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Control of near-grazing dynamics in impact
oscillators
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A method is presented for controlling the persistence of a local attractor near a grazing
periodic trajectory in a piecewise smooth dynamical system in the presence of
discontinuous jumps in the state associated with intersections with system disconti-
nuities. In particular, it is shown that a discrete, linear feedback strategy may be
employed to retain the existence of an attractor near the grazing trajectory, such that
the deviation of the attractor from the grazing trajectory goes to zero as the system
parameters approach those corresponding to grazing contact. The implementation relies
on a local analysis of the near-grazing dynamics using the concept of discontinuity
mappings. Numerical results are presented for a linear and a nonlinear oscillator.

Keywords: piecewise smooth systems; grazing trajectories; grazing bifurcations;
discontinuity mappings; control
1. Introduction

The onset of impactingmotions ofmechanical systems under variations in a system
parameter m is known to be associated with dramatic and abrupt changes in system
response (Nordmark 1991, 1997; Fredriksson & Nordmark 1997; Dankowicz &
Nordmark 1999; Molenaar et al. 2001; Dankowicz et al. 2002; Dankowicz & Zhao
2005). Specifically, bifurcations in the long-term system response occur as m
increases past some critical valuemgrazing, atwhich value there exists a periodic non-
impacting oscillation of the mechanical system that achieves zero-relative-velocity
contactwith an internal or externalmechanical limit. In a state-space description of
the dynamics of the system, such zero-relative-velocity contact corresponds to a
grazing contact between a state-space trajectory and a discontinuity surface, for
example, representing the sudden changes in the velocities of the system
components that result from an impact. In contrast to periodic trajectories in
smooth systems, the local description in the vicinity of a grazing trajectory is well
known to be non-differentiable with dramatic implications to the stability of the
grazing trajectory and to its persistence under further parameter variations.
Indeed, as there is no advancewarning of this instability, any local descriptionmust
account for the non-smooth character of the flow near the grazing trajectory.
1



Analysis of the local dynamics in the vicinity of a grazing trajectory for
mzmgrazing is made possible through the introduction of a discontinuity mapping
that (i) captures the local dynamics in the vicinity of the grazing contact including
variations in time-of-flight to the discontinuity and the impact mapping; (ii) can
be entirely characterized by conditions at the grazing contact; (iii) is non-smooth
in the deviation from the point of grazing contact and (iv) can be studied to
arbitrary order of accuracy (Nordmark 1991; Dankowicz & Nordmark 1999; di
Bernardo et al. 2000; Dankowicz & Zhao 2005). Properly formulated, the
discontinuity mapping thus introduces the correction to the otherwise smooth
dynamics that is due to the brief interaction with the discontinuity.

As shown by Fredriksson & Nordmark (1997; but see also Nordmark 1991,
1997), necessary and sufficient conditions for the persistence of a local attractor
near the grazing periodic trajectory for mzmgrazing may be formulated in terms of
a condition on the linearization of the mechanical system about the grazing
trajectory in the absence of impacts. In this paper, we rely on this insight for the
formulation of a discrete, closed-loop control strategy that controls the
persistence of a local attractor by appropriate real-time changes to the position
of the mechanical limit. In particular, we illustrate the possibility of dramatically
changing the bifurcation scenario associated with grazing contact with a
minimum of control.

The paper is organized as follows. Section 2 presents an analysis of the near-
grazing dynamics of a piecewise smooth formulation of a linear, forced impact
oscillator and the formulation of a feedback strategy for controlling the
persistence of a local attractor near the grazing periodic trajectory. Section 3
illustrates the generality of the analysis and control methodology by considering
an application to a nonlinear oscillator. A concluding discussion is presented in §4.
2. A linear oscillator

(a ) Mathematical model

Consider the response of a linear oscillator to a periodic excitation in the
presence of perfectly elastic impacts of the oscillator with a mechanical limit at
some critical displacement. In particular, suppose that the evolution of the
oscillator is governed by the second-order differential equation

d2q

dt2
ðtÞC 2g
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dq

dt
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In terms of the state vector

x Z ð x 1 x 2 x 3 x 4 x 5 ÞT Z ð q _q t mod 2p A qc ÞT; ð2:4Þ
the corresponding dynamical system is given by
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as long as hDðxÞZdef x 1Kx 5R0 and the discontinuous change in velocity at
impact is given by the jump map

gDðxÞZ

x 1

Kx 2

x 3

x 4

x 5

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:6Þ

As long as x 4(0)%Kx 5(0), there exists a family of asymptotically stable
periodic solutions

xðtÞZ

x 4ð0Þcos t

Kx 4ð0Þsin t

t mod 2p

x 4ð0Þ

x 5ð0Þ

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:7Þ

Indeed, when x 4ð0ÞZKx 5ð0ÞZKx 5
�O0, a grazing periodic trajectory is obtained

that achieves grazing contact with the discontinuity surfaceD given by the zero-level
surface of the event function hDðxÞ at the point x�Zð x 5

� 0 p Kx 5
� x 5

� ÞT, since

hD;xðx�Þ$f ðx�ÞZ 0: ð2:8Þ

In the following we are particularly concerned with bifurcations associated with
changes in x 4(0) and x 5(0) away fromHx 5

�, respectively.
To visualize the results of the numerical and theoretical study, introduce a

Poincaré section P corresponding to the zero-level surface of the event function
hPðxÞZhD;xðxÞ$f ðxÞZx 2, for x 2 increasing. For notational convenience,
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Figure 1. Schematic illustrating the correction to the smooth flow in the presence of impacts
introduced through the concept of the discontinuity mapping D.
consider the following definitions (cf. figure 1):

DCZ fx2DjhPðxÞO0g; ð2:9Þ

D0 Z fx2DjhPðxÞZ 0g; ð2:10Þ

DKZ fx2DjhPðxÞ!0g: ð2:11Þ
(Note that PhDZD0.) In the absence of impacts, points on P correspond to
local minima in the value of x 1 along system trajectories (since _x1Zx 2). Since gD
maps DK to DC, trajectories that reach DK experience an instantaneous jump
across P to DC without intersecting P (as the incoming velocity x 2!0 is
changed to an outgoing velocity Kx 2O0). We represent such crossings by the
virtual point of intersection with P of the corresponding forward trajectory
segment in the absence of the jump in velocity.
(b ) Near-grazing dynamics

We wish to associate a Poincaré mapping P with the Poincaré section P
introduced above. Ignore, for a moment, the jump map associated with the
discontinuity D and assume that the dynamics are governed entirely by the
vector field f. Suppose that the forward trajectory based at a point xref2P
intersects P transversally after some time tref, i.e. that

hPðFðxref ; trefÞÞZ 0 ð2:12Þ
and

hP;xðFðxref ; trefÞÞ$f ðFðxref ; trefÞÞZ f 2ðFðxref ; trefÞÞO0; ð2:13Þ
where F is the smooth flow corresponding to the vector field f. Here, the latter
condition corresponds to the requirement that x 2 be increasing, i.e. that the
acceleration of the oscillating mass be positive.

Now introduce the function

Fðx; tÞZ hPðFðx; tÞÞ: ð2:14Þ
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It follows that

Fðxref ; trefÞZ 0 ð2:15Þ
and

Ftðxref ; trefÞO0: ð2:16Þ
The implicit function theorem implies that there exists a unique smooth function
t(x) defined on a neighbourhood of xref, such that

tðxrefÞZ tref ð2:17Þ
and

Fðx; tðxÞÞh0; ð2:18Þ
i.e. t(x) is the time of flight from x back to P. A smooth Poincaré mapping
Psmooth can now be defined on a neighbourhood of xref by the expression

PsmoothðxÞZFðx; tðxÞÞ: ð2:19Þ
If we reintroduce the non-trivial jump map gD associated with D, the above
expression is still valid as long as hDðxÞR0. If, instead, hDðxÞ!0, we recognize
that the point x corresponds to a virtual point of intersection that cannot
actually be reached by the piecewise smooth dynamical system. It would,
nevertheless, be convenient if we could again define the Poincaré mapping P by
the above formula, but possibly including an initial correction to account for the
virtual nature of the initial point x. To this end, consider the Poincaré mapping
P defined by

PðxÞZPsmoothðDðxÞÞ; ð2:20Þ
where the discontinuity mappingD maps x to some point on P in such a way that
the subsequent dynamics respect those of the corresponding actual trajectory.

To arrive at an expression for D consider the trajectory segments shown in
figure 1 (cf. Nordmark 1991; Dankowicz & Nordmark 1999; di Bernardo et al.
2000; Dankowicz & Zhao 2005). Here, an incoming trajectory governed by the
vector field f reaches the discontinuity surface D at a point xin2DK, experiences
a jump to a point xoutZgDðxinÞ2DC, and then continues to flow under the
vector field f. The trajectory segments on the far side of the discontinuity surface
D correspond to a flow governed by the vector field f from xin forward in time
until reaching P at a point x0, and from xout backward in time until reaching P
at a point x1. The sought correction to the smooth flow given by F is then
obtained by mapping x0 to x1, as this correctly accounts for the effects of the
jump map.

Thus, given an initial point xzx
*
on P, such that hDðxÞ!0, we define D as

the composition of the following steps:

(i) flow for a time t1!0 with the vector field f until reaching DK;
(ii) apply the jump map gD;
(iii) flow for a time t2!0 with the vector field f until reaching P.

To arrive at a functional expression for D, we seek to express the flow times in
terms of the corresponding initial conditions in state space and the corresponding
parameter values.
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Suppose, in particular, that there exists a point x
*
, such that

hDðx�ÞZ 0; ð2:21Þ

hPðx�ÞZ 0; ð2:22Þ

and

a�Z
def hP;xðx�Þ$f ðx�ÞZ f 2ðx�ÞZKx 5

�O0: ð2:23Þ
Clearly, x

*
2P is a point of simple grazing contact with D corresponding to a

local minimum in hD along a trajectory segment of the vector field f based at x
*
.

Step 1. Suppose that hDðxÞ!0 and consider the function

Eð1Þðx; y; tÞZ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDðFðx;KtÞÞKhDðxÞC thPðxÞ

t2

r
Ky: ð2:24Þ

Then, for x2P, i.e. for hPðxÞZ0, Eð1Þðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KhDðxÞ

p
; tÞZ0 (and the assumption

that tO0) implies that hDðFðx;KtÞÞZhDðxÞCy2Z0, i.e. F(x, Kt)2D. Since

hDðFðx;KtÞÞKhDðxÞC thPðxÞ
t2

ð2:25Þ

is bounded in t for tz0 (as seen by Taylor expanding the numerator in t ), it
follows that

Eð1Þðx�; 0; 0ÞZ 0 ð2:26Þ
and

E
ð1Þ
t ðx�; 0; 0ÞZ

ffiffiffiffiffi
a�

2

r
: ð2:27Þ

The implicit function theorem now implies the existence of a unique smooth
function t(1)(x, y) on an open neighbourhood of (x

*
,0), such that

tð1Þðx�; 0ÞZ 0 ð2:28Þ

and
Eð1Þðx; y; tð1Þðx; yÞÞh0: ð2:29Þ

It follows from the definition of E (1) that t1ZKtð1Þðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KhDðxÞ

p
Þ.

As the smooth function t(1)(x, y) is implicitly defined by equation (2.29), we
can compute arbitrary partial derivatives of t(1) at (x

*
, 0) using implicit

differentiation and demanding that all partial derivatives of the left-hand side of
(2.29) must vanish at (x

*
, 0, 0). Now let

D1ðx; yÞZFðx;Ktð1Þðx; yÞÞ: ð2:30Þ

Since F is smooth, we can compute arbitrary partial derivatives of D1 at (x*, 0).
Step 1 is completed by expanding D1(x, y) to desired order in the deviation from

(x
*
, 0) and substituting yZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KhDðxÞ

p
.

Step 2. Since gD is smooth, it can be expanded to desired order in the deviation
from x

*
, after which the result of step 1 may be substituted for x thus completing

step 2.
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Step 3. Finally, consider the function

Eð2Þðx; tÞZ hPðFðx;KtÞÞ: ð2:31Þ
Then,

Eð2Þðx�; 0ÞZ hPðx�ÞZ 0 ð2:32Þ
and

E
ð2Þ
t ðx�; 0ÞZKa�!0: ð2:33Þ

The implicit function theorem again implies the existence of a unique smooth
function t(2)(x) on an open neighbourhood of x

*
, such that

tð2Þðx�ÞZ 0 ð2:34Þ
and

Eð2Þðx; tð2ÞðxÞÞh0: ð2:35Þ
It follows from the definition of E (2) that t3ZKt(2)(x).

As the smooth function t(2)(x) is implicitly defined by equation (2.35), we can
compute arbitrary partial derivatives of t(2) at x

*
using implicit differentiation

and demanding that all partial derivatives of the left-hand side of (2.35) must
vanish at x

*
. Now let

D2ðxÞZFðx;Ktð2ÞðxÞÞ: ð2:36Þ

Since F is smooth, we can compute arbitrary partial derivatives of D2 at x
*
.

Step 3 is completed by expanding D2(x) to desired order in the deviation from x
*

and substituting the result of step 2 for x.
It follows that

DðxÞZ
x when hDðxÞR0;

D2ðgDðD1ðx;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KhDðxÞ

p
ÞÞÞ when hDðxÞ!0:

(
ð2:37Þ

Clearly, the presence of the square-root term renders the resulting discontinuity
map non-differentiable at a point x, where hDðxÞZ0, i.e. a point of grazing
contact.

The lowest-order-in-xKx
*
, non-trivial term in the expansion of D for xzx

*
is

a term of the form

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KhD;xðx�Þ$ðxKx�Þ

q
; ð2:38Þ

where

b Z f ðx�Þ
hP;xðx�Þ$gD;xðx�Þ$f ðx�Þ

a�
KgD;xðx�Þ$f ðx�Þ

� � ffiffiffiffiffi
2

a�

r

Z K2

ffiffiffiffiffi
2

a�

r
ð 0 0 1 0 0 ÞT:

ð2:39Þ

For small deviations from x
*
in the direction of negative values of hD, this term

results in a large stretching in a direction relative to x
*
given by the image of the

vector b under the Jacobian Psmooth,x(x*) of the smooth Poincaré map. Consider
7



the sequence xZfxngNnZ1 defined by

xn Z hD;xðx�Þ$Psmooth;xðx�Þ$/$Psmooth;xðx�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

$b: ð2:40Þ

Then, as argued by Fredriksson & Nordmark (1997), a necessary condition for the
persistence of a local attractor near the grazing trajectory when x 4(0)TKx 5(0) is
that x is a non-negative sequence (but see comments in the next section). Indeed,
such a local attractor can be shown to lie within a region whose size grows as the
square root of the absolute value of the deviation of x 4 from x 4

�. Here, we refer to
such a scenario as a continuous grazing bifurcation. In contrast, if xn!0 for some
integer n, no local attractor will persist. Instead, such a discontinuous grazing
bifurcation is associated with a sudden jump to an impacting system attractor
that persists also for x 4(0)(Kx 5(0).

For the present example, it is straightforward to show that

x1 Z
x 5

�uðl21 K l22Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2K1

p ffiffiffiffiffi
2

a�

r
; ð2:41Þ

where

l1 Z exp½KpðgC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 K1

p
Þ=u�; l2 Z exp½KpðgK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 K1

p
Þ=u�: ð2:42Þ

It follows that a necessary condition for the persistence of a local near-grazing
attractor is that gO1.
(c ) Control strategy

We now seek to introduce a feedback control to render xnO0 for all n by
making discrete changes to the value of x 5, when the trajectory intersects the
zero-level surface C of the event function hCðxÞZx 2 for x 2 decreasing. Denote by
x��ZðKx 5

� 0 0 Kx 5
� x 5

� ÞT the intersection of the grazing periodic trajec-
tory with C. Now, let the proposed changes be governed by the jump map

gCðxÞZ

x 1

x 2

x 3

x 4

x5��Cc1ðx 1Kx1��ÞCc3ðx 3Kx3��ÞCc5ðx 5Kx5��Þ

0
BBBBBBBB@

1
CCCCCCCCA
: ð2:43Þ

It follows that

Psmooth ZP C/P
smooth

B gcontrol
B PP/C

smooth; ð2:44Þ

where PP/C
smooth and P C/P

smooth correspond to the Poincaré maps from P to C and from
C to P, respectively. The Jacobian of Psmooth can then be written as a product of
the Jacobians of PP/C

smooth, g
control and P C/P

smooth evaluated at the appropriate points
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along the grazing trajectory. Since

P C/P
smooth;x ;P

P/C
smooth;x Z

� � � � 0

0 0 0 0 0

� � � � 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
; ð2:45Þ

it follows that

P C/P
smooth;x$gC;x$P

P/C
smooth;x Z

� � � � 0

0 0 0 0 0

� � � � 0

0 0 0 1 0

�c1 C�c3 �c1 C�c3 �c1C�c3 �c1C�c3 c5

0
BBBBBBB@

1
CCCCCCCA
;

ð2:46Þ
where * refers to a non-trivial coefficient. Appropriate choices of values for the
control parameters c1, c3 and c5 may thus be sought that will render xnO0 for all
n. Since, for fixed values of c5 each xn is linear in the remaining control
parameters, allowable values for c1 and c3 lie in a region bounded by straight
lines in the c1, c3 two-dimensional parameter space. Similarly, values outside
such a region may be employed to render the grazing bifurcation discontinuous.
(d ) Comments on the continuity criterion

As argued in Fredriksson & Nordmark (1997), a sufficient condition for the
persistence of a local attractor is that the sequence xLZfxLngNnZ1, where

xLn Z hD;xðx�Þ$L$/$L|fflfflfflfflffl{zfflfflfflfflffl}
n times

$b; ð2:47Þ

is non-negative for all matrices L near Psmooth,x(x*). Equivalently, one may
require that the sequence ~xZf ~xngNnZ1 defined by

~xnZ
def hD;xðx�Þ$un; ð2:48Þ

where un is a unit vector in the direction of

Psmooth;xðx�Þ$/$Psmooth;xðx�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

$b; ð2:49Þ

is bounded from below by a positive number.
As formulated above, the quantities xn/0 as n/N for fixed values of the

control parameters, since the eigenvalues of Psmooth,x lie within the unit circle. As
a consequence, it may become numerically difficult to resolve whether xnO0 for
large enough values of n. In contrast, since ~xn must be bounded from below by a
positive number for all n, there is no numerical difficulty in ascertaining whether
9



the sufficient condition for the persistence of a local attractor is satisfied for a
given set of control parameters. On the other hand, while the xn are linear in c1
and c3 (for a given values of c5), the ~xn are nonlinear in the control parameters. In
the numerical discussion below, we therefore seek values of the control
parameters for which x is a non-negative sequence, and only after the fact do
we confirm that ~x is bounded from below by a positive number.

The continuity criterion that ~x is bounded from below by a positive number is
directly related to the local stability of the grazing periodic trajectory. Indeed, as
long as the continuity criterion is satisfied, a small initial perturbation from the
grazing trajectory such that x 4ð0ÞZx 4

�ZKx 5
� will result in at most one impact

with the mechanical limit, and thus the stability of the grazing trajectory for
x 4Zx 4

� is entirely determined by the non-impacting dynamics. As shown in
Fredriksson & Nordmark (1997), for values of x 4 away from x 4

� the continuity
criterion implies that the number of iterations of the composite Poincaré map
between successive impacts goes to infinity as x 4/x 4

�, in essence that impacts
are rare and far apart for small deviations from the grazing trajectory.

The implications of this rarity of impacts is that a control strategy that
realizes the continuity criterion is particularly well suited for controlling
transient dynamics that involve occasional impacts. Indeed, if it were only
required that a local attractor persist as x 4 would increase beyond x 4

�, one might
naively assume that it would suffice to choose values for c1, c3 and c5 such that
the mechanical limit would remain away from the non-impacting periodic
trajectory. In the case of the linear oscillator, this would imply that

x 5 Kx 5
�!Kðx 4 Kx 4

�Þ; ð2:50Þ
where

x 5 Kx 5
� Z c1ðx 4Kx 4

�ÞCc5ðx 5Kx 5
�Þ; ð2:51Þ

i.e. that

c1!c5K1; ð2:52Þ
independently of the value of c3. To keep the mechanical limit away from the
non-impacting periodic trajectory for x 4!x 4

�, however, would result in the
opposite inequality. It follows that to retain a local attractor near the grazing
periodic trajectory on an open neighbourhood of x 4

�, values for c1, c3 and c5 must
be chosen to satisfy the continuity criterion. For example, the continuity
criterion implies that the largest-in-modulus eigenvalue of Psmooth,x(x*) must be
real and positive. But c5 is one of the eigenvalues of Psmooth,x(x*). Thus,
in situations where the largest-in-modulus eigenvalues of Psmooth,x(x*) in the
absence of control are complex conjugates, one must choose a value for c5 that is
greater than the modulus of these eigenvalues.
(e ) Numerical results

Consider the linear oscillator, such that

uZ 10; gZ 0:2; x 5
� ZK1: ð2:53Þ

Then, in the absence of control, i.e. when c1Zc3Zc5Z0, we find x1,2O0 but x3!0,
i.e. the grazing bifurcation is discontinuous. Figure 2 shows the impacting
10
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Figure 2. Chaotic impacting attractor in the near-grazing dynamics. (a) Intersection of attractor
with P ; (b) intersection of attractor with D.
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Figure 3. Shaded region represents values of c1 and c3, such that ~xnO0 for n%90 when (a) c5Z
0.8819 and (b) c5Z0.89.
attractor to which an initial condition in the vicinity of the grazing trajectory
converges for x 4(0)R1 and which also persists for x 4(0)(1.

In order for xnO0 for all n, the largest-in-modulus eigenvalue of Psmooth,x must
be real and positive. Since, here

l1 Z 0; l2 Z 2; l3;4 Z eKpð1Gi2
ffiffi
6

p
Þ=25; l5 Z c5; ð2:54Þ

successful control requires that

c5OeKp=25z0:8819: ð2:55Þ

The shaded region in figure 3 shows a subset of the region of values for c1 and c3,
such that ~xnO0 for n%90 when c5Z0.8819 and c5Z0.89. A bifurcation diagram
showing the persistence of a local attractor in the near-grazing dynamics under
variations in x 4 is shown in the upper panel of figure 4, where c1Z0, c3Z5.8 and
c5Z0.89. Furthermore, the lower panels of figure 4 show the local attractor with
control for x 4Kx 4

�Z10K5 as obtained from direct numerical simulations and as
predicted by the composite Poincaré mapping (for the corresponding disconti-
nuity mapping, see appendix A).
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Figure 4. Near-grazing dynamics in the presence of control. (a) Bifurcation diagram under
variations in x 4. Lower panels show local chaotic attractor for x 4Kx 4

�Z10K5 (b) as obtained from
direct numerical simulations and (c) as predicted by the composite Poincaré mapping.
3. A nonlinear oscillator

Now consider the response of a nonlinear oscillator to a periodic excitation in the
presence of elastic impacts of the oscillator with a mechanical limit at some
critical displacement. In particular, suppose that the evolution of the oscillator is
governed by the second-order differential equation

d2q

dt2
ðtÞCg

dq

dt
ðtÞCqðtÞZ A cos2ut

ð1KqðtÞÞ2
; ð3:1Þ

for q!qc!1, u, g, AO0, and such that if

q lim
t/tK�

t

� �
Z qc and

dq

dt
lim
t/tK�

t

� �
R0; ð3:2Þ

for some time t
*
, then

q lim
t/tC�

t

� �
Z qc and

dq

dt
lim
t/tC�

t

� �
ZKe

dq

dt
lim
t/tK�

t

� �
; ð3:3Þ

where e represents a coefficient of restitution. In terms of the state vector

x Z ð x 1 x 2 x 3 x 4 x 5 ÞT Z ð q _q ut mod p A qc ÞT; ð3:4Þ
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the corresponding dynamical system is given by

dx

dt
ðtÞZ f ðxÞZ

x 2

Kx 1 Kgx 2 Cx 4 cos2x 3

ð1Kx 1Þ2
u

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; ð3:5Þ

as long as hDðxÞZdef x 5Kx 1R0 and the discontinuous change in velocity at
impact is given by the jump map

gDðxÞZ

x 1

Kex 2

x 3

x 4

x 5

0
BBBBBBBB@

1
CCCCCCCCA
: ð3:6Þ

Following the discussion in the case of the linear oscillator, introduce a Poincaré
section P given by the zero-level surface of the event function hPðxÞZ
hD;xðxÞ$f ðxÞZKx 2 for x 2 decreasing. Again, we may analyse the dynamics in
the vicinity of a grazing trajectory by composing the smooth Poincaré map
Psmooth associated with P in the absence of impacts with a discontinuity mapping
D that (i) captures the local dynamics in the vicinity of the grazing contact
including variations in time-of-flight to the discontinuity and the impact
mapping; (ii) can be entirely characterized by conditions at the grazing contact;
(iii) is non-smooth in the deviation from the point of grazing contact; and
(iv) can be studied to arbitrary order of accuracy. Properly formulated, the
discontinuity mapping thus introduces the correction to the otherwise smooth
dynamics that is due to the brief interaction with the discontinuity.

Suppose that gZ0.04, uZ0.56, eZ0.8. Then, a grazing periodic trajectory is
obtained for

x� Z ð 0:5 0 1:541 053. 0:283 159. 0:5 ÞT: ð3:7Þ
In this case, x1!0 in the absence of control and the corresponding grazing
bifurcation is thus discontinuous. Indeed, the left panel of figure 5 shows the
impacting periodic attractor to which an initial condition in the vicinity of the
grazing trajectory converges for x 4ð0ÞRx 4

� and which also persists for
x 4ð0Þ(x 4

�.
Here, the largest-in-modulus eigenvalues of Psmooth,x(x*) for c5Z0 are complex

conjugate with modulusz0.8939. Let c5Z0.95. Then, the right panel of figure 5
shows a subset of the region of values for c1 and c3, such that ~xnO0 for n%90. As an
example, figure 6 shows the grazing bifurcations scenario that is obtained when
c1Z0 and c3ZK1.4. Specifically, while the upper panel shows the predictions of an
analytical expansion of P to linear order in the deviation xKx

*
, the lower panel

shows the results of applying the control to the original dynamical system over a
larger range in the deviation x 4Kx 4

�.
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Figure 5. (a) Near-grazing dynamics in the absence of control and (b) subset of values of c1 and c3,
such that ~xnO0 for n%90 when c5Z0.95.
4. Conclusions

This paper has presented a linear, discrete, closed-loop control strategy for
ensuring the persistence of a local attractor in the near-grazing dynamics of an
impact oscillator. Although the methodology has been presented specifically for
forced, single-degree-of-freedom oscillators, there is nothing in the approach that
limits it to this low dimensionality or to systems that originate in second-order
differential equations. Indeed, the discontinuity-mapping approach as well as the
continuity criterion formulated here are general to near-grazing dynamics in
arbitrary-dimensional piecewise-smooth dynamical systems.

Of course, the higher the dimension of the underlying dynamical system, the
more control parameters would enter into the expression for the feedback strategy.
Again, however, for fixed values of the control parameter coupling the change in the
position of themechanical limit to the current position of themechanical limit (c5 in
the above analysis), the resultant expressions for the elements of the sequence x
would be linear in the remaining control parameters. Onewould thus, again, expect
that allowable values for the remaining control parameters would lie in a region in
parameter space bounded by hyperplanes. As noted above, in a situation where the
largest-in-modulus eigenvalues of the Jacobian of the smooth Poincaré map in
the absence of control were complex conjugate, it would be necessary to select the
control parameter coupling the change in the position of themechanical limit to the
current position of the mechanical limit to be larger than the modulus of these
eigenvalues (but always less than one).

The control of system dynamics in the presence of impacts using the position of
the system discontinuity has previously been employed by the authors (Dankowicz
& Piiroinen 2002; Jerrelind & Dankowicz in press). There, however, the analysis
focused on the stabilization of impacting dynamics in the presence of large-impact-
velocity motions, far from the near-grazing region. In that case, the local dynamics
were described by a linear Poincaré map and the analysis focused on the control of
the linearized system about an impacting reference trajectory. In contrast, in the
situation considered here, the stabilization of a particular trajectory is practically
impossible. Instead, the aim of the present work has been to change the bifurcation
behaviour in thenear-grazing regionensuring,not the stabilityof a single trajectory,
but the weaker notion of stability pertaining to the persistence of a local attractor.
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Figure 6. Near-grazing dynamics in the presence of control. Bifurcation diagrams under variations
in x 4 (a) as predicted by the composite Poincaré mapping and (b) as obtained from direct
numerical simulations.
The proposed control strategy affords a means of suppressing the catastrophic
loss of stability of low-impact-velocity motion to high-impact-velocity motion
that is a distinct possibility in impact oscillators. Instead, at the expense of small,
real-time and closed-loop adjustments to the position of the system disconti-
nuity, low-impact-velocity motions may be sustained over a large interval about
the point of grazing contact. The implications of this to practical mechanical
and/or electrical systems will be explored in future work.

This material is based upon work supported by the National Science Foundation under grant no.
0237370 and by the Swedish Science Council, Division of Engineering Mechanics, grant numbers
2003-3699 and 2004-6342.
Appendix A. Explicit expansions for the discontinuity mappings

As suggested in the main text, implicit differentiation may be employed to obtain
expressions for the coefficients in the various Taylor expansions in the
construction of the discontinuity mapping D. As an example of the result of
such computations, the formulae below correspond to the discontinuity mappings
for the linear and nonlinear oscillator, respectively, for xzx

*
. Since D maps P to
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P and since x 4 and x 5 are constant under the smooth flow, we only report the
non-trivial 1 and 3 components of D.

Specifically, in the case of the linear oscillator with

uZ 10; gZ 0:2; x� Z ðK1 0 p 1 K1 ÞT; ðA 1Þ
we find

D1ðxÞzx 1
�CDx 1; ðA 2Þ

D3ðxÞzx 3
� K2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx 5 KDx 1

p
K 4

25
ðDx 5 KDx 1ÞCDx 3; ðA 3Þ

whereDxZxKx
*
andwehave included termsup to linear order in thedeviationDx.

Similarly, in the case of the nonlinear oscillator with

gZ 0:04; uZ 0:56; eZ 0:8;

x� Z ð 0:5 0 1:541 053. 0:283 159. 0:5 ÞT;
ðA 4Þ

we find

D1ðxÞzx 1
� C0:6400Dx 1 C0:3600Dx 3; ðA 5Þ

D3ðxÞzx 3
�K2:0180

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx 1KDx 5

p
K0:2107ðDx 1 KDx 5ÞCDx 3: ðA 6Þ

Note that to obtain an expansion for the composite Poincaré mapping to first-order
in the deviation from the point of grazing contact, it is necessary to compute
expansions of the corresponding smoothPoincarémappings to second-order.This is
a straightforward application of the definition of the smooth Poincaré mapping and
the solution to the first and second variational equations for the smooth flow.
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