
����������
�������

Citation: Magallón, D.A.;

Jaimes-Reátegui, R.; García-López,

J.H.; Huerta-Cuellar, G.;

López-Mancilla, D.; Pisarchik, A.N.

Control of Multistability in an

Erbium-Doped Fiber Laser by an

Artificial Neural Network:

A Numerical Approach. Mathematics

2022, 10, 3140. https://doi.org/

Academic Editor: Danilo Costarelli

Received: 27 July 2022

Accepted: 15 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Control of Multistability in an Erbium-Doped Fiber Laser by an
Artificial Neural Network: A Numerical Approach

Daniel A. Magallón 1,2,3 , Rider Jaimes-Reátegui 1,*, Juan H. García-López 1,* , Guillermo Huerta-Cuellar 1,
Didier López-Mancilla 1 and Alexander N. Pisarchik 4,5

1 Optics, Complex Systems and Innovation Laboratory, Centro Universitario de los Lagos, Universidad de
Guadalajara, Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico

2 Control Laboratory, Centro Universitario de los Lagos, Universidad de Guadalajara,
Enrique Díaz de León 1144, Colonia Paseos de la Montaña, Lagos de Moreno 47463, Mexico

3 Preparatoria Regional de Lagos de Moreno, Universidad de Guadalajara, Camino a Santa Emilia 620,
Colonia Cristeros, Lagos de Moreno 47476, Mexico

4 Center for Biomedical Technology, Campus Montegancedo, Technical University of Madrid,
28223 Madrid, Spain

5 Laboratory of Neuroscience and Cognitive Technology, Innopolis University, Universitetskaya Str. 1,
420500 Innopolis, Russia

* Correspondence: rider.jaimes@academicos.udg.mx (R.J.-R.); jhugo.garcia@academicos.udg.mx (J.H.G.-L.)

Abstract: A recurrent wavelet first-order neural network (RWFONN) is proposed to select a desired
attractor in a multistable erbium-doped fiber laser (EDFL). A filtered error algorithm is used to
classify coexisting EDFL states and train RWFONN. The design of the intracavity laser power con-
troller is developed according to the RWFONN states with the block control linearization technique
and the super-twisting control algorithm. Closed-loop stability analysis is performed using the
boundedness of synaptic weights. The efficiency of the control method is demonstrated through
numerical simulations.
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1. Introduction

In recent decades, great progress has been made in the research and commercialization
of erbium-doped fiber lasers (EDFLs), which are widely used in optical communication,
optical sensing, laser surgery, nonlinear optics, and optical materials [1–6]. The active gain
medium has a long interaction length of the pump light with active ions, which results
in high gain and single transversal mode operation for appropriate fiber parameters. In
addition, fiber amplifier technology is now a convenient platform for industrial applications
of fiber lasers due to their compactness, ruggedness, reliability, efficiency, and spatial
beam profile.

Optical communication is one of the most important applications of fiber lasers [7].
Above all, the EDFL has a clear advantage over other types of fiber lasers. First, the
EDFL can be easily integrated into optical communication networks due to the small
size of optical components. Second, the 1550 nm laser wavelength of the EDFL is widely
used for optical communication because optical fibers at this wavelength have very low
losses [8]. Third, the EDFL has very rich dynamics, exhibiting period-doubling bifurcations,
chaos, multistability, multistate intermittency, etc. [9–11]. These regimes can be exploited
not only for chaotic communication [2,12], but also for many other applications, such as
spectral interferometry [13], optical coherence tomography [14], optical sensing [15], optical
metrology [16], industrial micromachining [17], lidar systems [18], and medicine [19]. On
the other hand, nonlinear effects, including multistability, are in some cases undesirable

Mathematics 2022, 10, 3140. https://doi.org/10.3390/math10173140 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9256-0595
https://orcid.org/0000-0002-3739-0781
https://orcid.org/0000-0003-2471-2507
https://doi.org/10.3390/math10173140
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173140?type=check_update&version=1


Mathematics 2022, 10, 3140 2 of 20

factors in fiber lasers, since they can cause unpredictable changes in laser operation and do
not allow one reaching the diffraction limit [20], i.e., maintain the Gaussian shape of the
laser pulse. Despite extensive studies of the nonlinear effects in EDFLs [20–22], their control,
including multistability control, still requires increased attention from researchers [9,10,23].

Multistability or the coexistence of several possible final stable states (attractors) for
a given set of the system parameters is a fascinating phenomenon widespread in nature
and studied in almost all areas of science, including mechanics, chemistry, biology, and
optics (see [24,25] references therein). In particular, the coexistence of up to four periodic
attractors was observed in the pump-modulated EDFL. Robust multistability control is a
challenging task of nonlinear science due to the high sensitivity of multistable systems to
any disturbances. Such control must be noise tolerant when a certain system performance
is required.

For some applications, the coexistence of several attractors is undesirable. In particular,
if one needs to remain a system in a certain dynamical state, the transition to a coexisting
attractor caused by interference or noise can change the system performance and degrade
the repeatability, and hence the reliability of the device. The control in these cases is
required to keep the system in one of the pre-selected attractors or make the system
monostable with only one pre-selected global attractor [26]. On the other hand, there are
other applications where multistability can be beneficial, for example, for communications
using coexisting attractors [27–29] or for generation of giant pulses [30]. For a system
that must preform various tasks, it is very advantageous to have many coexisting states,
assuming that each state corresponds to a specific task. For such purposes, the control is to
allow the system, without reconfiguration, to have a well-defined switching between states
(tasks) on demand.

Multistability control may have various goals: (i) stabilization of individual attractors
in the presence of noise, (ii) directing the system to the desired attractor (targeting methods)
or control of switches between attractors, (iii) destabilization of unwanted attractors to
transform a multistable system into a monostable one (attractor annihilation), (iv) change
the attractor nature, i.e., transformation of a fixed point into a periodic orbit, and (v) change
the attractor preference, i.e., change the volume of basins of attraction or the probability of
the attractor occurrence (statistical stability) in the presence of noise [26].

In the last decade, various approaches to controlling multistability have been de-
veloped. As in other control theories (e.g., conventional linear and nonlinear control),
two types of control can be distinguished: feedback (closed loop) and nonfeedback (open
loop) control. While feedback control allows the selection of an attractor using targeting
techniques, nonfeedback control requires modulation of a system parameter by noise or a
periodic signal. It should be noted that nonfeedback control is simpler for practical imple-
mentation since it does not require permanent tracking of the phase-space trajectory as the
feedback control does. In addition, nonfeedback control is particularly attractive for systems
where feedback control is not feasible, especially for biological and chemical systems.

Despite extensive research on controlling multistability, there are still open problems
in this area that need to be addressed. In particular, to the best of our knowledge, there
are no methods for controlling multistability based on artificial intelligence. The aim of
this work is to fill this gap. In this paper, we propose a novel neural network steering
method to control multistability, based on a recurrent wavelet first-order neural network
(RWFONN) whose synaptic weights are adjusted using a filtered error algorithm and
the Morlet wavelet activation function [31]. The neurocontroller is implemented through
the states of the proposed neural network, and a block control linearization technique
is used to design the sliding surface, which is an argument in favor of implementing
the super-twisting control. We apply the RWFONN to identify coexisting attractors in
the EDFL.

This paper is organized as follows. Section 2 presents mathematical foundations
related to the laser model. In Section 3 we describe normalized laser equations, and
Section 4 is devoted to the methodology for controlling the artificial neural network states
using with the neural identification using RWFONN with filtered error algorithm, block
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control linearization technique, and super-twisting control algorithm. In Section 5, the
results of numerical simulations of the bifurcation diagram is presented, in Section 6 the
implementation of the control methodology is shown. Further in Section 7, the results
of numerical simulations are presented, confirming the control methodology. Finally, the
main conclusion is given in Section 8.

2. Laser Model
Complete Model

The dynamics of the used EDFL diode-pumped is described by using a model of two
differential equations, or power-balance equations, which considers the excited state ab-
sorption (ESA), that for erbium ions corresponds to a 1.5 µm wavelength and by averaging
the population inversion of EDFL. The studied model addresses includes the fiber laser
characteristic factors (i.e., ESA at the laser emission and the depleting of the pump wave at
propagation along the doped fiber), leading to non-dumped natural oscillations in the laser,
observed in an experimental set-up without external modulation [10,32].

The balance equations defining the intracavity laser emission P (i.e., a sum of the
contra-propagating wave intensities inside the cavity, in s−1) and the averaged (over the
doped fiber length) population N of the upper (2) level (i.e., a dimensionless variable,
0 ≤ N ≤ 1) are defined as follows:

Ṗ =
2L
Tr

P{rwα0(N[ξ − η]− 1)− αth}+ Psp

Ṅ = −σ12rwP
πr2

0
(ξN − 1)− N

τ
+ Ppump,

(1)

where σ12 is the cross-section of the absorption from the energetic lower state 1 to the upper
state 2. Here, we consider that the cross-section of the return stimulated transition σ12
has almost the same intensity that gives ξ = (σ12 + σ21)/σ12 = 2, η = σ23/σ12 being the
coefficient that stands for the ratio between ESA σ23 and ground-state absorption cross-
sections at the laser wavelength. Tr = 2n0(L + l0)/c is the lifetime of a photon in the
cavity (l0 being the intra-cavity tails of fiber Bragg grating (FBG) couplers), α0 = N0σ12
is the small-signal absorption of the erbium fiber at the laser emission, N0 = N1 + N2
represents the total amount of erbium ions in the active fiber), αth = γ0 + nL(1/R)/(2L) is
the intra-cavity losses on the threshold (γ0 being the non-resonant fiber loss and R defines
the percentage reflection coefficient of the FBG-couplers), τ is the time duration of erbium
ions in the excited state 2, r0 is the fiber core radius, w0 is the radius of the fundamental
fiber mode, and rw = 1 + exp[2(r0/w0)

2] is the factor addressing a match between the laser
fundamental mode and erbium-doped core volumes inside the active fiber.

The population of the upper laser level 2 is given as

N =
1

n0L

∫ L

0
N2(z)dz,

where N2 is the population of the upper laser level “2”, n0 is the refractive index of a “cold”
erbium-doped fiber core, and L is the active fiber length,

Psp =
10−3N

τTr

λg

w0

r2
0α0L

4π2σ12

is the spontaneous emission into the fundamental laser mode, and the pump power is

Ppump = Pp
1− exp[−βα0L(1− N)]

n0πr2
0L

,

where Pp represents the pump power at the fiber entrance and β = αp/α0 is the relationship
of absorption coefficients of the erbium fiber at pump wavelength λp and laser wavelength
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λg. For the realization of the present study, we fixed the laser spectrum width as 10−3 of
the erbium luminescence spectral bandwidth.

Note that Equation (1) describes the EDFL dynamics without external modulation.
The harmonic pump modulation is added as

Pp = P0
p(1 + m0 sin(2πF0t)), (2)

where m0 and F0 are the modulation depth and frequency, respectively, and P0
p is the pump

power without modulation at m0 = 0.
The parameters used in our simulations correspond to the real EDFL with an active

erbium-doped fiber of L = 70 cm (which corresponds to the real experimental condi-
tions; see reference [10]). Other parameters are n0 = 1.45, l0 = 20 cm, Tr = 8.7 ns,
r0 = 1.5× 10−4 cm, and w0 = 3.5× 10−4 cm. The last value was measured experimen-
tally and it was a bit higher than 2.5× 10−4 cm, given by the formula for a step-index
single-mode fiber w0 = r0(0.65 + 1.619/V1.5 + 2.879/V6), where the parameter V relates
to numerical aperture NA and r0 as V = 2πr0NA/λg, while the values r0 and w0 result in
rw = 0.308.

The coefficients characterizing resonant-absorption properties of the erbium-doped
fiber at lasing and pumping wavelengths are α0 = 0.4 cm−1 and β = 0.5, respectively,
and correspond to direct measurements for heavily doped fiber with an erbium concen-
tration of 2300 ppm, σ12 = σ21 = 3× 10−21 cm2, σ23 = 0.6× 10−21 cm2, ξ = 2, η = 0.2,
τ = 10−2 s [10], γ0 = 0.038, and R = 0.8 that yields αth = 3.92× 10−2. At last, the genera-
tion wavelength λg = 1.56× 10−4 cm (hν = 1.274× 10−19 J) is measured experimentally,
while the maximum reflection coefficients of both FBGs are centered on this wavelength.
The pump parameters are the excess over the laser threshold ε defined as Pp = εPth, where
the threshold pump power

Pth =
Nth
τ

n0Lπw2
p

1− exp[−α0Lβ(1− Nth)]

and the threshold population of the level 2

Nth =
1
ξ

(
1 +

αth
rwα0

)
with the pump beam radius are taken, for simplicity, to be the same as those for generation
(ωp = ω0).

3. Normalized Equations

In order to simplify and generalize the laser model, we transform the complete sys-
tem (1) to the simple form

dx
dθ

= xy− c1x + c2y + c3, (3)

dy
dθ

= −xy− d1y− d2 + P0(1− d3ey), (4)

where the following changes are made in the variables:

x =
σ12ΓsTrαp

2πr2
0α0

ξ1

ξ1 − ξ2
P, (5)

y = αpL
(

N − 1
ξ1

)
, (6)

θ =
2rwα0

Trαp
(ξ1 − ξ2)t (7)
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and in the parameters:

c1 =
αpL

ξ1 − ξ2

(
αth

α0rw
+

ξ2

ξ1

)
, (8)

c2 =
ξ1αp

πrwα0

Tr

τ

[
λg

4πw0(ξ1 − ξ2)

]2

× 10−3, (9)

c3 =
L

πrwα0

Tr

τ

[
λgαp

4πw0(ξ1 − ξ2)

]2

× 10−3, (10)

d1 =
αp

2rwα0(ξ1 − ξ2)

Tr

τ
, (11)

d2 =
α2

pL
2rwα0ξ1(ξ1 − ξ2)

Tr

τ
, (12)

d3 = exp
[
−αpL

(
1− 1

ξ1

)]
, (13)

P0 =
α2

pTr

2πr2
0N0rwα0(ξ1 − ξ2)

Pp. (14)

The variables x and y are the normalized laser power density and population inversion,
respectively, and P0 is proportional to the pump power. The pump modulation Pp is given
by (2).

The parameter values used in simulations are presented in Table 1 [33].

Table 1. Parameters used in numerical simulations.

c1 c2 c3 d1 d2 d3 P0

2.4 6.9× 10−13 5.1× 10−13 3.5× 10−7 2.6× 10−7 0.5 2× 10−23Pp

4. Control Techniques
4.1. Recurrent Wavelet First-Order Neural Network

Recurrent wavelet first-order neural networks are used to identify and control elec-
trical systems, robotic manipulators, and unmanned aerial vehicles [34,35]. In the recent
work [31], some of us applied the RWFONN to emulate a flywheel energy storage system
(FESS), in which the classical sigmoid activation function is replaced by the Morlet wavelet
activation function. The general structure of the system is given by

ẋi
j = −ai

jx
i
j + (wi

jk)
>ψi

jk, (15)

where xi
j is the state of the i-th neuron, ai

j > 0 for i = 1, 2, . . ., n is part of the underlying

network architecture and it is fixed during the training process, wi
jk is the k-th adjustable

synaptic weight connecting the j-th state to the i-th neuron, and ψi
jk is a Morlet wavelet

activation function defined by ψ(χ) = e(−χ2/β)cos(λχ), where χ is the state of the original
system to identify; the parameters β and λ are the expansion and dilation terms. Thus, the
laser model (1) is identified online using the RWFONN (15), where the synaptic weights
are adjusted via the filtered error algorithm described below.

4.2. Filtered Error Algorithm

The identification scheme starts from the differential equation that describes the
unknown system

χ̇i
j = −ai

jχ
i
j + (wi

jk)
∗>ψi

jk. (16)

Based on (16), the identifier can be chosen as

ẋi
j = −ai

jx
i
j + (wi

jk)
>ψi

jk. (17)
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In this way, the identification error is defined as ξ
′i
j = xi

j − χi
j such that

ξ̇
′i
j =ẋi

j − χ̇i
j

=− ai
jx

i
j + (wi

jk)
>ψi

jk − (−ai
jχ

i
j + (wi

jk)
∗>ψi

jk)

=− ai
jx

i
j + (wi

jk)
>ψi

jk + ai
jχ

i
j − (wi

jk)
∗>ψi

jk

=− ai
j(xi

j − χi
j) + (wi>

jk − wi∗>
jk )ψi

jk.

(18)

Equation (18) can be rewritten as

ξ̇
′i
j = −ai

jξ
i
j + w̃i

jψ
i
jk, (19)

where w̃i
j = wi

j − w∗ij . The synaptic weights wi
j for i = 1, 2, . . ., n are adjusted according to

the learning law [36]

ẇi
j = −γi

jψ
i
jkξ
′i
j (20)

called “filtered error”.

Theorem 1. Consider the RWFONN model whose weights are adjustable according to (20) for
each i = 1, 2, . . .n, so that

1. ξ
′i
j , wi

j∈ L∞ (i.e., ξ
′i
j and wi

j are uniformly bounded);
2. limt→∞ ξi(t) = 0.

Proof. See [36,37].

In Appendix A, we present the boundedness of the identification error ξ
′i
j given by the

synaptic weights wi
j.

4.3. Block Control Linearization Technique

The block control linearization technique aims to convert a nonlinear system into
an equivalent one, transforming the mathematical model of the plant to be controlled,
expressed by the first-order subsystems consisting of r blocks and representing as [31,38]

ẋ1 =f1(x1, t) + B1(x1, t)x2 + g1(x1, t),

ẋi =fi(xi, t) + Bi(xi, t)xi+1 + gi(xi, t), i = 2, . . ., r− 1,

ẋr =fr(xr, t) + Br(xr, t)u + gr(xr, t),

(21)

where f(x, t) is a smooth and bounded mapping, x = [x1 x2. . . xr]
> is the state vector

decomposed. The matrix Bi, since the fictitious xi+1 for each i-th block has full rank,
rank(Bi) = ni, i = 1, . . ., r. In this way, the block control linearization technique is applied
to the artificial neural network structure (15), to generate the sliding surface that is the
argument of the super-twisting control u.

4.4. Super-Twisting Control Algorithm

A first-order sliding modes control has the unwished-for presence of a “chattering
effect”, a high-frequency signal generated by the sign function. High-order sliding modes
control can decrease the chattering effect, though it requires more equations, and the
stability analysis could be more complex. A second-order super-twisting control is an
algorithm that improves the sliding modes control because the elimination of chattering
and the convergence of the sliding surface to zero are guaranteed by the stability analysis
presented before [31,39,40]. Moreover, the external disturbances effects are minimized as
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can be seen in detail in Appendix B in which the stability analysis guarantees a bounded
error in the presence of nonvanishing disturbances.

The sliding surface of the SCTA is generated once the block control linearization
technique (21) is applied to the neural network structure proposed for the neuronal identifi-
cation of the original system states. Thus, the sliding surface is

s = xr, (22)

where the sliding surface and its dynamics is forced to zero, defined by

s = 0

ṡ = 0.
(23)

Therefore, the STCA has the following structure

vs = λ|s|
1
2 sign(s) + us,

u̇s = αsign(s),
(24)

where vs and us are the controllers of perturbation and chattering, respectively, and λ and
α are the diagonal matrices. With STCA, s(x) tends to zero as t tends to infinity. In addition,
it compensates for the external disturbances and nonlinearities of the system, and with
the help of the us term, the chattering effect is reduced [31,40]. The gain values for the
controller are determined by the stability analysis presented in Appendix B.

Figure 1 shows the general flowchart of neural identification and control for different
EDFL periodic orbits. The particular notations and processes of identification and control
are explained in Section 6.

Figure 1. Methodology flowchart of neural identification and control.
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5. Results of Numerical Simulations
Bifurcation Diagram and Time Series

Numerical calculations of the pump-driven EDFL (1) allow us to obtain time series
and bifurcation diagrams. We use the parameters close to the experimental ones taken
from [41]. In particular, choosing the pump power P0

p = 7.4× 1019 s−1, we obtain the laser
relaxation oscillation frequency f0 = 28.724 kHz.

Under harmonic modulation (2) applied to the pump power (1) with driving amplitude
m0 = 1, we construct the bifurcation diagram of local max of laser power Pmax using f0 as a
control parameter (see Figure 2). This bifurcation diagram is calculated by taking different
initial conditions for x and y in (3) and (4). This allows us to find the coexistence of periods
and plot the corresponding branches in the diagram. As seen in Figure 2, the branches
of period 1, period 3, period 4, and period 5 are shown with the letters P1, P3, P4, and
P5, respectively, that coexist within a certain frequency range, for example, in the range
74 kHz < f0 < 83 kHz, for witch P1 = f0, P3 = 1

3 f0, P4 = 1
4 f0, and P5 = 1

5 f0. Each period
is born and dies in the corresponding saddle-node bifurcation (Figure 2). The comparison
of this diagram with the experimental one displays good agreement, even in detail [11,32].

The time series of the EDFL intensity corresponding to different coexisting periodic
regimes observed for modulation frequency f0 = 80 kHz and amplitude mo = 1 are pre-
sented in Figure 3. In the lower panel, we show the pump modulation signal m0 sin(2π f0t)
for reference.

Figure 2. Bifurcation diagrams of peak laser intensity P with driving frequency f0 as a control
parameter for m0 = 1. P1, P3, P4, and P5 are branches of the corresponding coexisting attractors
found by taking different initial conditions.
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Figure 3. Time series of the laser intensity corresponding to coexisting P1, P3, P4, and P5 regimes at
f0 = 80 kHz and m0 = 1.

6. Controller Application to RWFONN

In order to identify the EDFL dynamical states, we propose RWFONN with the
following structure (15):

ẋ1 =− a1x1 + b1w1ψ1(χ1) + x2,

ẋ2 =− a2x2 + b2w2ψ2(χ2) + Ppump,
(25)

where x1 and x2 are states that identify the intracavity laser power P and population
inversion N, respectively, a1, a2, b1, b2 are positive fixed parameters, w1 and w2 are the
synaptic weights, ψ1(χ1) and ψ2(χ2) are the Morlet wavelet activation functions, and Ppump
is the input, the same as in the original system.

Using the methodology described in Section 4.3, the nonlinear block controllable form
is applied to the structure (25), and the tracking error e1 is given by

e1 = Pre f − x1, (26)

where Pre f represents the reference intracavity EDFL power generated from an exoge-
nous system, which has different periods of the fiber laser as output, and x1 is the state
variable (25). Now the tracking error dynamics e1 is described as

ė1 = Ṗre f − ẋ1. (27)

Substituting the first equation from (25) into (27), we obtain

ė1 = Ṗre f − (−a1x1 + b1w1ψ1(χ1) + x2) = −k1e1, (28)

where k1e1 is the desired dynamics to vanish the tracking error e1. In this way, it is possible
to synthesize a control law through the state x2, such that

x2re f = Ṗre f + a1Pre f − a1e1 − b1w1ψ1(χ1) + k1e1. (29)

Additionally, the second error is defined by

e2 = x2re f − x2, (30)
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with dynamics
ė2 = ẋ2re f − ẋ2. (31)

Substituting the second equation from (25) into (31), we obtain

ė2 = ẋ2re f − (−a2x2 + b2w2ψ2(χ2) + Ppump). (32)

Based on the error dynamics e1 and e2, the following system of equations represents
the block control transformation with structure (21):

ė1 = −k1e1 + e2,

ė2 = P̈re f + (a1 + a2)Ṗre f + (a1a2)Pre f + (−k2
1 + a1k1 − a1a2 + a2k1)e1 − a2e2

− b1w1ψ1(χ1)− a1b1w1ψ1(χ1)− b2w2ψ2(χ2)− (λ1|s|
1
2 sign(s) + us).

(33)

According to Equation (33), regarding the tracking error variables e1 and e2, the
control input Ppump = λ|s| 12 sign(s) + us guarantees that these errors will be steered to zero
in finite time.

Selecting the sliding surface s = e2 from (33) where the control signal appears, the new
system can be rewritten as

ṡ = P̈re f + (a1 + a2)Ṗre f + (a1a2)Pre f + (−k2
1 + a1k1 − a1a2 + a2k1)e1 − a2e2 − b1w1ψ1(χ1)

− a1b1w1ψ1(χ1)− b2w2ψ2(χ2)− (λ|s|
1
2 sign(s) + us),

u̇s = −αsign(s).

(34)

Although stability analysis for STCA is presented in [42], in Appendix B we comple-
ment it including the boundedness of the neural identification error.

7. Neural Identification and Controller

In this section, we present the results of numerical simulation of the neural iden-
tification of the system (1) through the neural network structure (25). In addition, we
describe the neural controller which displays noise-induced multistate intermittency in
the EDFL [23]. The control forces the multistable system toward a desired state, using an
exogenous system. The simulations are performed using Matlab/Simulink (MatlabTM)
with a Runge–Kutta algorithm with a 10−7 s step size.

7.1. Neural Identification of P1

For neural identification of the EDFL states, we take the parameter values a1 =
a2 = b1 = b2 = 1.005× 107, the filtered error parameters γ1 = γ2 = 1.005× 107 and the
parameters of Morlet wavelet activation functions λ1 = λ2 = 10−5 and β1 = β2 = 8.9× 105.
Figure 4a,b show the neural identification of the EDFL states. Figure 4a shows the neural
identification of the intracavity laser power of the period (P1) indicated by the red dashed
line, while the blue continuous line represents the state of the neural network (x1). Using
the initial condition x(0) = 7.0614 for period P1, the neural network state is x1 = 6.0614.
The neural identification for P1 is obtained with the convergence time of 0.00002 s.

The red dashed line in Figure 4b shows the neural identification of population in-
version, and the blue continuous line represents the neural network sate (x2). Using the
initial condition for N1 y(0) = 0.0095, the neural network state is x2 = 0.0075; the neural
identification is obtained with the convergence time of 10−5 s.
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(b) N1 and x2

Figure 4. (a) Intracavity laser power P1 and neural identification x1 behavior. (b) Population inversion
N1 and neural identification x2.

The neuronal identification of for periods P3, P4, and P5 is obtained using the same
neural network parameters.

Table 2 shows the neural identification results for P3 (see Figure 5a,b), P4 (see
Figure 6a,b) and P5 (see Figure 7a,b) periodic orbits, where we present the initial con-
ditions for each EDFL period and the convergence time to the corresponding attractor.
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Figure 5. (a) Intracavity laser power P3 and neural identification x1 behavior. (b) Population inversion
N3 and neural identification x2.

Table 2. Neural identification results for P1, P3, P4 and P5 periods.

Figure Period (States) Line Initial Condition Convergence

Figure 4a P1 and x1 Red dashed and blue continuous x = 7.0614 and x1 = 6.0614 0.00002 s
Figure 4b N1 and x2 Red dashed and blue continuous y = 0.0095 and x2 = 0.0075 0.00001 s

Figure 5a P3 and x1 Red dashed and blue continuous x = 24.2265 and x1 = 23.2265 0.00002 s
Figure 5b N3 and x2 Red dashed and blue continuous y = 0.0542 and x2 = 0.0442 0.00001 s

Figure 6a P4 and x1 Red dashed and blue continuous x = 5.987 and x1 = 4.987 0.00001 s
Figure 6b N4 and x2 Red dashed and blue continuous y = 0.0187 and x2 = 0.0177 0.00001 s

Figure 7a P5 and x1 Red dashed and blue continuous x = 91.1913 and x1 = 90.1913 0.00001 s
Figure 7b N5 and x2 Red dashed and blue continuous y = 0.096 and x2 = 0.086 0.00002 s
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Figure 6. (a) Intracavity laser power P4 and neural identification x1 behavior. (b) Population inversion
N4 and neural identification x2.

7.2. Neural Identification of Multistate Intermittency

In order to identify multistate intermittency, we add external noise to Equation (2) that
results in

Pp = P0
p [1 + m0 sin(2πF0t) + η′ζ, (35)

where η′ = 0.8 is the noise amplitude and ζ is the random number. Noise induces multistate
intermittency so that the four periodic behaviors (P1, P3, P4, and P5) alternate. The values
of the neural network parameters are the same as in the previous subsection. It is worth
mentioning that the laser response does not depend on the initial conditions of the system;
it only depends on the external noise amplitude [23].

The intracavity laser power (Ph) under the influence of noise is shown in Figure 8a by
the red dashed line, and the blue continuous line represents the neural network state (x1).
Neural identification is obtained with a convergence time of 0.00001 s, as seen in the inset.
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Figure 7. (a) Intracavity laser power P5 and neural identification x1 behavior. (b) Population inversion
N5 and neural identification x2.

Figure 8b shows the population inversion under white noise (Nh) by the red dashed
line, while the blue continuous line represents the neural network state (x2). The inset
shows the neural identification obtained with a convergence time of 0.00002 s. The results
of simulations of the neural identification of the plant, represented by the system (1), offer
a good approximation. This confirms that the proposed neural network structure (25) is
viable for attractor identification in the EDFL. Ensuring neural identification is guaranteed
when external noise is applied to the EDFL (1).
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Figure 8. (a) Intracavity laser power Ph and neural identification x1 behavior. (b) Population
inversion Nh and neural identification x2.

7.3. EDFL Controller

Here, we present the results of the controller application to the noisy EDFL, based on
the proposed neural network structure (25). The controller allows the selection of one of
the coexisting regimes which appears in multistate intermittency. In particular, to select
the period-3 (P3) orbit through the artificial neural network, we use the following gain
parameters: k1 = −6666666666, λ1 = 0.01, and α1 = 0.6. Figure 9 illustrates the EDFL
behavior toward P3. Pre f is shown by the red dashed line, and P of EDFL is represented by
the blue continuous line. This figure shows the tracking trajectory of the EDFL (P) to the
reference (Pre f ), where the reference is P3 generated by the exogenous system. The inset
shows a rapid convergence.
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Figure 9. EDFL tracking to P3.

Figure 10 illustrates the EDFL behavior toward the period-4 P4 orbit. Pre f is repre-
sented by the red dashed line, and P of EDFL by the blue continuous line. This figure
shows the tracking trajectory of the EDFL (P) to the reference (Pre f ), where the reference
is P4 generated by the exogenous system. The inset illustrates a rapid convergence. The
chosen gain parameters are k1 = −2.1× 1012, λ1 = 0.001, and α1 = 0.6.
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Figure 10. EDFL tracking to P4.

Figure 11 shows the EDFL behavior toward the period-5 (P5) orbit. Pre f is represented
by the red dashed line, and P by the blue continuous line. This figure shows the tracking
trajectory of the EDFL (P) to the reference (Pre f ), where the reference is P5 generated by the
exogenous system. The inset illustrates a rapid convergence. The chosen gain parameters
are k1 = −3.9× 1012, λ1 = 0.001, and α1 = 0.6.
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Figure 11. EDFL tracking to P5.

It should be noted that by the proper choice of controller gains, the laser can be made
monostable in any of the coexisting attractors (P3, P4, or P5).

8. Conclusions

A novel neural controller is proposed to control multistability in an erbium-doped fiber
laser (EDFL) with coexisting attractors and make the laser monostable. This can be achieved
using RWFONN, the application of the block control linearization technique and STCA,
allowing attractor selection. We showed that the EDFL states can be identified through
the proposed artificial neural network. Once the states are classified, the block control
linearization technique is applied to generate the sliding surface, which is an argument
to implement a robust super-twisting control. On the other hand, the proposed control is
indirectly applied to the EDFL since the controller is based on the artificial neural network.
We believe that the proposed neural control technique can also be used in other dynamical
systems with coexisting attractors.
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Appendix A. Identification Error Boundedness

Theorem A1. Suppose that the system (1) and model (15) are initially in the same state x(0) =
χ(0). Then, for any ε > 0 and any finite T > 0, there exist an integer L and a matrix w∗ ∈ RL×n

such that the state x(t) of the RWFONN model (15) and weight values w = w∗ satisfy

sup
0≤t≤T

|x(t)− χ(t)| ≤ ε.

Next, using the Bellman–Gronwall lemma [43], the identification error ξ
′i
j = xi

j − χi
j is

bounded by ∥∥ξ ′
∥∥ ≤ ε

2
. (A1)

Proof. See reference [44].

Appendix B. Closed-Loop Stability Analysis

Proof. The convergence of ξ
′i
j is considered to complement the analytic test [42]. Thus, an

identification error occurs (A1), and the Lyapunov function can be written as

V(ζ, ξ ′) = ζ>Pζ +
1
2
(ξ
′i
1 )

2. (A2)

The first time derivative of Equation (A2) is

V̇(ζ, ξ ′) = − 1
|ζ| ζ

>Qζ + ξ
′i
1 ξ̇
′i
1 . (A3)

Substituting the time derivative of ξ
′i
j = xi

j − χi
j obtained through the filtered error

algorithm (20) applied to Equation (A3), we obtain

V̇(ζ, ξ ′) = − 1
|ζ| ζ

>Qζ + ξ
′i
1

[
(−ai

1xi
1 + bi

1wi
1ψi

1(χ
i
1) + xi

2)− χ̇i
1

]
. (A4)

In order to guarantee that (A4) is negative definite, the desired dynamics for x2d is

xi
2d = −c1ξ

′i
1 + ai

1xi
1 − bi

1wi
1ψi

1 + χ̇i
1. (A5)

Thus,

V̇(ζ, ξ ′) =− 1
|ζ| ζ

>Qζ+

ξ
′i
1 (−ai

1xi
1 + bi

1wi
1ψi

1 + (−c1ξ i
1 + ai

1xi
1 − bi

1wi
1ψi

1 + χ̇i
1)− χ̇i

1)

=− 1
|ζ| ζ

>Qζ − c1ξ
′2
1 ,

(A6)

with c1 > 0 real, the stability uniformly ultimately bounded is ensured.
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