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INTRODUCTION

The LIM homeodomain genes encode a distinct family of
proteins predicted to act as transcriptional regulators (Freyd
et al., 1990; Karlsson et al., 1990). One distinguishing
feature of this gene family is that all members appear to be
expressed in discrete subsets of differentiating neurons
(Barnes et al., 1994; Korzh et al., 1993; Li et al., 1994; Taira
et al., 1993; Thor et al., 1991; Way and Chalfie, 1989; Xu et
al., 1993), as well as in other tissues. The demonstrated role
of the Caenorhabditis elegans mec-3 gene in mechanosen-
sory neuron function (Way and Chalfie, 1988), as well as the
recent finding that combinations of vertebrate LIM homeo-
domain genes define distinct subclasses of motorneurons
(Tsuchida et al., 1994), further suggest that this gene family
might be involved in controlling neuronal differentiation and
pathway selection. The Drosophila LIM homeodomain gene
apterous (ap) is required for development of the wing and a
subset of embryonic muscles (Blair et al., 1994; Bourgouin
et al., 1992; Butterworth and King, 1965; Cohen et al., 1992;
Diaz-Benjumea and Cohen, 1993). In addition to being
expressed in these tissues, ap is expressed in the embryonic
brain and ventral nerve cord (VNC). In this paper, we show,
using promoter fusions to a novel axon-targeting reporter
(Callahan and Thomas, 1994), that ap is expressed by a small
subset of developing interneurons that choose a single
pathway and that, in ap mutants, these neurons choose
incorrect paths. Our results provide evidence that a member
of the LIM homeodomain gene family controls neuronal
pathway selection.

MATERIALS AND METHODS

Whole-mount in situ hybridizations were carried out essentially as
described (Tautz and Pfeile, 1989) using a 3.7 kb ap cDNA
(Bourgouin et al., 1992) as a template for an RNA probe. For the
production of fusion protein, we constructed a modified pGEMEX
(Promega) vector, pGEMEX∆SS, in which the 800 bp StyI-SfiI
fragment had been excised. A 1.6 kb ApaI-HindIII fragment from a
3.7 kb ap cDNA (Bourgouin et al., 1992) was cloned into
pGEMEX∆SS restricted with ApaI and HindIII; fusion protein was
gel purified and injected into rats. The specificity of the anti-Ap
antibody was confirmed by lack of staining in embryos mutant for
the transcriptional null apP44 allele. For antibody staining, embryos
were dissected and processed as described (Callahan and Thomas,
1994; Thomas et al., 1984). Embryos were incubated overnight at
4°C with rat anti-Ap (diluted 1:200) and/or rabbit anti-β-gal (Cappel;
diluted 1:10,000). Homozygous ap mutant embryos were indepen-
dently identified by using a CyO balancer chromosome that contains
a P element expressing β-gal from the actin 5C promoter (Bourgouin
et al., 1992).

For testing promoter fragments, we constructed 2 tau-lacZ P
element transformation vectors, PC4tLZ and PC4PtLZ, both based on
PC4LZ (Wharton and Crews, 1993). PC4tLZ contains a polylinker
directly upstream of the tau-lacZ fusion gene; PC4PtLZ is identical
to PC4tLZ except that it contains P promoter sequences between the
polylinker and the tau-lacZ fusion gene. Flies were transformed using
standard techniques (Rubin and Spradling, 1982). Multiple indepen-
dent insertions were isolated for each construct with the exception of
apA, for which a single insertion was generated. Eleven independent
transformants were isolated for the apC fragment. All showed the
identical expression pattern, although some variation in the levels of
expression was observed. For the experiments described in the text,
we used a 3rd chromosome insert, apC-tau-lacZ1.6.
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The Drosophila apterous gene encodes a LIM homeo-
domain protein expressed embryonically in a small subset
of differentiating neurons. To establish the identity of these
neurons and to study the role of apterous in their develop-
ment, we made apterous promoter fusions to an axon-
targeted reporter gene. We found that all apterous-express-
ing neurons are interneurons that choose a single pathway
within the developing central nervous system. In apterous
mutants, these neurons choose incorrect pathways and fail

to fasciculate with one another. Our results indicate that
apterous functions to control neuronal pathway selection
and suggest that other vertebrate and invertebrate
members of the LIM homeodomain class of proteins may
serve similar functions.
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RESULTS 

In addition to the wing disc and an embryonic muscle subset,
ap is expressed in subsets of cells within the embryonic brain
and VNC. Because of its relative simplicity, we consider here
only the VNC, which by 12 hours of embryonic development,
contains approximately 200 neurons per hemisegment. In situ
hybridization using an ap RNA probe reveals that, within the
VNC, transcription of ap is restricted to only 3 cells (1 dorsal
and 2 ventral) per hemisegment and to an additional cluster of
4 lateral cells in each thoracic hemisegment (Fig. 1A). This
same pattern of expression is revealed with antibodies to Ap
(Fig. 1B,C). 

Since Ap is a nuclear protein, the anti-Ap antibody reveals
only the cell body positions of the ap-expressing cells. Thus,

the identity of these cells (e.g., interneurons, motorneurons,
glia) and any possible interactions among them cannot directly
be determined. We therefore generated transformants carrying
regulatory regions of the ap gene fused to tau-lacZ, a reporter
gene whose product, tau-β-galactosidase (tau-β-gal), labels the
entirety of neurons, including cell bodies and axonal projec-
tions (Callahan and Thomas, 1994). Genomic fragments
covering 25 kb were tested for neuronal expression (Fig. 2).
Fragment apC, which contains sequences from −6 to −12 kb
upstream from the ap transcriptional start site, was found to
direct tau-β-gal expression in a pattern similar to ap itself (Fig.
1D). To confirm that the tau-β-gal-expressing cells are indeed
the ap cells, we carried out double-labeling with antibodies to
both β-gal and Ap. As shown in Fig. 1E-G, the expression of
Ap and tau-β-gal is coincident, although we found that in some
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Fig. 1. ap expression in the embryonic nervous system. (A) Whole-mount in situ hybridization of an ap RNA probe to a 12 hour embryo.
Expression is detected in 1 dorsal cell per hemisegment (small arrowhead points to a dorsal cell in thoracic segment T3), a pair of ventral cells
(large arrowhead points to ventral cells in abdominal segment A3), and a cluster of 4 lateral neurons in each thoracic hemisegment (arrow
points to a cluster in T3). (B,C) HRP immunostaining with antibodies to Ap. The nuclei of one dorsal neuron (arrowhead), 4 clustered lateral
thoracic neurons (arrow) and 2 ventral neurons (C) per hemisegment are stained. In three of the hemisegments shown in C, both of the ventral
pair of neurons are in the same focal plane. (D) HRP immunostaining of an apC-tau-lacZ embryo with antibodies to β-gal shows the same
pattern as revealed by anti-Ap antibodies. In some segments, tau-β-gal expression is reduced in one of the two ventral neurons (arrow).
(E-G) Confocal images of double fluorescence labeling of an apC-tau-lacZ embryo with antibodies to Ap (green nuclear signal) and to β-gal
(red cytoplasmic signal). In the thoracic-specific neurons (E), the dorsal neurons (F) and in the ventral neurons (G), staining is coincident. For the
ventral neurons on the right side in G, only a single cell body of the pair are in the focal plane. Scale bar is 25 µm for (A-D), 15 µm for (E-G). 
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segments the levels of tau-β-gal could vary between the 2
ventral cells, whereas the Ap protein levels usually appeared
equivalent. 

Analysis of apC-tau-lacZ embryos showed that the ap cells
are interneurons that begin to elongate axons soon after they
begin expressing Ap protein. Remarkably, the growth cones of
all the ap-expressing interneurons choose a single pathway
within the VNC. At hour 11 of embryogenesis, when many
neurons are establishing a complex framework of discrete axon
bundles (Thomas et al., 1984), the dorsal and ventral ap
neurons have begun extending axons anteriorly and medially
within the ipsilateral longitudinal connective (Fig. 3A). By
hour 11.5, they have reached the adjacent anterior segments
where they tightly fasciculate with their homologues, forming
a discrete medial axon bundle running the length of the VNC
in each connective (Fig. 3B). The 4 lateral thoracic ap neurons
begin differentiating slightly later, but eventually they also fas-
ciculate with the ap bundle (Fig. 3C).

At a gross level of analysis using antibodies that label all
neurons (Jan and Jan, 1982), the overall structure of the
nervous system in ap mutants is indistinguishable from wild
type (data not shown). To visualize the effects of removing ap
function on the differentiation of the ap-expressing neurons,
we crossed the apC-tau-lacZ transgene into an apP44 null
mutant background. In addition to apP44 homozygous individ-
uals, we also examined embryos homozygous for apUGO35, an
independently isolated ap null allele (Cohen et al., 1992), as
well as apP44/apUGO35 embryos; all gave similar results. As
assayed by the expression of tau-β-gal, the ap neurons in ap
mutant individuals are present, their cell bodies appear to be
located in their normal positions, and axon elongation is
initiated at the same time as in wild-type. However, the ap
neurons project their axons along abnormal pathways and fail
to fasciculate with one other (Fig. 3D,E). These pathfinding
and defasciculation defects were detected in all of the ap
mutant embryos examined (20/20), and in 90% (171/191) of
the segments examined. In contrast, ap+;apC-tau-lacZ control
embryos showed less than 1% (2/212) of segments with
pathfinding or defasciculation defects of the ap neurons. Sur-
prisingly, despite these striking pathfinding defects, some
aspects of the behavior of the ap neurons appear to be rela-
tively normal in ap mutants. For example, in virtually all
segments examined (188/191), the ap neurons still project
anteriorly within the connectives as they normally would in
wild type, suggesting that a neuron’s choice to project anteri-

orly versus posteriorly is mediated by a mechanism separate
from that underlying its choice of a specific pathway.
Similarly, although in ap mutant individuals the ap neurons
occasionally were found to project very laterally, in most
hemisegments they projected within the medial half of the con-
nective, suggesting that ap-independent mechanisms may
determine the general mediolateral region of the connectives
within which to project. 

In contrast to the ap axon bundle, other axon fascicles are
unaltered in ap mutants. Mutant embryos stained with mono-
clonal antibodies 7G10 (anti-Fasciclin III), 1D4 (anti-Fasciclin
II) and 22C10, each of which labels subsets of axon bundles
distinct from the ap fascicle (Patel et al., 1987; Van Vactor et
al., 1993; Zipursky et al., 1984), are indistinguishable from
wild type (Fasciclin II staining is shown in Fig. 3F). Thus, ap
defects appear to be specific to the ap fascicle. 

DISCUSSION

Our results demonstrate that ap function is essential for the ap
neurons to make their proper pathway choices and selectively
fasciculate with one another. Although the molecular basis of
pathway selection is poorly understood, it is generally thought
to be mediated by some system of neuronal recognition
molecules (Goodman and Shatz, 1993; Grenningloh et al.,
1991; Lin et al., 1994). Since Ap likely acts as a transcriptional
regulator and its expression commences only in postmitotic
neurons, in contrast to the Drosophila even-skipped and fushi
tarazu gene products which control neuronal identity but are
also expressed within neural lineages (Doe et al., 1988a,b), we
believe that Ap functions to regulate directly the expression of
cell surface molecules mediating the specific recognition
events leading to the formation of the ap fascicle. Given the
conservation of protein structure and function between species,
our results suggest a possible role in controlling neuronal
pathway selection for the putative vertebrate homologue of ap,
LH-2 (Xu et al., 1993), and perhaps for other members of the
LIM homeodomain class of proteins as well.

Our results also suggest that ap may be serving similar
functions in both the wing disc and the CNS by regulating the
identities of cells in terms of their cell surface properties.
During wing development, ap is required for cells of the dorsal
compartment to assume a dorsal identity: ap mutant clones
within the dorsal compartment take on a ventral identity and

HEHEB BEEEEEEEHBH B

XO GGOGGOOGXGGXGOXGXX G X O

apB

apC

apA

apD

apE

apSX

2 kb
ap

E

5' 3'

Fig. 2. Structure of the ap gene. The ap
gene contains 6 exons distributed over 25
kb. Non-coding regions are indicated by
white boxes, coding regions by black
boxes. The exon-intron structure was
determined by Southern blot analysis and
sequencing of genomic DNA. Above the
restriction map are the genomic fragments
tested for neuronal expression in tau-lacZ-
based vectors. The 3′ end of fragments
apA and apSX is an XhoI site located
within the 5′ untranslated region of ap cDNAs (Bourgouin et al., 1992); arrows denote the putative transcriptional start site as determined by
primer extension analysis. Fragments apA, apSX, apD and apE gave no reproducible expression. Fragment apB directed expression in a set of
glial cells that do not express ap, and thus possibly contains an enhancer element for an adjacent gene. Fragment apC directs expression in the
ap neurons and in the wing disc. B, BamHI; E, EcoRI; G, BglII; H, HpaI; O, XhoI; X, XbaI. 
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are able to cross the dorsal-ventral boundary (Blair et al., 1994;

Diaz-Benjumea and Cohen, 1993). Normally, cells in either

compartment never cross the boundary, and this behavior is

thought to be due at least in part to differences in the surface

properties between cells of the two compartments.

Finally, an obvious question pertaining to the ap phenotype

is whether the ap neurons manage to synapse with their normal

targets. Although we do not know the normal synaptic targets

of these neurons, many of the more extreme pathfinding

defects that we observed, such as crossing the midline and

extending in a very lateral position within the connective,

would most likely compromise the ability of at least some of

the ap neurons to reach their appropriate target areas. In this

regard, it is noteworthy that adult flies homozygous for ap null
alleles, although viable and wingless, are also highly uncoor-
dinated and have reduced levels of juvenile hormone (Altartz
et al., 1991), suggestive of a defect in nervous system structure
and function. 
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Fig. 3. Pathfinding defects in ap mutants. Anti-β-gal HRP immunostaining of wild-type (A-C) and apP44 homozygous (D-F) embryos carrying
the apC-tau-lacZ transgene. The double-headed arrows delineate the mediolateral extent of the connectives; the levels of the anterior and
posterior commissures are marked by ac and pc respectively. (A) An 11 hour apC-tau-lacZ embryo. The dorsal and ventral ap-expressing
neurons have fasciculated together and have elongated axons anteriorally about half the distance through each segment. The axons project
medially within the ipsilateral connective. The dorsal neuron cell bodies are in approximately the same focal plane as their axons in the
connectives, but their initial axonal segments are ventral and out of the focal plane. Large arrow points to the growth cone of the dorsal neuron
of the left hemisegment. (B) A 12.5 hour apC-tau-lacZ embryo. The ap neurons all tightly fasciculate with their homologues in the adjacent
anterior segments, defining a single bundle of axons within the longitudinal connectives. (C) A 12.5 hour apC-tau-lacZ embryo. The lateral
thoracic ap neurons develop slightly later than the 3 medial ap neurons, extending growth cones (arrowheads) dorsomedially toward the ap
bundle (out of the focal plane) with which they will fasciculate. (D) An 11 hour apP44; apC-tau-lacZ embryo. A dorsal ap neuron has extended
an axon across the midline (arrow) in the anterior commissure; in the adjacent posterior segment a dorsal neuron projects towards the midline
in the anterior commissure, bifurcates (arrowhead), sending one process out of the focal plane and the other back across the midline. The
projections of both neurons are also abnormally dorsal within the VNC and thus the cell bodies are not in the focal plane. (E) A 12.5 hour
apP44; apC-tau-lacZ embryo. The ap neurons fail to form the ap axon bundle. Axons from dorsal and ventral neurons project abnormally
within the connectives and fail to fasciculate with one another (arrows). Arrowhead points to an axon projecting abnormally across the midline
in the anterior commissure (F) A 12.5 hour apP44; apC-tau-lacZ embryo stained with a monoclonal antibody against Fasciclin II (Grenningloh
et al., 1991; Van Vactor et al., 1993). In contrast to the ap axon bundle, the FasII axon bundles appear indistinguishable from wild-type. Scale
bar is 20 µm. 
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