main topic of the present work. Hereafter,
we concentrate on the algebraic conditions for excluding limit cycles. The employed
methods are specific to Piecewise Affine (PWA) systems analysis, with a geometric in-
sight on the invariance properties of polytopic regions in the state space.

In last part of the present chapter, we go further and extend the analysis for a multi-agent
formation. The previous fixed point uniqueness condition translate in the multi-agent
formulation into a unique configuration condition. It is important to assure that a
control action will not lead to a cycling behavior for the agents, which implies energy
consumption. Formally, the fact that a set of agents remains in (or arrives to) a unique
and stable configuration, as a result of a suitable control strategy, is equivalent with
saying that in an extended space, there exists and it is unique a point which can be
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made fixed through the same control strategy. Therefore, we can guarantee the stability
of a multi-agent formation, but of course, that it depends on the way we solve the
optimization problem. At the end of the chapter, we recall the optimization-based
strategies presented in Chapter 3 and provide discussions based on simulation results on
whether a stable formation can be achieved.

Finally, there are many applications of the present work which are of particular interest,
namely those where static or dynamic constraints must be respected. Examples include
coordinated ocean platform control for a mobile offshore base [Girard et al., 2001]. The
homogeneous modules forming the offshore base must be able to perform long-term
station keeping at sea, in the presence of waves, winds and currents. Therefore, the
independent modules have to be controlled in order to be maintained aligned. This task
can be easily accomplished if each module converges to different fixed points, which are
suitably chosen. Furthermore, it is well known that the North Atlantic is one of the
most inhospitable environments on the planet. Yet, it is here that Atlantic Norway’s
offshore oil and gas industry (see, [Grant and Shaw, 2001], [Bertino and Lisæter, 2008])
has been operating for years and with an impressive amount of success. In order to
remain prosperous under such harsh conditions, the offshore industry relies on a variety
of innovative technologies. An example is the ice-breaking cargo vessel and/or tanker
which need to break the ice around the platform. Therefore, the ice-breaking vessel has
to maneuver as close as possible to the platform, while avoiding the collision with it (i.e.
the vessel has to converge to a limit cycle).

4.1 Preliminaries

4.1.1 A generic problem formulation

Let us recall the system (2.9) and express its dynamics in a simplified form:

x(k + 1) = Ax(k) +Bu(k), (4.1)

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the input signal and A, B are state matrices
of appropriate dimensions. It is assumed that the pair (A,B) is stabilizable.

The minimization of infinite horizon cost function (usually a quadratic function involv-
ing states and inputs) leads to the linear state-feedback control law characterizing the
optimal unconstrained control:

u(k) = KLQx(k), (4.2)

with KLQ computed from the solution of the discrete algebraic Riccati equation.



Chapter 4. Assessments of the constrained control of multi-agent dynamical systems 107

Consider now the problem of optimal control of the system state (4.1) towards the origin
while its trajectory avoids the polyhedral region defined as in (2.17) (Section 2.4.1,
Chapter 2) and recalled here:

S =
{

x ∈ R
n : hTi x < ki, i = 1, . . . , N

}

, (4.3)

with (hi, ki) ∈ R
n×R and N being the number of half-spaces. Recall also that we focus

on the case where ki > 0 for all i = 1, . . . , N , meaning that the origin is contained in
the strict interior of the polytopic region, i.e. 0 ∈ S. Note that, the feasible region
is a non-convex set defined as the complement of (4.3), namely R

n \ S. From this
simple problem formulation the inconsistency between the two requirements becomes
obvious. The origin is infeasible but represents the convergence point for the closed-loop
trajectories.

The first implication of this contradictory facts is that, whenever (4.2) is infeasible, a
corrective control action needs to be taken such that the system’s trajectories remain
outside the prohibited region (4.3):

x(k) /∈ S. (4.4)

A tractable approach is the recursive construction of an optimal control sequence u =
{uk|k, uk+1|k, · · · , uk+Np−1|k} over a finite constrained receding horizon, which leads to
a predictive control policy:

u∗ = arg
u

min(xTk+Np|kPxk+Np|k +

Np−1
∑

s=1

xTk+s|kQxk+s|k +

Np−1
∑

s=0

uTk+s|kRuk+s|k), (4.5)

subject to the set of constraints:

{

xk+s+1|k = Axk+s|k +Buk+s|k, s = 0, . . . , Np − 1,

xk+s|k ∈ R
n \ S, s = 1, . . . , Np.

(4.6)

Here Q = QT � 0, R ≻ 0 are weighting matrices, P = P T � 0 defines the terminal cost
and Np denotes the length of the prediction horizon.

Illustrative example

In order to understand our motivation in analyzing the behavior of an agent when
adversary constraints are imposed we show in Figure 4.1 (a) the trajectory of a linear
agent when unconstrained optimum (4.2) is applied. Observe Figure 4.1 (b), the chaotic
behavior of the agent trajectory, when (4.5) is applied subject to constraints (4.6).

In the sequel, a first insight on the geometry of such a problem with a single constraint
will be discussed. Due to the tractable formulation of the explicit solution a one-step
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(a) Agent trajectory using unconstrained
optimum (4.2).
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solving the constrained optimization prob-

lem (4.5).

Figure 4.1: System trajectories with and withought geometric adversary constraints.

ahead prediction will be employed in order to show the particularities of the closed-loop
dynamics.

4.1.2 An explicit solution for a particular case

For a straightforward understanding of the issues of limit behavior in the presence of
adversary constraints let us consider the a one step ahead MPC problem and S =
{

x ∈ R
2 : hT1 x < 1

}

. Briefly, the LQ optimal control action is admitted as long as the

trajectory does not pass through the constraints. Otherwise, the control action is mod-
ified such that the constraint is activated. Figure 4.2 describes the regions obtained
through partitioning with the imposed constraints, the hyperplane of the restricted re-
gion and the explicit MPC partitioning, respectively.

The optimization problem to be solved is formulated as follows:

u∗(k) = arg
u(k)

min (x(k + 1)TPx(k + 1) + u(k)TRu(k)), (4.7)

subject to:

{

x(k + 1) = Ax(k) +Bu(k)

hT1 x(k + 1) ≥ 1
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After introducing x(k + 1) in the cost function and the inequality constraint, the opti-
mization problem (4.7) is reformulated as follows:

u∗(k) = arg
u(k)

min (
1

2
uT (k)(R+BTPB)u(k) + xT (k)ATPBu(k)), (4.8)

subject to: − hT1 Bu(k) ≤ −1 + hT1 Ax(k).

The solution of (4.8) is a continuous piecewise affine function of x, defined over a poly-
hedral partition {Lj}j∈{0,1} of L ⊆ R

2 satisfying L =
⋃

j∈{0,1}
Lj and for which L0 ∩ L1

have a relative empty intersection. Explicitly, the solution of (4.8) is defined as:

u∗(k) = Fjx(k) +Gj , ∀ x(k) ∈ Lj and j ∈ {0, 1}, (4.9)

where F Tj ∈ R
2, Gj ∈ R.

hT
1 x = 1

(0, 0)

hT
c x = 1

Y =
{

x : hT
1 x ≥ 1

}

S =
{

x : hT
1 x < 1

}

X1 = L1 ∩Y

X0 = L0 ∩Y

Figure 4.2: Exemplification of the regions determined by the unbounded adversary
constraints.

As illustrated in Figure 4.2, the polyhedral partitions {Lj}j∈{0,1} are defined as:

L0 = {x ∈ R
2 : hTc x ≥ 1}, (4.10)

L1 = {x ∈ R
2 : hTc x < 1}, (4.11)

where hc ∈ R
2 is given by the first-order Karush-Kuhn-Tucker (KKT) optimality condi-

tions [Bemporad et al., 2002]:

hTc = hT1 (A−B (R+BTPB)−1BTP TA
︸ ︷︷ ︸

KLQ

). (4.12)
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Let us consider
Y =

{

x ∈ R
2 : hT1 x ≥ 1

}

, (4.13)

where 0 /∈ Y (from the definition of the restricted region (4.3), for the case N = 1).
Define X0, X1 ⊆ R

2 such that, X0 = L0 ∩ Y denotes all the state trajectories from W
which under the LQ dynamics (4.2) remain in W at the next iteration and X1 = L1∩W
denotes all the state trajectories that at the next iteration transit in the restricted region.
The previous definitions can be formally described as:

X0 = {x ∈ R
2 : hT1 x ≥ 1, hT1 (A+BKLQ)x ≥ 1}, (4.14)

X1 = {x ∈ R
2 : hT1 x ≥ 1, hT1 (A+BKLQ)x ≤ 1} (4.15)

with X0 ∪X1 = Y .

Remark 4.1. One of the optimal solutions (4.9) corresponds to the unconstrained opti-
mum (4.2). Without a loss of generality it is assumed to be for the partition L0 (i.e. the
affine term is G0 = 0). �

Therefore the closed-loop system can be described by the following piecewise affine dy-
namics:

x(k + 1) =

{

(A+BKLQ)x(k), for x(k) ∈ X0

(A+BF1)x(k) +BG1, for x(k) ∈ X1

(4.16)

Remark 4.2. The existence of the constraint in the optimization problem (4.8) makes the
origin, which represents the fixed point for the dynamics associated to the polyhedral
set X0, to reside outside the validity domain: 0 /∈ X0. �

Proposition 4.1. Consider the system (4.1) with the control law defined by (4.9). The
following statements are verified:

a. All the state trajectories initiated in x(k) ∈ X0 transit in a finite time to X1.

b. The dynamics associated to the polyhedral set X1 defined by (4.16) will steer any
point from X1 in one step on the boundary of the feasible region, i.e.
{x ∈ R

2 : hT1 x = 1}.

�

Proof: See Appendix. �

Remark 4.3. Note that a consequence of Proposition 4.1.b is that one of the eigenvalues
of the state matrix associated to X1 is 0 since the dynamics of X1 represent a projection
on a n− 1 dimensional set.

Let us concentrate on simple mathematical conditions for the existence and uniqueness
of a stable fixed point on the frontier of the feasible domain. The qualitative behavior
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of the agent (4.1) is determined by the pattern of its fixed points, as well as by their
stability properties. One issue of practical importance is whether the fixed point xe
associated to the polyhedral region X1 is stable or unstable and whether xe is included
in X1 or X0.

The following theorem is stated as simple sufficient condition for the existence and
uniqueness of a stable/attractive fixed point of system (4.16).

Theorem 4.1. Consider the discrete-time system (4.1) in closed-loop, with the optimal
solution (4.9) of the optimization problem (4.7).

If there exists V ∈ R
2×2 with nonnegative elements such that

[

−hT1
hTc

]

(A+BF1) = V

[

−hT1
hTc

]

, (4.17)

and

(V − I)1 < −
[

−hT1
hTc

]

BG1, (4.18)

with hc defined by (4.12) and
F1 = −G1h

T
1 hc − (R+BTPB)−1BTPA,

G1 = (R+BTPB)−1BTh1(hT1 B(R+BTPB)−1BTh1)−1,
then the following properties with respect to xe = (I − (A+BF1))−1BG1 hold:

a. If xe ∈ X1, then xe is a unique stable fixed point with a basin of attraction Y
defined by (4.13).

b. If xe /∈ X1, then the closed-loop dynamics are globally unstable in Y with xe
an unstable fixed point. Moreover, all the trajectories transit to infinity along the
boundary of the feasible region.

�

Proof: See Appendix. �

4.1.3 Further geometrical insights for the generic MPC problem

We revert in this section to the problem statement in (4.5)–(4.6) and analyze via explicit
solutions the geometry of the closed-loop system in the case of bounded convex set S as
in (4.3) which needs to be avoided.

Proposition 4.2. Let the pair (A,B) in (4.1) be controllable, the set S as in (4.3) be
nondegenerate and bounded with 0 ∈ S and A+BKLQ nonsingular. Then the closed-loop
system x(k + 1) = Ax(k) + Bu

∗
1(k), where u

∗
1(k) is the first component of the optimal

sequence u∗ in (4.5), is defined by a PWA dynamics with the following properties:
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1. The partition of the state-space covers C(S) = R
n \ S. More than that, C(S) is

unbounded in any direction of Rn.

2. The PWA dynamics over C(S) contains a finite number of polyhedral regions.

3. There is a convex region R such that over R
n \ R the optimal control action

u
∗
1(k) = KLQx(k) according to (4.2).

4. All the initial states in R
n \R will converge to R in finite time.

�

Proof: In order to prove the properties let us stress the structure of the optimization
problem in (4.5)–(4.6). This can be cast in the class of multiparametric problems with
x(k) as a vector of parameters. Moreover, it can be reformulated as a mixed-integer
multiparametric quadratic program where a binary vector of decision variables is used to
code the feasible region in (4.6).

1) The first property is related to the boundedness of the set S and the controllability
properties of the pair (A,B) definining the dynamics in (3.6). We need to show that for
any point in C(S) there exists a control action such that the constraints are satisfied.
Consider then the first prediction step: from the controllability assumptions we have that
for any point x0 ∈ C(S) there exists a control action u0 6= 0 such that (Ax0 +Bu0) 6= 0.
Moreover, there exists a scalar α 6= 1 such that (1 − α)Bu0 6= 0 and thus, by the
boundedness of the set S, (Ax0 + Bαu0) /∈ S. By induction the same holds for all the
steps along the prediction horizon and the feasibility of C(S) is proved.

2) The second property follows directly for the structural properties of the multiparamet-
ric optimization problems. Indeed, the solution will be piecewise affine and the partition
of the feasible set will be upper bounded from the point of view of the number of regions
by the possible combinations of active sets. As long as (4.6) has a finite number of
constraints (finite prediction horizon) a finite number of regions in the PWA partition
[Pistikopoulos et al., 2007].

3) We will provide here a constructive proof. Consider the set R as:

R = ConvHull(S, (A+BKLQ)−1S, . . . , (A+BKLQ)−NpS), (4.19)

where Np is the length of the prediction horizon. For any point in x0 ∈ R
n \ R the

unconstrained optimal sequence

u∗
f = {KLQx0,KLQ(A+BKLQ)x0, . . . ,KLQ(A+BKLQ)Np−1x0} (4.20)

is feasible as it is not part of the sequence which generated the set R. The consequence is
that u∗ do not saturate any constraint in (4.6) and thus the optimal solution correspond
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x0

(A + BKLQ)x0

(A + BKLQ)−1S

S

Figure 4.3: Prohibited region S and one-step reachable set corresponding to set R.

to the unconstrained optimum u∗ = u∗
f . The fact that u∗

1(k) = KLQx(k) completes the
proof (see an illustration in Figure 4.3).

4) The previous property shown that over R
n \R the closed-loop dynamics correspond

to the LTI system x(k + 1) = (A + BKLQ)x(k) which is known to be asymptotically
stable. Moreover, the set R is bounded and there is a ball Bδ ⊂ R. Using the ǫ − δ
stability arguments one can prove that for any initial state in x0 ∈ R

n \R there exists
a finite number number of steps l such that xl ∈ Bδ ⊂ R. �

Remark 4.4. The properties enumerated in the above result hold also by relaxing the
singularity assumption on the A+BKLQ matrix. However the proof of the third item is
slightly more involved as it will need the recursive construction of a reachable set. For
the sake of simplicity we resume the exposition to the argumentation of the nonsingular
case. �
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The fact that the closed loop dynamics exhibit a PWA dynamics, lead us to the con-
clusion that the stability analysis can be performed via sufficient Piecewise Quadratic
Lyapunov arguments as in [Hovd and Olaru, 2010]. However, these tools can be em-
ployed under the assumption of the existence of a unique equilibrium point which is not
guaranteed here. In fact, number of PWA analysis problems as for example deciding on
the number and the basin of attraction of the orbits of a PWA system is known to be a
NP-hard problem [Asarin et al., 2000].

Furthermore, the Proposition 4.2 proves the existence of a compact region R with an
associated piecewise affine map. The region R is positive invariant and by simple scaling
one can assure besides the invariance, the contractivness of this set. Thus, we are in the
case of a structurally stable map and the celebrated Smale’s Horseshoe example is there
to show that such mapping can have infinitely many periodic orbits and the set R can
be even a chaotic invariant set [Wiggins, 1988].

Besides satisfying the constrains (4.6), additionally we would like that the systems’
state approaches a unique equilibrium point and avoids the existence of multiple basins
of attraction, cyclic or chaotic behavior. In the general case the periodic solutions can
be considered as optimal candidates for the limit behavior. In the present work, the
control objective is to avoid limit cycles and concentrate on the convergence to a unique
fixed point with basin of attraction C(S) = R

n \ S.

Remark 4.5. Usual MPC concerns regarding feasibility or recursive feasibility are not
critical for the problem (4.5)–(4.6) as long as the feasible set is actually unbounded.
Such discussion becomes relevant if additional convex state/input constraints are to be
handled. We refer to reachability studies in order to deal with these problems which are
out of the scope of the present chapter. �

4.2 Local constrained control

In the previous subsections it was shown that the generic MPC formulation can lead
to closed-loop behavior which is difficult to analyze locally around the region to be
avoided (even by explicit MPC formulations). Hence, a local-to-global approach should
be preferred for the control design. In this section, we first establish conditions for an
affine state-feedback control law to render a half-space positively invariant. Second,
we associate the half-space to an equilibrium state lying on its boundary. Then, these
conditions are used for the derivation of a control law that transfers the system’s state
as close as possible to the origin, while avoiding the prohibited region.
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4.2.1 Equilibrium states

Consider an affine control law of the form:

u(k) = K(x(k)− xe) + ue, (4.21)

with xe ∈ R
n the desired equilibrium state, K ∈ R

m×n a generic feedback-gain matrix
and ue ∈ R

m the feed-forward parameter. The resulting closed-loop system is described
by the state equation

x(k + 1) = Ax(k) +BK(x(k)− xe) +Bue, (4.22)

and x(k)− xe defines its transient behavior.

A state xe is an equilibrium state for the closed-loop system (4.1) if:

xe = Axe +Bue. (4.23)

Lemma 4.1. The points xe represent equilibrium states for the dynamics (4.1) if and
only if it belongs to the preimage through the linear map (In−A), of the linear subspace,
spanned by the columns of matrix B. �

Proof: The vector ue in (4.23) can be seen as a degree of freedom in the generation of
the points xe in (4.23). As such, the columns of B spans a subspace which is further
mapped through the linear application (In −A). �

Remark 4.6. The geometrical locus of the equilibrium states is independent of K. Con-
sequently, the states that can be equilibria are defined by the dynamics of the unforced
system and are completely specified by ue. �

Illustrative example

As previously mentioned, the set of equilibrium points xe ∈ R
n is the image of matrix

(In − A)−1B in the case when (In − A) is non-singular. The particular characteristics
of the dynamics (state and input dimensions) define the shape of the subspace of states
that can be equilibria. Figure 4.4 depicts a 2-dimensional system with a scalar input. It
can be seen that the geometrical locus of the fixed points is in fact, a line which passes
through the origin.

4.2.2 Positive invariance conditions

We can further concentrate on one of the key issues for the control design: the controlled
invariance with respect to an affine control law (4.21) and subsequently, the closed-loop
stability. For solving this problem, the following lemma provides algebraic invariance
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S

xe

x

y

Figure 4.4: Prohibited region and geometrical locus of equilibrium states.

conditions. Note that this result is a particular case of a more general result established
in [Bitsoris and Truffet, 2011].

Lemma 4.2. The half-space defined by the inequality vTx ≤ γ is a positively invariant
set of the affine system x(k + 1) = Mx(k) + c, if and only if there exists a positive real
number g such that:

vTM = gvT , (4.24)

and
gγ + vT c ≤ γ. (4.25)

�

Remark 4.7. From Lemma 4.2, it follows that

vTM = gvT , (4.26)

and
− gγ − vT c ≤ −γ, (4.27)

are necessary and sufficient conditions (obtained by the inversion of the signs with respect
to the linear constraint) for the opposite half-spaces defined by inequality vTx ≥ γ to be
positively invariant with respect to system x(k + 1) = Mx(k) + c. Note however that,
(4.24)–(4.25) is not equivalent to (4.26)–(4.27) and thus, the two half-spaces need to
be treated with the appropriate conditions (mainly through the use of the appropriate
affine term in the affine control law (4.21)). �
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The next result exploits the invariance properties and relates the above algebraic condi-
tions to the corresponding equilibrium states.

Theorem 4.2. If xe ∈ R
n is an equilibrium state of the closed-loop system (4.1) lying

on the hyperplane vTx = γ, then a necessary and sufficient condition for this hyperplane
to partition the state-space into two positively invariant half-spaces is that vT ∈ R

1×n

to be left eigenvector of the closed-loop matrix A+BK ∈ R
n×n associated to a positive

eigenvalue λ 6= 1. �

Proof: Applying Lemma 4.2 to system (4.22) leads to:

x(k + 1) = (A+BK)x(k) +B(ue −Kxe) (4.28)

and considering Remark 4.7 the invariance yields the following algebraic conditions:

vT (A+BK) = λvT , (4.29)

λγ + vTB(ue −Kxe) ≤ γ, (4.30)

− λγ − vTB(ue −Kxe) ≤ −γ, (4.31)

λ ≥ 0. (4.32)

Equation (4.29) directly proves that (λ, vT ) is a (eigenvalue/left eigenvector) pair. From
(4.30) and (4.31) we have

λγ + vTB(ue −Kxe) = γ, (4.33)

which can be rewritten as:

λγ + vT ((A+BK)xe +B(ue −Kxe))− vT (A+BK)xe = γ. (4.34)

Then, relation (4.34) becomes λγ + vTxe − λvTxe = γ or (1 − λ)vTxe = (1 − λ)γ.
Considering the hypothesis λ 6= 1, we obtain vTxe = γ, thus proving the sufficiency.

Conversely, the invariance of the half-space vTx ≤ γ is equivalent to:

vT (A+BK) = λvT , (4.35)

λγ + vTB(ue −Kxe) ≤ γ. (4.36)

Condition (4.35) is satisfied by the eigenstructure properties. In the same time, xe is
an equilibrium state of the closed-loop system (4.28) lying on the hyperplane vTx = γ.
Then, xe satisfies relation (4.23) and vTxe = γ. Exploiting these facts, condition (4.36)
becomes λγ + vTxe − vT (A + BK)xe ≤ γ and is equivalent to λγ + γ − λvTxe ≤ γ.
Finally, we have that vTxe ≥ γ, which is trivially verified as long as vTxe = γ. Similar
manipulations provides the invariance properties for the opposite half-space vTx ≥ γ
thus, proving the necessity. �

Illustrative example
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The above results can be depicted for a 2-dimensional system xt+1 = Mx(k) + c with
scalar input. In Figure 4.5 the straight line which separates the state space into two
invariant half-spaces and the trajectories converging to the equilibrium point are shown.

xe

vTx = γ

x

y

Figure 4.5: Invariant half-spaces for an affine system

4.2.3 Eigenstructure assignment analysis

As seen above, the eigenvector of a closed-loop matrix can be seen as the normal to
a hyperplane. Under mild assumptions (related principally to the controllability), this
hyperplane can partition the space into two complementary and invariant half-spaces. In
the context of control design we are interested in the converse problem: Given a hyper-
plane, does there exist a certain structural constraint on the gain matrix K which makes
the resulting closed-loop matrix to have the normal to the hyperplane as an eigenvector?
If not, which is the closest approximation possible (in the sense of the infinity norm)?

These questions lead to an eigenstructure assignment analysis. Starting with the set
of hyperplanes defining the polyhedral prohibited region (4.3), we search for the gain
matrices of the control laws which assure stability and assign a left eigenvector as close
as possible to the normal to a frontier of S in (4.3). Additionally, we show this to be
optimal for some a priori given cost matrices (e.g., as in a Riccati equation setting).

The forthcoming results builds upon the remarks in [Srinathkumar and Rhoten, 1975],
[Andry et al., 1983] and similar papers which detail the eigenstructure design in the early
80s. In particular, for a controllable systems it is said that:
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- n eigenvalues and a maximum of n × m eigenvector entries can be arbitrarily
specified,

- no more than m entries of an eigenvector can be chosen arbitrarily.

In the following, we will derive necessary and sufficient conditions for the existence of a
gain matrix K which assigns a prescribed eigenvector and the associated eigenvalue.

Theorem 4.3. Given a controllable pair (A,B) and the pair (λ, v) ∈ R×Rn the following
relations hold:

1. If (λ, vT ) is the eigenvalue/ left eigenvector pair associated to the matrix A+BK,
then K ∈ R

m×n satisfies
KT z = w, (4.37)

with w = (λIn −A)T v ∈ R
n and z = BT v ∈ R

m.

2. If (λ, v) is the eigenvalue/ right eigenvector pair associated to the matrix A+BK,
then K ∈ R

m×n satisfies
Kv = w̃, (4.38)

with w̃ ∈ R
m the solution of (A− λIn)v = −Bw̃.

�

Proof: 1) For the dynamics described by (4.1) and a given vector v ∈ R
n, under

controllability assumptions, there exists a matrix K ∈ R
m×n such that the pair (λ, vT )

is an eigenvalue/left eigenvector of matrix (A+BK) and K verifies the linear constraint:

vTB ·K = wT , (4.39)

with w ∈ R
n and wT , vT (λIn − A). The equation (4.37) is obtained from (4.39) by

considering z = BT v under full-column rank hypothesis, concerning the matrix B.

2) Similarly, let K ∈ R
m×n such that the pair (λ, v) is an eigenvalue/right eigenvector

of matrix (A+BK):
(A+BK)v = λv. (4.40)

If we rewrite (4.40) in the form (A − λIn)v = −BKv we obtain the linear constraint
(4.38) with w̃ ∈ R

m, a solution of the system of equations: (A− λIn)v = −Bw̃. �

Remark 4.8. Note that Theorem 4.3 stresses a structural constraint on the gain K which
depends on the placement of a single pair (eigenvalue/eigenvector). No assumption or
particular implications are made with regards to the rest of the closed-loop matrix A+BK
eigenstructure. Rather, the structural constraints (4.37) or (4.38) will be added further
in a design procedure, to construct a gain which ensures, additionally to a particular
invariance property, the stability of the unconstrained closed-loop system. �
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The aforementioned theorem offers the framework for the following design procedure.
—————————————————————————————————————–
Description: An optimization problem can be formulated in order to find a stable
eigenvalue associated to a left/right eigenvector which corresponds to a normal of a
given hyperplane v. Concomitantly, a vector of parameters w ∈ R

n or w̃ ∈ R
m and

implicitly the linear structural constraint on the feedback gain K as in (4.37) or (4.38)
is obtained.
—————————————————————————————————————–
Input: The controllable pair (A,B) describing the system (4.1) and the normal vector
v ∈ R

n to a given hyperplane.
—————————————————————————————————————–
Output: A structural (linear) constraint (4.37) or (4.38) on the feedback gain ensuring
the invariance property and the stability of the respective eigenvalue.

1.

min δ
δ,λ,w

(4.41)

s.t.: − 1δ ≤ vT (A− λIn) + wT ≤ 1δ

δ ≥ 0,

0 < λ < 1.

2.

min ǫ
ǫ,λ,w̃

(4.42)

s.t.: − 1ǫ ≤ (A− λIn)v +Bw̃ ≤ 1ǫ,

ǫ ≥ 0, (4.43)

0 < λ < 1. (4.44)

——————————————————————————————————————–

In the case when the optimal solution of the optimization problem (4.41) is δ∗ = 0,
the vector vT can be used for the separation of invariant half-spaces (as detailed in
Lemma 4.2 and Theorem 4.2) with respect to the closed-loop dynamics. Moreover,
the conditions imposed on the associated eigenvalue assure the contractiveness of the
respective eigenvector.

The optimal argument w∗ ∈ R
n of the LP problem (4.41) or w̃∗ ∈ R

m of the LP problem
(4.42), will be instrumental in the control design problem through a structural constraint
on the fixed gain matrix as in (4.37) or (4.38).
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4.2.4 Affine parametrization of the feedback policies

As it can be seen from the eigenstructure assignment approach described above, the main
difficulty for proving the stability in the neighborhood of xe is imposed by the structural
constraint on the gain matrix inherited from the invariance desideratum. This imposes
a reformulation of the local control problem in order to identify the design parameters.
In the following, we will derive an affine parametrization of the feedback policies such
that a fixed gain matrix K can be used for feedback, while respecting the constraint
(4.37) or (4.38).

Theorem 4.4. Consider the stabilization of system (4.1).

1. A stabilizing feedback gain K satisfying (4.37) exists if and only if the pair (A +
BΓT , BΨT ) is stabilizable with Γ ∈ R

n×m and Ψ ∈ R
(m−1)×n defined as:

Γ =
[

0n×(m−1) wz̃−1
]

, (4.45)

Ψ =
[

I(m−1) −ẑz̃−1
]

,

with z =
[

ẑ z̃
]

, z̃ ∈ R, z̃ 6= 0, ẑ ∈ R
m−1 and w ∈ R

n as in (4.37).

2. A stabilizing feedback gain K satisfying (4.38) exists if and only if the following
system is output stabilizable (through u(k) = K̆y(k)):

x(k + 1) =
(

A+BΓ̃
)

x(k) +Bu(k),

y(k) = Ψ̃x(k),
(4.46)

with Γ̃ ∈ R
m×n and Ψ̃ ∈ R

(n−1)×n defined as:

Γ̃ =
[

0m×(n−1) w̃ṽ−1
]

, (4.47)

Ψ̃ =
[

I(n−1) −v̂ṽ−1
]

,

with v =
[

v̂ ṽ
]

, ṽ ∈ R, ṽ 6= 0, v̂ ∈ R
n−1 and w̃ ∈ R

m as in (4.38).

�

Proof: 1) We start by decomposing z ∈ R
m in (4.37) into two elements z =

[

ẑ z̃
]

such that the element z̃ ∈ R (a non-zero scalar) and ẑ ∈ R
m−1. Then, decomposing

KT ∈ R
n×m similarly into K̂T ∈ R

n×1 and K̃T ∈ R
n×(m−1) we can express after simple
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algebraic manipulations K̂T as a function of w, ẑ and z̃−1. Furthermore, introducing
this into the original equality (4.37) we obtain an affine relation with KT :

KT = Γ + K̃T ·Ψ (4.48)

with Γ ∈ R
n×m and Ψ ∈ R

(m−1)×n defined as in (4.45). Using the above parametrization,
relation (4.48) can be introduced into the closed-loop matrix as follows:

A+BK = A+B
(

ΓT + ΨT K̃
)

=
(

A+BΓT
)

+BΨT K̃. (4.49)

This leads to a transformation of the original dynamics (4.1):

x(k + 1) =
(

A+BΓT
)

x(k) +BΨT K̃x(k) (4.50)

and complete the equivalence between the original constrained stabilization problem and
the controllability of the pair (A+BΓT , BΨT ).

2) Similarly, v ∈ R
n in (4.38) can be decomposed into two elements v =

[

v̂ ṽ
]

such

that the element ṽ ∈ R (a non-zero scalar) and v̂ ∈ R
n−1. As in the previous case, we

obtain an affine description of K ∈ R
m×n using the independent parameters contained

in K̆ ∈ R
m×(n−1):

K = Γ̃ + K̆ · Ψ̃, (4.51)

with Γ̃ ∈ R
m×n and Ψ̃ ∈ R

(n−1)×n defined in (4.47). Using the parametrization (4.51)
we obtain:

A+BK = A+B
(

Γ̃ + K̆ · Ψ̃
)

=
(

A+BΓ̃
)

+BK̆Ψ̃. (4.52)

This leads to a transformation of the original dynamics (4.1) into a novel formulation
as described in (4.46), which is similar to an output feedback control problem. This
highlights one of the important structural properties for the local constrained design:
the equivalence of the stabilization and invariance in presence of active constraints with
a specific output feedback design. �

Remark 4.9. Note that for m = 1 in (4.48), the gain matrix is directly imposed by
Γ = wz̃−1 since for this particular case the subspace defining K̃ is null. The same remark
can be extended for n = 1 in (4.51), where the gain matrix is given by Γ̃ = w̃ṽ−1. �

Illustrative example

We propose here an illustrative example of the reasoning leading to equations (4.48)–
(4.45) (note that is similar in the case of (4.51)–(4.47)) and the subsequent values of the
matrices involved. In this sense, let us consider a matrix K ∈ R

2×2 which respects the
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constraint (4.37). Then, we can write:

[

k11 k12

k21 k22

] [

z1

z2

]

=

[

w1

w2

]

,

which is equivalent to:

[

k11 k12

k21 k22

]

︸ ︷︷ ︸

KT ∈R2×2

=

[

0 w1z
−1
2

0 w2z
−1
2

]

︸ ︷︷ ︸

Γ∈R2×2

+

[

k11

k21

]

︸ ︷︷ ︸

K̃T ∈R2

[

1 − z1z
−1
2

]

︸ ︷︷ ︸

Ψ∈R1×2

.

where each of the vectors/matrices corresponds with the notation in (4.48)–(4.45). A
similar decomposition can be applied to another particular case, i.e. for K ∈ R

3×3:






k11 k12 k13

k21 k22 k23

k31 k32 k33






︸ ︷︷ ︸

KT ∈R3×3

=






0 0 w1z
−1
3

0 0 w2z
−1
3

0 0 w3z
−1
3






︸ ︷︷ ︸

Γ∈R3×3

+






k11 k12

k21 k22

k31 k32






︸ ︷︷ ︸

K̃T ∈R3×2

[

1 0 −z1z
−1
3

0 1 −z2z
−1
3

]

︸ ︷︷ ︸

Ψ∈R2×3

.

4.2.5 Local controller synthesis

Theorem 4.4 states that the controllability of system (4.1) with the gain matrix subject
to a condition of type (4.37), (4.38), respectively, is equivalent with the controllability
of a reduced order dynamical system. Specifically, in the case 1 of Theorem 4.4, the
usual controllability tests (e.g. the gramian of controllability, controllability matrix)
and design of gain matrix apply (e.g., pole placement or solving a Riccati equation). In
the present paper we choose to construct the controller K̃ in (4.50) with a LQ design
using the solution of the discrete algebraic Riccati equation

ÃTPÃ− ÃTPB̃(B̃TPB̃ +R)−1B̃TPÃ+Q = 0, (4.53)

where we denote Ã = A+BΓ and B̃ = BΨT . Furthermore, assuming the system (4.50)
is controllable and a suitable gain matrix K̃ = R−1BTP is obtained, it is simple to
introduce it in (4.48) and to obtain the stabilizingK for the original dynamics (4.1) which
additionally provide certain invariance properties with respect to a given hyperplane.

In the case 2 of Theorem 4.4, several design approaches can be proposed. Here we
propose a solution close to the ideas in [Crusius and Trofino, 1999], based on a LMI
conditions.
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Proposition 4.3. Given the matrices Γ̃,B, Ψ̃, with B full column rank, any feasible
solution in terms of matrices G = GT ≻ 0, M , N for










−G

(

A+BΓ̃
)T

G+ Ψ̃TNTBT

G
(

A+BΓ̃
)

+BNΨ̃ −G



 ≺ 0,

BM = GB.

(4.54)

provides a gain matrix K̆ = M−1NΨ̃ stabilizing the system (4.46). �

Proof: If B is full column rank, then it follows from BM = GB that M is also full
rank, and thus invertible. This allows to obtain B = GBM−1. Furthermore, the desire
control law has the structure u(k) = −M−1NΨ̃x(k). Exploiting these facts, from the
first condition we obtain that

[

−G ((A+BΓ̃) +BK̆)TG

G((A+BΓ̃) +BK̆) −G

]

≺ 0, (4.55)

or equivalently using Schur complement:

−G+ ((A+BΓ̃) +BK̆)TG((A+BΓ̃) +BK̆) ≺ 0,

which proves that system (4.46) is stabilizable via the proposed state feedback. �

Subsequently, the matrix K̆ can be replaced in (4.51) to obtain the desired state feedback
gain matrix K.

Illustrative example

Figure 4.6 resumes the theoretical details discussed in this section by a graphical illustra-
tion. Therefore, S ∈ R

2 is the prohibited region defined as in (4.3). All the equilibrium
states lie on the hyperplane which pass through the origin (see, (4.23) and Remark 4.6).
Solving the optimization problem (4.41), we find an eigenvector which approximates
the normal to one of the frontiers of the prohibited region. Moreover, the hyperplane
partition the space into invariant half-spaces (see Lemma 4.2).

4.3 The global design problem

In this section we build on the results obtained in the previous sections. The goal
is to define a control law which, given the system dynamics described by (4.1) and
the prohibited region (4.3), transfers all the possible trajectories asymptotically to an
equilibrium point lying as close as possible to the origin while respecting the constraints
(4.6). With the results obtained in the previous sections, a local linear control feedback
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S

xe

vTx = γ
x

y

Figure 4.6: Prohibited region and equilibrium point lying on the boundary of the
feasible region

gain is available such that xe, a point on the frontier of S, is an attractor for the closed-
loop unconstraint trajectories. In the constrained case, the condition x(k) /∈ S is assured
only for a half-space, described by one of the supporting hyperplanes of S.

In the present section we will describe the procedure to ensure the stability of xe by the
use of a receding horizon optimal control procedure. Its design principles are related to
the dual-mode control:

- a generic optimization-based control integrating collision avoidance constraints;

- its equivalence with the unconstrained feedback law (4.21) over an invariant region
containing xe;

- guarantees of convergence in finite time towards this invariant region.
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Consider the system (4.1), the receding horizon the optimization problem to be solved
is formulated as:

u∗ =arg
u

min((x(k +Np|k)− xe)TP (x(k +Np|k)− xe)+ (4.56)

+

Np−1
∑

s=1

(x(k + i|k)− xe)TQ(x(k + i|k)− xe)+

+

Np−1
∑

s=0

(uT (k + s|t)−Kxe − ue)R(u(k + s|k)−Kxe − ue)),

subject to :

{

x(k + s+ 1|t) = Ax(k + s|k) +Bu(k + s|k), s = 0, . . . , Np − 1,

x(k + s|k) ∈ R
n \ S, s = 1, . . . , Np,

(4.57)
with u = {u(k|k), . . . , u(k +Np − 1|k)}. The parameters xe, ue and K, are determined
in the previous section (see (4.21)–(4.23), (4.37)–(4.50)). Applying the first component
of the optimal formulation (4.56)–(4.57) and reiterating the optimization using the new
state x(k), considered measurable, we dispose of a global control law with the following
properties (formulated here without the formal proofs which can be derived without
difficulties based on the classical results in Proposition 4.2 and [Mayne et al., 2000] and
[Chmielewski and Manousiouthakis, 1996]):

- the optimization problem is recursively feasible (as consequence of the unbounded
feasible domain);

- it is tractable (finite number of constraints);

- the matrices P , Q, R can be tuned upon inverse optimality principles to ensure the
equivalence between the unconstrained optimum and the feedback control action
(4.21), u(k) = K(x(k)− xe) + ue;

- reachability analysis can be used to determine the minimal horizon Np such that
the predicted state trajectory

vTx(k +N) ≥ γ,∀x(k) ∈ (Rn \ S).

In order to avoid the difficulties of the reachability analysis in the choice of the prediction
horizon Np, one can use the alternative receding horizon formulation which exploits a
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“terminal set - terminal cost” stability argumentation:

u∗ =arg
u

min((x(k +Np|k)− xe)TP (x(k +Np|k)− xe)+ (4.58)

+

Np−1
∑

s=1

(x(k + s|s)− xe)TQ(x(k + s|s)− xe)+

+

Np−1
∑

s=0

(uT (k + s|k)−Kxe − ue)R(u(k + s|k)−Kxe − ue)),

subject to :







x(k + s+ 1|k) = Ax(k + s|k) +Bu(k + s|k), s = 0, . . . , Np − 1,

x(k + s|k) ∈ R
n \ S, s = 1, . . . , Np,

x(k +Np|k) ∈ vTx(k|k) ≤ γ.
(4.59)

Note that the last constraint ensures the invariance and the contractivity of the domain
of attraction of the corresponding closed-loop feasible states for (4.59). Furthermore,
in this formulation the adding of constraints on the input can be handled, the direct
consequence being the reduction of the feasible domain.

The former construction depends explicitly upon cost matrices P,Q,R. Practically,
the same matrices are used to provide (via the Riccati equation) the optimal gain K.
Here however, we already proposed a value for the gain, based upon invariance assump-
tions. Thus, an inverse optimality reasoning becomes necessary. Having the control law
u(k) = Kx(k) + ue, we deduce (see, Larin [2003] for further details) a triplet of cost
matrices (P,Q,R) for which the matrix K would be the solution of the corresponding
Riccati equation. The inverse optimality problem can be addressed in a computationally
attractive manner via the LMI formulation [Larin, 2003]:







P � 0,

ATPA− P −KTRKT −KTBTPBK � 0,
[

−Y T

T T I

]

≻ 0, T = RK +BTPBK +BTPA,

Y ≺ λI,

(4.60)

where Y is a symmetric matrix, λ is a scalar, I is a unit matrix of appropriate dimension.
The LMI (4.60) provide a triplet (P,Q,R) as result of a feasibility problem. Note however
that the cost matrices obtained are not uniquely defined.

On a more general note, a last aspect which need to be pointed out is that, for the same
type of control problems a so-called “viability kernel” can be defined (the interested
reader is referred to Definition 4.4.1, page 140, [Aubin et al., 2011]). Moreover, the
viable capture basin of certain equilibrium will collect all the trajectories in a finite
time while satisfying the constraints (see, for extensive details [Aubin et al., 2011]). In
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practical terms, in these sets there exists a prediction horizon such that the trajectories
can be guaranteed to reach a terminal region and thus assure the feasibility of the scheme.

4.4 Collision avoidance example

The following illustrative example will describe the limit behavior of an agent in the
presence of adversary constraints. More precisely, the convergence to the relative position
“zero” is impossible for the agent since a fixed convex obstacle contains the equilibrium
position.

Let us consider a linear system, whose dynamics is described by:

A =

[

−0.78 0.33
−0.85 1.08

]

, B =

[

1 1
−5 2

]

(4.61)

The components of the state are the position coordinates of the agent. Note that the
pair (A,B) is stabilizable. The state constraints as described in (4.3) are illustrated in
Figure 4.7 by the red polytope. Solving the optimization problem (4.41), we obtained
an affine parametrization of the gain matrix

K =

[

−0.17 −0.09
0.74 −0.38

]

as in (4.48) with

K̃ = [−0.17 − 0.09], Γ =

[

0 0.86
0 −0.31

]

and Ψ = [1 0.70].

This makes the closed-loop matrix to have a hyperplane of the prohibited region as
an eigenvector. Furthermore, we obtained ue = [0.09 1.29] and the equilibrium point
xe = [0 10.1], illustrated as a green dot in Figure 4.7. The tuning parameters of the
optimization problem (4.56) are:

P =

[

0.59 −0.04
−0.04 0.50

]

, Q =

[

0.11 0.30
0.30 0.21

]

, R =

[

0.54 −0.30
−0.30 0.65

]

,

and the prediction horizon N = 2.

Finally, Figure 4.7 depicts three different state trajectories converging to a unique equi-
librium point when the predictive control law (4.56) is applied.

Until now we have developed the conditions which force any trajectory of a linear dy-
namical system to remain outside of a given prohibited region. We have also discussed
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Figure 4.7: The prohibited region and different agent state trajectories which converge
to a fixed point.

on the link between the conditions we have imposed and the PWA control law given by
an MPC optimization problem.

4.5 Extension to multi-agent formation

Up to now we have discussed the limit behavior of an agent subject to geometric ad-
versary constraints. Although the discussion was made for a LTI prediction model, it
can be adapted to the multi-agent formulation. We speak here about the centralized
formulation (see Section 3.4, Chapter 3) since this method allows a clear equivalence
between the extended centralized system and the dynamics (4.1).

As explained in Section 3.3 the problem of finding a minimal configuration of agents in
steady state is the result of a constrained optimization problem. The cost defines what we
understand by “minimal configuration” and the constraints impose steady state behavior
(each agent stays in a fixed position) and collision avoidance:

min
(xi,ui), i∈I

Na∑

i=1

‖xi‖22, (4.62)

subject to: (xi − xj) /∈ ({−Si} ⊕ Sj), ∀i, j ∈ I, i 6= j, (4.63)

with I denoting the collection of all agents indices. By applying a lifted state trans-

formation (considering all the states into an “extended” state) x =
[

x1 . . . xNa

]

it
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can be observed that (4.62)–(4.63) becomes similar to (4.5)–(4.6). There is a difference
in the shape of the prohibited region. If for (4.5)–(4.6) the non-convex region was the
complement of a convex set, here it becomes the complement of a union of convex sets:
each collision avoidance constraint gives a different convex set which has to be avoided.
Thus, we can conclude that formulations (4.5)–(4.6) and (4.62)–(4.63) are similar but
they differ at the implementation level. We expect increased difficulties due to the ex-
tended state-space formulation and due to the presence of a union of convex sets. Then,
solving the optimization problems (4.41)–(4.56) we can impose that the trajectories of
the centralized system will converge towards a feasible and unique fixed point. Going
back to the original space, we see that this fixed point from the extended space decom-
poses into fixed points for each agent. Thus, we have obtained a feasible and unique
fixed formation. No matter the agents initial positions, they will converge into the same
final configuration.

These results are guaranteed to hold for a centralized scheme where everybody com-
municates with everybody. Once we degrade the centralized form of the optimization
problem, we start loosing these properties. In principle, and depending on the imple-
mentation, a distributed approach should still give convergence towards the formation
in the sense that the duality gap should be zero. However, the constraints feasibility
in the convergence stage is not guaranteed. We emphasize here also the importance of
the computation of the robust positive invariant (RPI) safety region for an agent. This
means that the bounded perturbation affecting an agent will not lead to collisions: the
invariance assures that at any instant the real agent remains “close” to the nominal
position.

4.5.1 Multi-agent formation example

As already mentioned, the method presented in the present chapter can also be extended
to solve collision or obstacles avoidance problems for multiple agents. This implies at
the modeling stage a compact representation of the obstacles and/or a safety region for
an agent in terms of (4.3). Consequently, a safety region can be associated to each agent
and imposes that the inter-agent dynamics do not overlap each individual restriction.
It is important to assure that a control action will not lead to a cycling behavior which
implies energy consumption. Formally, the fact that a set of agent remains in (or arrives
at) a unique configuration, as a result of some suitable control strategy, is equivalent
with saying that in an extended space, there exists and it is unique a point which can
be made fixed through the same control strategy.

Without entering into an exhaustive presentation, we will make use of the techniques
presented in the previous chapters, where the collision avoidance problem in the context
of multi-agent formations is studied in detail. Consequently, here we will only illustrate
that, by using the proposed method the agents converge to a unique configuration (i.e.,
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to a unique equilibrium point in an extended state space). Figure 4.8 depicts the evolu-
tion of two heterogeneous agents with different associated safety regions (the blue and
the red polytopes described as in (4.3)) and different initial positions. More precisely,
as it can be seen in Figure 4.8, the objective of the formation is to reach the origin
all by avoiding the superposition of the safety regions. The trajectories initiated in
three pairs of initial conditions are presented. First scenario corresponds to a position
(−16, 35) for the red agent and (−8, 35) for the blue agent. The equilibrium formation
{x1

e, x
2
e} = {(−1, 1); (1, 1)} is achieved in about 60 steps with a MPC synthesized via

a dual mode procedure with a prediction horizon Np = 2. In the second scenario, the
agents start from (−28,−27), the red agent position and (−21,−34), the blue agent
position and they converge to the same equilibrium even if the maneuver is showing an
aggressive contouring maneuver. Finally, the third scenario, where the red agent starts
from (24,−27) position and the blue agent from (30,−26), confirms the result of the
previously described cases.
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Figure 4.8: The evolution of the agents with different initial positions at three different
time steps.

4.6 Concluding remarks

A finite horizon predictive optimization problem formulation was proposed in order to
describe the evolution of a linear system in the presence of a set of adversary constraints.
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This type of constraints are particular, as they make the convergence of the system tra-
jectory to origin an infeasible task. We propose a dual-mode control law which switches
between an unconstrained optimum controller and a local solution which handles the
constraints activation, when necessary. Simple algebraic conditions for the existence
and uniqueness of a stable fixed point on the boundary of the feasible region represent
the main result of the present work, completed with an optimization based control for the
global attractivity. The analyzed cases are presented through some illustrative examples
and collision avoidance simulation results. Furthermore, the analysis was extended for
multi-agent formation. In this context, the previously described fixed point uniqueness
condition translate in the multi-agent formulation into a unique configuration condition.
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Chapter 5

Examples, simulations,

benchmarks and applications

The present chapter looks towards a particular class of applications popular in the
multi-agent framework. The first part of the chapter is dedicated to the validation of

the predictive control design for the flight control of Unmanned Aerial Vehicles (UAVs).
The second part extends via simulations the multi-agent dynamical systems study.

5.1 Flight control experiments of Unmanned Aerial Vehi-

cles

Unmanned Aerial Vehicles (UAVs) are flying devices that have received increasing
attention in recent years, particularly after the tragic events of September 11, 2001,

when the world has questioned the safety of the onboard aircrafts [Valavanis, 2007].
Currently, most UAVs are used for military mission planning for unmanned combat
support, traffic monitoring, surveillance and search for survivors. Also, the range of
possible civilian applications for UAVs is expending. Many of the enabling technologies
developed for military UAVs are becoming similar or identical to those required for civil
UAVs.

One of the main research challenges is to improve and increase their autonomy, in par-
ticular to empower the application of advanced control design methods. Their aim is
to respect constraints of the vehicle dynamics and to permit the reconfiguration of the
vehicle trajectory in case that unexpected events occur in the system. The combined use
of Model Predictive Control (MPC) with flatness concepts represents a challenging com-
bination in the state-of-the-art allowing to handle the real-time control, the trajectory

134
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generation and can cope with the robustness issues using set-theoretic methods. More-
over, to the best of the author’ knowledge, such a strategy has not been evaluated in
flight tests on actual vehicles. We will emphasize in the rest of the chapter the practical
implementation of these methods for a real UAV system.

There exist various techniques for the real-time control of UAVs. Usually low-complexity
(and robust) control methods are preferred such as, sliding mode control [Bencatel
et al., 2011], dynamic programming approach for motion control of autonomous vehicles
[da Silva et al., 2007] or control strategies that first estimate the speed and heading of
the vehicles and then use simple feedback control laws for stabilizing different measure-
ment errors [Soares et al., 2012]. In comparison to these solutions we will show that
the presented MPC approach, meet the real-time computational constraints even if it
presents a relatively important real-time computational load.

There are also various applications in the literature where real-time MPC is applied to
vehicle maneuvering problems. For example, [Keviczky and Balas, 2006] uses a predic-
tive guidance controller for an autonomous UAV and a fault detection filter for taking
into account the disturbances. Mixed-Integer Programming (MIP) techniques combined
with receding horizon strategy was useful to coordinating the efficient interaction of mul-
tiple UAVs in scenarios with many sequential tasks and tight timing constraints (see,
[How et al., 2004], [Schouwenaars et al., 2005]). Furthermore, some works investigate
the capability of Nonlinear MPC for tracking control. Among these contributions, [Kim
et al., 2002] formulates a nonlinear MPC algorithm combined with the gradient-descent
method for trajectory tracking, and [Fontes et al., 2009] proposes a two-layer control
scheme composed by a nonlinear and a linear predictive controller for a group of non-
holonomic vehicles moving in formation. However, it is important to point out that
nonlinear MPC is computationally involved and thus, not necessarily suitable for a wide
class of applications. This highlights the importance of developing simpler real-time
optimization problems embedded within predictive control formulations for plants de-
scribed by nonlinear models. In this sense, the authors of [Falcone et al., 2007] consider
a MPC tracking controller based on successive on-line linearizations of the nonlinear
model of the corresponding plant. Yet, the computational complexity of the proposed
MPC scheme remains significant. The approach advocated in the present work follows
a similar linearization principle from the prediction model point of view, but avoids its
real-time computation by the use of a precomputed Voronoi diagram of the linearized
models. This novelty is used in conjunction with an efficient trajectory generation mech-
anism in order to reduce the real-time computations.

The structure of flatness plays an important role in the control of such systems, with
practical design algorithms for motion planning, trajectory generation, and stabilization
[Rouchon et al., 2003]. Among the applications, [Hao and Agrawal, 2005] propose a
combination between differential flatness and a graph search method for the on-line
planning and control of multiple ground mobile robots with trailers moving in groups.
Also, the authors in [Van Nieuwstadt and Murray, 1998] apply a real-time trajectory



Chapter 5. Examples, simulations, benchmarks and applications 136

Figure 5.1: “Cularis” UAV of LSTS Department, University of Porto.

generation algorithm based on flatness and receding horizon without constraints to a
thrust vectored flight experiment (the Caltech ducted fan). Finally, the authors in
[De Doná et al., 2009] develop a receding horizon-based trajectory generator methodology
for generating a reference trajectory parameterized by splines, with the property that it
satisfies performance objectives.

Even if our design choice is based on the manipulation of flat outputs, is worth to be
mentioned that, for the cases where flat outputs are not available, alternative trajectory
generation methods can be used. We mention, for example a computational approach
to generate real-time optimal trajectories by using a NonLinear Trajectory Generation
software package [Milam et al., 2002] or the ACADO toolbox which permits to compute a
reference trajectory as the solution of an optimization problem with constraints [Houska
et al., 2011].

In the current chapter we present software-in-the-loop simulations and real-time flight
tests results for the predictive control of Unmanned Aerial Vehicles (UAVs). The flight
experiments took place at the Portuguese Air Force Base OTA in May 2012 on small
platforms (Figure 5.1, Figure 5.2, Figure 5.3) owned by the Air Force Academy and
LSTS laboratory, University of Porto.

In the following, a summary of the control setup used onboard the UAV is presented.
The testbed implements a ground control, that is, the controller runs on Matlab on a
laptop that receives telemetry and sends flight commands through a Ground Station.
The autopilot system runs Piccolo II (see, [Vaglienti et al., 2011]), which sends and
receives airspeed and bank commands from DUNE, a control software developed by the
LSTS lab from University of Porto [Pinto et al., 2012].

The LSTS lab testbed software and hardware architectures enabled us to integrate and
to test our predictive control algorithms in a real-time environment. One fundamental
control issue we deal with in this chapter is the problem of tracking a given reference
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Figure 5.2: “Alfa 06” UAV of Portuguese Air Force Academy, OTA.

Figure 5.3: “Pilatos 3” UAV of LSTS Department, University of Porto.

trajectory in the presence of constraints (see, [Valavanis, 2007], [Aguiar and Hespanha,
2007] and the references therein). This problem is even more challenging because most
of the UAVs dynamical systems are nonlinear, underactuated and exhibit nonholonomic
constraints [Li and Canny, 1993], [Reyhanoglu et al., 1999].

We concentrate next to the description of the control system design, the three-degree-of-
freedom (3 DOF) aircraft model used to test the control system, and the implementation
of the controller intended to run in real-time in an autonomous procedure. A specified
trajectory is generated for a vehicle using the differential flatness formalism. The pro-
posed trajectory generation mechanism takes into account way-point conditions and
furthermore, allows us to obtain off-line linearizations of the nonlinear vehicle model
along the flat trajectory. Since the reference trajectory is available beforehand, a real-
time optimization problem which minimizes the tracking error for the vehicle is solved
based on a prediction of the future evolution of the system, following the model-based
control principles.
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Figure 5.4: Operational control system setup of the UAV.

The validation procedure of the proposed method will test the performances by software-
in-the-loop simulations and subsequently by the ground test results for the control of an
autonomous Unmanned Aerial Vehicle (UAV). Finally, in the subsequent sections we ad-
dress all the issues concerned with the delays in communication and/or the connectivity
between the Ground Station and the autonomous flight control computer.

5.1.1 Testbed hardware and software architecture

The UAV platform is controlled by a highly integrated, user customizable Piccolo system
which is manufactured by Cloud Cap Technologies (http://www.cloudcaptech.com/

piccolo_system.shtm). The Piccolo control system setup, shown in Figure 5.4, consists
of four main parts [Vaglienti et al., 2011]:

- an Avionics control system located onboard the UAV;

- a Ground Station;

- a Pilot Manual Control;

(http://www.cloudcaptech.com/piccolo_system.shtm)
(http://www.cloudcaptech.com/piccolo_system.shtm)
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Figure 5.5: Piccolo closed loop control system.

- the Piccolo Command Center (operator interface).

These four elements provide a reliable way to fly the UAV and enable the end user to
program desired routes for the UAV via way-points.

As shown in Figure 5.5, the Piccolo autopilot setup has two control loops, that is, a
faster inner loop on board the UAV and a slower outer loop, which is implemented on the
Ground Station. The outer loop provides the path to be followed by the vehicle whereas,
the inner loop controls the dynamics of the UAV. Furthermore, Piccolo autopilot relies
on a mathematical model parameterized by the aircraft geometric data and has a built-
in wind estimator. A slightly more detailed description of the main components of the
Piccolo autopilot is given in the following.

5.1.1.1 Piccolo autopilot description

The Piccolo Avionics system is an autopilot designed to track the controlled path
transmitted by the Ground Station. It relies on a group of sensors which includes
[Almeida et al., 2007]: three rate gyroscopes and two axis accelerometers, a radio, a
Global Positioning System (GPS) to determine its geodetic position, and a set of dynamic
and static pressure sensors coupled with a thermometer to determine the airplane’s true
airspeed and altitude.

Besides the GPS receiver the autopilot includes also an IMU (Inertial Measurement
Unit). The GPS delivers X, Y , Z position and velocity measurements, with relatively
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Figure 5.6: Piccolo Command Center showing flight plan and actual position of the
UAV.

larger errors in the positions and relatively small errors in the velocities. The IMU
delivers precise position measurements [Almeida et al., 2007].

A Kalman filter approach is used to gather the information provided by the IMU block
(accelerations and angle-rates) and the GPS block (positions and velocities) in order
to estimate the UAV full state. Both blocks are taken into consideration because the
IMU delivers the best inputs, but requires the GPS support to compensate for the angle
estimation drift. Furthermore, an embedded Power PC receives the state information
from all sensors and runs autopilot loops commanding the control surfaces actuators of
the airplane (ailerons, elevator and rudder), the engine’s thrust as well as playload ports.
Telemetry data is transmitted to the Ground Station through a radio modem sending
the information at a rate of 25 Hz (conversely, this means on average, a discretization
step of 1/25 = 0.04 seconds). With omni-directional antennas the signal strength is
enough for a 3 km communication radio. On the other hand, with directional antennas,
the communication range extends to 40 km.

The Piccolo Ground Station has two very important roles in the system. Firstly, it
provides the communication link between the Piccolo Command Center, the Pilot Man-
ual Control and the Piccolo Avionics. Secondly, converts the intentions of the end user
captured through the operator interface, into meaningful commands for the autopilot.
The ground station can concurrently monitor up to 10 UAVs. Moreover, it performs
differential GPS corrections, and updates the flight plan, which is a sequence of three
dimensional way-points connected by straight lines.

The Piccolo Command Center (operator interface) consists of a portable computer
and a custom developed software which allows the end user to configure and to operate
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Figure 5.7: Software architecture.

the Piccolo System. Furthermore, the graphical user interface (see, Figure 5.6) developed
by Could Cap shows flight information and allows the operator to monitor the flight
progress, to program a desired route for the UAV via way-points, to send velocity, bank
or altitude references and finally, to configure the desired gains of the control system in
the autopilot.

The Pilot Manual Control, which is mainly used for take-off and landing, provides
the end user with a way to override the commands generated by the Ground Station
and allows a qualified UAV Pilot to take control of the UAV.

Finally, Piccolo environment can be understood as the “firmware” with a collection
of protocols which enable the use of the UAVs. In the forthcoming section we present
shortly the upper level management represented by the software architecture that served
as an integration framework for flight code development and simulations in a real-time
environment. Once these elements will be presented, we will be able to concentrate
explicitly on the control design, which is the main goal of the present chapter.

5.1.1.2 Software architecture

The UAV operational system block diagram, including the software architecture is de-
picted in Figure 5.7.

LSTS lab interfaced Piccolo software with MATLAB using DUNE and IMC messaging
system [Pinto et al., 2012]. DUNE (Unified Navigational Environment) it is a generic
embedded software used to compile code for vehicle control, navigation, communication,
sensor and actuator access. Some examples of software tasks that can be implemented
by DUNE are for instance:

- providing a network gateway for the connection to CloudCap software;
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- handling the physical/simulation connection to the autopilot or the Ground Sta-
tion;

- decoding and encodes telemetry and control packets from Piccolo and other on-
board systems (e.g., gimbal camera), from and to Inter-Module Communication
(IMC) packets [Martins et al., 2009].

DUNE can run in simulation mode, which disables all the sensor and actuator drivers
and replaces them with simulating tasks. It may also run in hardware-in-the-loop mode,
which allows for some sensor or actuator drivers to be enabled, together with simulating
tasks [Pinto et al., 2012].

The Inter-Module Communication (IMC) is a message-oriented protocol designed and
implemented for communication among heterogeneous vehicles (for example, aerial and
marine vehicles), sensors and human operators [Gonçalves et al., 2011].

Is noteworthy that the core control algorithm can run in Matlab. Both, the input to
the control algorithm and the output of the control algorithm are communicated in
terms of IMC messages. The DUNE interprets the IMC messages to the corresponding
commands in Piccolo software which is communicated to the UAV [Martins et al., 2009],
[Dias et al., 2010].

5.1.2 UAV model in view of control design

The autopilot in the Piccolo avionics is responsible for the low level control, stabilization,
as well as the flight plan navigation and tracking of the way-points. It consists of seven
PID loops and a turn compensator. A short description is presented in Figure 5.8, for
more details the reader is referred to [Vaglienti and Niculescu, 2004]. The inner loops
control a series of relevant quantities as, airspeed, altitude, turn rate. The quality of the
low level inner control loops allows to abstract it away when the global dynamics are to
be modeled.

The airplane model is a nonholonomic system. It is completely controllable (if the veloc-
ity is different than zero), but it cannot make instantaneous turns in certain directions.
This means that the vehicle state depends on the path executed until the current mo-
ment. Further, the feasible path depends on the aircraft’s current state, as forces cannot
be imposed in any direction concomitantly. The two main control forces of the aircraft
are the lift and the thrust. Thrust magnitude is controlled directly through the motor
power. Lift magnitude is controlled indirectly through the aircraft angle of attack and
the aircraft airspeed. The framework presented here can be adapted to vehicles moving
in 2D or 3D. Subsequently, the airplane can be represented by the following simplified
kinematic models1 with different Degrees-of-Freedom (DOF) [Bencatel et al., 2011]:

1In the present work, we adopt a kinematic model for the airplane that is not a simple double
integrator. Instead, the model is written in terms of the vehicle’s speed, heading and the bank.
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Figure 5.8: Piccolo autopilot loops.

2D model with 3-DOF

ẋ(t) = Va(t) cos Ψ(t) +Wx, (5.1)

ẏ(t) = Va(t) sin Ψ(t) +Wy,

Ψ̇(t) =
g tan Φ(t)

Va(t)
,

3D model with 4-DOF

ẋ(t) = Va(t) cos Ψ(t) +Wx, (5.2)

ẏ(t) = Va(t) sin Ψ(t) +Wy,

Ψ̇(t) =
g tan Φ(t)

Va(t)
,

ḣ(t) = ḣc(t).
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In the present work we explore the case of a 2D 3-DOF model (5.1) of an airplane in
which the autopilot forces coordinated turns (zero side-slip) at a fixed altitude. The
state variables are represented by the position (x(t), y(t)) and the heading (yaw) angle
Ψ(t) ∈ [0, 2π] rad. The input signals are the air-relative velocity Va(t) and the bank
(roll) angle Φ(t), respectively. Also, the airspeed and the bank angle are regarded as
the autopilot pseudo-controls. Furthermore, we assume a nearly null angle of attack and
that the autopilot provides a higher bandwidth regulator for the bank angle, making its
dynamics negligible when compared to the heading dynamics. Wx and Wy are the wind
velocity components on the x and y axis. Notice that the 3D 4-DOF model is the same
as the 2D 3-DOF model of the airplane, except for the altitude variation h(t). In this
case, besides the airspeed and the bank angle, the vertical rate ḣc(t) is regarded also as
the autopilot pseudo-control.

Our main objective being the design of a predictive control strategy, a reference trajectory
needs to be available beforehand at least for a finite prediction window. Therefore, in
the following, we use flatness concepts [Fliess et al., 1995] in order to provide flat states
and inputs of the nonlinear system (5.1) at the pre-design stage (trajectory generation),
which can be updated in real-time in order to allow rescheduling and target moves.

5.1.3 Flat trajectory generation

Consider notations:

ξ(t) =
[

xT (t) yT (t) ΨT (t)
]T
, (5.3)

u(t) =
[

V T
a (t) ΦT (t)

]T
, (5.4)

denoting the state vector and the input vector, respectively. Then, the general system
(5.1) can be described as:

ξ̇(t) = f(ξ(t), u(t)), (5.5)

where f(·, ·) : R3 × R
2 → R

3 is the state vector field.

In the following, we require the determination of a reference trajectory (ξref (t), uref (t))
that steers the model (5.1) from an initial state ξref (t0) to a final state ξref (tf ), over a
fixed time interval [t0, tf ]. Since the aforementioned system is controllable and allows the
existence of flat outputs (see, for instance [Van Nieuwstadt and Murray, 1998], [De Doná
et al., 2009]), we consider flatness properties in order to construct the required reference
trajectory.

The systems’ state and input will be represented as functions of a finite dimensional
mapping z(t) and a finite number of its derivatives (in this particular case it will be
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shown that the second order derivative suffices):

ξref (t) = η0(z(t), ż(t)),

uref (t) = η1(z(t), ż(t), z̈(t)).
(5.6)

In the case of the dynamics (5.1), the vector z(t) =
[

z1(t) z2(t)
]T
∈ R

2, called the flat

output is defined as:

z1(t) = x(t),

z2(t) = y(t).
(5.7)

It can be shown that, the corresponding reference state and input for the system (5.5)
are obtained by replacing the reference flat output (5.7) into equations (5.6):

ξref (t) =
[

z1(t) z2(t) arctan
(
ż2(t)
ż1(t)

)]T
, (5.8)

uref (t) =

[√

ż2
1(t) + ż2

2(t) arctan

(

1
g
z̈2(t)ż1(t)−ż2(t)z̈1(t)√

ż2
1

(t)+ż2
2

(t)

)]T

, (5.9)

where t ∈ [t0, tf ].

For a practical implementation, the flat output signal z(t) is seen as a weighed sum of
functions in a predefined basis. Imposing boundary constraints (or more generic way-
points) for the evolution of the differentially flat systems (see, for instance [De Doná
et al., 2009]) a flat output z(t) can be generated by the resolution of a linear system
of equalities. Exploiting these principles, our approach is to further introduce a set of
way-points through which the vehicle must pass2 in the interval [t0, tf ]:

P , {pi = (ξi, ui), i = 0, . . . , Nw}, (5.10)

where Nw is the number of chosen way-points.

The list of way-points is assumed as being provided by an operator (which can oversee the
operation) and incorporates control requirements: obstacle avoidance, check points, etc.
Note that producing way-points in the reference trajectory generation is coherent with
the existing software-hardware configuration which used way-points in the communica-
tion protocol (see previous description of Piccolo hardware and software architecture).

It is important to point out that polynomial basis functions are a poor choice because
their dimension (degree) depends on the number of constraints imposed upon the in-
puts, states and their derivatives. This means that they are sensitive to the number of
way-points, which can lead to an increased numerical sensitivity when tf grows. More
precisely, in this case the trajectory needs to be computed on segments (i.e., each segment

2Hereafter whenever we use the subscript we refer to time and when we use the superscript we index
a point from a set of points.
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ξref(tf) = ξfξref(tf) = ξf

ξref(t0) = ξ0ξref(t0) = ξ0

ξref(ti+1) = ξi+1ξref(ti+1) = ξi+1

ξref(ti) = ξiξref(ti) = ξi

x

y

Figure 5.9: Flat trajectory which passes through 4 way-points.

taken between two consecutive way-points). Therefore, additional equality constraints
are imposed on the flat output, leading to an increased number of polynomial basis func-
tions beyond reasonable computation limits. For example, in our case, we need to go to
higher order monomials in order to guarantee that there exists a weighted combination
which satisfies all the equality constraints.

To overcome these issues, we used B-splines functions [De Doná et al., 2009], [Suryawan
et al., 2010] which are (arguably) one of the best choices in the sense that their degree
does not depend on the number of way-points. Actually, the degree depends only up to
which derivative we want to assure continuity, this being in contrast with the polynomial
basis. In our particular case, the third degree order of the B-splines suffices to assure
smooth bank and velocity control inputs. Third degree order suffices because the bank
control is defined by the first and second derivatives (see equation (5.9)), which means
that the bank control is smooth only if second and third order derivatives of the flat
output are continuous. As an illustrative example Figure 5.9 shows a flat trajectory
which passes through 4 way-points as in (5.10).

Once we have at our disposal a reference trajectory we can now concentrate on the real-
time aspects. Therefore, in the predictive control context we need to be able to handle
the discretized and linearized model of the vehicle along a reference trajectory. In the
following, we describe the proposed linearization strategy of the nonlinear system (5.1).
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5.1.4 Linearization of the UAV model

For computation purposes, it is convenient to use the discretized model of the nonlinear
system (5.5):

ξ(k + 1) = fd(ξ(k), u(k)). (5.11)

For the time discretization we used the Euler explicit method, where we calculate the
state of the system at a later time from the state of the system at the current time:

ξ(k + 1) = ξ(k) + h · f(ξ(t), u(t))|t=k·h, (5.12)

where h is the discretization step. Even if very simple, the Euler method proved to
be adequate. Of course, one can think of high order discretization schemes and, in
particular, it would be interesting to have a discretization which is adapted to a variable
discretization step (as it is the case due to the communication delays we experienced in
the practical experiments).

Remark 5.1. Since the communication frequency of the Piccolo module was at most 25
Hz it follows that, we were able to use a step size as low as 0.04 seconds. In practice
and because the maximum communication frequency is not always attainable (for more
details see Section 5.1.6) we have chosen a value of 0.1 seconds for the length of the
discretization step. �

In the sequel, we consider the linearization problem of the nonlinear discretized sys-
tem (5.11). We take here a piece-wise affine (PWA) approach3, that is, we consider a
collection of points along the reference trajectory in which we pre-compute linear ap-
proximations of (5.11):

L , {lj = (ξj , uj), j = 0, . . . , Nl}, (5.13)

with Nl the number of chosen linearization points.

For a given point lj ∈ L we consider the following Taylor decomposition:

fd(ξ(k), u(k)) = fd(ξj , uj) +Aj(ξ(k)− ξj) +Bj(u(k)− uj) + βj(ξ(k), u(k)), (5.14)

where the matrices Aj ∈ R
3×3 and Bj ∈ R

3×2 are defined as

Aj =
∂fd

∂ξ
|ξj ,uj , Bj =

∂fd

∂u
|ξj ,uj (5.15)

3The PWA approach has received and extensive interest in the literature, representing a powerful
technique for approximating the nonlinear systems and furthermore, proving their equivalence to other
classes of hybrid systems. For a wide extent on the subject, the interested reader is referred to the work
of [Sontag, 1981], [Heemels et al., 2001], [Ulbig et al., 2010] and the references therein.
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and βj(ξk, uk) ∈ R
3 represents the terms of the Taylor decomposition of rank greater

than 1 (i.e., the nonlinear residue of the linearization):

βj(ξ(k), u(k)) = fd(ξ(k), u(k))− fd(ξj , uj)−Aj(ξ(k)− ξj)−Bj(u(k)− uj), (5.16)

for all j = 0, . . . , Nl. Therefore, the system (5.11) can be linearized in lj ∈ L by the
following dynamics:

ξ(k + 1) = fdj (ξ(k), u(k)) , Ajξ(k) +Bju(k) + rj , (5.17)

with the affine constant terms rj ∈ R
3 defined as:

rj = fd(ξj , uj)−Ajξj −Bjuj , (5.18)

for all j = 0, . . . , Nl.

In the following we consider a procedure of selecting between the predefined linearization
points (5.13) for the current input/state values. To this end, we partition the state-space
into a collection of Voronoi cells:

Vj =
{

ξ : ||ξ − ξj || ≤ ||ξ − ξr||, ∀r 6= j
}

, (5.19)

where each cell consists of all points whose linearization error is lower with respect to
linearization around point ξj than with respect to any other point ξr from L, with
r, j = 0, . . . , Nl. This allows a practical criterion for the selection of the linearization
point during runtime:

if (ξ, u) ∈ Vj then ξ(k + 1) = fdj (ξ(k), u(k)), ∀(ξ(k), u(k)) ∈ Vj . (5.20)

Is worth mentioning that the Voronoi decomposition is unique (by its geometrical prop-
erties) and, as such, it offers a generic design tool for any disposition of the linearization
points. The drawback is that this criterion is purely geometric and do not take into
account the dynamical properties of the model. This disadvantage can be mitigated
by two practical procedures: the increase of the number of linearization points and the
computation of the maximal linearization error (see [Fagiano et al., 2009] for a discussion
on the accuracy of the linearization and the correspondence with a stabilizing control
law). Since βj(ξ(k), u(k)) = fd(ξ, u) − fdj (ξ, u) it follows that the linearization error is
related to the topology of its corresponding cell, Vj :

||βj(ξ(k), u(k))|| ≤ max
(ξ,u)∈Vj

||fd(ξ, u)− fdj (ξ, u)||. (5.21)

Basically, a Voronoi decomposition with decreasing volume of the cells leads to an in-
creasing quality of the PWA approximation for the function (5.11).

The following remarks are in order.
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Remark 5.2. An a priori computation of the linearization (5.15), (5.16) and (5.18) in
all feasible combinations of inputs and states is difficult to handle. As such, we prefer
to select the linearization points (5.13) along the flat trajectory under the assumption
(to be verified along the system functioning) that the real trajectory will stay in the
corresponding validity domain (Voronoi cell) and thus, the chosen linearization points
will remain relevant to the problem at hand. �

Remark 5.3. Here we have chosen the linearization points equidistantly along the ref-
erence trajectory. This choice is acceptable as long as the trajectory tracking error is
contained by similar uncertainty bounds over the associated Vornoi cells. Adaptive curve
sampling can be employed via different parametrization in order to select these points.
For example, the selection of linearization points can be seen as an optimization problem
where the goal is to position the points in such a way as to minimize the linearization
errors βj(ξ(k), u(k)) in (5.14). Such an approach becomes relevant when the control
problem is specified in a high dimensional space and the automatic treatment needs to
be automatic. �

Proof of concept: In order to better explain the linearization strategy, we illustrated in
Figure 5.10 the continuous trajectory of the nonlinear system (5.5) (in blue) and the
piecewise linearized trajectory (in red). Therefore, the linear system (5.17) describes
dynamics of the deviations of the real nonlinear system trajectories (5.11) from the ref-
erence state trajectory ξref (t) described by (5.8) at the application of an input reference
signal uref (t) in the from (5.9). Several linearization points (denoted as black dots)4

have been considered for the construction of the Voronoi cells according to relationship
(5.19). �

By linearizing the reference trajectory one has available of the necessary modeling frame-
work ((2.9), Section 2.2, Chapter 2) for the feedback control part of the trajectory track-
ing according to the MPC principles ((2.1)–(2.2), Section 2.1, Chapter 2). This problem
becomes the central objective for the remaining part of the chapter and will be detailed
in the forthcoming sections.

5.1.5 Trajectory tracking control problem

Since the reference trajectory is available beforehand (through the use of flatness proce-
dures), an optimization problem, which includes the minimization5 of the vehicle tracking
error, can be formulated in a predictive control framework. Practically, the vehicle will
be controlled in real-time to follow the reference trajectory using the available informa-
tion over a finite time horizon in the presence of constraints.

4Note that the way-points (5.10) can also be considered between the linearization points (5.13). More-
over, the linearization points and the way-points in the trajectory generation need not to be correlated.

5The nominal trajectory is conceived to respect state and input constraints, but the real vehicle state
may not follow exactly the reference trajectory, although it is desirable to remain as close as possible to
it.
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Figure 5.10: Real and linearized trajectories and the bounded Voronoi cells.

For the implementation we consider the recursive construction of an optimal open-loop
control sequence u = {u(k|k), u(k + 1|k), · · · , u(k +Np − 1|t)} over a finite constrained
receding horizon, which leads to a feedback control policy by the effective application of
the first control action as system input:

u∗ = arg min
u

Np−1
∑

s=0

(||ξ(k + s|k)− ξref (k + s|k)||Q + ||u(k + s|k)− uref (k + s|k)||R+

+ ||∆u(k + s|k)||R∆
),

(5.22)

subject to the set of constraints:







ξ(k + s+ 1|k) = Ajξ(k + s|k) +Bju(k + s|k) + rj ,

∆u(k + s|k) = u(k + s|k)− u(k + s− 1|k),

ξ(k + s|k) ∈ X , s = 1, . . . , Np − 1,

u(k + s|k) ∈ U , s = 1, . . . , Np − 1,

∆u(k + s|k) ∈ U∆, s = 1, . . . , Np − 1,

(5.23)

with the index j selected such that (ξ(k+ s|k), u(k+ s|k)) ∈ Vj as defined in (5.19), for
some j ∈ {1, . . . , Nl}. Here Q = QT � 0, R ≻ 0, R∆ ≻ 0 are weighting matrices and Np
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denotes the length of the prediction horizon.

The solution of the optimization problem (5.22) needs to satisfy the dynamical con-
straints, expressed by the equality constraints in (5.23). In the same time, other secu-
rity or performance specifications can be added to the system trajectory. These physical
limitations (velocity and bank control inputs) are stated in terms of hard constraints on
the internal state variables and input control action as detailed by the set constraints
in (5.23). Practically, the sets X , U denote in a compact formulation the magnitude
constraints on states and inputs, respectively. Set U∆ describes the constraints on the
variations of the input control signals. In the following, all these sets are supposed to
be polytopic (and by consequence bounded) and to contain the reference value. This
means that ξref (k) ∈ X , uref (k) ∈ U and uref (k)− uref (k − 1) ∈ U∆.

Note that the cost function is designed to minimize the difference between the nominal
and the ideal trajectory, whereas the constraints are imposed on the real trajectory.
Additionally, at each step of prediction, the current values have to be superposed over
the Voronoi decomposition and the best linearization has to be selected.

The trajectory obtained by applying the optimal control u∗ computed in (5.22)–(5.23) is
“nominal”, in the sense that it does not consider either exogenous noises (i.e., the wind)
or the state-dependent linearization error (i.e., the term βj(ξ(k), u(k)) from (5.14)).

The “real” trajectory is simply the one where we take into account all perturbations:

ξ◦(k + 1) = Ajξ
◦(k) +Bju

◦(k) + rj + βj(ξ
◦(k), u◦(k)) + w(k), (5.24)

where the bounded perturbation w(k) denotes the wind.

Subsequently, subtracting (5.17) from (5.24) we obtain the tracking error z(k) = ξ◦(k)−
ξ(k) measuring the difference between real ξ◦(k) and nominal ξ(k) trajectories:

z(k + 1) = Ajz(k) +Bju(k)δ + βj(ξ
◦(k), u◦(k)) + w(k), (ξ◦(k), u◦(k)) ∈ Vj , (5.25)

where uδ(k) = u◦(k)−u(k) denotes the difference between “real” and “nominal” control
actions.

Considering that the perturbations are bounded,6 as long as a stabilizable control action

uδ(k) = K(ξ(k), ξ◦(k)), (5.26)

exists, we can guarantee that the real trajectory (5.24) remains in a bounded neighbor-
hood of the nominal one (5.17). Actually, there will exist a sequence of bounded sets
which describe the tube:

z(k) ∈ Sk ↔ ξ◦(k) ∈ {ξ(k)} ⊕ Sk, ∀k ≥ 0. (5.27)

6If the cell Vj is bounded, then the nonlinear residue βj(ξ(k), u(k)) is also bounded.
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For LTI dynamics, the choice of (5.26) is simply a gain matrix which makes the closed-
loop dynamics stable. Here, due to the switched nature of (5.17) we need also to switch
between the gain matrices:

K(ξ(k), ξ◦(k)) = Kj(ξ
◦(k)− ξ(k)), j = 0, . . . , Nl, (5.28)

with each gain Kj stabilizing the pair (Aj , Bj) in (5.17). Then, we obtain the switched
system:

z(k + 1) = (Aj +BjKj)z(k) + βj(ξ
◦(k), u◦(k)) + w(k), (ξ◦(k), u◦(k)) ∈ Vj , (5.29)

which, under the assumption of existence of a common Lyapunov function (via a piece-
wise Lyapunov function [Hovd and Olaru, 2010] or alternatively by imposing constraints
on the dwell time between switches [Colaneri, 2009]) is stable.

Of theoretical interest is the computation of the “tube” defined by the sets Sj(k). For
LTI dynamics, the set Sj(k) is constructed to be robust positively invariant in order to
minimize the on-line computations. Here the dynamics of the vehicle change whenever
the linearization point changes and it may not be possible to find a common robust
positively invariant set. In this case, a hybrid structure can be proposed. That is, we
compute robust invariant sets for each of the linearized dynamics and change between
them (or scaled versions of them, i.e., S̃j(k) λ(k) Sj(k)) whenever the linearization point
impose it. To summarize, the practical procedure is the following:

- as long as the system use the linearization point (ξref (k), uref (k)), the set Sj(k) is
defined by the same invariant shape and the scalar λ(k) = 1,

- if the index at step k − 1 is j(k − 1) and j(k − 1) 6= j(k), then the shape of Sj(k)

changes as a consequence of the fact that the linearization index changes.

The scalar λ(k) is computed via the LP problem:

λ(k) = minλ

s.t. λSj(k) ⊃ Sj(k−1).

The danger, from the stability point of view, is to have a monotonic increase of the
coefficients λ along the switches. This remark provides a simple and efficient criterion
for detecting the misfunctioning of the predictive feedback loop: the violation of a pre-
imposed bound on the scaling factor. Practically, as long as the change between different
dynamics is slow enough, the overall stability of the tracking error, and thus of the
boundedness of the tube are preserved due to local contractive properties of each LTI
mode (5.29).

Although, the generic robust predictive control strategy would be feasible for the UAV
application, we do not pursue here the invariant set manipulation in the implemented
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control scheme. We will test the nominal predictive control scheme and show that
the inherent robustness of this control law covers in a satisfactory manner the tested
maneuvers. We mention however, that whenever the control law needs to pass by cer-
tification procedures for covering important wind variations, the robust version of the
design needs to be adopted. Moreover, it needs to include the tube description together
with a watchdog mechanism for the invariant set scaling factor, which can commute the
UAV functioning towards a “safe mode”.

Finally, let us recapitulate in Algorithm 5.1 the mechanism implemented based on the
theoretical elements presented previously.

Algorithm 5.1: Trajectory tracking optimization-based control problem

Input: Give the collection of way-points P as in (5.10)
1 -construct the flat trajectory as in (5.8)–(5.9), passing through the way-points pi ∈ P ;
2 -choose a collection of linearization points L as in (5.13);
3 -construct the PWA function as in (5.17) with (Aj , Bj , rj) defined as in (5.15);
4 -partition the state-space into Voronoi cells as in (5.19);
5 for s = 1 : smax do

6 -select the linearization point lj ∈ L by testing (5.20);
7 -select the pair (Aj , Bj , rj) by testing (5.21);
8 -find the optimal control action u∗ by solving (5.22);
9 -compute the next value of the state

ξ(k + s+ 1) = Ajξ(k + s) +Bju(k + s) + rj ;

10 end

The forthcoming section provides software-in-the-loop simulations in comparison with
actual experimental results on real UAVs, which validate our proposed approach.

5.1.6 Simulation and experimental flight tests results

The flight experiments took place at the Portuguese Air Force Base OTA in May 2012
on the platforms illustrated in Figure 5.1, Figure 5.2, Figure 5.3 owned by the Air Force
Academy and the LSTS laboratory of the University of Porto. The results were obtained
during a week long stay at the Portuguese Air Force Base OTA linked with the LSTS
lab. During this stay, we had more than ten flight tests with different scenarios that
evaluated our predictive control algorithm. From these experimentations we have drawn
several conclusions. Needless to say, we have encountered difficulties, both numerical and
theoretical, but in the end, we consider the results to be of very high performance levels.
Moreover, they indicate that the effort of developing such algorithms and investigating
formal proofs of convergence and stability is worthwhile.
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We show in the rest of the chapter illustrative simulations and ground test results. The
control algorithm is running in MATLAB which is interfaced with Piccolo software using
DUNE and IMC messaging system described in Section 5.1.1.2.

We proceed to test several scenarios, both with different way-point lists described as in
(5.10) and control strategies. The control objective is to force the UAV to track the way-
points denoted as red dots in the forthcoming illustrative figures. The control inputs are
the velocity and the bank angle of the UAV. One real-world situation that matches this
scenario is that of an autonomous aircraft equipped with GPS, radio communications
and a camera. The aircraft needs, for example, to take some snapshots at a certain time
of a certain area and then, to transmit the information.

Furthermore, to test the proposed trajectory tracking method we use an extended aircraft
model of (5.1) (for low-level control) with 12 states, in a 3-DOF simulation. For the
real tests we kept the same model for the different UAV platforms that we had at our
disposal. The UAVs were restricted to a range of speed between 18 and 25 meters per
second and to a maximum bank angle of 0.43 radians. In addition, the simulations and
the flight tests took place under various wind conditions. It is assume that the intensity
of the wind is bounded for some reasonable values, e.g., a maximum speed of 10m/s
(for safety reasons the Portuguese Air Force Academy do not test the UAVs if the wind
exceeds 11 ∼ 12 m/s).

A. Simulation results

The numerical data used for the simulated vehicle trajectory tracking are showed in the
following table:

In a first stage, using the results in Section 5.1.3 we generated a flat trajectory (depicted
in blue in Figure 5.11) starting from the current position of the vehicle and passing
through the given way-points (depicted in red dots in Figure 5.11). In a second stage,
we used the linearized model (see the linearization procedure in Section 5.1.4) for the
control part of the trajectory tracking problem.

Figure 5.11 shows simulated tracking performance in the x-y coordinate frame (i.e.,
north-east coordinate frame). In this case, the simulations were performed in MATLAB.
The vehicle tracking performances for the given reference trajectory (depicted in blue
in Figure 5.11) are depicted in green in Figure 5.11. As illustrated in green in the same
figure, the constraints on the velocity and bank commands are satisfied. It is well known
that an increase in the prediction horizon generally leads to better tracking performances
thus, imposing a trade-off between complexity and precision.

Figure 5.12 depicts a 3D simulation of the UAV evolution which tracks the given way-
points. In the same figure we represented the projection of the trajectory on the ground.
Furthermore, Figure 5.12 shows the flight experimental results for the same scenario.



Chapter 5. Examples, simulations, benchmarks and applications 155

0 50 100 150
−0.4

−0.2

0

0.2

0.4

Φ(rad/s)

−500 0 500 1,000
−400

−200

0

200

400

600

800

1,000

1,200

x

y

Flat trajectory and UAV motion.

reference
UAV actual motion
way-points

0 50 100 150
15

20

25

30

Va(m/s)

Figure 5.11: Reference trajectory and actual UAV motion (simulation).
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Figure 5.12: Actual UAV motion and its projection on the x-y space (simulation).
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UAV platform simulated

Velocity control input Va ∈ [18, 25] m/s

Bank angle control
input

φ ∈ [−0.43, 0.43] rad

Variation of the con-
trol input signals

{

The variation of Va is limited to 0.1 ∼ 0.2 m/s2

The variation of φ is limited to 0.5 ∼ 1.1 rad/s

Altitude 150 m

Way-points list P = {(1100, 250, 150), (400, 0, 150), (−250, 250, 150), (400, 500,
150)}

Sampling time 100 ms

Tuning parameters







Q = [10e1 0 0; 0 10e1 0; 0 0 0.1];

P = [10e2 0 0; 0 10e2 0; 0 0 0.1];

R = 10e4 · [10 0; 0 1];

R∆ = 10e4 · [10 0; 0 1];

Np = 7;

Wind 5 m/s

Table 5.1: Simulation results: numerical data specifications.
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The predictive tracking controller was also tested in simulations with different wind
conditions with a maximum speed of 8 m/s and showed good robustness. Figure 5.13
presents for exemplification the simulated reference trajectory in solid blue and the
tracking performance of the UAV with and withought wind conditions. In addition,
the figure illustrates the time when the UAV passes through the way-points. The main
limitations against superior performance are the wind magnitude and the numerical
issues (density of linearization points, prediction horizon length, etc.).

B. Real tests results

We present next the tests results obtained on May 15, 2012, during our stay at the
Portuguese Air Force Academy OTA. The numerical data used for the real-time vehicle
trajectory tracking are showed in Table 5.2.

UAV platform “Alfa 06”, combustion motor, 2.8 m span, Piccolo II, PC104,
2h30 endurance

Velocity control input Va ∈ [18 25] m/s

Bank control input φ ∈ [−0.43 0.43] rad

Variation of the con-
trol input signals

{

The variation of Va is limited to 0.1 ∼ 0.2 m/s2

The variation of φ is limited to 0.5 ∼ 1.1 rad/s

Altitude 150 m

Way-point list P = {(0, 600, 150), (300, 0, 150), (0,−600, 150), (−300,−600,
150), (−600,−300, 150), (−300, 0, 150)}

Sampling time 100 ms

Tuning parameters







Q = [10e1 0 0; 0 10e1 0; 0 0 0.1];

P = [10e2 0 0; 0 10e2 0; 0 0 0.1];

R = 10e4 · [10 0; 0 1];

R∆ = 10e4 · [10 0; 0 1];

Np = 7;

Wind 5 ∼ 7 m/s to 180 degrees (from South no wind, from West
5.83 m/s), the airplane was flying with the wind.

Table 5.2: “Alfa 06” platform: experimental results numerical data specifications.

The flat trajectory generated by the resolution of a system of equation for the refer-
ence trajectory at the way-points (see Section 5.1.3) does not take into consideration
constraints in between the way-points. That is, even if we impose admissible values in
the way-points, we can not guarantee what happens in the rest of the trajectory. This
was a problem for the real-time experiments, especially for the velocity component of
the control input. We had to take into account that the rate of change of the velocity
is limited to the maximum acceleration the aircraft can produce, i.e., 0.1 ∼ 0.2 m/s2.
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Strictly speaking, the MPC will need to enforce the constraints satisfaction and thus,
we could use the curve provided by the reference trajectory generation mechanism (see
the illustrative simulation results in Figure 5.11). It is clear that the existence of such
bounds will represent a challenge for the MPC controller, if the generated reference tra-
jectory had some aggressive values on the velocity and the bank. Moreover, the system
being nonlinear and the tracking errors too large, the closed loop dynamics may become
unstable.

This highlighted the importance of bringing the trajectory into acceptable limits. Hence,
we have generated the flat trajectory for a simplified model, by considering Va(t) in (5.4)
to be constant and let the bank angle φ(t) as the single controllable input. Therefore, the
equations (5.8)–(5.8) for the corresponding reference state and inputs are the following:

ξref (t) =
[

z1(t) z2(t) arctan
(
ż2(t)
ż1(t)

)]T
, (5.30)

uref (t) =
[

Va arctan
(
Va

g
z̈2(t)ż1(t)−ż2(t)z̈1(t)

ż2
1

(t)+ż2
2

(t)

)]T
, (5.31)

where t ∈ [t0, tf ] and Va denotes the constant velocity. In the same time, we made sure
to generate the trajectory by leaving some freedom of movement to the variables Va(t)
and φ(t) from the constraints point of view. As a consequence, they can be used in real
time by the predictive controller to cancel the tracking errors.

Figure 5.14 depicts in blue the reference trajectory the initial position (−202,−7, 2.86)
to the final position (221, 269, 1.57), the way-points (the red dots) and the control input
signals. Observe that the velocity control input of the reference trajectory is constant
and the bank control input varies between acceptable limits. Additionally, the figure
shows the derivatives of the control input components of the reference trajectory which
vary between acceptable limits.

For the control action we have implemented the MPC mechanism using the model de-
scribed in (5.17), the one where both, the bank angle and the velocity are varying. As we
already mentioned, we have used this construction in DUNE where, the control action
applies to a more realistic 12-states model.

Figure 5.15 illustrates the actual UAV motion (depicted in dashed green) in North-East
coordinate frame of the real flight test. Acceptable tracking performances for the given
reference trajectory (depicted in blue in Figure 5.15) are obtained for the UAV. A 3D
illustration of the test scenario together with the actual motion of the UAV is depicted
in Figure 5.16, while the tracking error is depicted in Figure 5.17.

Remark 5.4. Note that we have a hierarchy of models for the UAV dynamics. Firstly, we
use model (5.1), with Va a constant, in order to generate the flat trajectory as in (5.30)–
(5.31). Secondly, the MPC uses the complete model (5.1) to derive a control action,
which is finally applied to a 12-states model of the UAV (or to the Piccolo control UAV
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Figure 5.14: Reference trajectory, control input signals and their derivatives (flight
experiments with Alfa06 UAV).

dynamics during the experiments). Nonetheless, these model mismatches may represent
one of the reasons for the tracking error present in recorded test values. However, the
predictive controller proves to be robust, in the sense that the error does not increase
over time and the real trajectory remains close to the reference. �

In experimental settings we observe that there are losses of communication and the
discretization step itself is not constant (see Figure 5.18 where the nominal and actual
UAV control motion are illustrated). This rises difficulties in the tracking of the reference
trajectory. Figure 5.19 shows the length of the discretization step, depicted in blue. Also,
in the same figure, the red line denotes the average length of the discretization step, thus
showing that there are values significantly above this average (i.e., the are significant
losses of communication during the UAV testing). Observe that the values can get to
10− 20 steps more then the normal size (i.e., 0.1 s − 1 s). Some of the negative effects
can be mitigated. For example, the generation of the flat trajectory can be considered
on-line such that it will always synchronize with the current time step. More precisely,
we divided the reference generation into two distinct operation. Firstly, we constructed
the continuous representation. At run-time we took the current time and generated the
sequence of Np discretized reference state and input signals starting from the current
time. Thus we avoided to generate the entire trajectory beforehand and then, to access
indices which would not correspond to the current time. This approach alleviates the
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Figure 5.15: Reference trajectory and actual UAV motion (flight experiments with
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Figure 5.17: Tracking error (flight experiments with Alfa06).

possible delays in communication7. Also, it may prove helpful for memory usage reasons,
instead of having potentially tens of thousands of values, we need only to compute the
ones which are necessary at the current step.

Remark 5.5. Lastly, note that we did not considered the effect of measurement errors in
the construction of the optimization-based controller. We made use of the MPC implicit
robustness for dealing with their effect. �

The wind perturbations were varying between 5 ∼ 7 m/s to 180 degrees (from South
to West). In practice, to model the influence of the wind, we considered the returned
velocities and compared them with the nominal ones in order to extract the wind value.
Consequently we use this value in the cost function (5.22). We realize that this ad-hoc
procedure is just a first step in the right direction and points for the future work to an
adequate use of an estimation of the wind based on a Kalman filter approach [Østergaard
et al., 2007], [Achour et al., 2010].

Algorithm 5.2 recapitulates the mechanism used during the flight tests.

Without entering into extensive details we present next the tests results obtained on
May 17, 2012. The illustrative figures show the improvements of the real-time trajectory
tracking, due to the small delay in communications and better choice of the tuning
parameters. The numerical data used for the real-time vehicle trajectory tracking are
showed in Table 5.3. Figure 5.20 depicts the way-points (red dots) and the reference

7Note that the tracking error is mostly due to the complex dynamics involved, with significant delays
in communications, and does not occur in simulation, see the illustrative figures from the simulation
results.
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Figure 5.18: Nominal and UAV actual motion (flight experiments with Alfa06).
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Figure 5.19: Value of the sampling time (flight experiments with Alfa06).
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Algorithm 5.2: Real-time control of the UAV

Input: Give the collection of way-points P as in (5.10)
1 - determine the functions for the reference state and input signals using (5.8)–(5.9) and

passing through the way-points pi ∈ P ;
2 while the UAV is flying and is controlled by Piccolo do

3 -Piccolo data acquisition;
4 if TRACK==1 then

5 -take the current time as the starting point for the reference trajectory (t = 0);
6 -compute references and linearization matrices for the interval t : t+Np;
7 -use this information to compute the optimal control action u∗ by solving (5.22);
8 -compute the next value of the state

ξ(k + s+ 1) = Ajξ(k + s) +Bju(k + s) + rj ;

9 else

10 -the UAV is controlled by Piccolo
11 end

12 end

UAV platform “Pilatos 3”, combustion motor, 2.6 m span, Piccolo II,
PC104, 1h30 endurance

Velocity control input Va ∈ [18 25] m/s

Bank control input φ ∈ [−0.43 0.43] rad

Variation of the con-
trol input signals

{

The variation of Va is limited to 0.1 ∼ 0.2 m/s2

The variation of φ is limited to 0.5 ∼ 1.1 rad/s

Altitude 150 m

Way-points list P = {(−100,−350, 150), (300, 0, 150), (0, 500, 150), (−300, 500,
150), (−500, 300, 150), (−300, 0, 150)}

Sampling time 100 ms

Tuning parameters







Q = [10e1 0 0; 0 10e1 0; 0 0 1];

P = [10e2 0 0; 0 10e2 0; 0 0 10];

R = 10e4 · [10 0; 0 1];

R∆ = 10e4 · [10 0; 0 1];

Np = 7;

Wind 4 ∼ 6 m/s to 90 degrees (from West to East), the airplane
was flying against the wind.

Table 5.3: “Pilatos 3” platform: experimental results specifications.
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trajectory (blue line) that Pilatos 3 UAV needs to follow. Furthermore, in Figure 5.21 we
illustrate, in the North-East coordinate frame, the actual motion of the UAV (in dashed
green). The view of the flight scenario and the UAV motion is represented in a North-
East-Altitude coordinate frame in Figure 5.22. Figure 5.24 shows the tracking error
which is under 110 m, while Figure 5.18 illustrates the nominal and actual UAV control
motion. Observe that the tracking performance is better than in the previous scenario
and (as the MPC design framework remains unchanged) is mostly due to the small
delayed in communications during the flight test. This can be observed in Figure 5.25
which depicts in blue the length of the discretization step. In the same figure, the
average length of the discretization step is represented by the red line, showing acceptable
deviations above the average (i.e., the are acceptable losses of communication during the
UAV testing).

Remark 5.6. Note that there are small differences between the control algorithm imple-
mentation for the practical experiments. In the first we considered for the design of the
control action the heading, whereas in the second experiment we used the course. The
difference between them is that in the second case we considered a more realistic value of
the heading, that is, the course takes implicitly into account the wind. We believe that,
besides the small delay in communications, this is another reason for obtaining superior
tracking performances. �

5.1.7 Concluding remarks and improvement directions

The present section addresses a Model Predictive Control (MPC) strategy for Unmanned
Aerial Vehicles (UAVs). The presented results of software-in-the-loop simulations and
real flying tests confirmed the viability of the proposed approach. Moreover, the ref-
erence generation proved to be a valuable tool on the predictive control setup, the flat
trajectory being an important element towards the constraints verification. Also, the
proposed trajectory generation mechanism takes into account way-point conditions and
furthermore, allows to obtain linearizations of the nonlinear vehicle model along the flat
trajectory.

As mentioned, we have encountered difficulties, both numerical and theoretical. During
the presentation we gave solutions to some of them, but of course there is always room
for improvements.

Due to the difficulties of the schema (nonlinear dynamics and the associated computa-
tional load) we have not implemented the tube MPC approach yet. For the future we
propose to construct sets which bound the tracking error and use them in the tube MPC
description. Also, investigating formal proofs of convergence and stability is worthwhile.

We also note the need for a better mechanism for wind estimation in order to decrease the
uncertainty in the prediction model (e.g., a Kalman filter implementation). Nonetheless,
with all these shortcomings and with various (and usually unfavorable) wind conditions
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Figure 5.20: Reference trajectory, control input signals and their derivatives (flight
experiments with Pilatos 3).

the flights tests exhibited an acceptable tracking performance. The implicit robustness
of the MPC proved its quality and the results were satisfactorily.

Another sensitive point is the discretization and the inter-sample variations. For now,
we assumed a fixed length of the discretization step and computed the input action
accordingly. A future improvement of the control mechanism will be the inclusion of
these communication delays in the design of the predictive controller.

There are many challenging applications for the multi-agent formations. These chal-
lenges often involve the realization of basic behaviors, such as trajectory tracking, for-
mation keeping while avoiding collision, allocating tasks, communication, coordinating
actions and team reasoning. In the present section we resumed the real-time flight ex-
periments which did not include multi-agent scenarios for safety considerations. In the
next section we will use all the theoretical elements from the previous chapters in order
to provide simulation results for trajectory tracking of multi-agent formation. Albeit
the agents are described by linear dynamics, we are confident that the results can be
extended for more realistic systems as the one used for modeling the UAVs.
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Figure 5.21: Reference trajectory and actual UAV motion (flight experiments with
Pilatos 3).
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Figure 5.22: Actual UAV motion and its projection on the x-y space (flight experi-
ments with Pilatos 3).
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Figure 5.23: Nominal and actual UAV motion (flight experiments with Pilatos 3).

5.2 Trajectory tracking for multi-agent formation

In Chapter 3 of the present manuscript we characterized the formation and assured the
convergence of multiple agents to a specific configuration. Moreover, we have given a
thorough analysis of the control design method which enabled the stabilization of the
multi-agent formation. Having all these elements well established, we will concentrate
in the present section on the basic task of controlling some agents to follow a prede-
fined trajectory, while maintaing the desired formation pattern. Its outcomes offer a
wide range of applications such as security patrols, search and rescue in hazardous en-
vironments, area coverage and reconnaissance in military missions. Furthermore, the
formation control does not restrict itself only to ground vehicles or robots. It can be
applied to aircrafts, especially UAVs, spacecrafts, surface vessels or underwater vehicles.
For more examples of applications of multi-agent formation, the reader is referred to the
introduction chapter of the present manuscript. In this section we will not discuss the
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Figure 5.24: Tracking error (flight experiments with Pilatos 3).
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Figure 5.25: Value of the sampling time (flight experiments with Pilatos 3).

theoretical elements as they are already established and well detailed in the other chap-
ters. Rather, we will use them to solve the trajectory tracking issue for a formation. We
will validate our remarks and observations through simulation and illustrative examples.

We consider only the nominal system as in (3.3) for describing the agents in the tracking
problem. However, for each agent we determine a safety region characterized by an
invariant set as described in (3.9). The state constraints are represented by the collision
avoidance between the agents and/or with obstacles (see Section 3.2, Chapter 3). Besides
maintaing a safety distance between the agents we will be also interested in imposing
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velocity constraints for an agent. These can represent, for example safety limits, such as
a minimum maneuvering velocity near an obstacle or another agent. Another example
involves UAVs formation flying, where each agent has to keep its velocity grater than a
specified value, even if the formation follows a trajectory with a relative velocity inferior
to some pre-imposed bounds for each UAV.

Having these elements, the trajectory tracking problem formulated in a non-convex con-
strained MPC framework is described from both the centralized and decentralized point
of view as a receding horizon mixed-integer optimization problem. Using the predicted
control laws, the agents move in the same direction following a specified trajectory.

Based on the information received from the MPC formulation the constraints are taken
into account, leading the agents to follow the reference trajectory in a formation which
depends on the geometry of the constraints.

The specified trajectory of the group of agents is generated using the differential flatness
formalism already described in Chapter 2 and applied for the real-time control of an UAV
in the previous section. Finally, we will show that we can achieve a group formation
only by imposing constraints on the position and the velocity of the agents, while they
follow an a priori given reference.

In order to have a clear image of the elements needed for solving the trajectory tracking
problem for multi-agent formation, we recall through a simple illustration, Figure 5.26,
the steps taken in the off-line and on-line implementation.

For the optimization problem we recall here the cost function Vn(x,u) : RNa·n×RNa·m →
R which aims at maintaining the formation, following the reference trajectory. The
centralized optimization problem under collision avoidance constraints is formulated as8

in Section 3.4.2, Chapter 3:

u∗
I = arg min

uI(k|k),...,uI(k+Np−1|k)
V ref
n (xI(k|k),uI(k|k), . . . ,uI(k +Np − 1|k))

(5.32a)

subject to:

{

xI(k + s+ 1|k) = AIxI(k + s|k) + BIuI(k + s|k), s = 0, . . . , Np − 1,

xI(k + s|k) /∈ S ∀i, j ∈ I, i 6= j, s = 1, . . . , Np,

(5.32b)

with xI(k|k) and uI(k|k) the corresponding vectors which collects the states and the
inputs of each individual nominal system (3.3) at time k. The cost function, is defined

8To emphasize the presence of the reference inputs and states in the formulation of the cost function
we have added the ref superscript.
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Figure 5.26: General MPC approach for trajectory tracking of multi-agent formation.

as in (3.32):

V ref
n (xI(k|k),uI(k|k), . . . ,uI(k +Np − 1)|k)) = ‖xI(k +Np|k)− x

ref
I (k +Np|k)‖P+

(5.33)

+

Np−1
∑

s=1

‖xI(k + s|k)− x
ref
I (k + s|k)‖Q +

Np−1
∑

s=0

‖uI(k + s|k)T − u
ref
I (k + s|k)‖R,
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where (xrefI (k|k),urefI (k|k)) represents the reference trajectory to be followed by the
agents at current time.

In the following we present simulation examples in order to validate the approaches
presented thought the manuscript.

5.2.1 MIP-based solution for trajectory tracking

Consider for the agents with a double integrator (3.10) models, where [xi yi vx,i vy,i]
T ,

[ux,i uy,i]
T are the state and the input of each system. The components of the state

are: the position (xi, yi) and the velocity (vx,i, vy,i) of the ith agent, i ∈ I, with I, the
collection of all agents indices as in (3.1).

• Trajectory tracking of multi-agent formation with collision avoidance constraints
– centralized MPC approach

This example considers three homogeneous agents (depicted as blue, green and red dots,
respectively in Figure 5.27) following the same trajectory (depicted in magenta ). The
collision avoidance constraints are imposed by the safety regions associated to each
agents. Note that since the agents are homogeneous, the safety regions are the same and
they are represented by the blue, green and red bounded polyhedral sets in Figure 5.27.
Each safety region points in the direction of each agent velocity vector. Figure 5.27
illustrates at three different time instants the evolution of the agents. In order to avoid
the collision and according to the optimization result, the agents are self-organized (and
can be assimilated with a flocking behavior) into the configuration depicted in the same
figure.

The tracking and the collision free maneuvering for the given reference trajectory is
achieved with a prediction horizon Np = 3. Figure 5.28 illustrates the evolution of
the three heterogeneous along the reference trajectory. Since the goal is to steer the
agents toward the reference trajectory we choose cost matrices which penalize only
the position component of the state (the first 2 states of the vector state) P = 500 ·
blkdiag(I2, O2, I2, O2, I2, O2), Q = 10 · blkdiag(I2, O2, I2, O2, I2, O2), R = 1. It can be
observed that once the transitory phase ends and the formation is achieved, its center of
the mass is tracking the reference as a unitary system. Inside the formation, the relative
order remains unchanged (as it can be seen in Figure 5.27), the blue agent remaining
at the left extremity of the xy plane irrespective of the heading of the trajectory. This
confirms that the formation does not exhibit, a leader-follower behavior, aspect which
is coherent with the homogeneity of the weightings in the MPC problem. In the MIP
formulations, imposed by the collision avoidance constraints, the computation time is in
the worst case scenario exponentially dependent on the number of binary variables used.
In this particular example, only two binary variables suffices for describing the feasible
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Figure 5.27: Actual motion of 3 homogeneous agents in a triangle formation with
collision avoidance constraints at different time instances.

region, thus the problem is tractable even for a prediction horizon grater then the one
we used, Np = 3.

• Trajectory tracking of multi-agent formation with collision avoidance and velocity
constraints – centralized MPC approach

We go further and consider the same 3 homogeneous agents both with collision avoidance
and velocity constraints. A simple velocity constraint would be to keep the speed mag-
nitude above some minimal value, vmin. This is a natural demand for UAVs for example,
where a too small speed will loose the portability and ultimately crash the airplanes.
The minimal speed condition can be approximated by a polyhedral norm condition, i.e.,
‖v‖ ≥ vmin, practically expressed by the non-convex constraints (expulsion type):

vx,i ≤ −vmin, or −vx,i ≤ −vmin, or (5.34)

vy,i ≤ −vmin, or −vy,i ≤ −vmin,

where the constant vmin > 0. These constraints are rewritten in a linear form using MIP
formulation in the case of the collision avoidance constraints. In this particular example
we choose vmin = 8 m/s.
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Figure 5.28: Reference trajectory and the time evolution of the 3 homogeneous agents
in a triangle formation.

Figure 5.29 shows how the agents are self-organizing in a triangle formation and the
center of mass (denoted by the asterix) of the formation follows the reference trajectory
(depicted in magenta in the same figure). Figure 5.30 illustrates the good tracking
performances of the center of mass (in blue), for a prediction horizon as low as Np = 3.

For different initial conditions and tunning parameters of the optimization problem, the
simulations show that the agents have a regular motion (once the formation is achieved,
stage which is notified by the activation of the anti-collision constraints) while following
the path in a specific formation. The state constraints are always satisfied.
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Figure 5.29: Actual motion of 3 homogeneous agents in a triangle formation with
collision avoidance and velocity constraints at different time instances.

• Trajectory tracking of multi-agent formation with collision avoidance constraints
– decentralized MPC approach

Following the decentralized procedure proposed in Section 3.6.1, Chapter 3 in this exam-
ple we consider the global model of the 3 homogeneous agents from previous examples,
decomposed in 3 subsystems for the prediction purposes. The control action for agent
one is computed with the information from the pair (agent 1, agent 2), the control action
for agent 2 ←(agent 2, agent 3) and the control action for agent 3 ←(agent 3, agent 1).
The agents of each subsystem are imposing a relative distance at the local MPC design
level. The prediction horizon is Np = 2, with the remark that increasing the prediction
horizon leads to a better tracking of the reference trajectory but, obvious increase in
the computational time die with the number of constraints to be handled via MIP tech-
niques. The reference tracking is achieved (Figure 5.31) by the 3 homogeneous agents
without collision and preserving the safety distance between agents as imposed by the
cooperative constraints illustrated in Figure 3.14, Chapter 3.

It is important to point out that, due to the conservative constraints imposed in the
decentralized case, the formation structure is different from the centralized one with
a degradation of the overall tracking performance. Figure 5.32 illustrates each agent
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Figure 5.30: Reference trajectory and the time evolution of the center of mass of a
triangle formation with 3 agents.

trajectory along the reference. Note that the blue agent acts like a leader and is tracking
very well the trajectory.

Up to now we have considered for the optimization problem the combination of MPC
with MIP for providing the control action. In the following, we consider the Potential
Field-based solution given in Section 3.6.2, Chapter 3.
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Figure 5.31: Actual motion of 3 agents in formation with collision avoidance con-
straints at a certain time instance (decentralized MPC case)

.

5.2.2 Potential Field-based solution for trajectory tracking

In the following simulation examples we keep the same double integrator dynamics for
the agents and provide illustrative results for the formation control in the presence of
collision avoidance constraints.

• Trajectory tracking of a leader/followers formation with collision avoidance con-
straints – decentralized MPC approach

Consider five homogeneous agents (i.e. Na = 5 in (3.10)) described by the dynamics
(3.10), with m1 = 45kg, m2 = 60kg, m3 = 30kg, m4 = 50kg, m5 = 75kg, ν1 = 15Ns/m,
ν2 = 20Ns/m, ν3 = 18Ns/m, ν4 = 35Ns/m, ν5 = 23Ns/m. The initial positions and
velocities of the agents are chosen randomly. A polyhedral safety region as in (3.9)
is associated to each agent. We take arbitrarily l = 1 to be the leader which has to be
followed by the rest of the agents i = 2, . . . , 5 (i 6= l). For the leader dynamis we generate
through flatness methods, state and input references and for both types of agents we use
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Figure 5.32: Reference trajectory and the time evolution of the 3 agents in a triangle
formation (decentralized case).

MPC in order to construct the control action. A quadratic cost function as defined in
(5.32) is used for the leader with a prediction horizon Np,l = 10.

For the followers we consider a potential function as the cost function in the optimization
problem (3.54), with a prediction horizon Np,f = 2. The potential will be constructed
such that both the following of the leader and the maintainance of a formation are
achieved. The neighborhood radius is set to r = 8 m, the weighting coefficients are βr =
1, βa = 10, c3 = 1, c4 = 0.25, βv = 15. The effectiveness of the approach is confirmed by
the simulation depicted in Figure 5.33, where the evolution of the homogeneous agents is
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represented at three different time instances. The agents successfully reach a formation
and follow the leader without trespassing each other safety regions.

Is worth to be mentioned that the prediction horizon needs to be kept as low as possible
with a difference in between the leader and the followers (smaller for the followers than
the one used for the leader). This is justified by the fact that the trajectory tracking
becomes a principal task for the leader. For the followers, additional prediction step for
the cost function (which is not quadratic) incurs significant computational complexity.
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Figure 5.33: Trajectory tracking of the leader/followers formation at different time
instances with their safety regions (leader in red, followers in magenta).

• Trajectory tracking of a leader/followers formation with collision and obstacle
avoidance constraints – decentralized MPC approach

We build upon the previous example and we consider additionally obstacle avoidance.
Furthermore, we redesign the reference trajectory such that it avoids stationary and a
priori known obstacles. More precisely we add way-points n the flatness design, which
steer the reference trajectory from the interdicted region.

In Figure 5.34 the original reference (in blue) illustrates the flat trajectory which does not
take into account the obstacle. On the other hand, by adding an additional control point
we were able to construct a trajectory which avoids the obstacle (in red). Satisfactory
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tracking performances for the given reference trajectory are obtained with a prediction
horizon Np,l = 10, as well as in the previous example.
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Figure 5.34: Obstacle avoidance and trajectory tracking of the leader/followers for-
mation at different time instances with their safety regions (leader in red, followers in

magenta).

5.2.3 Concluding remarks

We have shown various simulation results for tracking problems of multiple agents, under
different formulation and optimization algorithms spanning from MIP based formulation
to Potential field in order to deal with collision avoidance requirements. While the MIP
lead to tight formation and additional information of the sensitive maneuvering due
to the available status of constraints activation, the Potential field approach has the
advantage of a very good scaling of the complexity with the prediction horizon.

Finally, is worth mentioning the degrees of freedom offered by the flatness based trajec-
tory generation, which relieves the feedback control law by providing a less aggressive
trajectory with respect to the static obstacles collision avoidance.



Chapter 6

Conclusions and future

developments

6.1 Conclusions

The present manuscript had as main objective to develop and to shed light on the
optimal control of multi-agent dynamical systems in the presence of constraints.

Elements from control theory, optimization and computer science have been merged
together and have provided us with useful tools that were further applied to different
aspects of the problems involving multi-agent formulations. In particular, we have con-
centrated on a geometrical interpretation for the control and coordination of multiple
agents. To this end, we have made use and built upon a combination of optimization-
based control and set-theoretic tools.

We have to mention that at the start of this research topic investigation, the domain of
cooperative multi-agent systems was “terra incognita” to us. Moreover, the sheer size
of the area makes an exhaustive analysis impossible. Consequently, we have chosen a
specific direction of research (in line with our previous background) and tried to pursue
it to the best of our ability. Hence, we do not claim that the contributions presented
through the manuscript are revolutionary but rather evolutionary. Nonetheless, we hope
and advocate that the well established concepts from set-theoretic methods, differential
flatness, Model Predictive Control (MPC), Mixed-Integer Programming (MIP) can be
adapted and sometimes enhanced for solving some challenging problems appearing in
the control of cooperative systems.

With respect to related works, we have seen a great variance in the actual definition
of the “agent” notion. Heterogeneous entities in cooperative systems could be as sim-
ple as scalar agents without any dynamics or second-order point-mass models or even
nonlinear dynamical systems with nonholonomic motion constraints. For our study we
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Figure 6.1: Multi-Agent dynamical systems.

have considered the more challenging case of agents with dynamics, since we were inter-
ested in the class of application relevant to the control community. Needless to say, this
means that the control decisions need to take into account not only exogenous factors
(e.g., obstacles, reference tracking, etc.) but also the internal (state) dynamics of the
agents and their dynamical constraints (as settle-times, nonholonomic characteristics or
transmission delays).

Since we have applied set theoretic elements to the multi-agent systems it was natural
to consider specific tools in this context. For example, the obstacles and the agents
themselves were described as sets (usually convex) and the collision and obstacle avoid-
ance constraints were formulated with set operators like “element inclusion into a set” or
“intersection between sets”. Secondly, we had to make a series of assumptions without
which notions like the “safety region” would have lost their meaning. In particular, we
have assumed that perturbations and uncertainties were bounded. Even if sometimes it
is difficult to provide a theoretical limit for noises/disturbances affecting a system, in
practice it is natural to consider such bounds as well as hard constraints.

The use of the set-theoretic framework was not only a convenient way of describing
constraints and behavior, but also provided interesting results on its own. For example,
one of the fundamental notions in set theory is the invariance of a set. We have used
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this notion to describe invariant safety regions around agents affected by disturbances.
Thus we have avoided the need to recalculate the set at each instant of time (as it is
usually the case in the literature).

Another important element of our approach, the Mixed-Integer Programming techniques,
enabled us to describe in a tractable form the non-convex, non-connected feasible region
resulting from typical multi-agent collision and obstacle avoidance constraints. Elements
like hyperplane arrangements and cell merging techniques have helped us to describe effi-
ciently such a feasible region. We believe that the results and insights on the description
of a non-convex feasible region are useful not only for the multi-agent topic but also in
a more general setting of the optimization problems with non-convex constraints.

We have also linked the existence and uniqueness of a tight formation of agents with
constraints over the eigenstructure of the state matrices of the agents. This formal anal-
ysis has permitted interesting remarks and shown the deep connection between notions
like limit cycles, fixed points and formation design and control. It is important to mark
that these properties are dependent on the optimization scheme used, but at least, in
the centralized (and, in certain conditions, distributed) setting they can be guaranteed.

Lastly, we have applied some of these theoretical results over a challenging practical ap-
plication. We have evaluated a combination of Model Predictive Control and differential
flatness for the flight control of Unmanned Aerial Vehicles (UAVs). In a first stage the
MPC flight controllers were fine-tuned and tested in simulation while in a second stage
we have executed flight tests with actual UAVs (during a visit at the LSTS laboratory
in Porto). We mark that it is not easy to go from designing a controller on the paper
to real implementation. Therefore, we believe that the real-time results were extremely
promising and a thoroughgoing research in this direction is worthwhile.

6.2 Future developments

All along the manuscript we have discussed various improvements and contributions
towards the control of multi-agent dynamical systems under a set-theoretic frame-

work. While hopping we have advanced the state of the art, we are also aware that there
is much to be added.

For example, when using set-theoretic tools we have limited mainly to linear time-
invariant (LTI) models. This permits relatively easy numerical implementations and
covers a large number of situations in control applications. Nonetheless, more complex
situations may prove qualitatively different and require new techniques. For example,
piecewise affine or switched systems are arguably more able to describe real systems and
impose significant modifications to the techniques used in the LTI case. Furthermore,
extending the study to the time-delay systems will represent a valuable generalization
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by the fact that the networked dimension of the multi-agent systems will allow a natural
incorporation in the dynamical model.

In general, there are issues of set theory whose resolution/improvement (even of the
off-line design stage procedure) would help in providing better implementations of the
control schemes. For example, the computation of RPI sets, reachable sets or convergence
towards such a set are still open topics of research in the literature, at least withe
respect to their complexity and conservatism. Another limiting factor is the shape of
the sets considered. Due to their practicality we have mainly used polyhedral sets in
this manuscript but various other choices are available. Taking a step further we can
generalize the dynamical models to differential inclusions and use set-valued analysis as
design framework. We consider this as a future research direction by use of viability
theory [Aubin, 1991]. As briefly detailed in the Introduction chapter of the present
manuscript, this framework promises a much more general implementation: the sets are
no longer limited to a certain shape and the use of set-valued notions comes naturally
(generalizations of the notions of continuity, differentiability or set inclusion).

Solving optimization problems over non-convex regions is not a new issue in the litera-
ture and, we have showed that Mixed-Integer Programming (MIP) formulations provide
one of the best ways of dealing with this type of problems. With all the valuable im-
provements that we carried out, the computational complexity is still highly dependent
on the MIP formulation and limits its usefulness to relatively small size problems. We
believe that we can go further in advancing the novel geometrical interpretation of the
non-convex constraints originated from the multi-agent problem. Concentrating on com-
pact ways of describing the feasible region, we will avoid unnecessarily steps towards the
mixed-integer formulation. In particular, we want to avoid decomposing explicitly the
hyperplane arrangement into cells since this operation carries a significant computational
load.

We also believe that there are significant improvements which can be considered in the
study of existence and uniqueness for multi-agent formations. In particular we would like
to deepen the links between eigenstructure assignment, invariance inducing constraints
and limit behavior from the point of view of multi-agent formation. For example in
the present manuscript we concentrated on the existence and uniqueness of a fixed
point. This may actually not be possible for certain cases (UAV’s cannot have a steady
position while in flight). In such a case we would like to determine/design (an optimal
or economic) limit cycle with all that follows: uniqueness, basin of attraction, stability
and so forth.

The experimental results obtained for the real-time flight control of Unmanned Aerial
Vehicles (UAVs) were promising and more than that, they have raised challenging theo-
retical questions. We have obtain a good quality controller but we believe there are still
improvements to be considered. We did not took into account the effects of measurement
errors or other perturbations and disturbances in the construction of the optimization-
based controller. We have made use of the MPC implicit robustness for dealing with
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their effect. We note first the need for a better mechanism for wind estimation in order to
decrease the uncertainty in the prediction model (e.g., a Kalman filter implementation).
Another sensitive point is the discretization and the inter-sample variations: up to now
we have assumed a fixed length of the discretization step and computed the input action
accordingly. Not in the least, a future improvement of the control mechanism will be the
inclusion of the communication delays in the design of the predictive controller. Besides
these enhancements, currently undergoing work focuses on the extension to path track-
ing and the flight formation control which will empower the use of the mixed-integer
formulations we have presented in the manuscript.
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Appendix

A.1 Proof of Proposition 4.1, Section 4.1.2, Chapter 4

a. Consider x(k) ∈ X0 such that all the future values under LQ dynamics (4.2) reside
in X0. As (A+BKLQ) is a Schur matrix it means that for any ǫ ∈ R

∗
+ there exists a

tmax ∈ N such that ||(A+BKLQ)tmaxx(k)|| < ǫ. But, Remark 4.2 states that 0 /∈ X0,
therefore it follows that any x(k) has to transit from X0 in a finite time. From the
definition of X0 (4.14) it follows that the transit set is X1, thus concluding the proof.

b. Since inside the polyhedral set X0 (defined in (4.14)) the result of the optimization
problem (4.7) corresponds to the unconstrained optimum (4.2) due to the fact that
hT1 x(k+1) > 1, it follows that the polyhedral set X1 (4.15) corresponds to the constraint
activation hT1 x(k+ 1) = 1. As a consequence, for any x(k) ∈ X1 one has x(k+ 1) on the
boundary of the feasible region, thus concluding the proof. �

A.2 Proof of Theorem 4.1, Section 4.1.2, Chapter 4

The first-order Karush-Kuhn-Tucker (KKT) optimality conditions [Bemporad et al.,
2002] provides the construction of F1 and G1. Consider the polyhedral set X1 described
as X1 = L1 ∩ Y , where the set Y defined in (4.13) is invariant with respect to the
piecewise affine dynamics (4.16) (the set Y is composed by two regions X0, X1, which
do not transit outside the set, see Proposition 4.1). Using Lemma A.1 (see the next
section) we prove that L1 defined in (4.11) is a positively invariant set with respect to
the dynamics x(k + 1) = (A + BF1)x(k) + BG1 from (4.16). Therefore, taking into
account that the set X1 is the intersection between two invariant sets, results that X1

is also a positively invariant set.
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a. Now, let us consider the case where the fixed point xe is contained by the invariant
set X1. Since the dynamics x(k+1) = (A+BF1)x(k)+BG1 associated to X1 are affine,
then the fixed point is:

- unique by the fact that over the frontier X0 ∩X1 the system dynamics correspond
to the closed-loop dynamics x(k + 1) = (A + BKLQ)x(k) which admits a unique
fixed point on the origin. But 0 /∈ X1 and {1} /∈ Λ(A + BF1), which means that
none of the eigenvalues of the closed-loop matrix A+BF1 are equal to 1.

- stable by the fact that the dynamics in X1 contain an eigenvalue at the origin (see
Remark 4.3) while the second eigenvalue is inside the unit disc as a consequence
of the invariance and continuity.

The local attractivity in X1 is completed with the attractivity in Y = X0 ∪ X1 as a
consequence of Proposition 4.1.

b. Let us consider the point z(k) ∈ R
n such that

z(k) ∈ {x ∈ R
2 : hT1 x(k) = 1} ∩ {x ∈ R

2 : hTc x(k) = 1}, (A.1)

with hc given by (4.12). In order to establish that in the case where the affine dynamics
of X1 is unstable, all the trajectories goes to infinity, it suffices to prove that all future
values starting from z(k) as in (A.1) will transit in X1 on the boundary of the feasible
region. We prove this by contradiction.

Assume that z(k) will transit in one step in X0 (i.e. z(k + 1) ∈ X0). Since by its
definition z(k) ∈ X1 it follows from Proposition 4.1.b that z(k + 1) is on the boundary
of the feasible region. Consequently we state the following relations:

hT1 z(k) = 1, (A.2)

hT1 z(k + 1) = hT1 ALQz(k) = 1, (A.3)

where ALQ = A+BKLQ denotes the closed-loop dynamics of region X0. Consequently,
at the next iteration we have that

hT1 z(k + 2) > 1. (A.4)

The Cayley-Hamilton theorem states that replacing ALQ ∈ R
2×2 in the characteristic

polynomial yields to A2
LQ + c1ALQ + c2I = 0, which is equivalent to

A2
LQ = −c1ALQ − c2I, (A.5)

with c1, c2 ∈ R and
c1 + c2 < 1. (A.6)
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Introducing (A.5) and (A.6) in (A.4) it results that

hT1 z(k + 2) = hT1 (−c1ALQ − c2I)z(k) = −(c1 + c2).

We reach a contradiction as long as (A.4) is satisfied. Subsequently, we have shown by
contradiction that z(k + 1) ∈ X0 is false, therefore all future values starting from z(k)
will transit in X1.

Let there be V and Λ the Jordan decomposition V ΛV −1 = A+BF1. Remark 4.3 states
that one of the eigenvalues of the state matrix is 0, allowing to write the dynamics
associated to the set X1:

x(k + 1) = V ΛV −1x(k) +BG1. (A.7)

After elementary algebraic operations it results that

[

y(k + 1)1

y(k + 1)2

]

=

[

0
λ

] [

y(k)1

y(k)2

]

+

[

δ1

δ2

]

, (A.8)

where y(k) =

[

y(k)1

y(k)2

]

= V −1x(k),

[

δ1

δ2

]

= V −1BG1 and λ is the nonzero eigenvalue of

Λ. After k iterations the following relations are obtained:

y(k + 1)1 = δ1 (A.9)

y(k + 1)2 = λky(0)2 +
k−1∑

i=0

λiδ2 (A.10)

Using (A.10) we observe that as long as λ ≥ 1 the distance between xe and z(k) expands
at the next iteration, that is

||z(k)− xe|| = |λ| · ‖z(k + 1)− xe‖. (A.11)

In addition, if there exists V ∈ R
2×2 such that the conditions (4.17), (4.18) are satisfied,

X1 is an invariant set. Therefore, any point from Y has a trajectory that diverges from
xe (xe /∈ X1). Finally, it results that all the trajectories transit to infinity along the
boundary of the feasible region.

A.3 Extension of the set invariance conditions provided in

Lemma 2.1, Chapter 2

We use as an instrumental result the following lemma establised in [Bitsoris and Truffet,
2011], which is an adaptation for affine systems of Lemma 2.1. A particular case of this
result was provided also in Lemma 4.2, Chapter 4.
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Lemma A.1. Consider the polyhedral set

Z(H,K) =
{

x ∈ R
n : Hx ≤ K

}

,

with (H,K) ∈ R
r×n ×R

r. If there exists V ∈ R
r×r with nonnegative elements such that

HΦ = V H and (A.12)

(V − I)K +HΓ ≤ 0, (A.13)

then Z(H,K) is a positively invariant set with respect to the affine dynamics x(k+ 1) =
Φx(k) + Γ. �

Proof: Suppose x(k) ∈ Z. We want to prove that x(k+ 1) ∈ Z. By explicitly replacing

Hx(k + 1) = H(Φx(k) + Γ)
(A.12)

= V Hx(k) +HΓ,

and taking into account the hypothesis that Hx(k) ≤ K and V has nonnegative elements
it follows that

Hx(k + 1) ≤ V K +HΓ.

with V K +HΓ = (V − I)K +HΓ +K ≤ K which can then be verified by (A.13). �
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J. De Doná, F. Suryawan, M. Seron, and J. Lévine. A flatness-based iterative method for
reference trajectory generation in constrained NMPC. Int. Workshop on Assesment
and Future Direction of Nonlinear Model Predictive Control, pages 325–333, 2009.

J. Demmel and P. Koev. The accurate and efficient solution of a totally positive general-
ized vandermonde linear system. SIAM Journal on Matrix Analysis and Applications,
27(1):142–152, 2005.

P. Deuflhard, E. Hairer, and J. Zugck. One-step and extrapolation methods for
differential-algebraic systems. Numerische Mathematik, 51(5):501–516, 1987.
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R. Gonçalves, S. Ferreira, J. Pinto, J. B. Sousa, and G. Gonçalves. Authority sharing in
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J. Pavón, J. Gómez-Sanz, A. Fernández-Caballero, and J.J. Valencia-Jiménez. Devel-
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Resumé

L’objectif de cette thèse est de proposer des solutions aux problèmes liés à la commande

optimale de systèmes dynamiques multi-agents en présence de contraintes. Des éléments

de la théorie de commande et d’optimisation sont appliqués à différents problèmes impli-

quant des formations de systèmes multi-agents. La thèse examine le cas d’agents soumis à

des contraintes dynamiques. Pour faire face à ces problèmes, les concepts bien établis tels

que la théorie des ensembles, la platitude différentielle, la commande prédictive (Model

Predictive Control - MPC), la programmation mixte en nombres entiers (Mixed-Integer

Programming - MIP) sont adaptés et améliorés. En utilisant ces notions théoriques,

ce travail de thèse a porté sur les propriétés géométriques de la formation d’un groupe

multi-agents et propose un cadre de synthèse original qui exploite cette structure. En

particulier, le problème de conception de formation et les conditions d’évitement des colli-

sions sont formulés comme des problèmes géométriques et d’optimisation pour lesquels il

existe des procédures de résolution. En outre, des progrès considérables dans ce sens ont

été obtenus en utilisant de façon efficace les techniques MIP (dans le but d’en déduire une

description efficace des propriétés de non convexité et de non connexion d’une région de

faisabilité résultant d’une collision de type multi-agents avec des contraintes d’évitement

d’obstacles) et des propriétés de stabilité (afin d’analyser l’unicité et l’existence de con-

figurations de formation de systèmes multi-agents). Enfin, certains résultats théoriques

obtenus ont été appliqués dans un cas pratique très intéressant. On utilise une nouvelle

combinaison de la commande prédictive et de platitude différentielle (pour la génération

de référence) dans la commande et la navigation de véhicules aériens sans pilote (UAVs).

Abstract

The goal of this thesis is to propose solutions for the optimal control of multi-agent

dynamical systems under constraints. Elements from control theory and optimization

are merged together in order to provide useful tools which are further applied to different

problems involving multi-agent formations. The thesis considers the challenging case of

agents subject to dynamical constraints. To deal with these issues, well established

concepts like set-theory, differential flatness, Model Predictive Control (MPC), Mixed-

Integer Programming (MIP) are adapted and enhanced. Using these theoretical notions,

the thesis concentrates on understanding the geometrical properties of the multi-agent

group formation and on providing a novel synthesis framework which exploits the group

structure. In particular, the formation design and the collision avoidance conditions

are casted as geometrical problems and optimization-based procedures are developed to

solve them. Moreover, considerable advances in this direction are obtained by efficiently

using MIP techniques (in order to derive an efficient description of the non-convex, non-

connected feasible region which results from multi-agent collision and obstacle avoidance

constraints) and stability properties (in order to analyze the uniqueness and existence

of formation configurations). Lastly, some of the obtained theoretical results are applied

on a challenging practical application. A novel combination of MPC and differential

flatness (for reference generation) is used for the flight control of Unmanned Aerial

Vehicles (UAVs).


	Abstract
	Resumé
	List of Figures
	List of Tables
	List of Algorithms
	Notation
	Acronyms
	1 Introduction
	1.1 Multi-agent dynamical systems from a control theoretic perspective
	1.1.1 Multi-agent dynamical systems motion planning and real-time control
	1.1.2 Multi-agent formation description and management
	1.1.3 Constraints handling
	1.1.4 Centralized vs. distributed vs. decentralized control

	1.2 Thesis orientation
	1.3 Contributions of the thesis
	1.4 Organization of the manuscript

	2 An optimization-based approach for control of cooperative systems
	2.1 Optimization-based control
	2.2 A generic prediction model
	2.3 Generation of a reference trajectory
	2.4 Set-theoretic elements
	2.4.1 Polyhedral sets description
	2.4.2 Polyhedral function
	2.4.3 Sum function
	2.4.4 Characterization and construction of invariant sets

	2.5 A contribution for mixed-integer description of non-convex feasible regions
	2.5.1 Basic ideas for improvements in non-convex regions representation
	2.5.2 Description of the complement of a union of convex sets
	2.5.3 Refinements for the complement of a union of convex sets
	2.5.4 Cell merging
	2.5.5 Numerical considerations

	2.6 Concluding remarks

	3 Multi-agent formation control
	3.1 System description
	3.2 Collision avoidance formulation
	3.3 A tight configuration of multi-agent formation
	3.3.1 Minimal configuration of the multi-agent formation
	3.3.2 Task assignment formulation

	3.4 Centralized MPC
	3.4.1 Centralized prediction model
	3.4.2 Centralized optimization-based control problem
	3.4.3 Exemplification for the convergence towards the tight formation

	3.5 Distributed MPC
	3.5.1 Distributed system description
	3.5.2 Distributed optimization-based control problem
	3.5.3 Exemplification of a hierarchical distributed approach

	3.6 Decentralized MPC
	3.6.1 MIP-based solution
	3.6.2 Potential field-based solution

	3.7 Concluding remarks

	4 Assessments of the constrained control of multi-agent dynamical systems
	4.1 Preliminaries
	4.1.1 A generic problem formulation
	4.1.2 An explicit solution for a particular case
	4.1.3 Further geometrical insights for the generic MPC problem

	4.2 Local constrained control
	4.2.1 Equilibrium states
	4.2.2 Positive invariance conditions
	4.2.3 Eigenstructure assignment analysis
	4.2.4 Affine parametrization of the feedback policies
	4.2.5 Local controller synthesis

	4.3 The global design problem
	4.4 Collision avoidance example
	4.5 Extension to multi-agent formation
	4.5.1 Multi-agent formation example

	4.6 Concluding remarks

	5 Examples, simulations, benchmarks and applications
	5.1 Flight control experiments of Unmanned Aerial Vehicles
	5.1.1 Testbed hardware and software architecture
	5.1.2 UAV model in view of control design
	5.1.3 Flat trajectory generation
	5.1.4 Linearization of the UAV model
	5.1.5 Trajectory tracking control problem
	5.1.6 Simulation and experimental flight tests results
	5.1.7 Concluding remarks and improvement directions

	5.2 Trajectory tracking for multi-agent formation
	5.2.1 MIP-based solution for trajectory tracking
	5.2.2 Potential Field-based solution for trajectory tracking
	5.2.3 Concluding remarks


	6 Conclusions and future developments
	6.1 Conclusions
	6.2 Future developments

	Appendices
	A Appendix
	A.1 Proof of Proposition 4.1, Section 4.1.2, Chapter 4
	A.2 Proof of Theorem 4.1, Section 4.1.2, Chapter 4
	A.3 Extension of the set invariance conditions provided in Lemma 2.1, Chapter 2

	Bibliography

