
Control of Nonholonomic Systems:
from Sub-Riemannian Geometry to Motion

Planning

Frédéric JEAN1

ENSTA ParisTech, UMA

April 24, 2014

1 frederic.jean@ensta-paristech.fr





Preface

Nonholonomic systems are control systems which depend linearly on the control.
Their underlying geometry is the sub-Riemannian geometry, which plays for these
systems the same role as Euclidean geometry does for linear systems. In particular
the usual notions of approximations at the first order, that are essential for control
purposes, have to be defined in terms of this geometry. The aim of these notes is to
present these notions of approximation and their application to the motion planning
problem for nonholonomic systems.

The notes are divided into three chapters and two appendices. In Chapter 1 we in-
troduce the basic definitions on nonholonomic systems and sub-Riemannian geom-
etry, and give the main result on controllability, namely the Chow-Rashevsky The-
orem. Chapter 2 provides a detailed exposition of the notions of first-order approx-
imation, including nonholonomic orders, privileged coordinates, nilpotent approx-
imations, and distance estimates such as the Ball-Box Theorem. As an application
we show how these notions allow us to describe the tangent structure to a Carnot-
Carathéodory space (the metric space defined by a sub-Riemannian distance). The
chapter ends with the presentation of desingularization procedures, that are neces-
sary to recover uniformity in approximations and distance estimates. Chapter 3 is
devoted to the motion planning problem for nonholonomic systems. We show in
particular how to apply the tools from sub-Riemannian geometry in order to give
solutions to this problem, first in the case where the system is nilpotent, and then
in the general case. An overview of the existing methods for nonholonomic motion
planning concludes this chapter. Finally, we present some results on composition of
flows in connection with the Campbell-Hausdorff formula in Appendix A, and some
complements on the different systems of privileged coordinates in Appendix B.

From the point of view of the sub-Riemannian geometry, this book is intended to
be complementary to that of Ludovic Rifford in the same collection [Rif14]. As a
consequence the subjects that are extensively talked about in the latter (for instance
sub-Riemannian geodesics) are not discussed here.

Notice finally that the main theoretical part about controllability and first-order
theory is self-contained, all the results being proved. However for some applica-
tions we took the liberty of stating some results without demonstration. They con-
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cern either developments beyond the scope of these notes (the Uniform Ball Box
Theorem 2.4, Theorem 2.5 on the metric tangent cone), or technical results on al-
gorithmic procedures (Theorem 2.9 on the desingularization procedure, the fact that
the formula (3.17) on sinusoidal controls may be inverted).

These notes grew out of a series of lectures given at the Trimester on Dynam-
ical and Control Systems in Trieste in 2003, and more recently at the CIMPA
Schools Géométrie sous-riemannienne in Beirut, Lebanon, in 2012, and Contrôle
géométrique, stochastique et des équations aux dérivées partielles in Tlemcen, Al-
geria, in 2014. I am most grateful to the organizers of these events, Andrei Agrachev
and Ugo Boscain for the first one, Fernand Pelletier, Ali Fardoun, and Mohamad
Mehdi for the second one, and Sidi Mohammed Bouguima, Benmiloud Mebkhout,
and Yacine Chitour for the third one. The materials of the third chapter mostly come
from a collaboration with Yacine Chitour and Ruixing Long, during the PhD thesis
of the latter. This books is also thanks to them.
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2.3.2 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Desingularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Lifting of a nonholonomic system . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 Desingularization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Nonholonomic motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Nonholonomic motion planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Nilpotent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 The case of chained systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Sinusoidal controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.3 Other methods for nilpotent systems . . . . . . . . . . . . . . . . . . . . 68

3.3 Method by approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Steering by approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 Local steering method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.3 Global steering method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



viii Contents

3.3.4 A complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.4 Two other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Path approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Continuation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 An overview of the motion planning algorithms . . . . . . . . . . . . . . . . . 84

A Composition of flows of vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1 Campbell-Hausdorff formula for flows . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Push-forward formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B The different systems of privileged coordinates . . . . . . . . . . . . . . . . . . . . 93
B.1 Canonical coordinates of the second kind . . . . . . . . . . . . . . . . . . . . . . . 93
B.2 Canonical coordinates of the first kind . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.3 Algebraic coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Chapter 1
Geometry of nonholonomic systems

This first chapter presents the basic definitions and results on nonholonomic sys-
tems and sub-Riemannian distance. We begin in Section 1.1 with a discussion on
linearization of control systems, which is an underlying theme of this book. We then
introduce in Section 1.2 the definition of nonholonomic systems and of the associ-
ated sub-Riemannian distances, that we distinguish from the ones associated with
sub-Riemannian manifolds defined in Section 1.3. Finally we state and prove in Sec-
tion 1.4 Chow-Rashevsky’s theorem as well as rough estimates for sub-Riemannian
distances.

Throughout these notes we work in a smooth n-dimensional manifold M.

1.1 Introduction

Let us introduce these notes by some considerations on control theory. Consider a
nonlinear control system in Rn,

ẋ = f (x,u),

where x ∈ Rn is the state and u ∈ Rm is the control. Given a control law u(t),
t ∈ [0,T ], a trajectory associated with u(·) is defined as a solution of the non-
autonomous ordinary differential equation ẋ = f (x,u(t)). The first question is the
one of the controllability: for any pair of points, does there exist a control law u(t),
t ∈ [0,T ], such that the associated trajectory joins one point to the other? In the case
where the answer is positive, next issues are notably the motion planning (i.e. find
a solution u(·) to the previous question) and the stabilization (i.e. design the control
as a function u(t) = k(x(t)) of the state in such a way that the resulting differential
equation ẋ = f (x,k(x)) is stable).

The usual way to deal with these problems locally is to use a first-order ap-
proximation of the system. The underlying idea is the following. Consider a pair
(x̄, ū) ∈ Rm+n such that f (x̄, ū) = 0. The linearized system around this equilibrium
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2 1 Geometry of nonholonomic systems

pair is defined to be the linear control system,

δ̇x =
∂ f
∂x

(x̄, ū)δx+
∂ f
∂u

(x̄, ū)δu,

where δx ∈ Rn is the state and δu ∈ Rm is the control. If this linearized system is
controllable, so is the nonlinear one near x̄. In this case the solutions to the mo-
tion planning and stabilization problems for the linearized system may be used to
construct solutions of the corresponding problems for the nonlinear system.Thus,
locally, the study of the control system amounts to the one of the linearized system.

Assume now that the control system depends linearly on u (but a priori not on
(x,u)), that is,

ẋ =
m

∑
i=1

uiXi(x). (1.1)

Does the strategy above apply? For every x̄ ∈ Rn, the pair (x̄,0) is an equilibrium
pair and the corresponding linearized system is

δ̇x =
m

∑
i=1

δuiXi(x̄), δx ∈ Rn, δu ∈ Rm.

For this linearized system, the reachable set from a point δx is obviously the affine
subset δx+∆(x̄), where ∆(x̄) = span{X1(x̄), . . . ,Xm(x̄)}. We distinguish two cases
depending on the dimension of ∆(x̄).

• If dim∆(x̄) = n, then the linearized system is controllable and the strategy by
linearization may be usefully applied. Note that in this case the original system
(1.1) is also locally controllable since it admits as trajectory every C1 curve near
x̄.
• If dim∆(x̄)< n, then the linearized system is not controllable. However System

(1.1) may be controllable (and generically it is), as we will see in Section 1.4.
Hence the strategy by linearization does not apply, the linearized system does
not reflect the local behaviour of the nonlinear system.

Nonholonomic systems are precisely the systems of the form (1.1) which belong
to the second category. The fact that for such systems the linearized system is use-
less, may be understood as follows. The linearization is a first-order approximation
with respect to a Euclidean (or a Riemannian) distance. However for nonholonomic
systems the underlying distance is a sub-Riemannian one and it behaves very differ-
ently from a Euclidean one. Thus, the local behaviour should be understood through
the study of a first-order approximation with respect to this sub-Riemannian dis-
tance, not through the linearized system.

Let us illustrate these ideas with an example, the Brockett integrator. Consider
the nonholonomic system in R3,

ẋ = u1, ẏ = u2, ż = xu2, (1.2)
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defined by the vector fields X1(q)= (1,0,0) and X2(q)= (0,1,x), where q= (x,y,z).
The linearized system around (q = 0,u = 0) writes as,

δ̇x = δu1, δ̇y = δu2, δ̇ z = 0,

and is non controllable since no motion in the δ z direction is allowed. On the other
hand, (1.2) is clearly controllable; in particular, one can move in the z direction by
using the following control law,

u∗(t) =


(1,0) for t ∈ [0,ε],
(0,1) for t ∈ [ε,2ε],

(−1,0) for t ∈ [2ε,3ε],

(0,−1) for t ∈ [3ε,4ε],

which allows to steer the system from 0 to q1 = (0,0,ε2) in time 4ε . The fact that
‖q1‖ is of order 2 in function of the time, and not of order 1, explains why the control
u∗(·) has no effect on the linearized system, and so why the latter is not controllable.

Let us try to quantify the relation between the duration of a motion and the at-
tained point. For every q ∈ R3 we denote by T (q) the minimal time needed to go
from 0 to q with controls such that ‖u(t)‖ ≤ 1. By using the control u∗(·) on the one
hand, and direct upper bounds on the equations (1.2) on the other hand, we easily
obtain

1
3

(
|x|+ |y|+ |z|1/2

)
≤ T (q)≤ 4

(
|x|+ |y|+ |z|1/2

)
.

Thus T (q) has to be compared with the weighted pseudo-norm |x|+ |y|+ |z|1/2 and
not with the usual Euclidean norm, and first-order approximations should be taken
with respect to such a pseudo-norm.

We introduce now in a proper way nonholonomic systems and sub-Riemannian
distances. We will come back to the notions of first-order approximations and
weighted pseudo-norms in Chapter 2.

1.2 Nonholonomic systems and sub-Riemannian distances

Definition 1.1. A nonholonomic system on M is a control system which is of the
form

q̇ = u1X1(q)+ · · ·+umXm(q), q ∈M, u = (u1, . . . ,um) ∈ Rm, (Σ )

where m > 1 is an integer and X1, . . . ,Xm are C∞ vector fields on M.

The system (Σ ) determines a family of vector spaces,

∆(q) = span{X1(q), . . . ,Xm(q)} ⊂ TqM, q ∈M.
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The dimension of ∆(q) is a function of q, and may be non constant. If it is constant,
∆ defines a distribution on M, that is, a subbundle of T M. Although we deal in
general with systems such that the dimension of ∆(q) is smaller than n, we do not
exclude the particular case where ∆(q) = TqM for every q ∈M. Strictly speaking in
the latter case the system should be called a holonomic system, but for convenience
we keep the vocable nonholonomic whatever the dimension of ∆(q).

To give a meaning to the control system above, we have to define what are its
solutions, or trajectories.

Definition 1.2. A trajectory of (Σ ) is a path γ : [0,T ]→ M for which there exists
a function u(·) ∈ L1([0,T ],Rm) such that γ is a solution of the ordinary differential
equation,

q̇(t) =
m

∑
i=1

ui(t)Xi(q(t)), for a.e. t ∈ [0,T ].

Such a function u(·) is called a control associated with γ .

In particular, every trajectory is an absolutely continuous path γ on M such that
γ̇(t) ∈ ∆(γ(t)) for almost every t ∈ [0,T ].

Example 1.1 (unicycle). The most typical example of nonholonomic system is the
simplified kinematic model of a unicycle. In this model, a configuration q = (x,y,θ)
of the unicycle is described by the planar coordinates (x,y) of the contact point of
the wheel with the ground, and by the angle θ of orientation of the wheel with
respect to the x-axis. The space of configurations is then the manifold R2×S 1.

The wheel is subject to the constraint of rolling without slipping, which writes
as ẋsinθ − ẏcosθ = 0, or, equivalently as q̇ ∈ kerω(q), where ω is the one-form
sinθdx− cosθdy. Hence the set ∆ defined by the system is kerω .

Choosing as controls the tangential velocity u1 and the angular velocity u2, we
obtain the nonholonomic system q̇ = u1X1(q)+ u2X2(q) on R2×S 1, where X1 =
cosθ∂x + sinθ∂y, and X2 = ∂θ .

Let us mention here a few properties of the trajectories of (Σ ) (for more details,
see [Rif14]).

• Fix p ∈M and T > 0. For every control u(·) ∈ L1([0,T ],Rm), there exists τ ∈
(0,T ] such that the Cauchy problem{

q̇(t) = ∑
m
i=1 ui(t)Xi(q(t)) for a.e. t ∈ [0,τ],

q(0) = p, (1.3)

has a unique solution denoted by γu or γ(·; p,u). It is called the trajectory issued
from p associated with u.

• Any time-reparameterization of a trajectory is still a trajectory: if γ : [0,T ]→M
is a trajectory associated with a control u, and α : [0,S] → [0,T ] is a C1-
diffeomorphism, then γ ◦α : [0,S]→M is a trajectory associated with the con-
trol α ′(s)u(α(s)). In particular, one can reverse time along γ: the resulting path
γ(T − s), s ∈ [0,T ], is a trajectory associated with the control −u(T − s).
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Sub-Riemannian distance

A nonholonomic system induces a distance on M in the following way. We first
define the sub-Riemannian metric associated with (Σ ) to be the function g : T M→R
given by

g(q,v) = inf

{
u2

1 + · · ·+u2
m :

m

∑
i=1

uiXi(q) = v

}
, (1.4)

for q ∈M and v ∈ TqM, where we adopt the convention that inf /0 =+∞. This func-
tion g satisfies:

• if v 6∈ ∆(q), then g(q,v) = +∞;
• if v ∈ ∆(q), then the infimum in (1.4) is attained at a unique value u∗ ∈Rm, and

thus g(q,v) = ‖u∗‖2 where ‖ · ‖ denotes the Euclidean norm on Rm.

Such a metric allows to define a distance in the same way as in Riemannian
geometry.

Definition 1.3. The length of an absolutely continuous path γ(t), t ∈ [0,T ], is

length(γ) =
∫ T

0

√
g(γ(t), γ̇(t))dt

(the integral is well-defined since g(γ(t), γ̇(t)) is measurable, being the composi-
tion of the lower semi-continuous function g with measurable functions). The sub-
Riemannian distance on M associated with the nonholonomic system (Σ ) is defined
by

d(p,q) = inf length(γ),

where the infimum is taken over all absolutely continuous paths γ joining p to q.

Consider an absolutely continuous path γ having finite length. It necessarily satisfies
γ̇(t)∈ ∆(γ(t)) for almost every t ∈ [0,T ]. Denote by u∗(t), t ∈ [0,T ], the measurable
function defined by g(γ(t), γ̇(t)) = ‖u∗(t)‖2. The finiteness of length(γ) implies that
u∗(·) belongs to L1([0,T ],Rm), and therefore that γ is a trajectory of (Σ ) having u∗(·)
as an associated control.

Thus only trajectories of (Σ ) may have a finite length. As a consequence, if no
trajectory joins p to q, then d(p,q) = +∞. We will see below in Corollary 1.1 that,
under an extra assumption on the nonholonomic system, d is actually finite and
satisfies the properties of a distance function.

Remark 1.1. If the rank of X1, . . . ,Xm is constant and equal to m on M, every trajec-
tory γ is associated with a unique control, otherwise different controls are associated
with γ . However it results from the discussion above that the length of γ is equal to
the L1 norm ‖u∗‖L1 of the unique control u∗(·) defined by g(γ(t), γ̇(t)) = ‖u∗(t)‖2.
We sometimes refer to u∗(·) as the control associated with γ . Note that length(γ) =
‖u∗‖L1 is also the minimum of ‖u‖L1 over all controls u(·) associated with γ .
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An important feature of the length of a path is that it is independent of the
parametrization of the path. As a consequence, the sub-Riemannian distance d(p,q)
may also be understood as the minimal time needed for the nonholonomic system
to go from p to q with bounded controls, that is,

d(p,q) = inf

T ≥ 0 :
∃ a trajectory γu : [0,T ]→M s.t.

γu(0) = p, γu(T ) = q,
and ‖u(t)‖ ≤ 1 for a.e. t ∈ [0,T ]

 . (1.5)

This formulation justifies the assertion made in Section 1.1: for nonholonomic sys-
tems, first-order approximations with respect to the time should be understood as
first-order approximations with respect to the sub-Riemannian distance.

Another consequence of (1.5) is that d(p,q) is the solution of a time-optimal
control problem. It then results from standard existence theorems (see for in-
stance [LM67] or [Rif14]) that, when p and q are sufficiently close and d(p,q)< ∞,
there exists a trajectory γ joining p to q such that

length(γ) = d(p,q).

Such a trajectory is called a minimizing trajectory.

Remark 1.2. Any reparameterization of a minimizing trajectory is also minimizing.
Therefore any pair of close enough points can be joined by a minimizing trajectory
of velocity one, that is, a trajectory γ such that g(γ(t), γ̇(t)) = 1 for a.e. t. As a
consequence, there exists a control u(·) associated with γ such that ‖u(t)‖ = 1 a.e.
Every sub-arc of such a trajectory γ is also clearly minimizing, hence the equality
d(p,γ(t)) = t holds along γ .

1.3 Sub-Riemannian manifolds

The distance d of Definition 1.3 does not always meet the classical notion of sub-
Riemannian distance arising from a sub-Riemannian manifold. Let us recall the
latter definition.

A sub-Riemannian manifold (M,D,gR) is a smooth manifold M endowed with a
sub-Riemannian structure (D,gR), where:

• D is a distribution on M, that is a subbundle of T M;
• gR is a Riemannian metric on D, that is a smooth function gR : D→ R whose

restrictions to D(q) are positive definite quadratic forms.

The sub-Riemannian metric associated with (D,gR) is the function gSR : T M→ R
given by

gSR(q,v) =
{

gR(q,v) if v ∈ D(q),
+∞ otherwise. (1.6)
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The sub-Riemannian distance dSR on M is then defined from the metric gSR as d is
defined from the metric g in Definition 1.3.

What is the difference between the two constructions, that is, between the defini-
tions (1.4) and (1.6) of a sub-Riemannian metric?

Consider a sub-Riemannian structure (D,gR). Locally, on some open subset U ,
there exist vector fields X1, . . . ,Xm whose values at each point q ∈ U form an or-
thonormal basis of D(q) for the quadratic form gR. The metric gSR associated with
(D,gR) then coincides with the metric g associated with X1, . . . ,Xm. Thus, locally,
there is a one-to-one correspondence between sub-Riemannian structures and non-
holonomic systems for which the dimension of ∆(q) = span{X1(q), . . . ,Xm(q)} is
constantly equal to m.

However this correspondence does not hold globally since, for topological rea-
sons, a distribution of rank m may not always be generated by m vector fields on the
whole M. Conversely, the vector fields X1, . . . ,Xm of a nonholonomic system do not
always generate a linear space ∆(q) of constant dimension equal to m. It may even
be impossible, again for topological reasons (for instance, on an even dimensional
sphere).

A way to conciliate both notions is to generalize the definition of sub-Riemannian
structure.

Definition 1.4. A generalized sub-Riemannian structure on M is a triple (E,σ ,gR)
where

• E is a vector bundle over M;
• σ : E→ T M is a morphism of vector bundles;
• gR is a Riemannian metric on E.

With a generalized sub-Riemannian structure is associated a metric which is de-
fined by

gSR(q,v) = inf{gR(q,u) : u ∈ E(q), σ(u) = v}, for q ∈M, v ∈ TqM.

The generalized sub-Riemannian distance dSR on M is then defined from this metric
gSR as d is defined from the metric g.

This definition of sub-Riemannian distance actually contains the two notions of
distance we have introduced before.

• Take E = M×Rm, σ : E → T M, σ(q,u) = ∑
m
i=1 uiXi(q) and gR the Euclidean

metric on Rm. The resulting generalized sub-Riemannian distance is the dis-
tance associated with the nonholonomic system (Σ ).
• Take E = D, where D is a distribution on M, σ : D ↪→ T M the inclusion, and

gR a Riemannian metric on D. We recover the distance associated with the sub-
Riemannian structure (D,gR).

Locally, a generalized sub-Riemannian structure can always be defined by a sin-
gle finite family X1, . . . ,Xm of vector fields, and so by a nonholonomic system (with-
out rank condition). It actually appears that this is also true globally (see [ABB12],
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or [Sus08] for the fact that a submodule of T M is finitely generated): any general-
ized sub-Riemannian distance may be associated with a nonholonomic system.

In these notes, we will always consider a sub-Riemannian distance d associated
with a nonholonomic system. However, as we just noticed, all the results actually
hold for a generalized sub-Riemannian distance.

1.4 Controllability

Given a nonholonomic system,

q̇ =
m

∑
i=1

uiXi(q), q ∈M, (Σ )

the first question from control theory is the one of the controllability: can we join
any two points by a trajectory?

Definition 1.5. The reachable set from p ∈M is defined to be the set Rp of points
reached by a trajectory of (Σ ) issued from p.

The question above then becomes: is the reachable set from any point equal to the
whole manifold M? When it is the case the system is said to be controllable.

It appears that the controllability of the nonholonomic system (Σ ) is mainly char-
acterized by the properties of the Lie algebra generated by X1, . . . ,Xm. We first in-
troduce notions and definitions on this topic.

Let V F(M) denote the set of smooth vector fields on M. We define ∆ 1 to be the
linear subspace of V F(M) generated by X1, . . . ,Xm,

∆
1 = span{X1, . . . ,Xm}.

For s≥ 1, define ∆ s+1 = ∆ s +[∆ 1,∆ s], where we have set [∆ 1,∆ s] = span{[X ,Y ] :
X ∈ ∆ 1, Y ∈ ∆ s}. The Lie algebra generated by X1, . . . ,Xm is defined to be
Lie(X1, . . . ,Xm) =

⋃
s≥1 ∆ s. Due to the Jacobi identity, Lie(X1, . . . ,Xm) is the small-

est linear subspace of V F(M) which both contains X1, . . . ,Xm and is invariant by Lie
brackets.

Let us denote by L (1, . . . ,m) the free Lie algebra generated by the elements
{1, . . . ,m}. Recall that L (1, . . . ,m) is the R-vector space generated by {1, . . . ,m}
and their formal brackets [ , ], together with the relations of skew-symmetry and the
Jacobi identity enforced. The length of an element I of L (1, . . . ,m), denoted by |I|,
is defined inductively by |I|= 1 for I = 1, . . . ,m, |I|= |I1|+ |I2| for I = [I1, I2]. With
every element I ∈ L (1, . . . ,m) we associate the vector field XI ∈ Lie(X1, . . . ,Xm)
obtained by plugging in Xi, i = 1, . . . ,m, for the corresponding letter i in I. For
instance, X[1,2] = [X1,X2]. Due to the Jacobi identity, ∆ s = span{XI : |I| ≤ s}.

For q ∈ M, we set Lie(X1, . . . ,Xm)(q) = {X(q) : X ∈ Lie(X1, . . . ,Xm)}, and, for
s ≥ 1, ∆ s(q) = {X(q) : X ∈ ∆ s}. By definition these sets are linear subspaces of
TqM.
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Definition 1.6. We say that (Σ ) (or the vector fields X1, . . . ,Xm) satisfies Chow’s
Condition if

Lie(X1, . . . ,Xm)(q) = TqM, ∀q ∈M.

Equivalently, for any q∈M, there exists an integer r = r(q) such that dim∆ r(q) = n.
This property is also known as the Lie algebra rank condition (LARC) in control

theory, and as the Hörmander condition in the context of PDEs.

Lemma 1.1. If (Σ ) satisfies Chow’s Condition, then for every p ∈M, the reachable
set Rp is a neighbourhood of p.

Proof. We work in a small neighbourhood U ⊂ M of p that we identify with a
neighbourhood of 0 in Rn .

Let φ i
t = exp(tXi) be the flow of the vector field Xi, i = 1, . . . ,m. Every curve

t 7→ φ i
t (q) is a trajectory of (Σ ) and we have

φ
i
t = id+ tXi +o(t).

For every element I ∈L (1, . . . ,m), we define the local diffeomorphisms φ I
t on U

by induction on the length |I| of I: if I = [I1, I2], then

φ
I
t = [φ I1

t ,φ I2
t ] := φ

I2
−t ◦φ

I1
−t ◦φ

I2
t ◦φ

I1
t .

By construction, φ I
t may be expanded as a composition of flows of the vector field

Xi, i = 1, . . . ,m. As a consequence, φ I
t (q) is the endpoint of a trajectory of (Σ ) issued

from q. Moreover, on a neighbourhood of p there holds

φ
I
t = id+ t |I|XI +o(t |I|). (1.7)

We postpone the proof of this formula to the appendix (Proposition A.1).
To obtain a diffeomorphism whose derivative with respect to the time is exactly

XI , we set

ψ
I
t =


φ I

t1/|I| if t ≥ 0,

φ I
−|t|1/|I| if t < 0 and |I| is odd,

[φ I2
|t|1/|I| ,φ

I1
|t|1/|I| ] if t < 0 and |I| is even,

where I = [I1, I2]. Thus

ψ
I
t = id+ tXI +o(t), (1.8)

and ψ I
t (q) is the endpoint of a trajectory of (Σ ) issued from q.

Let us choose now commutators XI1 , . . . ,XIn whose values at p span TpM. This
is possible thanks to Chow’s Condition. We introduce the map ϕ defined on a small
neighbourhood Ω of 0 in Rn by

ϕ(t1, . . . , tn) = ψ
In
tn ◦ · · · ◦ψ

I1
t1 (p) ∈M.
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We conclude from (1.8) that this map is C1 near 0 and has an invertible derivative
at 0, which implies that it is a local C1-diffeomorphism. Therefore ϕ(Ω) contains a
neighbourhood of p.

Now, for every t ∈ Ω , ϕ(t) is the endpoint of a concatenation of trajectories of
(Σ ), the first one being issued from p. It is then the endpoint of a trajectory starting
from p. Therefore ϕ(Ω)⊂Rp, which implies that Rp is a neighbourhood of p. ut

Theorem 1.1 (Chow-Rashevsky’s theorem). If M is connected and if (Σ ) satisfies
Chow’s Condition, then any two points of M can be joined by a trajectory of (Σ ).

Proof. Let p ∈ M. If q ∈ Rp, then p ∈ Rq. As a consequence, Rp = Rq for any
q ∈ M and the lemma above implies that Rp is an open set. Hence the manifold
M is covered by the union of the sets Rp that are pairwise disjointed. Since M is
connected, there is only one such open set. ut

Remark 1.3. There exist other proofs of Chow-Rashevsky’s theorem, either by using
regular controls as in [Rif14], or by imitating the proof of the Krener Theorem as in
[ABB12]. Ours is not the more elegant but it has two advantages. First it provides
some rough estimates on the sub-Riemannian distance d (see Theorem 1.2 below).
Second it is almost constructive, in the sense that the map ϕ can be used to design
a control steering (Σ ) from p to ϕ(t). This may lead to solutions to the motion
planning problem (see Chapter 3 and more particularly Subsection 3.2.3).

Remark 1.4. This theorem appears also as a consequence of the Orbit Theorem
(Sussmann, Stefan [Ste74, Sus73]) since the latter asserts that each set Rp is a con-
nected immersed submanifold of M whose tangent space TqRp at any point q ∈Rp
contains Lie(X1, . . . ,Xm)(q). Note that when the dimension of that Lie algebra is
constant on M, we have Lie(X1, . . . ,Xm)(q) = TqRp for every q ∈Rp. Thus in this
case the vector fields X1, . . . ,Xm restricted to the manifold Rp always satisfy Chow’s
Condition.

Remark 1.5. The converse of Chow’s theorem is false in general. Consider for in-
stance the nonholonomic system in R3 defined by X1 = ∂x, X2 = ∂y + f (x)∂z where
f (x) = e−1/x2

for positive x and f (x) = 0 otherwise. The associated sub-Riemannian
distance is finite whereas X1, . . . ,Xm do not satisfy Chow’s Condition. However, for
an analytic nonholonomic system (i.e. when M and the vector fields X1, . . . ,Xm are
in the analytic category), Chow’s Condition is equivalent to the controllability of (Σ )
(see [Nag66, Sus74]).

Remark 1.6. Our proof of Theorem 1.1 also shows that, under the assumptions of
the theorem, for every point p ∈M the set{

exp(ti1Xi1)◦ · · · ◦ exp(tik Xik)(p) : k ∈ N, ti j ∈ R, i j ∈ {1, . . . ,m}
}

is equal to the whole M. This set is often called the orbit at p of the vector fields
X1, . . . ,Xm.
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The proof of Lemma 1.1 gives a little bit more than the openness of Rp. For ε

small enough, any φ i
t (q), 0 ≤ t ≤ ε , is a trajectory of length ε . Thus ϕ(t1, . . . , tn) is

the endpoint of a trajectory of length less than N
(
|t1|1/|I1|+ · · ·+ |tn|1/|In|

)
, where N

counts the maximal number of concatenations involved in the ψ
Ii
t ’s. This gives an

upper bound for the distance,

d
(

p,ϕ(t)
)
≤ N

(
|t1|1/|I1|+ · · ·+ |tn|1/|In|

)
. (1.9)

This kind of estimates of the distance in terms of local coordinates plays an
important role in sub-Riemannian geometry, as we will see in Subsection 2.2.1.
However here (t1, . . . , tn) are not smooth local coordinates, as ϕ is only a C1-
diffeomorphism, not a smooth diffeomorphism.

Let us try to replace (t1, . . . , tn) by smooth local coordinates. Choose local coor-
dinates (y1, . . . ,yn) centered at p such that ∂

∂yi
|p = XIi(p). The map ϕy = y ◦ϕ is a

C1-diffeomorphism between neighbourhoods of 0 in Rn, and its differential at 0 is
dϕ

y
0 = IdRn .
Denoting by ‖·‖Rn the Euclidean norm onRn we obtain, for ‖t‖Rn small enough,

yi(t) = ti +o(‖t‖Rn). The inequality (1.9) becomes

d(p,qy)≤ N′‖y‖1/r
Rn ,

where qy denotes the point of coordinates y, and r = maxi |Ii|. This inequality allows
to compare d to a Riemannian distance.

Let gR be a Riemannian metric on M, and dR be the associated Riemannian
distance. On a compact neighbourhood of p, there exists a constant c > 0 such
that gR(Xi,Xi)(q) ≤ c−1, which implies cdR(p,q) ≤ d(p,q). Moreover we have
dR(p,qy)≥ Cst‖y‖Rn . We have then obtained a first estimate to the sub-Riemannian
distance.

Theorem 1.2. Assume (Σ ) satisfies Chow’s Condition. For any Riemannian metric
gR we have, for q close enough to p,

cdR(p,q)≤ d(p,q)≤CdR(p,q)1/r,

where c,C are positive constants and r is an integer such that ∆ r
p = TpM.

Remark 1.7. If we choose for gR a Riemannian metric which is compatible with g,
that is, which satisfies gR|∆ = g, then by construction dR(p,q)≤ d(p,q).

Corollary 1.1. Under the hypotheses of Theorem 1.1, d is a distance function on M,
i.e.,

(i) d is a function from M×M to [0,∞);
(ii) d(p,q) = d(q, p) (symmetry);

(iii) d(p,q) = 0 if and only if p = q;
(iv) d(p,q)+d(q,q′)≤ d(p,q′) (triangle inequality).
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Proof. By Chow-Rashevsky’s theorem (Theorem 1.1), the distance between any
pair of points is finite, which gives (i). The symmetry of the distance results from
the fact that, if γ(s), s ∈ [0,T ], is a trajectory joining p to q, then s 7→ γ(T − s) is
a trajectory of same length joining q to p. Point (iii) follows directly from Theo-
rem 1.2. Finally, the triangle inequality is a consequence of the following remark.
If γ(s), s ∈ [0,T ], is a trajectory joining p to q and γ ′(s), s ∈ [0,T ′], is a trajectory
joining q to q′, then the concatenation γ ∗ γ ′, defined by

γ ∗ γ
′(s) =

{
γ(s) if s ∈ [0,T ],
γ ′(s−T ) if s ∈ [T,T +T ′],

is a trajectory joining p to q′ whose length satisfies

length(γ ∗ γ
′) = length(γ)+ length(γ ′).

ut

A second consequence of Theorem 1.2 is that the sub-Riemannian distance d is
1/r-Hölder with respect to any Riemannian distance, and so continuous.

Corollary 1.2. If (Σ ) satisfies Chow’s Condition, then the topology of the metric
space (M,d) coincides with the topology of M as a smooth manifold.



Chapter 2
First-order theory

Consider a nonholonomic system (Σ ): q̇ = ∑
m
i=1 uiXi(q), on a manifold M satisfy-

ing Chow’s Condition, and denote by d the induced sub-Riemannian distance. As
we have seen in Section 1.1, the infinitesimal behaviour of this system should be
captured by an approximation to the first-order with respect to d. In this chapter we
will then provide a notion of first-order approximation and construct the basis of
an infinitesimal calculus adapted to nonholonomic systems. To this aim, a funda-
mental role will be played by the concept of nonholonomic order of a function at a
point, which is introduced in Section 2.1. We will then see that approximations to
the first-order appear as nilpotent approximations, in the sense that X1, . . . ,Xm are
approximated by vector fields that generate a nilpotent Lie algebra. In Section 2.2
we will use these approximations to obtain estimates of the sub-Riemannian dis-
tance in terms of privileged coordinates. We will give a purely metric interpretation
of this first-order theory in Section 2.3, and show how the distance estimates allow
us to compute Hausdorff dimensions. Finally, it will appear along the chapter that
singularities of the Lie algebra generated by the vector fields X1, . . . ,Xm cause qual-
itative changes in the approximations. We will then show in Section 2.4 how to get
rid of these singularities by a process of lifting.

2.1 First-order approximations

The whole section is concerned with local objects. Henceforth, throughout the chap-
ter we fix a point p ∈M and an open neighbourhood U of p that we identify, when
necessary, with a neighbourhood of 0 in Rn through some local coordinates.

13
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2.1.1 Nonholonomic orders

Definition 2.1. Let f : M→ R be a continuous function. The nonholonomic order
of f at p, denoted by ordp( f ), is the real number defined by

ordp( f ) = sup
{

s ∈ R : f (q) = O
(
d(p,q)s)} .

This order is always nonnegative. Moreover ordp( f ) = 0 if f (p) 6= 0, and ordp( f ) =
+∞ if f (p)≡ 0.

Example 2.1 (Euclidean case). When M = Rn, m = n, and Xi = ∂xi , the sub-
Riemannian distance is simply the Euclidean distance on Rn. In this case, nonholo-
nomic orders coincide with the standard ones. Namely, for a smooth function f ,
ord0( f ) is the smallest degree of monomials having nonzero coefficient in the Tay-
lor series

f (x)∼∑cα xα1
1 . . .xαn

n

of f at 0. We will see below that there exists in general an analogous characterization
of nonholonomic orders.

Let C∞(p) denote the set of germs of smooth functions at p. For f ∈C∞(p), we
call nonholonomic derivatives of order 1 of f the Lie derivatives X1 f , . . . ,Xm f . We
call further Xi(X j f ), Xi(X j(Xk f )),. . . the nonholonomic derivatives of f of order 2,
3,. . . The nonholonomic derivative of order 0 of f at p is f (p).

Proposition 2.1. Let f ∈C∞(p). Then ordp( f ) is equal to the biggest integer k such
that all nonholonomic derivatives of f of order smaller than k vanish at p. Moreover,

f (q) = O
(
d(p,q)ordp( f )).

Proof. The proposition results from the following two assertions:

(i) if ` is an integer such that ` < ordp( f ), then all nonholonomic derivatives of f
of order ≤ ` vanish at p;

(ii) if ` is an integer such that all nonholonomic derivatives of f of order≤ ` vanish
at p, then f (q) = O

(
d(p,q)`+1

)
.

Let us first prove point (i). Let ` be an integer such that ` < ordp( f ). We write a
nonholonomic derivative of f of order k ≤ ` as

(Xi1 . . .Xik f )(p) =
∂ k

∂ t1 · · ·∂ tk
f
(

exp(tkXik)◦ · · · ◦ exp(t1Xi1)(p)
)∣∣∣

t=0
.

The point q = exp(tkXik)◦· · ·◦exp(t1Xi1)(p) is the endpoint of a trajectory of length
|t1|+ · · ·+ |tn|. Therefore, d(p,q)≤ |t1|+ · · ·+ |tn|.

Since k≤ `< ordp( f ), there exists a real number s> 0 such that f (q) =O
(
(|t1|+

· · ·+ |tn|)k+s
)
. This implies that
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(Xi1 . . .Xik f )(p) =
∂ k

∂ t1 · · ·∂ tk
f (q)

∣∣∣
t=0

= 0.

Thus point (i) is proved.
The proof of point (ii) goes by induction on `. For ` = 0, assume that all non-

holonomic derivatives of f of order ≤ 0 vanish at p, that is f (p) = 0. Choose any
Riemannian metric on M and denote by dR the associated Riemannian distance on
M. Since f is smooth, there holds f (q)≤ Cst dR(p,q) near p. By Theorem 1.2, this
implies f (q)≤ Cst d(p,q), and so property (ii) for `= 0.

Assume that, for a given `≥ 0, (ii) holds for any function f (induction hypothe-
sis) and take a function f such that all its nonholonomic derivatives of order < `+1
vanish at p.

Observe that, for i = 1, . . . ,m, all the nonholonomic derivatives of Xi f of order
< ` vanish at p. Indeed, Xi1 . . .Xik(Xi f ) = Xi1 . . .Xik Xi f . Applying the induction hy-
pothesis to Xi f leads to Xi f (q) = O

(
d(p,q)`

)
. In other words, there exist positive

constants C1, . . . ,Cm such that, for q close enough to p,

Xi f (q)≤Cid(p,q)`.

Fix now a point q near p. By Remark 1.2, there exists a minimizing curve γ(·) of
velocity one joining p to q. Therefore γ satisfies

γ̇(t) =
m

∑
i=1

ui(t)Xi
(
γ(t)

)
for a.e. t ∈ [0,T ], γ(0) = p, γ(T ) = q,

with ∑i u2
i (t) = 1 a.e. and d

(
p,γ(t)

)
= t for any t ∈ [0,T ]. In particular d(p,q) = T .

To estimate f (q) = f
(
γ(T )

)
, we compute the derivative of f

(
γ(t)

)
with respect

to t,

d
dt

f
(
γ(t)

)
=

m

∑
i=1

ui(t)Xi f
(
γ(t)

)
,

⇒
∣∣∣∣ d
dt

f
(
γ(t)

)∣∣∣∣ ≤ m

∑
i=1
|ui(t)|Cid

(
p,γ(t)

)` ≤Ct`,

where C =C1 + · · ·+Cm. Integrating this inequality between 0 and t gives∣∣ f (γ(t))∣∣≤ | f (p)|+ C
`+1

t`+1.

Note that f (p) = 0 since the nonholonomic derivative of f of order 0 at p vanishes.
Finally, at t = T = d(p,q) we obtain

| f (q)| ≤ C
`+1

T `+1,

which concludes the proof of (ii). ut
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As a consequence, the nonholonomic order of a smooth (germ of) function is
given by the formula

ordp( f ) = min
{

s ∈ N : ∃ i1, . . . , is ∈ {1, . . . ,m} s.t. (Xi1 . . .Xis f )(p) 6= 0
}
,

where as usual we adopt the convention that min /0 =+∞.
It is clear now that any function in C∞(p) vanishing at p is of order ≥ 1. More-

over, the following basic computation rules are satisfied: for every f ,g in C∞(p) and
every λ ∈ R\{0},

ordp( f g) ≥ ordp( f )+ordp(g),

ordp(λ f ) = ordp( f ),

ordp( f +g) ≥ min
(
ordp( f ),ordp(g)

)
.

Note that the first inequality is actually an equality. However the proof of this fact
requires an additional result (see Proposition 2.2).

The notion of nonholonomic order extends to vector fields. Let V F(p) denote the
set of germs of smooth vector fields at p.

Definition 2.2. Let X ∈ V F(p). The nonholonomic order of X at p, denoted by
ordp(X), is the real number defined by:

ordp(X) = sup
{

σ ∈ R : ordp(X f )≥ σ +ordp( f ), ∀ f ∈C∞(p)
}
.

The order of a differential operator is defined in the same way.

Note that ordp(X) ∈ Z since the order of a smooth function is an integer. More-
over the null vector field X ≡ 0 has infinite order, ordp(0) = +∞.

Since the order of a function coincides with its order as a differential operator
acting by multiplication, we have the following properties. For every X ,Y ∈V F(p)
and every f ∈C∞(p),

ordp([X ,Y ]) ≥ ordp(X)+ordp(Y ),
ordp( f X) ≥ ordp( f )+ordp(X),

ordp(X) ≤ ordp(X f )−ordp( f ),
ordp(X +Y ) ≥ min

(
ordp(X),ordp(Y )

)
.

(2.1)

As already noticed for functions, the second inequality is in fact an equality. This
is not the case for the first inequality (take for instance X = Y ). As a consequence
of (2.1), X1, . . . ,Xm are of order ≥ −1, [Xi,X j] of order ≥ −2, and more generally,
every X in the set ∆ k is of order ≥−k.

Example 2.2 (Euclidean case). In the Euclidean case (see Example 2.1), the non-
holonomic order of a constant differential operator is the negative of its usual order.
For instance ∂xi is of nonholonomic order −1. Actually, in this case, every vector
field that does not vanish at p is of nonholonomic order −1.
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Example 2.3 (Heisenberg case). Consider the following vector fields on R3:

X1 = ∂x−
y
2

∂z and X2 = ∂y +
x
2

∂z.

The coordinate functions x and y have order 1 at 0, whereas z has order 2 at 0, since
X1x(0) = X2y(0) = 1, X1z(0) = X2z(0) = 0, and X1X2z(0) = 1/2. These relations
also imply ord0(X1) = ord0(X2) = −1. Finally, the Lie bracket [X1,X2] = ∂z is of
order −2 at 0 since [X1,X2]z = 1.

We are now in a position to give a meaning to first-order approximations.

Definition 2.3. A family of m vector fields (X̂1, . . . , X̂m) defined near p is called a
first-order approximation of (X1, . . . ,Xm) at p if the vector fields Xi−X̂i, i= 1, . . . ,m,
are of order ≥ 0 at p.

A consequence of this definition is that the order at p defined by the vector fields
X̂1, . . . , X̂m coincides with the one defined by X1, . . . ,Xm. Hence for any f ∈C∞(p)
of order greater than s−1,

(Xi1 . . .Xis f )(q) = (X̂i1 . . . X̂is f )(q)+O
(

d(p,q)ordp( f )−s+1
)
.

To go further in the characterization of orders and approximations, we need suit-
able systems of coordinates.

2.1.2 Privileged coordinates

We have introduced in Section 1.4 the sets of vector fields ∆ s, defined by ∆ s =
span{XI : |I| ≤ s}. Since X1, . . . ,Xm satisfy Chow’s Condition, the values of these
sets at p form a flag of subspaces of TpM, that is,

∆
1(p)⊂ ∆

2(p)⊂ ·· · ⊂ ∆
r−1(p) ∆

r(p) = TpM, (2.2)

where r = r(p) is called the degree of nonholonomy at p.
Set ni(p) = dim∆ i(p). The r-tuple of integers (n1(p), . . . ,nr(p)) is called the

growth vector at p. The first integer in the growth vector is the rank n1(p) ≤ m
of the family X1(p), . . . ,Xm(p), and the last one nr(p) = n is the dimension of the
manifold M.

Let s≥ 1. By abuse of notations, we continue to write ∆ s for the map q 7→ ∆ s(q).
This map ∆ s is a distribution if and only if ns(q) is constant on M. We then distin-
guish two kind of points.

Definition 2.4. The point p is a regular point (w.r.t. X1, . . . ,Xm) if the growth vector
is constant in a neighbourhood of p. Otherwise, p is a singular point.

Thus, near a regular point, all maps ∆ s are locally distributions.
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The structure of the flag (2.2) may also be described by another sequence of
integers. We define the weights at p, wi = wi(p), i = 1, . . . ,n, by setting w j = s if
ns−1(p)< j ≤ ns(p), where n0 = 0. In other words, we have

w1 = · · ·= wn1 = 1, wn1+1 = · · ·= wn2 = 2, . . . ,wnr−1+1 = · · ·= wnr = r.

The weights at p form an increasing sequence w1(p) ≤ ·· · ≤ wn(p) which is con-
stant near p if and only if p is a regular point.

Example 2.4 (Heisenberg case). The Heisenberg case in R3 given in Example 2.3
has a growth vector which is equal to (2,3) at every point. Therefore all points of
R3 are regular. The weights at any point are w1 = w2 = 1, w3 = 2.

Example 2.5 (Martinet case). Consider the following vector fields on R3,

X1 = ∂x and X2 = ∂y +
x2

2
∂z.

The only nonzero brackets are

[X1,X2] = x∂z and [X1, [X1,X2]] = ∂z.

Thus the growth vector is equal to (2,2,3) on the plane {x = 0}, and to (2,3) else-
where. As a consequence, the set of singular points is the plane {x= 0}. The weights
are w1 = w2 = 1, w3 = 2 at regular points, and w1 = w2 = 1, w3 = 3 at singular ones.

Example 2.6. Consider the vector fields on R3

X1 = ∂x and X2 = ∂y + f (x)∂z,

where f is a smooth function on R which admits every positive integer n ∈ N as a
zero with multiplicity n (such a function exists and can even be chosen in the analytic
class thanks to the Weierstrass factorization theorem [Rud70, Th. 15.9]). Every point
(n,y,z) is singular and the weights at this point are w1 = w2 = 1, w3 = n+ 1. As a
consequence the degree of nonholonomy w3 is unbounded on R3.

Let us give some basic properties of the growth vector and of the weights.

• At a regular point, the growth vector is a strictly increasing sequence: n1(p) <
· · · < nr(p). Indeed, if ns(q) = ns+1(q) in a neighbourhood of p, then ∆ s is
locally an involutive distribution and so s = r. As a consequence, at a regular
point p, the jump between two successive weights is never greater than 1, wi+1−
wi ≤ 1, and there holds r(p)≤ n−m+1.
• For every s, the map q 7→ ns(q) is a lower semi-continuous function from M to
N. Similarly, for every i= 1, . . . ,n, the weight wi(·) is an upper semi-continuous
function. This is in particular the case for the degree of nonholonomy r(·) =
wn(·), that is, r(q) ≤ r(p) for q near p. As a consequence r(·) is bounded on
any compact subset of M.
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• The set of regular points is open and dense in M. The openness results from the
very definition of regular points. As for the density, take any point p in M and
consider an open neighbourhood V of p small enough so that r(q) ≤ r(p) for
q ∈ V . For every s, the set of point Vs where ns reaches its maximal value on
V is an open and nonempty subset of V due to the lower semi-continuity of ns.
The intersection of all Vs for s≤ r(p) is an open subset of V and contains only
regular points since the growth vector is constant on this subset. The density of
the set of regular points follows.

• The degree of nonholonomy may be unbounded on M (see Example 2.6 above).
Thus determining if a nonholonomic system is controllable is a non decidable
problem: the computation of an infinite number of brackets may be needed to
decide if Chow’s Condition is satisfied. However, in the case of polynomial
vector fields on Rn (relevant in practice), it can be shown that the degree of
nonholonomy is bounded by a universal function of the degree k of the polyno-
mials (see [Gab95, GJR98]):

r(x)≤ 23n2
n2nk2n.

The meaning of the sequence of weights is best understood in terms of basis
of TpM. Choose first vector fields Y1, . . . ,Yn1 in ∆ 1 whose values at p form a ba-
sis of ∆ 1(p). Choose then vector fields Yn1+1, . . . ,Yn2 in ∆ 2 such that the values
Y1(p), . . . ,Yn2(p) form a basis of ∆ 2(p). For each s, choose Yns−1+1, . . . ,Yns in ∆ s

such that Y1(p), . . . ,Yns(p) form a basis of ∆ s(p). We obtain in this way a family of
vector fields Y1, . . . ,Yn such that{

Y1(p), . . . ,Yn(p) is a basis of TpM,
Yi ∈ ∆ wi , i = 1, . . . ,n. (2.3)

A family of n vector fields satisfying (2.3) is called an adapted frame at p. The
word “adapted” means here “adapted to the flag (2.2)”, since the values at p of an
adapted frame contain a basis Y1(p), . . . ,Yns(p) of each subspace ∆ s(p) of the flag.
By continuity, at a point q close enough to p the values of Y1, . . . ,Yn still form a basis
of TqM. However, if p is singular this basis may not be adapted to the flag (2.2) at q.

Let us explain now the relation between weights and orders. We write first the
tangent space as a direct sum,

TpM = ∆
1(p)⊕∆

2(p)/∆
1(p)⊕·· ·⊕∆

r(p)/∆
r−1(p),

where ∆ s(p)/∆ s−1(p) denotes a supplementary of ∆ s−1(p) in ∆ s(p). Let us choose
local coordinates (y1, . . . ,yn). The dimension of each space ∆ s(p)/∆ s−1(p) is equal
to ns−ns−1, so we can assume that, up to a reordering, the local coordinates satisfy
dy j(∆

s(p)/∆ s−1(p)) 6= 0 for ns−1 < j ≤ ns.
Take an integer j such that 0 < j ≤ n1. From the assumption above, there holds

dy j(∆
1(p)) 6= 0, and consequently there exists Xi such that dy j(Xi(p)) 6= 0. Since

dy j(Xi) = Xiy j is a first-order nonholonomic derivative of y j, we have ordp(y j) ≤
1 = w j.
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Take now an integer j such that ns−1 < j ≤ ns for s > 1, that is, w j = s. Since
dy j(∆

s(p)/∆ s−1(p)) 6= 0, there exists a vector field Y in ∆ s such that dy j(Y (p)) =
(Y y j)(p) 6= 0. By definition of ∆ s, the Lie derivative Y y j is a linear combination of
nonholonomic derivatives of y j of order not greater than s. One of them must be
nonzero, and so ordp(y j)≤ s = w j.

Finally, any system of local coordinates (y1, . . . ,yn) satisfies ordp(y j)≤ w j up to
a reordering (or ∑

n
i=1 ordp(yi) ≤ ∑

n
i=1 wi without reordering). The coordinates with

the maximal possible order will play an important role.

Definition 2.5. A system of privileged coordinates at p is a system of local coordi-
nates (z1, . . . ,zn) such that ordp(z j) = w j for j = 1, . . . ,n.

Notice that privileged coordinates (z1, . . . ,zn) satisfy

dzi(∆
wi(p)) 6= 0, dzi(∆

wi−1(p)) = 0, i = 1, . . . ,n, (2.4)

or, equivalently, ∂zi |p belongs to ∆ wi(p) but not to ∆ wi−1(p). Local coordinates sat-
isfying (2.4) are called linearly adapted coordinates (“adapted” because the differ-
entials at p of the coordinates form a basis of T ∗p M dual to the values of an adapted
frame). Thus privileged coordinates are always linearly adapted coordinates. The
converse is false, as shown in the example below.

Example 2.7. Take X1 = ∂x, X2 = ∂y+(x2+y)∂z in R3. The weights at 0 are (1,1,3)
and (x,y,z) are adapted at 0. But they are not privileged: indeed, the coordinate z is
of order 2 at 0 since (X2X2z)(0) = 1.

Remark 2.1. As it is suggested by Kupka [Kup96], one can define privileged func-
tions at p to be the smooth functions f on U such that

ordp( f ) = min{s ∈ N : d f (∆ s(p)) 6= 0}.

It results from the discussion above that some local coordinates (z1, . . . ,zn) are priv-
ileged at p if and only if each zi is a privileged function at p.

Let us now show how to compute orders using privileged coordinates. We fix
a system of privileged coordinates (z1, . . . ,zn) at p. Given a sequence of integers
α = (α1, . . . ,αn), we define the weighted degree of the monomial zα = zα1

1 · · ·zαn
n

to be w(α) = w1α1 + · · ·+wnαn and the weighted degree of the monomial vector
field zα ∂z j to be w(α)−w j. The weighted degrees allow to compute the orders of
functions and vector fields in a purely algebraic way.

Proposition 2.2. For a smooth function f with a Taylor expansion

f (z)∼∑
α

cα zα ,

the order of f is the least weighted degree of monomials having a nonzero coefficient
in the Taylor series.
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For a vector field X with a Taylor expansion

X(z)∼∑
α, j

aα, jzα
∂z j ,

the order of X is the least weighted degree of a monomial vector fields having a
nonzero coefficient in the Taylor series.

In other words, when using privileged coordinates, the notion of nonholonomic or-
der amounts to the usual notion of vanishing order at some point, only assigning
weights to the variables.

Proof. For i = 1, . . . ,n, we have ∂zi |p ∈ ∆ wi(p). Then there exist n vector fields
Y1, . . . ,Yn which form an adapted frame at p and such that Y1(p)= ∂z1 |p, . . . , Yn(p)=
∂zn |p. For every i, the vector field Yi is of order ≥ −wi at p since it belongs to ∆ wi .
Moreover we have (Yizi)(p) = 1 and ordp(zi) = wi. Thus ordp(Yi) =−wi.

Take a sequence of integers α = (α1, . . . ,αn). The monomial zα is of order
≥ w(α) at p and the differential operator Y α = Y α1

1 · · ·Y αn
n is of order ≥ −w(α).

Observing that (Yiz j)(p) = 0 if j 6= i, we easily see that (Y α zα)(p) = 1
α1!...αn! 6= 0,

whence ordp(zα) = w(α).
In the same way, we obtain that, if zα , zβ are two different monomials and λ ,

µ two nonzero real numbers, then ordp(λ zα +µzβ ) = min
(
w(α),w(β )

)
. Thus the

order of a series is the least weighted degree of monomials actually appearing in the
series itself. This shows the statement on order of functions.

As a consequence, for any smooth function f , the order at p of ∂zi f is ≥
ordp( f )−wi. Since moreover ∂zizi = 1, we obtain that ordp(∂zi) is equal to −wi.
The second part of the statement follows. ut

A notion of homogeneity is also naturally associated with a system of privileged
coordinates (z1, . . . ,zn) defined on an open neighbourhood U of the point p. We
define first the one-parameter family of dilations

δt : (z1, . . . ,zn) 7→ (tw1z1, . . . , twnzn), t ≥ 0.

Each dilation δt is a map from Rn to Rn. By abuse of notations, for q ∈ U and t
small enough we write δt(q) instead of δt(z(q)), where z(q) are the coordinates of
q. A dilation δt acts also on functions and vector fields by pull-back: δ ∗t f = f ◦ δt
and δ ∗t X is the vector field such that (δ ∗t X)(δ ∗t f ) = δ ∗t (X f ).

Definition 2.6. A function f is homogeneous of degree s if δ ∗t f = ts f . A vector field
X is homogeneous of degree σ if δ ∗t X = tσ X .

For a smooth function (resp. a smooth vector field), this is the same as being a
finite sum of monomials (resp. monomial vector fields) of weighted degree s. As a
consequence, if a function f is homogeneous of degree s, then it is of order s at p.

A typical degree 1 homogeneous function is the so-called pseudo-norm at p,
defined by:
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z 7→ ‖z‖p = |z1|1/w1 + · · ·+ |zn|1/wn . (2.5)

When composed with the coordinates function, the pseudo-norm at p is a (non
smooth) function of order 1, that is,

‖z(q)‖p = O
(
d(p,q)

)
.

Actually, it results from Proposition 2.2 that the order of a function f ∈C∞(p) is the
least integer s such that f (q) = O(‖z(q)‖s

p).

Examples of privileged coordinates.

Of course all the results above on algebraic computation of orders hold only if priv-
ileged coordinates do exist. Two types of privileged coordinates are commonly used
in the literature.

a. Exponential coordinates.

Choose an adapted frame Y1, . . . ,Yn at p. The inverse of the local diffeomorphism

(z1, . . . ,zn) 7→ exp(z1Y1 + · · ·+ znYn)(p)

defines a system of local privileged coordinates at p, called canonical coordinates
of the first kind. These coordinates are mainly used in the context of hypoelliptic
operator and for nilpotent Lie groups with right (or left) invariant sub-Riemannian
structure.

The inverse of the local diffeomorphism

(z1, . . . ,zn) 7→ exp(znYn)◦ · · · ◦ exp(z1Y1)(p)

also defines privileged coordinates at p, called canonical coordinates of the second
kind. They are easier to work with than the one of the first kind. For instance, in
these coordinates, the vector field Yn read as ∂zn . One can also exchange the order of
the flows in the definition to obtain any of the Yi as ∂zi . The fact that canonical coor-
dinates of first and second kind are privileged is proved in appendix (Sections B.1
and B.2).

We leave it to the reader to verify that the diffeomorphism

(z1, . . . ,zn) 7→ exp(znYn + · · ·+ zs+1Ys+1)◦ exp(zsYs) · · · ◦ exp(z1Y1)(p)

also induces privileged coordinates. As a matter of fact, any “mix” between first and
second kind canonical coordinates defines privileged coordinates.
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b. Algebraic coordinates.

There exist also effective constructions of privileged coordinates (the construction of
exponential coordinates is not effective in general since it requires to integrate flows
of vector fields). We present here Bellaı̈che’s algorithm, but other constructions exist
(see [Ste86, AS87]).

1. Choose an adapted frame Y1, . . . ,Yn at p.
2. Choose coordinates (y1, . . . ,yn) centered at p such that ∂yi |p = Yi(p).
3. For j = 1, . . . ,n, set

z j = y j−
w j−1

∑
k=2

hk(y1, . . . ,y j−1),

where, for k = 2, . . . ,w j−1,

hk(y1, . . . ,y j−1) = ∑
|α|=k

w(α)<w j

Y α1
1 . . .Y

α j−1
j−1

(
y j−

k−1

∑
q=2

hq(y)
)
(p)

yα1
1

α1!
· · ·

y
α j−1
j−1

α j−1!
,

with |α|= α1 + · · ·+αn.

The fact that coordinates (z1, . . . ,zn) are privileged at p will be proved in Sec-
tion B.3.

Coordinates (y1, . . . ,yn) are linearly adapted coordinates. They can be obtained
from any original system of coordinates by an affine change. The privileged coordi-
nates (z1, . . . ,zn) are then obtained from (y1, . . . ,yn) by an expression of the form

z1 = y1,

z2 = y2 +pol(y1),

...
zn = yn +pol(y1, . . . ,yn−1),

where each pol is a polynomial function without constant nor linear terms. The
inverse change of coordinates takes the same triangular form, which makes the use
of these coordinates easy for computations.

2.1.3 Nilpotent approximation

Fix a system of privileged coordinates (z1, . . . ,zn) at p. Every vector field Xi is of
order ≥−1, hence it has, in z coordinates, a Taylor expansion

Xi(z)∼∑
α, j

aα, jzα
∂z j ,
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where w(α) ≥ w j−1 if aα, j 6= 0. Grouping together the monomial vector fields of
same weighted degree we express Xi as a series

Xi = X (−1)
i +X (0)

i +X (1)
i + · · · ,

where X (s)
i is a homogeneous vector field of degree s.

Proposition 2.3. Set X̂i =X (−1)
i , i= 1, . . . ,m. The family of vector fields (X̂1, . . . , X̂m)

is a first-order approximation of (X1, . . . ,Xm) at p and generates a nilpotent Lie
algebra of step r = wn.

Recall that a Lie algebra Lie(X1, . . . ,Xm) is said to be nilpotent of step s if all brackets
XI of length |I| greater than s are zero.

Proof. The fact that the vector fields X̂1, . . . , X̂m form a first-order approxima-
tion of X1, . . . ,Xm results from their construction. Note further that any homoge-
neous vector field of degree smaller than −wn is zero, as it is easy to check in
privileged coordinates. Moreover, if X and Y are homogeneous of degree respec-
tively k and l, then the bracket [X ,Y ] is homogeneous of degree k + l because
δ ∗t [X ,Y ] = [δ ∗t X ,δ ∗t Y ] = tk+l [X ,Y ].

It follows that every iterated bracket of the vector fields X̂1, . . . , X̂m of length k is
homogeneous of degree −k and is zero if k > wn. ut

Definition 2.7. The family (X̂1, . . . , X̂m) is called the (homogeneous) nilpotent ap-
proximation of (X1, . . . ,Xm) at p associated with the coordinates z.

Example 2.8 (unicycle). Consider the vector fields on R2×S 1 defining the kine-
matic model of a unicycle (see Example 1.1), that is, X1 = cosθ∂x + sinθ∂y,
X2 = ∂θ . We have [X1,X2] = sinθ∂x− cosθ∂y, so the weights are (1,1,2) at every
point. At p = 0, the coordinates (x,θ) have order 1 and y has order 2, consequently
(x,θ ,y) is a system of privileged coordinates at 0. Taking the Taylor expansion of
X1 and X2 in the latter coordinates, we obtain the homogeneous components:

X (−1)
1 = ∂x +θ∂y, X (0)

1 = 0, X (1)
1 =−θ 2

2
∂x−

θ 3

3!
∂y, . . .

and X (−1)
2 = X2 = ∂θ . Therefore the homogeneous nilpotent approximation of

(X1,X2) at 0 in coordinates (x,θ ,y) is

X̂1 = ∂x +θ∂y, X̂2 = ∂θ .

We easily check that the Lie brackets of length 3 of these vectors are zero, that is,
[X̂1, [X̂1, X̂2]] = [X̂2, [X̂1, X̂2]] = 0, and so the Lie algebra Lie(X̂1, X̂2) is nilpotent of
step 2.

The homogeneous nilpotent approximation is not uniquely defined by the m-tuple
(X1, . . . ,Xm), since it depends on the chosen system of privileged coordinates. How-
ever, if X̂1, . . . , X̂m and X̂ ′1, . . . , X̂

′
m are the nilpotent approximations associated with
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two different systems of coordinates, then their Lie algebras Lie(X̂1, . . . , X̂m) and
Lie(X̂ ′1, . . . , X̂

′
m) are isomorphic. If moreover p is a regular point, then Lie(X̂1, . . . , X̂m)

is isomorphic to the graded nilpotent Lie algebra

Gr(∆)p = ∆(p)⊕ (∆ 2/∆
1)(p)⊕·· ·⊕ (∆ r−1/∆

r)(p).

Remark 2.2. The nilpotent approximation denotes in fact two different objects. Each
X̂i may be seen as a vector field on Rn or as the representation in z coordinates of
the vector field z∗X̂i defined on a neighbourhood of p in M (recall that z∗X̂i denotes
the pullback d(z−1) ◦ X̂i ◦ z of X̂i by the local diffeomorphism z). This will cause
no confusion since the nilpotent approximation is associated with a given system of
privileged coordinates.

It is worth to notice the particular form of the nilpotent approximation in privi-
leged coordinates. Write X̂i = ∑

n
j=1 fi j(z)∂z j , i = 1, . . . ,m. Since X̂i is homogeneous

of degree −1 and ∂z j of degree −w j, the function fi j is a homogeneous polynomial
of weighted degree w j−1. In particular it can not involve variables of weight greater
than w j−1, that is,

X̂i(z) =
n

∑
j=1

fi j(z1, . . . ,znw j−1)∂z j .

The nonholonomic system ż = ∑
m
i=1 uiX̂i(z) associated with the nilpotent approxi-

mation is then polynomial and in a triangular form,

ż j =
m

∑
i=1

ui fi j(z1, . . . ,znw j−1). (2.6)

Computing the trajectories of a system in such a form is rather easy: given the input
function (u1(t), . . . ,um(t)), it is possible to compute the coordinates z j one after the
other, only by integration. As a consequence, for every input function the associated
differential equation (2.6) is complete and every X̂i is a complete vector field on Rn.

As vector fields on Rn, X̂1, . . . , X̂m generate a sub-Riemannian distance on Rn

which is homogeneous with respect to the dilation δt .

Lemma 2.1.

(i) The family (X̂1, . . . , X̂m) satisfies Chow’s Condition on Rn.
(ii) The growth vector at 0 of (X̂1, . . . , X̂m) is equal to the one at p of (X1, . . . ,Xm).

Let d̂ be the sub-Riemannian distance on Rn associated with (X̂1, . . . , X̂m).

(iii) The distance d̂ is homogeneous of degree 1,

d̂(δtx,δty) = td̂(x,y).

(iv) There exists a constant C > 0 such that, for all z ∈ Rn,

1
C
‖z‖p ≤ d̂(0,z)≤C‖z‖p,
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where the pseudo-norm ‖ · ‖p at p is defined by (2.5).

Proof. Through the coordinates z we identify the neighbourhood U of p in M with
a neighbourhood of 0 in Rn.

For every element I ∈L (1, . . . ,m), we denote by X̂I ∈ Lie(X̂1, . . . , X̂m) the vector
field that is obtained by plugging in X̂i, i = 1, . . . ,m, for the corresponding letter i
in I. For k ≥ 1 we set ∆̂ k = span{X̂I : |I| ≤ k}. As noticed in the proof of Proposi-
tion 2.3, a bracket X̂I of length |I|= k is homogeneous of weighted degree −k, and
by construction of the nilpotent approximation, there holds XI = X̂I+ terms of order
>−k. Therefore,

X̂I(0) = XI(p) mod span{∂z j

∣∣
p : w j < k}= XI(p) mod ∆

k−1(p).

As a consequence, for any integer k ≥ 1, we have

dim ∆̂
k(0) = dim∆

k(p), (2.7)

and property (ii) follows. Moreover, let us choose an adapted frame XI1 , . . . ,XIn at
p. The family (X̂I1(0), . . . , X̂In(0)) is of rank n, which implies that its determinant
is nonzero. Since the determinant of X̂I1 , . . . , X̂In is an homogeneous polynomial of
weighted degree 0, and so a constant, it is nonzero everywhere. This implies (i).

As for the property (iii), consider the nonholonomic system defined by the nilpo-
tent approximation, that is, ż = ∑

m
i=1 uiX̂i(z). Observe that, if γ̂ is a trajectory of this

system, that is, if
˙̂γ(t) =

m

∑
i=1

uiX̂i
(
γ̂(t)

)
, t ∈ [0,T ],

then the dilated curve δλ γ̂ satisfies

d
dt

δλ γ̂(t) =
m

∑
i=1

λuiX̂i
(
δλ γ̂(t)

)
, t ∈ [0,T ].

Thus δλ γ̂ is a trajectory of the same system, with extremities (δλ γ̂)(0) = δλ (γ̂(0))
and (δλ γ̂)(T ) = δλ (γ̂(T )), and its length equals λ length(γ̂). This proves the homo-
geneity of d̂.

Finally, since (X̂1, . . . , X̂m) satisfies Chow’s Condition, the distance d̂(0, ·) is con-
tinuous on Rn by Corollary 1.2. We can then choose a real number C > 0 such that,
on the compact set {‖z‖ = 1}, we have 1/C ≤ d̂(0,z) ≤ C. Both functions d̂(0,z)
and ‖z‖ being homogeneous of degree 1, the inequality of Property (iv) follows. ut



2.2 Distance estimates 27

2.2 Distance estimates

2.2.1 Local distance estimates

As it is the case for Riemannian distances, in general it is impossible to compute an-
alytically a sub-Riemannian distance (it would require to determine all minimizing
curves). This is very important to obtain estimates of the distance, at least locally.
In a Riemannian manifold (M,g), the situation is rather simple: in local coordinates
x centered at a point p, the Riemannian distance dR satisfies:

dR(q,q′) = ‖x(q)− x(q′)‖gp +o(‖x(q)‖gp +‖x(q′)‖gp),

where ‖·‖gp is the Euclidean norm induced by the value gp of the metric g at p. This
formula has two consequences: first, it shows that the Riemannian distance behaves
at the first-order as the Euclidean distance associated with ‖·‖gp ; secondly, the norm
‖ · ‖gp gives explicit estimates of dR near p, such as

1
C
‖x(q)‖gp ≤ dR(p,q)≤C‖x(q)‖gp .

In sub-Riemannian geometry, the two properties above hold, but do not depend
on the same function: the first-order behaviour near p is characterized by the dis-
tance d̂p defined by a nilpotent approximation at p, whereas explicit local estimates
of d(p, ·) are given by the pseudo-norm ‖ · ‖p at p defined in (2.5). We first present
the latter estimates, often referred to as the “Ball-Box Theorem”, and then the first-
order expansion of d in Theorem 2.2.

Theorem 2.1. The following statement holds if and only if z=(z1, . . . ,zn) is a system
of privileged coordinates at p: there exist constants Cp and εp > 0 such that, if
d(p,q)< εp, then

1
Cp
‖z(q)‖p ≤ d(p,q)≤Cp‖z(q)‖p, (2.8)

where z(q) denotes the coordinates of q and ‖ · ‖p the pseudo-norm at p.

Corollary 2.1 (Ball-Box Theorem). Expressed in a given system of privileged co-
ordinates, the sub-Riemannian balls B(p,ε) satisfy, for ε < εp,

Box
( 1

Cp
ε
)
⊂ B(p,ε)⊂ Box

(
Cpε

)
,

where Box(ε) = [−εw1 ,εw1 ]×·· ·× [−εwn ,εwn ].

The Ball-Box Theorem is stated in different papers, often under the hypothe-
sis that the point p is regular. To our knowledge, two valid proofs exist, the ones
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in [NSW85] and in [Bel96]. The result also appears without proof in [Gro96] and
in [Ger84], and with erroneous proofs in [Mit85] and in [Mon02].

We present here a proof adapted from the one of Bellaı̈che (our is much simpler
because Bellaı̈che actually proves a more general result, namely (2.16)). Basically,
the idea is to compare the distances d and d̂. The main step is Lemma 2.2 below,
which is essential in other respects to explain the role of nilpotent approximations
in control theory.

Fix a point p ∈ M, and a system of privileged coordinates z = (z1, . . . ,zn) at p.
Through these coordinates we identify a neighbourhood of p in M with a neighbour-
hood of 0 in Rn. As in the previous section we denote by X̂1, . . . , X̂m the homoge-
neous nilpotent approximation of X1, . . . ,Xm at p (associated with the given system
of privileged coordinates) and by d̂ the induced sub-Riemannian distance on Rn.
Recall also that r = wn denotes the degree of nonholonomy at p.

Lemma 2.2. There exist constants C and ε > 0 such that, for any z0 ∈ Rn and any
t ∈ R+ satisfying τ = max(‖z0‖p, t)< ε , we have

‖z(t)− ẑ(t)‖p ≤Cτt1/r,

where z(·) and ẑ(·) are trajectories of the nonholonomic systems defined respectively
by X1, . . . ,Xm and X̂1, . . . , X̂m, starting at the same point z0, associated with the same
control function u(·), and satisfying ‖u(t)‖= 1 a.e.

Proof. The first step is to prove that ‖z(t)‖p and ‖ẑ(t)‖p ≤ Cst τ for small enough
τ , where Cst is a constant. Let us do it for z(t), the proof being exactly the same for
ẑ(t).

The equation of the control system associated with X1, . . . ,Xm is

ż j =
m

∑
i=1

ui
(

fi j(z)+ ri j(z)
)
, j = 1, . . . ,n,

where fi j(z)+ri j(z) is of order≤w j−1 at 0. Thus, for j = 1, . . . ,n and i = 1, . . . ,m,
| fi j(z)+ ri j(z)| ≤ Cst‖z‖w j−1

p when ‖z‖p is small enough. Note that, along the tra-
jectory z(t), ‖z‖p is small when τ is. Since ‖u(t)‖= 1 a.e., we get:

|ż j| ≤ Cst‖z‖w j−1
p . (2.9)

To integrate this inequality, choose an integer N such that all N/w j are even in-

tegers and set ‖z‖N =
(

∑
n
i=1 |zi|N/wi

)1/N . The function ‖z‖N is equivalent to ‖z‖p in
the norm sense, and it is differentiable except at the origin. Inequality (2.9) implies
d
dt ‖z‖N ≤ Cst , and then, by integration,

‖z(t)‖N ≤ Cst t +‖z(0)‖N ≤ Cst τ.

The functions ‖z‖N and ‖z‖p being equivalent, we obtain, for a trajectory starting at
z0, ‖z(t)‖p ≤ Cst τ when τ is small enough.
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The second step is to prove |z j(t)− ẑ j(t)| ≤Cst τw j t. The function z j− ẑ j satisfies
the differential equation

ż j− ˙̂z j =
m

∑
i=1

ui
(

fi j(z)− fi j(ẑ)+ ri j(z)
)
,

=
m

∑
i=1

ui

 ∑
{k :wk<w j}

(zk− ẑk)Qi jk(z, ẑ)+ ri j(z)

 ,

where Qi jk(z, ẑ) is a homogeneous polynomial of weighted degree w j−wk−1. For
‖z‖p and ‖ẑ‖p small enough, we have

|ri j(z)| ≤ Cst‖z‖w j
p and |Qi jk(z, ẑ)| ≤ Cst (‖z‖p +‖ẑ‖p)

w j−wk−1.

Using the inequalities of the first step, we obtain finally, for τ small enough,

|ż j(t)− ˙̂z j(t)| ≤ Cst ∑
{k :wk<w j}

|zk(t)− ẑk(t)|τw j−wk−1 +Cst τ
w j . (2.10)

This system of inequalities has a triangular form, hence it can be integrated iter-
atively. For w j = 1, the inequality is |ż j(t)− ˙̂z j(t)| ≤ Cst τ , and so |z j(t)− ẑ j(t)| ≤
Cst τt. By induction, let j > n1 and assume |zk(t)− ẑk(t)| ≤ Cst τwk t for k < j. In-
equality (2.10) implies

|ż j(t)− ˙̂z j(t)| ≤ Cst τ
w j−1t +Cst τ

w j ≤ Cst τ
w j ,

and so |z j(t)− ẑ j(t)| ≤ Cst τw j t.
Finally,

‖z(t)− ẑ(t)‖p ≤ Cst τ(t1/w1 + · · ·+ t1/wn)≤ Cst τt1/r,

which completes the proof of the lemma. ut

Proof (of Theorem 2.1). Observe first that, by definition of the order, a system of
coordinates z is privileged if and only if d(p,q) ≥ Cst‖z(q)‖p. What remains to
prove is that, if z are privileged coordinates, then d(p,q)≤ Cst‖z(q)‖p.

As above, we identify a neighbourhood of p in M with a neighbourhood of 0 in
Rn through the coordinates z. We will show that, for ‖z0‖p small enough,

d(0,z0)≤ 2d̂(0,z0),

and so d(0,z0)≤ Cst‖z0‖p by Lemma 2.1. This will prove Theorem 2.1.

Fix z0 ∈Rn, ‖z0‖p < ε . Let ẑ0(t), t ∈ [0,T0], be a minimizing curve for d̂, having
velocity one, and joining z0 to 0. According to Remark 1.2, such a curve exists, and
there exists a control u0(·) associated with ẑ0 such that ‖u0(t)‖ = 1 a.e. Moreover,
T0 = d̂(0,z0).
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Let z0(t), t ∈ [0,T0], be the trajectory of the control system associated with
X1, . . . ,Xm starting at z0 and defined by u0(·). We have length

(
z0(·)

)
≤ T0. Set

z1 = z0(T0). By Lemma 2.2,

‖z1‖p = ‖z0(T0)− ẑ0(T0)‖p ≤CτT 1/r
0 ,

where τ = max(‖z0‖p,T0). By Lemma 2.1, T0 = d̂(0,z0) satisfies T0 ≥ ‖z0‖p/C′, so
τ ≤C′T0, and

d̂(0,z1)≤C′‖z1‖p ≤C′′d̂(0,z0)1+1/r,

with C′′ =C′2C.
Choose now ẑ1(t), t ∈ [0,T1], a minimizing curve for d̂ of velocity one join-

ing z1 to 0. There exists a control u1(·) associated with ẑ1 such that ‖u1(t)‖ = 1
a.e. Let z1(t), t ∈ [0,T1], be the trajectory of the control system associated with
X1, . . . ,Xm starting at z1 and defined by u1(·). Set z2 = z1(T1). As previously, we
have length

(
z1(·)

)
= d̂(0,z1) and d̂(0,z2)≤C′′d̂(0,z1)1+1/r.

Repeating this construction, we obtain a sequence of points z0,z1,z2, . . . such that
d̂(0,zk+1) ≤C′′d̂(0,zk)1+1/r, and a sequence of trajectories zk(·) joining zk to zk+1

of length equal to d̂(0,zk).
Taking ‖z0‖p small enough, we can assume C′′d̂(0,z0)1/r ≤ 1/2. We have then

d̂(0,z1) ≤ d̂(0,z0)/2, . . . , d̂(0,zk) ≤ d̂(0,z0)/2k,. . . Consequently, zk tends to 0 as
k→ +∞. Putting end to end the curves zk(·) gives a trajectory joining z0 to 0 of
length d̂(0,z0)+ d̂(0,z1)+ · · · ≤ 2d̂(0,z0). This implies d(0,z0)≤ 2d̂(0,z0), and the
proof is complete. ut

Now, the distance d̂ on Rn induces a distance d̂p on a neighbourhood of p in M
by setting d̂p(q,q′) = d̂(z(q),z(q′)). This distance gives the first-order term in the
expansion of d(p, ·).

Theorem 2.2. On a neighbourhood of p in M there holds

d(p,q) = d̂p(p,q)
(

1+O
(

d̂p(p,q)
))

.

Remark 2.3. By Theorem 2.1 and Lemma 2.1, when d(p,q) is small enough we get
the estimate

1
C

d̂p(p,q)≤ d(p,q)≤Cd̂p(p,q), (2.11)

where C is some positive constant. Theorem 2.2 essentially states that this constant
can be chosen arbitrarily close to 1.

Proof. Fix δ > 0. We have to prove that there exists ε > 0 such that, if d(p,q)< ε ,
then

(1−δ )d̂p(p,q)≤ d(p,q)≤ (1+δ )d̂p(p,q). (2.12)
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Let q be a point in M. Setting z0 = z(q) in the proof of Theorem 2.1 furnishes a
trajectory joining q to 0 whose length is equal to ∑

∞
k=0 d̂(0,zk), the points zk being

such that d̂(0,zk+1)≤C′′d̂(0,zk)1+1/r.
From (2.11), there exists ε > 0 such that d(p,q) < ε implies C′′d̂(0,z0)1/r ≤

δ/(1+ δ ). In this case the length of the trajectory from q to 0 is not greater than
(1+δ )d̂(0,z0) and we have

d(p,q)≤ (1+δ )d̂p(p,q),

since d̂(0,z0) = d̂p(p,q).
To prove the other inequality in (2.12), we use the same argument but reverse the

role of d and d̂. Again, we identify a neighbourhood of p in M with a neighbourhood
of 0 in Rn through the coordinates z. Let z0(t), t ∈ [0,T0], be a minimizing curve for
d of velocity one joining z0 to 0, and let u0(·) be a control associated with z0(·) such
that ‖u0(t)‖ = 1 a.e. We have T0 = d(0,z0). Let ẑ0(t), t ∈ [0,T0], be the trajectory
of the control system associated with X̂1, . . . , X̂m starting at z0 and defined by the
control u0(·). In particular, length

(
z0(·)

)
≤ T0.

Set z1 = z0(T0). By Lemma 2.2,

‖z1‖p = ‖z0(T0)− ẑ0(T0)‖p ≤CτT 1/r
0 ,

where τ = max(‖z0‖p,T0). Theorem 2.1 implies τ ≤CpT0, and

d(0,z1)≤Cp‖z1‖p ≤C′′d(0,z0)1+1/r,

with C′′ =C2
pC.

Repeating this construction gives a trajectory of X̂1, . . . , X̂m joining q to p whose
length is equal to ∑

∞
k=0 d(0,zk), where d(0,zk+1)≤C′′d(0,zk)1+1/r.

For d(p,q) small enough, we have C′′d(0,z0)1/r ≤ δ/(1−δ ) and the trajectory
from q to 0 is of length ≤ 1/(1−δ )d(0,z0), which leads to

d̂p(p,q)≤ 1
(1−δ )

d(p,q).

This completes the proof. ut

2.2.2 Uniform estimates

In the preceding sections we have built notions of privileged coordinates and nilpo-
tent approximations at a given point p, as well as distance estimates from this point.
We now study in which extent these quantities vary continuously as the point p
varies.

Let first define what we mean by continuity of a system of privileged coordinates.
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Definition 2.8. A continuously varying system of privileged coordinates on an open
subset Ω of M is a mapping Φ taking values in Rn, defined and continuous on a
neighbourhood of the set {(q,q),q ∈Ω} ⊂Ω ×Ω , and so that the partial mapping
Φ(p, ·) is a system of privileged coordinates at p.

In a neighbourhood of a regular point p̄, such a continuously varying system
of privileged coordinates always exist. Indeed, all the examples of construction of
privileged coordinates given in Subsection 2.1.2 are based on adapted frames. And,
the point p̄ being regular, an adapted frame Y1, . . . ,Yn at p̄ will be an adapted frame at
every p in a neighbourhood Ω of p̄. It is then easy to see that using the same adapted
frame at every p ∈Ω will give privileged coordinates Φ(p, ·) varying continuously
with p. For instance, if Φ(p,q) = z is defined by

q = exp(z1Y1 + · · ·+ znYn)(p),

the continuity of Φ results from the Implicit Function Theorem.
On the other hand, the existence of a continuous varying system of privileged

coordinates is not ensured near a singular point. It is not excluded either, as shown
by the following example.

Example 2.9 (Martinet case). Consider the Martinet case, described in Example 2.5.
There exists singular points, those are the points of the plane {x = 0}. It is however
easy to check that the following map Φ defines a continuous varying system of
privileged coordinates on R3,

Φ ((x̄, ȳ, z̄),(x,y,z)) =
(

x− x̄,y− ȳ,z− z̄− x̄2

2
(y− ȳ)

)
,

the third coordinate being of order 2 if x̄ 6= 0, and of order 3 if x̄ = 0.

Definition 2.9. A nilpotent approximation of (X1, . . . ,Xm) on an open subset Ω of
M is a mapping A which associates, with every p ∈ Ω , a nilpotent approximation
of (X1, . . . ,Xm) at p,

A (p) = (X̂ p
1 , . . . , X̂

p
m).

We say that A is continuous if the mapping (p,q) 7→A (p)(q) is well-defined and
continuous on a neighbourhood of the set {(p, p), p ∈Ω} ⊂Ω ×Ω .

Recall (Definition 2.7) that a nilpotent approximation (X̂ p
1 , . . . , X̂

p
m) at p is the

homogeneous nilpotent approximation at p associated with some privileged coor-
dinates z at p, that is, X̂ p

i is the homogeneous part of weighted degree −1 in the
Taylor expansion of Xi expressed in coordinates z. Now, if the weights are con-
stant on Ω and if there exists a continuous varying system of privileged coordinates
on Ω , the resulting nilpotent approximation on Ω is continuous. For every regular
point p ∈ M both conditions are satisfied near p, which ensures the existence of a
continuous nilpotent approximation in a neighbourhood of p.

Near a singular point on the contrary, the weights are not constants and a priori
there do not exist continuous nilpotent approximations.
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Assume now that a continuous varying system of privileged coordinates and a
continuous nilpotent approximation are given on an open set Ω ⊂ M containing
only regular points. It is just a matter of routine to check in the computations of
Subsection 2.2.1 that the constants Cp,εp of Theorem 2.1 and C,ε of Lemma 2.2
may be chosen as continuous functions of p. More precisely, we have the following
result, which summarizes the discussion above.

Theorem 2.3. Let p̄∈M be a regular point. There exists an open neighbourhood Ω

of p̄, a continuous varying system of privileged coordinates Φ on Ω , a continuous
nilpotent approximation A on Ω , and two positive continuous functions ε(·),C(·),
such that the following properties are satisfied.

For every pair (p,q) ∈Ω ×Ω with d(p,q)< ε(p), there holds,

1
C(p)

‖z(q)‖p ≤ d(p,q)≤C(p)‖z(q)‖p, (2.13)

where z=Φ(p, ·). Moreover, for every control u(·) satisfying ‖u‖L1 < ε(p), we have

‖z(γ(T ;q,u))− z(γ̂(T ;q,u))‖p ≤C(p)max
(
‖z(q)‖p,‖u‖L1

)
‖u‖1/r

L1 , (2.14)

where r is the degree of nonholonomy at p, and γ̂(·;q,u) is a trajectory of the non-
holonomic system defined by A (p) = (X̂ p

1 , . . . , X̂
p
m).

This result underlines the importance of the case where there are no singular
points.

Definition 2.10. A manifold M equipped with vector fields X1, . . . ,Xm is said to be
equiregular if every point in M is regular w.r.t. X1, . . . ,Xm.

As a direct consequence of Theorem 2.3 we have an estimate of the volume of
small sub-Riemannian balls in equiregular manifolds. Assume that M is an oriented
manifold with a volume form ω and let volω be the measure on M associated with
ω , i.e. volω(A) =

∫
A ω for any measurable subset A⊂M.

Corollary 2.2. Assume that M is equiregular. Given a compact set K⊂M there exist
positive constants C and ε0 such that, for all q ∈ K and ε < ε0,

1
C

ε
Q ≤ volω(B(q,ε))≤Cε

Q, (2.15)

where Q = ∑
n
i=1 wi(q) does not depend on q.

Uniform Ball-Box theorem

Near a singular point, it is no longer possible to have continuous functions ε(·),C(·)
like the ones of Theorem 2.3. In particular, if (pn) is a sequence of regular points
converging to a singular point p (this is possible since regular points are dense in
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M), the sequence ε(pn) tends to zero whereas the constant εp of Theorem 2.1 is not
equal to zero. It is however possible to obtain some uniform estimates through a
process of desingularization. We just mention here the results, we refer the reader
to [Jea01] for the proofs.

Let K ⊂ M be a compact set and rmax be the maximum of the degree of non-
holonomy on K (as noticed in Subsection 2.1.2 rmax is finite). We assume that M is
an oriented manifold with a volume form ω .

Let X be the set of n-tuples X = (XI1 , . . . ,XIn) of brackets of length |Ii| ≤ rmax. It
is a finite subset of Lie(X1, . . . ,Xm)

n. Given q ∈ K and ε > 0 we define a function
fq,ε : X→ R by

fq,ε(X) =
∣∣∣ωq
(
XI1(q)ε

|I1|, . . . ,XIn(q)ε
|In|
)∣∣∣ .

We say that X ∈ X is an adapted frame at (q,ε) if it achieves the maximum of fq,ε
on X.

The values at q of an adapted frame at (q,ε) clearly form a basis of TqM. More-
over, q being fixed, the adapted frames at (q,ε) are adapted frames at q for ε small
enough.

Theorem 2.4 (Uniform Ball-Box theorem [Jea01]). There exist positive constants
C and ε0 such that, for q∈K, ε < ε0, and any adapted frame X at (q,ε), there holds

BoxX(q,
1
C

ε)⊂ B(q,ε)⊂ BoxX(q,Cε),

where BoxX(q,ε) = {exp(x1XI1)◦ · · · ◦ exp(xnXIn)(q) : |xi| ≤ ε |Ii|, 1≤ i≤ n}.

Of course, when the point q is fixed, the estimate above is equivalent to the one
of the Ball-Box theorem for ε smaller than some ε1(q) > 0. However, the main
difference is that here ε0 does not depend on q, whereas in the Ball-Box theorem
ε1 = ε1(q) can be infinitely close to 0 as q varies.

As a consequence of the Uniform Ball-Box theorem, we obtain an estimate of
the volume of small sub-Riemannian balls that generalizes Corollary 2.2.

Corollary 2.3. There exist positive constants C and ε0 such that, for all q ∈ K and
ε < ε0,

1
C

max
X

fq,ε(X)≤ volω(B(q,ε))≤C max
X

fq,ε(X),

the maximum of fq,ε(X) =
∣∣ωq
(
XI1(q)ε

|I1|, . . . ,XIn(q)ε
|In|
)∣∣ being taken over all n-

tuples X = (XI1 , . . . ,XIn) of brackets of length |Ii| ≤ rmax.

2.3 Application to Carnot-Carathéodory spaces

The manifold M endowed with the sub-Riemannian distance d defines a metric
space (M,d) which is called a Carnot-Carathéodory space. The first-order theory
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introduced previously has a metric interpretation and will allow us to describe the
local structure of a Carnot-Carathéodory space.

2.3.1 Tangent structure to Carnot-Carathéodory spaces

In describing the tangent space to a manifold, we essentially look at smaller and
smaller neighbourhoods of a given point, the manifold being fixed. Equivalently,
we can look at a fixed neighbourhood, but expanding the manifold. As noticed by
Gromov, this idea can be used to define a notion of tangent space for a general metric
space.

If X is a metric space with distance d, we define λX, for λ > 0, to be the metric
space with same underlying set as X and distance λd. A pointed metric space (X,x)
is a metric space with a distinguished point x.

Loosely speaking, a metric tangent space to the metric space X at x is a pointed
metric space (CxX,y) such that

(CxX,y) = lim
λ→+∞

(λX,x).

Of course, for this definition to make sense, we have to define the limit of pointed
metric spaces.

Let us first define the Gromov-Hausdorff distance between metric spaces. Recall
that, in a metric space X, the Hausdorff distance H-dist(A,B) between two subsets
A and B of X is the infimum of ρ > 0 such that any point of A is within a distance ρ

of B and any point of B is within a distance ρ of A. The Gromov-Hausdorff distance
GH-dist(X ,Y ) between two metric spaces X and Y is the infimum of Hausdorff
distances H-dist(i(X), j(Y)) over all metric spaces Z and all isometric embeddings
i : X→ Z, j : Y→ Z.

Thanks to Gromov-Hausdorff distance, one can define the notion of limit of a
sequence of pointed metric spaces: (Xn,xn) converge to (X,x) if, for any positive r,

GH-dist
(
BXn(xn,r),BX(x,r)

)
→ 0 as n→+∞

where BY(y,r) endowed with the distance of Y is considered as a metric space.
Note that all pointed metric spaces isometric to (X,x) are also limit of (Xn,xn).
However the limit is unique up to an isometry provided the closed balls around the
distinguished point are compact [BBI01, Sect. 7.4].

Finally, one says that (Xλ ,xλ ) converge to (X,x) when λ → ∞ if, for every se-
quence λn, (Xλn ,xλn) converge to (X,x).

Definition 2.11. A pointed metric space (CxX,y) is a metric tangent space to the
metric space X at x if (λX,x) converge to (CxX,y) as λ → +∞. If it exists, it is
unique up to an isometry provided the closed balls around x in (λX,x) are compact.



36 2 First-order theory

For a Riemannian metric space (M,dR) induced by a Riemannian metric g on
a manifold M, metric tangent spaces at a point p exist and are isometric to the
Euclidean space (TpM,gp), that is, the standard tangent space endowed with the
scalar product defined by the quadratic form gp.

For a Carnot-Carathéodory space (M,d), the metric tangent space is given by the
nilpotent approximation.

Theorem 2.5. A Carnot-Carathéodory space (M,d) admits metric tangent spaces
(CpM,y) at every point p ∈ M. The space CpM is itself a Carnot-Carathéodory
space isometric to (Rn, d̂), where d̂ is the sub-Riemannian distance associated with
a homogeneous nilpotent approximation at p.

This theorem, due to Bellaı̈che, is a consequence of a strong version of Theo-
rem 2.1: for q and q′ in a neighbourhood of p,

|d(q,q′)− d̂(q,q′)| ≤ Cst d̂(p,q)d(q,q′)1/r. (2.16)

In these notes, we present neither the proof of this result, nor the one of Theorem 2.5,
and we refer the reader to [Bel96] and [Mon02].

Remark 2.4. Recall that d̂ is not intrinsic to the frame (X1, . . . ,Xm). Thus Theo-
rem 2.5 does not provide an intrinsic characterization of the metric tangent space.
Such characterizations exist for sub-Riemannian manifolds (M,D,gR) in [MM00]
and [FJ03], and the latter could easily be adapted to the case of a sub-Riemannian
geometry associated with a nonholonomic system. However these constructions are
intrinsic to the differentiable manifold M equipped with the sub-Riemannian struc-
ture (D,gR), or to M equipped with the frame (X1, . . . ,Xm), not to the metric space
(M,d). To our knowledge, the problem of finding a characterization of the metric
tangent space CpM depending only on the Carnot-Carathéodory space (M,d) is still
open.

What is the algebraic structure of CpM? Of course CpM is not a linear space in
general: for instance, d̂ is homogeneous of degree 1, but with respect to dilations
δt and not with respect to the usual Euclidean dilations. It appears that CpM has
actually a natural structure of group, or at least of quotient of groups.

Let us introduce the group Gp generated by the diffeomorphisms exp(tX̂i) acting
on the left onRn (note that every exp(tX̂i) is a global diffeomorphism onRn since X̂i
is a complete vector field). Since gp = Lie(X̂1, . . . , X̂m) is a nilpotent Lie algebra, Gp
is a simply connected Lie group and has gp as its Lie algebra, that is Gp = exp(gp).
This Lie algebra gp splits into homogeneous components

gp = g−1⊕·· ·⊕g−r,

where g−s is the set of homogeneous vector fields of degree −s, and so gp is a
graded Lie algebra. The first component g−1 = span〈X̂1, . . . , X̂m〉 generates gp as a
Lie algebra. All these properties imply that Gp is what we call a Carnot group.
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Definition 2.12. A Carnot group is a simply connected Lie group, such that the
associated Lie algebra is graded, nilpotent, and generated by its first component.

Note that the dilations δt act on gp as a multiplication by t−s on g−s. This action
extends to Gp by the exponential mapping.

Example 2.10 (Heisenberg group). The simplest non Abelian Carnot group is the
Heisenberg groupH3 which is the connected and simply connected Lie group whose
Lie algebra satisfies

g= g−1⊕g−2, with dimg−1 = 2.

As a consequence, dimH3 = 3. Choosing a basis X , Y , Z = [X ,Y ] of g, we define
coordinates on H3 by the exponential mapping

(x,y,z) 7→ exp(xX + yY + zZ).

By the Campbell-Hausdorff formula (see Section A.1), the law group onH3 in these
coordinates is

(x,y,z) · (x′,y′,z′) = (x+ x′,y+ y′,z+ z′+
1
2
(xy′− x′y)),

which is homogeneous with respect to the dilation δt(x,y,z) = (tx, ty, t2z).
Finally, denote by X1,X2 the left-invariant vector fields onH3 whose values at the

identity are respectively X and Y . In coordinates (x,y,z), these vector fields write as

X1 = ∂x−
y
2

∂z and X2 = ∂y +
x
2

∂z,

which are the vector fields of what we have called the Heisenberg case in Exam-
ples 2.3 and 2.4.

Let ξ̂1, . . . , ξ̂m be the right-invariant vector fields on Gp such that ξ̂i(id) = X̂i,
where id is the identity of Gp. Equivalently,

ξ̂i(g) =
d
dt

[
exp(tX̂i)g

]∣∣
t=0.

With (ξ̂1, . . . , ξ̂m) is associated a right-invariant sub-Riemannian metric and a sub-
Riemannian distance dGp on Gp.

The action of Gp on Rn is smooth and transitive. Indeed, for every x ∈ Rn, the
orbit of x under the action of Gp is the set{

exp(ti1 X̂i1)◦ · · · ◦ exp(tik X̂ik)(x) : k ∈ N, ti j ∈ R, i j ∈ {1, . . . ,m}
}
.

By Chow-Rashevsky’s theorem (or more precisely by Remark 1.6), this set is the
whole Rn since (X̂1, . . . , X̂m) satisfies Chow’s Condition on Rn (Lemma 2.1).
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To understand the algebraic structure of CpM we will use the following standard
result on transitive action of Lie groups (see for instance [Lee03, Th. 9.24]).

Theorem 2.6. Let G be a Lie group acting on the left smoothly and transitively on
a manifold M. Let q ∈M and H be the isotropy subgroup of q which is defined by
H = {g ∈ G : g · q = q}. Then H is a closed subgroup of G, the left coset space
G/H is a manifold of dimension dimG−dimH, and the map F : G/H→M defined
by F(gH) = g ·q is an equivariant diffeomorphism.

Let Hp be the isotropy subgroup of 0 ∈ Rn under the action of Gp. According to
Theorem 2.6, the map φp : Gp→ Rn, φp(g) = g(0), induces a diffeomorphism

ψp : Gp/Hp→ Rn, ψp(gHp) = g(0).

Observe that Hp is invariant under dilations, since δtg(δtx) = δt(g(x)). Hence
Hp is connected and simply connected, and so Hp = exp(hp), where hp is the Lie
sub-algebra of gp containing the vector fields vanishing at 0,

hp = {Z ∈ gp : Z(0) = 0}.

As gp, hp is invariant under dilations and splits into homogeneous components.
Now, the elements X̂1, . . . , X̂m of gp act on the left on Gp/Hp with the notation

ξ 1, . . . ,ξ m,

ξ i(gHp) =
d
dt

[
exp(tX̂i)gHp

]∣∣
t=0.

These vector fields define a sub-Riemannian metric and a sub-Riemannian distance
d on Gp/Hp. We clearly have ψp∗ξ i = X̂i, so ψp maps the sub-Riemannian metric on
Gp/Hp associated with (ξ 1, . . . ,ξ m) to the one on Rn associated with (X̂1, . . . , X̂m).
We summarize this construction by the following result.

Theorem 2.7. The metric tangent space CpM and (Rn, d̂) are isometric to the coset
space Gp/Hp endowed with the sub-Riemannian distance d.

Example 2.11 (Grušin plane). Consider the vector fields X1 = ∂x and X2 = x∂y on
R2. The Carnot-Carathéodory space defined by these vector fields is called the
Grušin plane.

The only nonzero bracket is X[1,2] = [X1,X2] = ∂y. Thus, at p = 0, the weights are
(1,2), and (x,y) are privileged coordinates. Since X1 and X2 are homogeneous with
respect to this system of coordinates, we have X̂1 = X1 and X̂2 = X2. The Lie algebra
they generate is

g0 = span(X1,X2,X[1,2])

which is of dimension 3, and the group exp(g0) is actually the Heisenberg group
H3 (see Example 2.10). The Lie sub-algebra h0 of g0 containing the vector fields
vanishing at 0 is

h0 = span(X2),

which is one-dimensional. Thus the Grušin plane is isometric to H3/exp(h0) en-
dowed with the distance d.
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Example 2.12 (Martinet case). Consider the Martinet case, defined on R3 by

X1 = ∂x and X2 = ∂y +
x2

2
∂z.

As noticed in Example 2.5, at p = 0 the coordinates (x,y,z) are privileged and by
homogeneity X̂1 = X1 and X̂2 = X2. Moreover the only nonzero bracket are X[1,2] =
x∂z and X[1,[1,2]] = ∂z. Thus,

g0 = span(X1,X2,X[1,2],X[1,[1,2]])

which is of dimension 4. The group exp(g0) is called the Engel group, and is denoted
by E4. The Lie sub-algebra h0 of g0 containing the vector fields vanishing at 0 is

h0 = span(X[1,2]).

When the point p is regular, Theorem 2.7 can be refined thanks to the following
result.

Lemma 2.3. If p is a regular point, then dimGp = n.

Proof. Let XI1 , . . . ,XIn be an adapted frame at p. Since p is regular, XI1 , . . . ,XIn is
also an adapted frame near p, and any bracket XJ can be written as

XJ(z) = ∑
{i : |Ii|≤|J|}

ai(z)XIi(z),

where each ai is a function of order ≥ |Ii|− |J|. Taking the homogeneous terms of
degree −|J| in this expression, we obtain

X̂J(z) = ∑
{i : |Ii|=|J|}

ai(0)X̂Ii(z),

and so X̂J ∈ span〈X̂I1 , . . . , X̂In〉. Thus X̂I1 , . . . , X̂In is a basis of gp, and so dimGp = n.
ut

As a consequence Hp is of dimension zero in this case. Since Hp is invariant
under dilations, Hp = {id}, and hence the mapping φp : Gp → Rn, φp(g) = g(0),
is a diffeomorphism. Moreover φp∗ξ̂i = X̂i, which implies that φp maps the sub-
Riemannian metric on Gp associated with (ξ̂1, . . . , ξ̂m) to the one on Rn associated
with (X̂1, . . . , X̂m). This gives the following result1.

Proposition 2.4. When p is a regular point, the metric tangent space CpM and the
Carnot-Carathéodory space (Rn, d̂) are isometric to the Carnot group Gp endowed
with the right-invariant sub-Riemannian distance dGp .

1 This result appeared first in [Mit85], but with an erroneous proof. The presentation given here is
inspired from the one of [Bel96].
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Thus Carnot groups have the same role in sub-Riemannian geometry as Eu-
clidean spaces have in Riemannian geometry. For this reason they are sometimes
referred to as “non Abelian linear spaces”: the internal operation – addition – is re-
placed by the law group and the external operation – multiplication by a real number
– by the dilations. Note that, when Gp is Abelian (i.e. commutative) then Gp has a
linear structure and the sub-Riemannian metric on Gp is a Euclidean metric.

Example 2.13 (unicycle). In the case of the distance d associated with the unicycle
(Examples 1.1 and 2.8), the growth vector is (2,3) at every point. Hence every point
p ∈ R2×S 1 is regular, and the Lie algebra generated by the nilpotent approxima-
tion satisfies

gp = g−1⊕g−2, with dimg−1 = 2.

As a consequence, Gp =H3 (see Example 2.10), and so the metric tangent space to
(R2×S 1,d) at every point p has the structure of the Heisenberg group.

2.3.2 Hausdorff dimension

Consider a metric space (M,d) and denote by diamS the diameter of a set S ⊂M.
Let k ≥ 0 be a real number. For every subset A ⊂ M, we define the k-dimensional
Hausdorff measure H k of A as H k(A) = limε→0+ H k

ε (A), where

H k
ε (A) = inf

{
∞

∑
i=1

(diamSi)
k : A⊂

∞⋃
i=1

Si, Si closed set, diamSi ≤ ε

}
.

We also define the k-dimensional spherical Hausdorff measure S k of A as S k(A)=
limε→0+ S k

ε (A), where

S k
ε (A) = inf

{
∞

∑
i=1

(diamSi)
k : A⊂

∞⋃
i=1

Si, Si is a ball, diamSi ≤ ε

}
.

In the Euclidean space Rn, k-dimensional Hausdorff measures are often defined
as 2−kα(k)H k and 2−kα(k)S k, where α(k) is defined from the usual gamma func-
tion as α(k) = Γ ( 1

2 )
k/Γ ( k

2 + 1). This normalization factor is necessary for the n-
dimensional Hausdorff measure and the Lebesgue measure to coincide on Rn.

For a given set A ⊂ M, H k(A) is a decreasing function of k, infinite when k
is smaller than a certain value, and zero when k is greater than this value. We call
Hausdorff dimension of A the real number

dimH A = sup{k : H k(A) = ∞}= inf{k : H k(A) = 0}.

Note that H k ≤S k ≤ 2kH k, so the Hausdorff dimension can be defined equiva-
lently from Hausdorff or spherical Hausdorff measures.
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In the case where the metric space (M,d) is a Carnot-Carathéodory space, only
few results exist on Hausdorff measures, except for specific cases [ABB11, GJ13].
The most general result is the following one.

Theorem 2.8. Let (M,d) be an equiregular Carnot-Carathéodory space and p
a point in M. Then the Hausdorff dimension of a small enough ball B(p,r) is
dimH B(p,r) = Q, where

Q =
n

∑
i=1

wi(p) = ∑
i≥1

i
(
dim∆

i(p)−dim∆
i−1(p)

)
does not depend on p. Moreover H Q(B(p,r)) is finite.

Proof. Fix a volume form ω on B(p,r) (it is possible for a small enough r), and
denote by volω the associated measure. It results from Corollary 2.2 that, for q ∈
B(p,r) and ε small enough,

1
C

ε
Q ≤ volω(B(q,ε))≤Cε

Q. (2.17)

Define Nε to be the maximal number of disjoints balls of radius ε included in
B(p,r), and consider such a family B(qi,ε), i =, . . . ,Nε , of disjoints balls. By (2.17),

1
C

ε
QNε ≤ volω(B(p,r)) ⇒ Nε ≤Cε

−Qvolω(B(p,r)).

On the other hand the union
⋃

i B(qi,2ε) covers B(p,r), and by Theorem 2.4 every
ball B(qi,2ε) is of diameter ≥ 4

C ε if ε is small enough. This implies

S Q(B(p,r))≤ liminf
ε→0

Nε

(
4ε

C

)Q

< ∞.

Therefore dimH B(p,r)≤ Q.
Conversely, let

⋃
i B(qi,ri) be a covering of B(p,r) with balls of diameter not

greater than ε . If ε is small enough, every ri is smaller than ε0 and there holds

volω(B(p,r))≤∑
i

volω(B(qi,ri))≤C∑
i

rQ
i .

As a consequence, we have S Q(B(p,r))≥ volω(B(p,r))/C, which in turn implies
dimH B(p,r)≥ Q. This ends the proof. ut

When (M,d) is not equiregular, the Hausdorff dimension of balls centered at
singular points behaves in a different way. Let us show it on an example.

Consider the Martinet space (Example 2.5), that is, R3 endowed with the sub-
Riemannian distance associated with the vector fields

X1 = ∂x and X2 = ∂y +
x2

2
∂z.
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A point q = (x,y,z) is regular if x 6= 0 and in this case ∑i wi(q) = 4, otherwise it is
singular and ∑i wi(q) = 5.

Lemma 2.4. Let p a point in the Martinet space.

• If p is regular, then dimH B(p,r) = 4, and H 4(B(p,r)) is finite.
• If p is singular, then dimH B(p,r) = 4, but H 4(B(p,r)) is not finite.

Proof. When p is regular, the result is a direct consequence of Theorem 2.8. Let us
consider a singular point p and a radius r > 0. Since regular points form an open set,
B(p,r) contains small balls centered at regular points, and thus dimH B(p,r)≥ 4.

Let us apply Corollary 2.3. We choose as a volume form ω = dx∧ dy∧ dz, the
associated measure volω being the Lebesgue measure µ on R3. The function fq,ε
takes only two values, fq,ε(X) = |x|ε4 if X = (X1,X2,X[1,2]) and fq,ε(X) = ε5 if
X = (X1,X2,X[1,[1,2]]). Thus, for q = (x,y,z) close enough to p and for ε > 0 small
enough,

1
C

ε
4 max(|x|,ε)≤ µ(B(q,ε))≤Cε

4 max(|x|,ε). (2.18)

We proceed as in the proof of Theorem 2.8. Define Nε to be the maximal number
of disjoints balls of radius ε included in B(p,r), and consider such a family B(qi,ε),
i =, . . . ,Nε , of disjoints balls, with qi = (xi,yi,zi). Notice that the first coordinate x
is of nonholonomic order ≤ 1 at any point. This implies that there exists a constant
C′ > 0 such that

B(qi,ε)⊂ B(p,r)∩{q = (x,y,z) : |x− xi| ≤C′ε}.

As a consequence, for an integer k, every ball B(qi,ε) such that (k−1)ε ≤ |xi|< kε

is included in the set B(p,r)∩{q = (x,y,z) : |x| ∈ ((k−1−C′)ε,(k+C′)ε]}. The
volume of the latter set is smaller than C′′ε , where C′′ is a constant (depending
neither on k nor ε). Then it results from (2.18) that

1
C

Nε(k)kε
5 ≤C′′ε,

where Nε(k) is the number of points qi such that (k−1)ε ≤ |xi|< kε . The Ball-Box
Theorem implies that Nε(k) = 0 when k >C′r/ε , and hence

Nε =
dC′r/εe

∑
k=1

Nε(k)≤
const

ε4

dC′r/εe

∑
k=1

1
k
≤ const

ε4 log
(

1
ε

)
,

where dte denotes the integer part of a number t. Now the union
⋃

i B(qi,2ε) covers
B(p,r) and every ball B(qi,2ε) is of diameter ≥ 4

C ε if ε is small enough. This
implies that, for any real number s > 4,

S s(B(p,r))≤ lim
ε→0

(
4ε

C

)s

Nε ≤ lim
ε→0

constε
s−4 log

(
1
ε

)
= 0.
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Consequently dimH B(p,r) ≤ 4, and hence dimH B(p,r) = 4, since the converse
inequality holds.

We are left to show that H 4(B(p,r)), or equivalently S 4(B(p,r)), is not finite.
Let

⋃
i B(qi,ri) be a covering of B(p,r) with balls of diameter not greater than ε .

For an integer k ≥ 1, denote by Ik the set of indices such that
⋃

i∈Ik
B(qi,ri) is a

covering of the set B(p,r)∩{q = (x,y,z) : |x| ∈ ((k−1)ε,kε]}. Thus

∑
i∈Ik

µ(B(qi,ri))≥ constε.

On the other hand i ∈Ik implies µ(B(qi,ri))≤ const r4
i kε , and so

∑
i∈Ik

r4
i ≥

const
k

.

Summing up over k, we obtain, for a small enough ε ,

∑
i

r4
i ≥ const log

(
1
ε

)
.

As a consequence, S 4
ε (B(p,r))≥ const log( 1

ε
), and so S 4

ε (B(p,r)) = ∞. This ends
the proof. ut

Note that after the writing of these notes, new results on Hausdorff measures and
dimensions in Carnot-Carathéodory spaces have been published (see [GJ14]).

2.4 Desingularization

We have seen in the previous sections that the key feature of regular points is uni-
formity:

• uniformity of the flag (2.2);
• uniformity w.r.t. p of the convergence (λ (M,d), p)→ CpM (as explained by

Bellaı̈che [Bel96, Sect. 8], this uniformity is responsible for the group structure
of the metric tangent space);

• uniformity of distance estimates (see Subsection 2.2.2).

All these uniformity properties are lost at singular points. We can however re-
cover some of these properties by a process of desingularization.
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2.4.1 Lifting of a nonholonomic system

In order to desingularize a mathematical structure, the usual way is to consider a
singularity as the projection of a regular object. We will then try to construct a
manifold M̃ = M×Rk and vector fields ξ1, . . . ,ξm such that:

• for i = 1, . . . ,m, Xi is the pushforward π∗ξi of ξi by the canonical projection
π : M̃→M, that is,

dπp̃(ξ (p̃)) = Xi(π(p̃)) for every p̃ ∈ M̃;

when it is the case, we say that (ξ1, . . . ,ξm) is a lifting of (X1, . . . ,Xm) to M̃;
• M̃ equipped with ξ1, . . . ,ξm is equiregular (see Definition 2.10).

The algebraic structure of the metric tangent space provides a good indication
on how to obtain such a lifting. Indeed, let us consider the particular case of vector
fields X̂1, . . . , X̂m on Rn which are a nilpotent approximation of X1, . . . ,Xm at a sin-
gular point p. Keeping the notations and definitions of Subsection 2.3.1, we have
the following diagram between Carnot-Carathéodory spaces,

(Gp,dGp)

π ↓ φp↘
(Gp/Hp,d)

ψp

−̃→ (Rn, d̂)

Thus up to an isomorphism (Rn, d̂) is the projection of (Gp,dGp), which is an
equiregular Carnot-Carathéodory space since the sub-Riemannian metric on Gp

is right-invariant. Recall now that ξ̂1, . . . , ξ̂m (resp. ξ 1, . . . ,ξ m) are mapped to
X̂1, . . . , X̂m by φp (resp. ψp). Working in a system of coordinates, we identify Gp/Hp

with Rn and ξ i with X̂i. These coordinates on Rn ' Gp/Hp, denoted by x, induce
coordinates (x,y) ∈ RN on Gp for which we have

ξ̂i(x,y) = X̂i(x)+
N

∑
j=n+1

bi j(x,y)∂y j . (2.19)

Hence RN equipped with ξ̂1, . . . , ξ̂m is an equiregular lifting of Rn equipped with
X̂1, . . . , X̂m.

We will use this idea to desingularize the original space (M,d). Choose for x
privileged coordinates at p, so that

Xi(x) = X̂i(x)+Ri(x) with ordpRi ≥ 0.

Set M̃ = M×RN−n, and in local coordinates (x,y) on M̃, define vector fields on a
neighbourhood of (p,0) by
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ξi(x,y) = Xi(x)+
N

∑
j=n+1

bi j(x,y)∂y j ,

with the same functions bi j as in (2.19). These vector fields realize locally a lifting of
the vector fields X1, . . . ,Xm to M̃: denoting by π : M̃→M the canonical projection,
we have Xi = π∗ξi for i = 1, . . . ,m.

We define in this way a nonholonomic system on an open set Ũ ⊂ M̃ whose nilpo-
tent approximation at (p,0) is by construction (ξ̂1, . . . , ξ̂m). Unfortunately, (p,0) can
be itself a singular point. Indeed, a point can be singular for a system and regular
for the nilpotent approximation taken at this point.

Example 2.14. Take the vector fields X1 = ∂x1 , X2 = ∂x2 + x1∂x3 + x2
1∂x4 and X3 =

∂x5 + x100
1 ∂x4 on R5. The origin 0 is a singular point. However the nilpotent approx-

imation at 0 is X̂1 = X1, X̂2 = X2, X̂3 = ∂x5 , for which 0 is not singular.

To avoid this difficulty, we need a group bigger than Gp, namely the free nilpotent
group Nr of step r with m generators. Let us first recall some general facts on free
Lie algebras (see [Bou72] for more details).

Let L = L (1, . . . ,m) be the free Lie algebra generated by {1, . . . ,m}. We use
L s to denote the subspace generated by elements of L of length not greater than s,
and ñs to denote the dimension of L s.

Definition 2.13. Let ξ1, . . . ,ξm be m vector fields on a manifold M̃, and r be a posi-
tive integer. The Lie algebra Lie(ξ1, . . . ,ξm) is said to be free up to step r if, for every
x ∈ M̃, the elements n1(x), . . . ,nr(x) of the growth vector are equal to ñ1, . . . , ñr.

Remark 2.5. Consider a manifold M̃ of dimension ñr. If Lie(ξ1, . . . ,ξm) is free up to
step r, then every point in M̃ is regular. It is in particular the case when the degree
of nonholonomy of (ξ1, . . . ,ξm) equals r at every point of M̃.

Let L (s) be the subspace of L generated by elements of length equal to s. Then
nr = L /L (r+1) is nilpotent of step r and is called the free nilpotent Lie algebra
of step r generated by {1, . . . ,m}. The corresponding simply connected Lie group
Nr = exp(nr) is the free nilpotent group of step r. It is a Carnot group, and the
generators α1, . . . ,αm (αi = i mod L (r+1)) of nr define on Nr a right-invariant sub-
Riemannian distance dN .

Now, the group Nr defines a left action on Rn: given g ∈ Nr, we have g = exp(I)
where I ∈ nr, and the action is defined by

g : q ∈ Rn 7→ g ·q = exp(X̂I)(q),

where X̂I ∈ Lie(X̂1, . . . , X̂m) is obtained by plugging in X̂i, i = 1, . . . ,m, for the corre-
sponding letter i in I. Denoting by K the isotropy subgroup of 0 for this action, we
obtain that (Rn, d̂) is isometric to Nr/K endowed with the restriction of the distance
dN .

Reasoning as we did above with (Gp,dGp), we are able to lift locally the vector
fields X1, . . . ,Xm on M to vector fields on M×Rñr−n having α1, . . . ,αm for nilpotent
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approximation at (p,0). Moreover (p,0) is a regular point for the associated non-
holonomic system in M×Rñr−n since Nr is free up to step r. We obtain in this way
a result of desingularization.

Lemma 2.5. Let p be a point in M, r the degree of nonholonomy at p, and M̃ =
M×Rñr−n. Then there exist a neighbourhood Ũ ⊂ M̃ of (p,0), a neighbourhood
U ⊂ M of p with U ×{0} ⊂ Ũ , local coordinates (x,y) on Ũ, and smooth vector
fields on Ũ,

ξi(x,y) = Xi(x)+
N

∑
j=n+1

bi j(x,y)∂y j , i = 1, . . . ,m, (2.20)

such that:

• ξ1, . . . ,ξm satisfy Chow’s Condition and have r for degree of nonholonomy ev-
erywhere (so the Lie algebra they generate is free up to step r);
• every q̃ in Ũ is regular;
• denoting by π : M̃→M the canonical projection, and by d̃ the sub-Riemannian

distance defined by ξ1, . . . ,ξm on Ũ, we have π∗ξi = Xi, and for q∈U and ε > 0
small enough,

B(q,ε) = π

(
Bd̃((q,0),ε)),

or, equivalently,
d(q1,q2) = inf

q̃2∈π−1(q2)
d̃
(
(q1,0), q̃2

)
.

Proof. The only things that remain to prove are the last equalities. Let (x(·),y(·)) be
a trajectory of the nonholonomic system in Ũ defined by ξ1, . . . ,ξm. Then, for every
control u(·) associated with the trajectory,

(ẋ(t), ẏ(t)) =
m

∑
i=1

ui(t)ξi(x,y).

It follows from (2.20) that x(·) is a trajectory in U of the system defined by
X1, . . . ,Xm, which is associated with the same controls u(·), so that

length
(
x(·)
)
= length

(
(x,y)(·)

)
.

The relation between d and d̃ follows. ut

Remark 2.6. The lemma still holds if we replace r by any integer greater than the
degree of nonholonomy at p.

Thus any Carnot-Carathéodory space (M,d) is locally the projection of an
equiregular Carnot-Carathéodory space (M̃, d̃). This projection preserves the tra-
jectories, the minimizers, and the distance.



2.4 Desingularization 47

Example 2.15 (Martinet case). Consider the vector fields of the Martinet case (see
Example 2.5), defined on R3 by:

X1 = ∂x and X2 = ∂y +
x2

2
∂z.

Let π :R4→R3 be the projection with respect to the last coordinates, π(x,y,z,w) =
(x,y,z). Then X1 and X2 are the projections of the vector fields defining the Engel
group E4 (see Example 2.12),

ξ1 = ∂x and ξ2 = ∂y +
x2

2
∂z + x∂w,

that is π∗ξi = Xi. Thus, for every pair of points q1,q2 ∈ R3,

dMart(q1,q2) = inf
w∈R

dE4
(
(q1,0),(q2,w)

)
,

where dMart and dE4 are the sub-Riemannian distance in respectively the Martinet
space and the Engel group.

Example 2.16 (Grušin plane). Consider the vector fields

X1 = ∂x, X2 = x∂y,

on R2, which define the Grušin plane (see Example 2.11). Let π : R3→ R2 be the
projection with respect to the last coordinates, π(x,y,z) = (x,y). Then X1 = π∗ξ1
and X2 = π∗ξ2, where

ξ1 = ∂x and ξ2 = ∂z + x∂y,

are, up to a change of coordinates, the vector fields defining the Heisenberg case
(see Example 2.3).

2.4.2 Desingularization procedure

Lemma 2.5 states the existence of a desingularized lifting of the vector fields
X1, . . . ,Xm. Our aim now is to give an effective construction involving only explicit
(and purely algebraic) changes of coordinates and intermediate constructions. We
will also obtain, as a byproduct, a nilpotent approximation of the lifting in a “canon-
ical form”. We begin with the presentation of this canonical form.
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P. Hall basis and canonical form

Recall that we use L = L (1, . . . ,m) to denote the free Lie algebra generated by
the elements {1, . . . ,m}. The P. Hall basis of L is a subset H = {I j} j∈N of L ,
endowed with a total order ≺, that satisfies the following:

(H1) if |Ii|< |I j|, then Ii ≺ I j;
(H2) {1, . . . ,m} ⊂H , and we impose that 1≺ 2≺ ·· · ≺ m;
(H3) every element of length 2 in H is in the form [Ii, I j] with Ii, I j ∈ {1, . . . ,m} and

Ii ≺ I j;
(H4) an element Ik ∈L of length greater than 3 belongs to H if Ik = [Ik1 , [Ik2 , Ik3 ]]

with Ik1 , Ik2 , Ik3 ∈H , and (i) [Ik2 , Ik3 ] belongs to H , (ii) Ik2 ≺ Ik3 , (iii) Ik2 ≺ Ik1
or Ik2 = Ik1 , and (iv) Ik1 ≺ [Ik2 , Ik3 ].

The elements of H form a basis of L , and ≺ defines a strict and total order over
the set H . In the sequel, we use Ik to denote the kth element of H with respect to
that order. Let H s be the subset of H of all the elements of length not greater than
s. The elements of H s form a basis of L s and Card(H s) = ñs.

By (H1)−(H4), every element I j ∈H can be expanded in a unique way as

I j = [Ik1 , [Ik2 , · · · , [Iki , Ik] · · · ]], (2.21)

with k1 ≥ ·· · ≥ ki, ki < k, and k ∈ {1, . . . , ñ1}. We set φ(I j) = k. For I j ∈H r, the
expansion (2.21) also associates with I j ∈H a sequence α j = (α1

j , . . . ,α
ñr
j ) in Zñr

where α`
j is the number of occurrences of ` among k1, . . . ,ki. By construction, one

has α`
j = 0 for `≥ j, and α j = (0, . . . ,0) for 1≤ j ≤ ñ1.

Let us give now the construction of a canonical form for free nilpotent Lie alge-
bras of step r. The construction takes place in Rñr , where r is a positive integer and
ñr the dimension of L r. Let I1, . . . , Iñr be the elements of H r sorted by increasing
order with respect to ≺. We define the monomials Pj(x), j = 1, . . . , ñr, by

Pj(x) =
x

α1
j

1 · · ·x
α

j−1
j

j−1

α1
j ! · · ·α j−1

j !
, (2.22)

where α j is the sequence associated with I j.

Definition 2.14. Let X1, . . . ,Xm be m vector fields on an open subset Ω of Rñr and
x be a local system of coordinates on Ω . The family (X1, . . . ,Xm) is said to be in
canonical form in the coordinates x if one has

x∗X1 = ∂x1 ,

x∗Xi = ∂xi + ∑
2≤|I j |≤r
φ(I j)=i

Pj(x)∂x j , i = 2, . . . ,m.
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In this case, Lie(X1, . . . ,Xm) is a free nilpotent Lie algebra of step r, and one has

XI j(0) = ∂x j , for I j ∈H r,

where the vector field XI j ∈ Lie(X1, . . . ,Xm) is obtained by plugging in Xi, i =
1, . . . ,m, for the corresponding letter i in I j (see [GG89, GG91] for a complete de-
velopment on this canonical form).

Reasoning by induction on the coefficients Pj, one can show that the nonholo-
nomic system ẋ = ∑

m
i=1 uiXi(x) associated with a canonical form may be written

component by component as,

ẋ j =
1
k!

xk
j1 ẋ j2 , if I j = adk

I j1
I j2 , (2.23)

where adk
I j1

I j2 = [I j1 , [I j1 , · · · , [I j1︸ ︷︷ ︸
k times

, I j2 ], with I j2 = [I j3 , I j4 ] and I j3 ≺ I j1 .

Remark 2.7. Note that the canonical coordinates of the second kind (see Sec-
tion B.1) allows one to obtain canonical forms. Indeed, assume that X1, . . . ,Xm gen-
erate a free nilpotent Lie algebra of step r. Then (XI1 , . . . ,XIñr

) form an adapted basis
at every point and (X1, . . . ,Xm) is in canonical form in the canonical coordinates of
the second kind associated with that basis (see [Sus87]).

Construction of a desingularized lifting

As we are concerned here with algorithmic issues, we work on an open subset Ω of
Rn rather than on a general manifold. We denote by x the canonical coordinates on
Ω .

Consider m vector fields X1, . . . ,Xm on Ω satisfying Chow’s Condition, and fix
a point p ∈ Ω . Choose also an integer r greater than or equal to the degree of non-
holonomy at p, and a n-tuple J = (I1, . . . , In) of elements of H r such that the
vectors XI1(p), . . . ,XIn(p) form a basis of Rn. We define an open domain VJ ⊂ Ω

containing p by

VJ = { x ∈Ω : det(XI1(x), . . . ,XIn(x)) 6= 0 }.

We are going to construct a family of m vector fields (ξ1, . . . ,ξm) defined on
VJ ×Rñr−n, which is a lifting of (X1, . . . ,Xm), and which generates a free up to
step r Lie algebra. At the same time, we will give a nilpotent approximation of
(ξ1, . . . ,ξm) at p̃ = (p,0) ∈ VJ ×Rñr−n in canonical form.

Define

J s = {I j ∈J , with |I j|= s}, for s≥ 1,

G s = H s \H s−1, for s≥ 2.
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We denote by ks the cardinal of J s, and by k̃s the cardinal of G s. We also define
w̃1, . . . , w̃ñr , called the free weights of step r, by w̃ j = s if ñs−1 < j≤ ñs. We are now
ready to describe our procedure.

Desingularization Algorithm

Initialization step

(i) Set V 1 := VJ ×Rk̃1−k1 , p1 := (p,0) ∈ V 1, K 1 := H 1∪ (J \J 1).
Denote by v1 the points in Rk̃1−k1 .

(ii) Define the vector fields ξ 1
1 , . . . ,ξ

1
m on V 1 by:

∀(x,v1) ∈ V 1, ξ
1
i (x,v

1) := Xi(x)+
{

0, for i ∈J 1,
∂v1

i
, for i ∈ G 1 \J 1.

(iii) Compute the affine coordinates y1 on V 1 satisfying

∂y1
j
= ξ

1
I j
(p1) for I j ∈K 1, and y1(p1) = 0.

(iv) Construct the coordinates z1 on V 1 by

z1
j := y1

j , for j ∈H 1,

z1
j := y1

j −
ñ1

∑
k=1

(ξ 1
k · y1

k)(y
1)|y1=0 y1

k , for I j ∈K 1 \H 1,

where I j denotes the jth element in K 1.

Iteration steps

For s = 2, . . . ,r:

(i) Set V s := V s−1×Rk̃s−ks , ps := (p,0) ∈ V s, and K s := K s−1 ∪ (G s \J s).

Denote by vs the points in Rk̃s−ks .
(ii) Define the vector fields ξ s

1 , . . . ,ξ
s
m on V s by:

∀(zs−1,vs) ∈ V s, ξ
s
i (z

s−1,vs) = ξ
s−1
i (zs−1)+ ∑

Ik∈G s\J s

φ(Ik)=i

Pk(zs−1)∂vs
k
.

(iii) Compute the linear change of coordinates (zs−1,vs) 7→ ys on V s by

∂ys
j
= ξ

s
I j
(ps) for every I j ∈K s .

(iv) Construct the coordinates z̃s on V s by the following recursive formulas:
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• for I j ∈H s,

z̃s
j := ys

j−
|I j |−1

∑
k=2

rk(ys
1, . . . ,y

s
j−1), (2.24)

where, for k = 2, . . . , |I j|−1,

rk(ys
1, . . . ,y

s
j−1) =

∑
|β |=k

w̃(β )<|I j |

[
(ξ s

I1)
β1 · · ·(ξ s

I j−1
)β j−1 ·(ys

j−
k−1

∑
q=2

rq)
]
(ys)|ys=0

(ys
1)

β1

β1!
· · ·

(ys
j−1)

β j−1

β j−1!
;

• for I j ∈K s \H s,

z̃s
j := ys

j−
s

∑
k=2

rk(ys
1, . . . ,y

s
ñs
), (2.25)

where, for k = 2, . . . ,s,

rk(ys
1, . . . ,y

s
ñs
) =

∑
|β |=k

w̃(β )≤s

[
(ξ s

I1)
β1 · · ·(ξ s

Iñs
)βñs · (ys

j−
s

∑
q=2

rq)
]
(ys)|ys=0

(ys
1)

β1

β1!
· · ·

(ys
j−1)

βñs

βñs !
.

(v) Construct the coordinates zs as:{
zs

j := z̃s
j +Ψ s

j (z̃
s
1, . . . , z̃

s
j−1) for j = 1, . . . , ñs,

zs
j := z̃s

j for j > ñs,

where the functions Ψ s
j are determined by the following properties:

• for j = 1, . . . , ñs, Ψ s
j is an homogeneous polynomial of weighted degree

equal to w̃ j, the weight of a coordinate z̃s
k being w̃k;

• denoting by ords
ps(·) the nonholonomic order at ps defined by (ξ s

1 , . . . ,ξ
s
m),

one has

ξ
s
i · zs

j = δi,φ(I j)Pj(zs
1, . . . ,z

s
j−1)+Ri, j(zs), j = 1, . . . , ñs, (2.26)

where ords
ps(Ri, j)≥ w̃ j and δi,k denotes the Kronecker symbol (note that by

construction ords
ps(Pj) = w̃ j−1).

Remark 2.8. The polynomials (Ψ s
j ) j=1,...,ñs are computed by identification. Indeed,

the first property above implies that Ψ s
j is a finite sum of the form,
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Ψ
s
j (z̃

s) = ∑
w̃(α)=w̃ j

cα
j (z̃

s
1)

α1 . . .(z̃s
j−1)

α j−1 , (2.27)

where every cα
j is a real number. One can then put this expression in (2.26), and so

obtain by identification the scalar coefficients cα
j , provided they exist. Actually it is

possible to show that these coefficients do exist (see [CJL13, Claim 9 of Sect. 3.4]).

Let us illustrate the previous remark with an example.

Example 2.17. Assume m = 2, I1 = 1, I2 = 2, and I3 = [1,2], and consider the pre-
vious algorithm at the step s = 2. Item (iv) produces coordinates z̃ and vector fields
ξ1,ξ2 which are necessarily of the form:

ξ1 = [1+R1,1(z̃)]∂z̃1 +R1,2(z̃)∂z̃2 +[α1z̃1 +α2z̃2 +R1,3(z̃)]∂z̃3 + · · ·
ξ2 = R2,1(z̃)∂z̃1 +[1+R2,2(z̃)]∂z̃2 +[β1z̃1 +β2z̃2 +R2,3(z̃)]∂z̃3 + · · ·

where the real numbers α1, α2, β1, β2 verify β1−α2 = 1, and where every Ri, j is a
sum of homogeneous polynomials of weighted degree greater than w̃ j−1.

The coordinates z of item (v) satisfy (z1,z2)= (z̃1, z̃2), z3 = z̃3+Ψ3(z̃), and z j = z̃ j
for j > 3. We look for Ψ3 as a linear combination,

Ψ3(z̃) = az̃1z̃2 +bz̃2
1 + cz̃2

2,

with a, b, c to be determined. The constraints (2.26) imply ξ1 ·z3 = 0 and ξ2 ·z3 = z1
up to higher orders terms, that is,

(α1 +2b)z̃1 +(α2 +a)z̃2 = 0,
(β1 +a)z̃1 +(β2 +2c)z̃2 = z1 = z̃1.

By identification, one gets a = −α2, b = −α1
2 , c = −β2

2 and β1 + a = 1. Since
β1−α2 = 1 the last equation is automatically verified. Then

Ψ3(z̃) =−α2z̃1z̃2−
α1

2
z̃2

1−
β2

2
z̃2.

The outputs of this Desingularization Algorithm are the coordinates zr defined
on VJ ×Rñr−n, and the vector fields ξ r

1 , . . . ,ξ
r
m defined on this domain. Note that

zr are global coordinates on VJ ×Rñr−n since they are obtained from the original
coordinates (x,v) by a triangular change of coordinates.

Theorem 2.9. The outputs ξi := ξ r
i , i = 1, . . . ,m, and z := zr of the Desingulariza-

tion Algorithm satisfy the following properties:

• the vector fields ξ1, . . . ,ξm realize a lifting of X1, . . . ,Xm to VJ ×Rñr−n;
• ξ1, . . . ,ξm generate a Lie algebra which is free up to step r;
• z = (z1, . . . ,zñr) is a system of privileged coordinates at p̃ for (ξ1, . . . ,ξm);
• the vector fields (ξ̂1, . . . , ξ̂m) defined in the coordinates z by the canonical form,
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ξ̂i = ∂zi + ∑
2≤|I j |≤ñr

φ(I j)=i

Pj(z1, . . . ,z j−1)∂z j , for i = 1, . . . ,m, (2.28)

form a nilpotent approximation of (ξ1, . . . ,ξm) at p̃.

We refer to [CJL13, Sect. 3.4] for a proof of this result.

Remark 2.9. A very nice feature of the Desingularization Algorithm is that, if the
original Lie algebra Lie(X1, . . . ,Xm) is nilpotent, then the lifting (ξ1, . . . ,ξm) gener-
ates also a nilpotent Lie algebra. In fact, (ξ1, . . . ,ξm) is equal to its nilpotent approx-
imation (ξ̂1, . . . , ξ̂m) at p̃, and so is in the canonical form in the coordinates z, which
implies in particular that Lie(ξ1, . . . ,ξm) is a free nilpotent algebra of step r. Note
that in that case r may be chosen as the nilpotency step of (X1, . . . ,Xm).

Remark 2.10. As a consequence of the Remark 2.7, the coordinates z are the canon-
ical coordinates of the second kind on VJ × Rñr−n associated with the basis

(ξ̂I1 , . . . , ξ̂Iñr
). Thus the algorithm above provides an algebraic construction of these

canonical coordinates.





Chapter 3
Nonholonomic motion planning

This last chapter addresses one of the most basic control issue: how to construct
a control law steering a control system from a given state to another one? This
problem is known as the motion planning problem. In the case of nonholonomic
systems it can be solved exactly for specific classes of systems, in particular for
nilpotent systems (Section 3.2). However for a general nonholonomic systems it is
hopeless to look for exact solutions to the problem. Thus a solution must be thought
as an algorithm which steers the system to an arbitrarily small neighbourhood of
the goal. In this context a key notion is the one of approximation and we will see in
Section 3.3 how the concepts introduced in the previous chapter allow to construct
such an algorithm. We will also discuss two other methods in Section 3.4 and give
an overview of the literature in Section 3.5.

As we are concerned here with algorithmic issues, we will not work in a general
manifold but rather on an open subset of Rn. Thus we consider a nonholonomic
system

ẋ =
m

∑
i=1

uiXi(x), (Σ )

defined on an open subset Ω of Rn.

3.1 Nonholonomic motion planning

Definition 3.1. The motion planning problem for (Σ ) is defined as follows: for each
pair of points (xinitial,xfinal)∈Ω×Ω , find a control u(·)∈ L1([0,T ],Rm) with T > 0
such that the corresponding trajectory of (Σ) starting from xinitial at t = 0 reaches
xfinal at t = T , that is,

γ(T ;xinitial,u) = xfinal.

We will always assume that Ω is connected and that (Σ ) satisfies the Chow Con-
dition. The existence of a solution to the motion planning problem is then guaranteed

55
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by Chow-Rashevsky’s theorem (Theorem 1.1). Note that in practice the vector fields
X1, . . . ,Xm generally belong to the analytic category, and in this case our assump-
tions are equivalent to the existence of a solution (see Remark 1.5).

Remark 3.1. It is worth to notice here that the presence of additional state constraints
does not prevent the existence of solutions, provided the connectivity of the ad-
missible state space is preserved. This is particularly important for applications in
robotics. Indeed, assume that the system (Σ ) models the dynamics of a robot whose
space of configurations is Ω . When the robot moves amid obstacles, one represents
the configurations of the robot in collision with an obstacle as closed subsets O of
Ω . If the open set Ω \O remains connected, the motion planning problem in that
set has a solution, which means that it is possible to steer the robot from one con-
figuration to another by avoiding the obstacles. Note that since Ω \O is an open set,
connectivity is equivalent to arc connectivity. The motion planning problem is then
usually tackled in two steps (see [LSL98]):

• find a curve in the free space Ω \O connecting xinitial to xfinal (this curve is in
general not a trajectory of (Σ ));
• approximate the curve by a trajectory of (Σ ) close enough to be contained in the

free space.

This strategy separates global topological problems from local dynamic ones. The
first step is independent of the control system, it only depends on the topology of
Ω and of the obstacles. It is a well modelled and understood problem of algorith-
mic geometry (see for instance [Can88, SS83]). The second step may be consid-
ered as a motion planning problem without state constraints provided we use a mo-
tion planning method with a good local behaviour, namely the resulting trajectory
γ(·;xinitial,u) converge to xinitial for the C0 topology when xinitial converges to xfinal.
The drawback is that, imposing this property complicates the design of a motion
planning method.

Strictly speaking, a solution to the motion planning problem (also called a steer-
ing method) is a function which associates with any pair (xinitial,xfinal) a control u
steering the system from xinitial to xfinal. When the design of such an exact solution
seems to be out of reach, one will rather look for an approximate solution, that is for
an algorithm whose inputs are the points (xinitial,xfinal) and a tolerance e > 0, and
whose output is a control u steering the system from xinitial to a point e-close to xfinal.

We investigate in the next section the class of nilpotent systems, a class for which
exact solutions are known, and we present in the following sections approximate so-
lutions valid for any nonholonomic system. Before these presentations let us present
some ways of reducing the class of investigated systems.

Reduction of the problem

To simplify the problem we can replace the considered nonholonomic system by an-
other one simpler to handle, and for which the motion planning problem is equiva-
lent. The first way to do this is to use the notion of feedback equivalence. We say that
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two nonholonomic systems ẋ = ∑
m
i=1 uiXi(x), x ∈ Ω , and ˙̄x = ∑

m
i=1 ūiX̄i(x̄), x̄ ∈ Ω̄ ,

are feedback equivalent if there exists a diffeomorphism Φ : Ω ×Rm→ Ω̄ ×Rm of
the form,

Φ(x,u) = (φ(x),β (x)u), where β (x) an invertible matrix,

which transforms the first system into the second, that is

dφ(x)

(
m

∑
i=1

uiXi(x)

)
=

m

∑
i=1

ūiX̄i(φ(x)), with ū = β (x)u.

This is equivalent to require that the sets of vector fields ∆ = span{X1, . . . ,Xm} and
∆̄ = span{X̄1, . . . , X̄m} are diffeomorphic, or that the trajectories of both systems are
diffeomorphic to each other. As a consequence of the definition, a method solving
the motion planning problem for a given nonholonomic system also solves the prob-
lem for any feedback equivalent system (provided the diffeomorphism Φ is known
explicitly).

A second way to simplify the problem is to desingularize the system. Assume
first we want to solve the motion planning problem for (Σ ) on a domain VJ ⊂ Ω

defined by

VJ = {p ∈Ω such that det(XI1(p), . . . ,XIn(p)) 6= 0 },

where J = (I1, . . . , In) is an n-tuple of elements of the the P. Hall basis H . Let
xinitial and xfinal ∈ VJ be the initial and final points. Applying the Desingularization
Algorithm presented in Subsection 2.4.2 at the point xfinal, we obtain vector fields
ξ1, . . . ,ξm on VJ ×Rñr−n such that, first the Lie algebra Lie(ξ1, . . . ,ξm) is free up
to step r, and second Xi = π∗ξi for i = 1, . . . ,m, where π : VJ ×Rñr−n→ VJ de-
notes the canonical projection. As a consequence, the projection by π of a trajectory
γ̃(·; x̃initial,u) of the control system

˙̃x =
m

∑
i=1

uiξi(x̃), x̃ ∈ VJ ×Rñr−n, (3.1)

is a trajectory of

ẋ =
m

∑
i=1

uiXi(x), x ∈ VJ , (Σ )

associated with the same input, i.e., π
(
γ̃(·; x̃initial,u)

)
= γ(·;π(x̃initial),u). Therefore,

any control u steering (3.1) from x̃initial = (xinitial,0) to x̃final = (xfinal,0) also steers
(Σ ) from xinitial to xfinal. It is then sufficient to solve the motion planning problem
for the lifted system (3.1).

Assume now that we want to solve the motion planning problem for (Σ ) on a
compact set K ⊂ Ω which is not included in one single domain VJ . Let us denote
by r the maximal value of the degree of nonholonomy on K (as mentioned in Sub-
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section 2.1.2, this maximum exists). For every n-tuple J = (I1, . . . , In) of elements
of H r, the domain VJ is open in Ω (possibly empty) and for every p ∈ VJ , the
vectors XI1(p), . . . ,XIn(p) form a basis of Rn. Since K is compact, there exist a finite
number of n-tuples J1, . . . ,JM of elements of H r and connected compact sets
K1, . . . ,KM such that Ki ⊂ VJi for i = 1, . . . ,M, and

K ⊂
M⋃

i=1

Ki. (3.2)

It is clearly sufficient to solve the motion planning on each of these compact sets
Ki ⊂ VJi , where we can apply the method by lifting described above.

As a conclusion, we can reduce the motion planning problem to systems (Σ ) such
that the vectors fields X1, . . . ,Xm generate a free up to step r Lie algebra. If moreover
(Σ ) is nilpotent, by Remark 2.9 we can also assume that (X1, . . . ,Xm) is given in the
canonical form.

3.2 Nilpotent systems

A nilpotent system is a nonholonomic systems (Σ ) such that the vector fields
X1, . . . ,Xm generate a nilpotent Lie algebra. A system (Σ ) is nilpotentizable if it
is feedback equivalent to a nilpotent system.

Nilpotent systems play a very important role for motion planning purposes. First,
nilpotentizable systems form the widest class of nonholonomic system for which an
exact solution to the motion planning problem is known. Second, we have seen in
Subsection 2.1.3 that every nonholonomic system admits first-order approximations
which are nilpotent systems. Thus when using Newton like methods to solve the
problem, we have to deal with these nilpotent systems.

Note however that most of the nonholonomic systems are not nilpotent, and not
nilpotentizable either. In fact, the class of nilpotentizable systems is clearly a non
generic class of nonholonomic systems when the dimension of the state space is
large enough. In addition, there are no criteria for deciding whether a system is
nilpotentizable.

We give in this section a solution to the motion planning problem for nilpotent
systems which uses sinusoidal controls. We present first the method in the simple
case of chained systems in Subsection 3.2.1, and then in the general case in Subsec-
tion 3.2.2. We finally discuss other methods in Subsection 3.2.3.
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3.2.1 The case of chained systems

In order to better understand the use of sinusoidal controls, we consider first the
particular case of a chained system, which is a nonholonomic system on Rn in the
following form,

ẋ1 = u1
ẋ2 = u2
ẋ3 = x2u1
ẋ4 = x3u1

...
ẋn = xn−1u1.

(3.3)

Equivalently, ẋ = u1X1(x)+u2X2(x), where the vector fields X1 and X2 are given by

X1 = ∂x1 +
n

∑
i=3

xi−1∂xi , X2 = ∂x2 .

Such a system is clearly nilpotent, the only nonzero brackets of X1 and X2 being

(adX1)
iX2 = (−1)i

∂xi+2 , i = 1, . . . ,n−2,

where we write (adX1)X2 for [X1,X2], (adX1)
2X2 for (adX1)((adX1)X2), etc. It also

satisfies the Chow Condition.
The particular structure of (3.3) suggests to control the system one component

after the other. The crucial point of this strategy is to ensure that if a component xk
is moved during a period [0,T ], then none of the components xi with i < k is moved,
that is xi(0) = xi(T ). The use of sinusoidal controls with integer frequencies is well
suited to such a strategy because of the usual properties:∫ 2π

0
sinωt dt = 0 for all ω ∈ Z, (3.4)∫ 2π

0
cosωt dt =

{
0 if ω ∈ Z and ω 6= 0,
1 if ω = 0. (3.5)

Consider then a control u(t) = (u1(t),u2(t)), t ∈ [0,2π], of the form

u1(t) = asinω1t, u2(t) = bcosω2t.

Due to the particular structure of (3.3), for every i ≥ 3 the dynamics ẋi is a linear
combination of sinusoids whose frequencies are

ω2 +N ω1, where N ∈ Z, |N| ≤ i−2. (3.6)

Moreover the sinusoid with frequency ω2 +(i−2) ω1 appears with a nonzero coef-
ficient (if a and b are nonzero).
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Assume that we want to move xk to its desired value without changing the values
of xi, for every i < k. The relations (3.4) and (3.5) imply that we must choose ω1
and ω2 so that one cosine term with null frequency (i.e. a constant term) appears
in the dynamic component ẋk. In addition, no component xi with i < k should ver-
ify this condition in order to ensure xi(0) = xi(2π). For instance, a simple choice
guaranteeing both properties is ω1 = 1 et ω2 = k−2.

The argument above translates to a complete algorithm (Algorithm 3.1 below)
which gives an exact solution to the motion planning problem for the system (3.3).

Algorithm 3.1 Steering method for chained systems

1: move x1 and x2 to their final positions (in straight line for instance);

2: for every k ≥ 1, move xk+2 from its current value xk
k+2 to its target value xfinal

k+2 by using

u(t) = (asin t,bcoskt), t ∈ [0,2π],

where the parameters a and b verify

xfinal
k+2− xk

k+2 =
(a/2)kb

k!
2π.

3.2.2 Sinusoidal controls

Consider a nilpotent system on Rn defined by vector fields (X1, . . . ,Xm). As noticed
in Section 3.1, up to a desingularization we can reduce the problem to a system
satisfying the following three assumptions (all notions have been introduced in Sec-
tion 2.4):

• the Lie algebra Lie(X1, . . . ,Xm) is free up to step r, where r is its nilpotency
step; as a consequence, n = ñr;
• (X1, . . . ,Xm) is given in the canonical form in some coordinates x, i.e. the control

system is written as follows,

ẋi = ui, if i = 1, . . . ,m;
ẋI =

1
k! xI j1

ẋI j2
, if I = adk

I j1
I j2 , I j1 , I j2 ∈H r,

(3.7)

where the components of x are numbered by the elements of H r;
• the goal point xfinal in the motion planning problem is always the origin 0 of Rñr

in coordinates x.

As we did for chained systems, we will choose control functions in the form of
linear combinations of sinusoids with integer frequencies.

We first note that if every component ui of the control u in (3.7) is a linear combi-
nation of sinusoids with integer frequencies, then every component xI of a solution
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of (3.7) is also a linear combination of sinusoids with integer frequencies, the latter
being linear combinations of the frequencies involved in u. One may therefore ex-
pect to move some components during a 2π time-period without modifying others
if the frequencies in u are properly chosen.

Due to the triangular form of (3.7), it is reasonable to expect to move the compo-
nents of x one after another according to the order≺ induced by the P. Hall basis. In
that case, one must ensure that, after each 2π-period of control process, the compo-
nent under consideration arrives to its preassigned position, and all “smaller” (w.r.t.
≺) components return to their initial values. However, it appears that all the compo-
nents cannot be moved independently by using sinusoids. To take this into account,
we introduce the following notion of equivalence.

Definition 3.2. For I ∈L (1, . . . ,m) and i∈{1, . . . ,m}, we denote by |I|i the number
of times i occurs in I. Two components xI and xJ , I,J ∈H r, are said to be equivalent
if |I|i = |J|i for i = 1, . . . ,m. The equivalent classes of components will be denoted
by

E (`1, . . . , `m) = {xI : |I|i = `i, for i = 1, . . . ,m}.

We will see below that the frequencies occurring in the dynamics of xI only depend
on the equivalence class of xI , and not on the structure of the bracket I ∈H r. There-
fore, the equivalent components cannot be moved separately by using sinusoids.

The equivalences classes inherit an order from the one of the P. Hall basis. A
class E (`1, . . . , `m) is said to be smaller than E ( ˜̀1, . . . , ˜̀m) if the smallest element
(w.r.t. ≺) in E (`1, . . . , `m) is smaller than the smallest one in E ( ˜̀1, . . . , ˜̀m), and we
write (by abuse of notation) E (`1, . . . , `m)≺ E ( ˜̀1, . . . , ˜̀m).

The components of x may be partitioned in equivalent classes E 1,E 2, . . . ,E Ñ ,
sorted by increasing order. Our control strategy consists in displacing these equiva-
lence classes one after another according to the order ≺ by using sinusoidal inputs.
For every i = 1, . . . , Ñ, the key point is to determine how to construct an input ui

defined on [0,2π] such that the two following conditions are verified:

(C1) under the action of ui, every element of E i reaches its preassigned value at
t = 2π;

(C2) under the action of ui, for all j < i, every element of E j returns at t = 2π to its
value taken at t = 0.

Once one knows how to construct an input ui verifying (C1) and (C2) for every
i = 1, . . . , Ñ, it suffices to take the concatenation of these inputs in order to steer the
complete system to the goal. The resulting control is defined on the interval [0,2Ñπ]
by

u1 ∗ · · · ∗uÑ(t) = ui(t−2(i−1)π), (3.8)

for t ∈ [2(i−1)π,2iπ] and i ∈ {1, . . . , Ñ}.
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Choice of frequencies for a class E i

Let us fix an equivalence class E i. According to the strategy described just above,
we have to choose the frequencies appearing in the sinusoidal control ui in such a
way that Conditions (C1) and (C2) are verified. For sake of clarity, we only treat the
case m = 2, the reader is referred to [CJL13] on how to adapt the method to greater
values of m.

Assume first that E i contains only one component, denoted by xI . Set m1 = |I|1,
and m2 = |I|2, so that E i = E (m1,m2). We look for the control ui under the form,

ui
1(t) = cosω1t, ui

2(t) = cosω2t +acos(ω∗2 t− ε
π

2
), t ∈ [0,2π], (3.9)

where ω1, ω2, ω∗2 are positive integers, ε ∈ {0,1}, and a is a real number.
By induction, one obtains that, for every J ∈H r such that J � I, the dynamics

ẋJ is a linear combination of cosine functions,

cos
(
(`1ω1 + `2ω2 + `3ω

∗
2 ) t− (`3ε + `1 + `2 + `3−1)

π

2

)
, (3.10)

where `1, `2, `3 ∈ Z satisfy |`1| ≤ m1, |`2|+ |`3| ≤ m2. In particular, the term

cos
(
(m1ω1 +(m2−1)ω2−ω

∗
2 ) t− (−ε +m1 +m2−1)

π

2

)
occurs in ẋI with a nonzero coefficient that depends linearly on a.

Now, note that integrating between 0 and 2π a function of the form cos(ωt+ε
π

2 )
with ω ∈ Z and ε ∈N always gives 0 except if ω = 0 and ε = 0 mod 2. Therefore,
in order to obtain a non trivial contribution in the component xI , its derivative ẋI must
contain some cosine functions of the form (3.10) verifying the following condition{

`1ω1 + `2ω2 + `3ω∗2 = 0,
`3ε + `1 +m2 + `3−1≡ 0 mod 2. (3.11)

Moreover this condition shall not be satisfied by any cosine function appearing in
ẋJ , J ≺ I, so as to prevent non trivial contributions in the component xJ . A way to
ensure both properties is to impose{

ω∗2 = m1ω1 +(m2−1)ω2,
ε = m1 +m2−1 mod 2, (3.12)

and
ω2 > (m1 +m2)m1ω1. (3.13)

In that case,

• Condition (3.11) is never satisfied by a cosine function appearing in ẋJ , J ≺ I;
• among the cosine function of the form (3.10) appearing in ẋI , the function with
`1 = m1, `2 = m2−1, and `3 =−1 is the only one that verifies (3.11);
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• xI(2π)− xI(0) is proportional to a with a ratio fI = fI(ω1,ω2).

Let us precise the last point. For every element J � I, we set mJ
1 = |J|1, mJ

2 = |J|2,
and, in the decomposition of ẋJ as a linear combination of cosine functions, we
denote by FJ the coefficient in front of the term

cos
(
(mJ

1ω1 +(mJ
2−1)ω2−ω

∗
2 )t− (mJ

1 +mJ
2−1− ε)

π

2

)
,

and by gJ the one in front of the term

cos
(
(mJ

1ω1 +mJ
2ω2)t− (mJ

1 +mJ
2−1)

π

2

)
.

Then FJ is proportional to a and we write FJ = a fJ(ω1,ω2). Moreover gJ =
gJ(ω1,ω2) is a never vanishing function of (ω1,ω2) and the quotient αJ = fJ/gJ
verifies the following inductive formula:

• α1 = 0, α2 = 1;
• if J = [J1,J2], then

αJ =
mJ1

1 ω1 +mJ1
2 ω2

mJ1
1 ω1 +(mJ1

2 −1)ω2−ω∗2
αJ1 +αJ2 .

This formula implies that αI is a rational function of (ω1,ω2) which can be proved to
be non identically zero. Hence αI , and so fI , is nonzero on R2 minus a finite number
of algebraic hypersurfaces. In other words, for almost all ω1,ω2 satisfying (3.13),
xI(2π)− xI(0) is proportional to a with a nonzero ratio.

As a consequence, by choosing properly ω1,ω2 and a, the control ui steers, dur-
ing [0,2π], the component xI from any initial value to any preassigned final value
without modifying any component xJ with J ≺ I.

Assume now that the equivalence class E i = E (m1,m2) contains two compo-
nents xI1 and xI2 . This situation first occurs for Lie brackets of length 5, for instance
in E (2,3) with I1 = [2, [1, [1, [1,2]]]] and I2 = [[1,2], [1, [1,2]]]. If one chooses fre-
quencies verifying the resonance condition (3.12) for ẋI1 , the same resonance occurs
in ẋI2 . Such two components cannot be independently steered by using resonance.
The idea is then to move simultaneously these components. For instance, one can
choose ui as follows,

ui
1(t) = cosω1t,

ui
2(t) = cosω2t +aI cosω

∗
2 t + cosω3t +aJ cosω

∗
3 t,

with ω1 = 1, ω2 satisfying (3.13),

ω
∗
2 = (m2−1)ω2 +m1ω1, ω

∗
3 = (m2−1)ω3 +m1ω1,

and ω3 large enough to guarantee Condition (C2). After explicit integration of (3.7),
one obtains
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xI1(2π)− xI1(0)
xI2(2π)− xI2(0)

)
=

(
fI1(ω1,ω2) fI1(ω1,ω3)
fI2(ω1,ω2) fI2(ω1,ω3)

)(
aI1
aI2

)
= A

(
aI1
aI2

)
,

where fI1 and fI2 are two rational functions. Thus, ui controls exactly and simulta-
neously xI1 and xI2 , provided that the matrix A is invertible.

Let us generalize this strategy. Let xI1 , . . . ,xIN be the elements of the equivalence
class E i = E (m1,m2). We look for a control ui of the form

ui
1 =

N

∑
k=1

m1

∑
j=1

cosω
j

1kt,

ui
2 =

N

∑
k=1

(
m2−1

∑
j=1

cosω
j

2kt +ak cos(ω∗2kt− ε
π

2
)

)
,

t ∈ [0,2π], (3.14)

where all the frequencies ω
j

lk,ω
∗
lk are positive integers, ε equals 0 or 1, and a1, . . . ,aN

are real numbers. We impose “resonance relations”,ω
∗
2k =

m1

∑
j=1

ω
j

1k +
m2−1

∑
j=1

ω
j

2k, for k = 1, . . . ,N,

ε = m1 +m2−1 mod 2,
(3.15)

and the following inequalities, for k = 1, . . . ,N−1,
ω

j+1
1k > m1ω

j
1k, j = 1, . . . ,m1,

ω1
2k > m1ω

m1
1k ,

ω
j

2k > m2ω
j−1

2k +m1ω
m1
1k , j = 2, . . . ,m2−1,

ω1
1k+1 > m2ω

m2−1
2k +m1ω

m1
1k .

(3.16)

We then obtain that, if xJ ∈ E j with j < i, then xJ(2π)− xJ(0) = 0. Moreover, xI1(2π)− xI1(0)
...

xIN (2π)− xIN (0)

= A(ω1
11, . . . ,ω

m2−1
2N )

a1
...

aN

 (3.17)

where A(ω1
11, . . . ,ω

m2−1
2N ) is a (N×N) matrix whose coefficients are rational func-

tions of the frequencies. One can then show that, for almost all1 frequencies ω
j

lk
satisfying (3.16), the matrix A(ω1

11, . . . ,ω
m2−1
2N ) is invertible (see [CJL13] for the

proof).
As a consequence, we can choose a1, . . . ,aN so that the corresponding control

ui steers, during [0,2π], the components xI1 , . . . ,xIN of E i from any initial values to
any preassigned final values without modifying any component xJ in E j with j < i.

1 More precisely, for all points with integer coordinates in RN(m1+m2) minus a finite number of
algebraic hypersurfaces, that number being a function of N, m1 and m2.
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Let us summarize the discussion above. We have seen that it is possible to
construct a control ui in the form (3.14) that satisfy Conditions (C1) and (C2).
Our construction involves N(m1 +m2) integer frequencies that are widely spaced
(condition (3.16)) in order to prevent contributions in components xI belonging
to “smaller” equivalence classes, and that verify a resonance condition (equa-
tion (3.15)) which implies the linear relation (3.17).

However this construction tends to produce high frequencies while it is desirable
to find smaller ones for practical use. Therefore, the solution we recommend is to
implement an algorithm that will search for the frequencies appearing in the expres-
sion (3.14) of the control ui. This algorithm would test iteratively all N(m1 +m2)-
tuple of integer satisfying the resonance condition (3.15), and would search for the
smallest ones which prevent contributions in components xI belonging to classes E j

with j < i, and which produce an invertible matrix A. The discussion above guaran-
tees the finiteness of such an algorithm.

Note also that we could test in that algorithm controls ui involving less frequen-
cies. We have seen that 3 frequencies are enough when N = 1 whatever the val-
ues of m1,m2. We conjecture that, for N ≥ 1, 3N frequencies suffice, instead of
N(m1 +m2), and more generally N(m+1) when m is greater than 2.

Anyway, for each equivalence class E i = {I1, . . . , IN}, the result of these off-line
computations will be a control law ui[a] : [0,2π]→ Rm depending on a parameter
a ∈ RN , and an invertible matrix Ai such that:

• ui[a] is a linear combination of cosine functions with integer frequencies (ui[a]
is defined by (3.14) in the above construction);
• the trajectory associated with ui[a] satisfy xJ(2π) = xJ(0) if J ∈ E j with j < i,

and  xI1(2π)− xI1(0)
...

xIN (2π)− xIN (0)

= Aia.

Design of the steering law

We are now in a position to construct a steering method for the nilpotent system de-
fined by X1, . . . ,Xm. Note that since X1, . . . ,Xm are assumed to be given in canonical
form, the method only depends on the number of controlled vector fields m and on
the degree of nonholonomy r. The method is devised so that the produced trajecto-
ries satisfy the topological property of Remark 3.1, namely the resulting trajectory
γ(·;xinitial,u) converge to xinitial for the C0 topology when xinitial converges to xfinal.
Note that we have assumed that xfinal is always the origin.

Let us fix first some notations. Remind that the components of x ∈ Rñr are parti-
tioned in equivalent classes E 1,E 2, . . . ,E Ñ , sorted by increasing order. With every
equivalence class E i is associated a parameterized control law ui[a] and an invert-
ible matrix Ai. We set Bi = A−1

i and Ni = Card(E i), i = 1, . . . , Ñ. For x ∈ Rñr ,



66 3 Nonholonomic motion planning

we will use [x] j,...,k with 1 ≤ j < k ≤ ñr to denote the vector (x j, . . . ,xk), and
‖x‖0 to denote the pseudo-norm of x defined by the free weights. We also use
δλ (x) = (λ w1x1, . . . ,λ

wnxn) to denote the weighted dilation with parameter λ .

Algorithm 3.2 below produces a control Steerm,r(xinitial) that steers the canonical
form from an initial point xinitial ∈ Rñr to the origin.

Algorithm 3.2 Construction of the control law Steerm,r(xinitial)

Require: B1, . . . ,BÑ , and N1, . . . ,NÑ ;

1: λ := ‖xinitial‖0;

2: xnew := δ 1
λ

(xinitial);

3: unorm := 0;

4: j := 0;

5: for i = 1, . . . , Ñ do
6: x := [xnew] j+1,..., j+Ni ;

7: ai := Bi x;

8: construct ui = ui[ai] by Formula (3.14);

9: xnew := γ(2π;xnew,ui);

10: unorm := unorm ∗ui;

11: j = j+Ni;

12: return u := λ ûnorm.

Remark 3.2. Once the frequencies and matrices are obtained by an off-line compu-
tation, the on-line computation Steerm,r contains only a series of matrix multipli-
cations, and the computations of γ(2π;xnew,ui). The latter do not require to solve
differential equations but are obtained simply by successive integrations of ui, be-
cause the system is in triangular form. Thus all computations in Steerm,r can be
performed quickly on-line without any numerical difficulty.

Proposition 3.1. For every xinitial ∈ Rñr , the control Steerm,r(xinitial) steers Sys-
tem (3.7) from xinitial to xfinal = 0. Moreover, there exists a constant C > 0 such
that

‖Steerm,r(xinitial)‖L1 ≤Cd0(0,xinitial), ∀ xinitial ∈ Rñr , (3.18)

where we use d0 to denote the sub-Riemannian distance onRñr defined by X1, . . . ,Xm.

Note that the length of the trajectory γ(·;xinitial,u) associated with the control
u = Steerm,r(xinitial) is

length
(

γ(·;xinitial,u)
)
= ‖Steerm,r(xinitial)‖L1 .

Hence (3.18) implies that this length tends to 0 as xinitial→ 0, which is the topologi-
cal property required in Remark 3.1. We will see in Section 3.3 that this property is
also related to the notion of sub-optimal laws.
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Proof. The fact that the procedure described by the Lines 5− 12 in Algorithm 3.2
produces an input ûnorm steering System (3.7) from δ 1

λ

(xinitial) to 0 results from the
choice of frequencies discussed previously. We also note that, due to the homogene-
ity of System (3.7), if an input u steers this system from x to 0, then, for every
λ > 0, the input λu steers it from δλ (x) to 0. Therefore, the input Steerm,r(xinitial)
steers (3.7) from xinitial to 0.

Let us now show (3.18). Let x∈Rñr and set λ = ‖x‖0. Then x = δλ (xnorm) where
xnorm belongs to the sphere S(0,1) = {y : ‖y‖0 = 1}. Setting u(x) = Steerm,r(x) we
have

‖u(x)‖L1 = ‖λu(xnorm)‖L1 = λ‖u(xnorm)‖L1 ≤ λ sup
y∈S(0,1)

‖u(y)‖L1 .

Note that d0(0, ·) and ‖·‖0 at 0 are both homogeneous of degree 1 with respect to
the dilation δt(·), so there exists a constant C̃ > 0 such that λ ≤ C̃d(0,x). Moreover
supy∈S(0,1) ‖u(y)‖L1 is bounded since y 7→ u(y) is continuous and S(0,1) compact.
Inequality (3.18) follows. ut

Remark 3.3. The control we constructed are C∞ during each time interval [2iπ,2(i+
1)π], for i = 1, . . . , Ñ−1, but not globally continuous on [0, 2Ñπ] due to disconti-
nuity at t = 2π,4π, . . . ,2(Ñ− 1)π . It is however not difficult to devise continuous
controls by using interpolation techniques. We illustrate the idea with a simple ex-
ample. Assume that we use ui and u j defined by

ui
1(t) = cosω1it,

ui
2(t) = cosω2it +ai cos(ω∗2It + ε

i π

2
), t ∈ [2(i−1)π,2iπ],

u j
1(t) = cosω1 jt,

u j
2(t) = cosω2 jt +a j cos(ω∗2 jt + ε

j π

2
), t ∈ [2( j−1)π,2 jπ],

to steer two consecutive classes E i and E j (i.e. j = i+ 1) which are both of cardi-
nal equal to 1. The concatenation ui ∗ u j is not continuous, so we will construct a
modification ũ j of u j in such a way that ui ∗ ũ j is continuous, i.e.

ui
1(2π) = ũ j

1(2π), (3.19)

ui
2(2π) = ũ j

2(2π). (3.20)

To ensure (3.19), we take

ũ j
1(t) = ui

1(2π)cosω1Jt. (3.21)

For (3.20), we distinguish two cases:

• if ε j = 1, we can take

ũ j
2(t) = ui

2(2π)cosω2 jt +a j cos(ω∗2 jt−
π

2
); (3.22)
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• if ε j = 0, we add to u j
2 a frequency ωc which is large enough to avoid any

additional resonances,

ũ j
2(t) = cosω2 jt +a j cosω

∗
2 jt +(ui

2(2π)−a j−1)cosωct. (3.23)

By construction, the new input ui ∗ ũ j is continuous over the time interval [2iπ,2 jπ],
and steers the components in E i and E j to the same values as ui ∗u j does.

It is clear that this idea of interpolation by adding suitable frequencies can be
used to construct continuous inputs over the entire control period [0,2Ñπ]. In fact,
by using more refined interpolations, one can get inputs of class Ck for any arbitrary
finite integer k.

3.2.3 Other methods for nilpotent systems

Besides sinusoids, other classes of functions may be used to give exact solutions to
the motion planning problem for nilpotent systems, in particular polynomials and
piecewise constants functions.

Polynomial inputs

Assume that the nilpotent system ẋ = ∑
m
i=1 uiXi(x) is polynomial and in triangular

form, that is,
ẋ j = ∑

i
ui fi j(x1, . . . ,x j−1), j = 1, . . . ,n,

where every function fi j is polynomial. Chained systems and systems in canonical
form satisfy this assumption, as well as nilpotent approximations expressed in priv-
ileged coordinates (see (2.6) in Subsection 2.1.3). Actually, any analytic nilpotent
system can be put locally in this form [Kaw88].

This structure allows to compute easily the trajectories: given a control function
u(t), the coordinates x j(t) may be computed by integration one after the other. Let
us choose the controls as parameterized polynomial functions, for instance,

ui(t) =
N

∑
k=0

aiktk, i = 1, . . . ,m, (3.24)

with a parameter a = (a10, . . . ,am0, . . . ,a1N , . . . ,amN) ∈ R(N+1)m, N being a large
enough integer. With such a control every coordinate x j(t) is a polynomial function
of t, of the parameter a, and of the initial values x1(0), . . . ,x j(0). In particular there
holds,

x j(1) = Pj(a,x(0)), where Pj is a polynomial function.
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Thus, in order to obtain a control of the form (3.24) steering the system from xinitial

to xfinal, it is necessary to solve the algebraic system,

Pj(a,xinitial)− xfinal
j = 0, j = 1, . . . ,n,

where the unknown is the parameter a ∈ R(N+1)m (of course one must choose N
such that (N + 1)m ≥ n). Unfortunately the size and the degree of this algebraic
system increase exponentially with respect to the dimension n and to the degree of
nilpotency r, and there does not exist a general efficient method to solve it. Even
the existence of solutions is a non trivial issue. However this method may be useful
when n or r is rather small (seemingly when n≤ 5 or r = 2).

Piecewise constant controls

Consider a nilpotent system of step r on Rn defined by analytic vector fields
(X1, . . . ,Xm). We fix an initial point xinitial ∈ Rn and an open neighbourhood U of
this point. We make the following assumption.

Assumption (A). The system is provided with:

(i) a family of brackets XI1 , . . . ,XIñ , ñ≥ n, whose values at xinitial generates the
linear space Lie(X1, . . . ,Xm)(xinitial);

(ii) a mapping x ∈U 7→ q = q(x) ∈ Rñ such that

x = exp(qñXIñ)◦ · · · ◦ exp(q1XI1)(x
initial). (3.25)

Let xfinal be the goal point and q= q(xfinal). Given a control function u, we denote
by Su(t) the flow of the time-dependant vector field ∑i uiXi. The principle of the
method is to produce separately and sequentially, for i = 1, . . . , ñ, control functions
ui defined on [0,T ] such that Sui

(T ) equals exp(qiXIi) up to flows of brackets of
bigger length, the latter modifying the remaining factors exp(q jXI j) with j > i (the
I j are ordered by increasing length). This is not difficult to achieve with piecewise
constant controls thanks to the Campbell-Hausdorff formula (see Section A.1). We
illustrate this idea with an example.

Assume m = 2, I1 = 1, I2 = 2 and I3 = [1,2]. For simplicity we also suppose q3 >
0. Define the controls u1(t) = (q1,0) and u2(t) = (0,q2), t ∈ [0,1]. The associated
flows at time t = 1 satisfy Su1

(1) = exp(q1XI1) and Su2
(1) = exp(q2XI2). Define the

piecewise control u3 as,

u3(t) =


(
√

q3,0) for t ∈ [0,1],
(0,
√

q3) for t ∈ [1,2],
(−√q3,0) for t ∈ [2,3],
(0,−√q3) for t ∈ [3,4].
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The flow at time t = 4 Su3
(4) equals φ

[1,2]
q3 = exp(R)◦ exp(q3[X1,X2]), where R is a

Lie polynomial that involves Lie brackets of length greater than 2 (see Remark A.1).
If the degree of nilpotency r is equal to 2 (and so n = 3), then R = 0 and the

concatenation of the controls u1 ∗u2 ∗u3 steers the system from xinitial to

exp(q3XI3)◦ exp(q2XI2)◦ exp(q1XI1)(x
initial) = xfinal.

If r > 2, we can rewrite the product exp(qñXIñ) ◦ · · · ◦ exp(q4XI4) ◦ exp(R) as
exp(qñXIñ) ◦ · · · ◦ exp(q4XI4), and we can iterate the construction to generate the
term exp(q4XI4). This procedure finishes in a finite number of steps and produces
an exact solution to the motion planning problem for the nilpotent system.

Remark 3.4. It is also possible to produce piecewise controls ui such that Sui
(T )

exactly equals exp(qiXIi), as explained in [JK97]. Such a control avoids the compu-
tation of qi+1, . . . ,qn at each step.

Of course the key point for this method is Assumption (A). It holds for instance
in the following cases:

• the coordinates x in which the system is given, are the canonical coordinates
of the second kind centered at xinitial = 0 and associated with an adapted basis
XI1 , . . . ,XIn at 0; in this case ñ = n and q(x) = x;

• (X1, . . . ,Xm) is in canonical form in the coordinates x and xinitial = 0; as noticed
in Remark 2.7, this is a particular case of the previous one when one choose
{I1, . . . , Iñ}= H r.

There is however a general method to construct the mapping x 7→ q(x), and so to
show that (A) holds for any real analytic nilpotent system. This method, that have
been introduced in [LS92], works as follows.

We choose first a family of brackets XI1 , . . . ,XIñ that generates the Lie algebra
Lie(X1, . . . ,Xm) (which is finite dimensional since the system is nilpotent). In partic-
ular this family satisfy (i). For instance I1, . . . , Iñ may be chosen as elements of the
P. Hall basis H r (see Subsection 2.4.2).

The second step is to construct for every xfinal ∈U a ñ-tuple (q1, . . . ,qñ) such that

xfinal = exp(qñXIñ)◦ · · · ◦ exp(q1XI1)(x
initial).

Let us introduce the extended control system,

ẋ = v1XI1(x)+ · · ·+ vñXIñ(x), (3.26)

where v = (v1, . . . ,vñ) is the control. It is easy to find a control v which steers the
system (3.26) from xinitial to xfinal. Indeed, we choose a C1 path γ : [0,T ] → Rn

connecting xinitial to xfinal (a segment for example), and, for all t ∈ [0,T ], we express
the tangent vector γ̇(t) as a linear combination of XI1(t), . . . ,XIñ(t). The coefficients
of this combination are exactly v1(t), . . . ,vñ(t).
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Denote by Sv(t) the flow of the time-dependent vector field ∑i viXIi . By construc-
tion xfinal = Sv(T )(xinitial). Since XI1 , . . . ,XIñ generate Lie(X1, . . . ,Xm), one can show
that there exist ñ functions hv

1, . . . ,h
v
ñ defined on [0,T ] such as

Sv(t) = exp(hv
ñ(t)XIñ)◦ · · · ◦ exp(hv

1(t)XI1), (3.27)

To compute these functions hv
i (·), we replace Sv(t) by its expression (3.27) in the

differential equation,

Ṡv(t) =
ñ

∑
i=1

vi(t)XIi(S
v(t)), Sv(0) = Id.

It appears that, once expressed in terms of hv
1, . . . ,h

v
ñ, this differential equation is a

triangular system of the form,

ḣv
k = Qk(hv

1, . . . ,h
v
k−1,v1, . . . ,vk), k = 1, . . . , ñ, (3.28)

with h1(0) = · · ·= hñ(0) = 0. We then compute the functions hv
1, . . . ,h

v
ñ by a direct

integration. Since xfinal = Sv(T )(xinitial), we obtain q = q(xfinal) by setting qi = hi(T )
for i = 1, . . . , ñ. We have constructed in this way the mapping x 7→ q(x) of (ii), and
hence ensured that Assumption (A) holds.

3.3 Method by approximation

When the nonholonomic system is non nilpotentizable, we will look for an approx-
imate solution to the motion planning problem rather than an exact one. The notion
of first-order approximation for nonholonomic systems we have introduced in Chap-
ter 2 suggests the use of a Newton type iterative method. Such a method works on
the following scheme: solve first the motion planning problem for a first-order ap-
proximation of the system, and apply the so obtained control to the original system;
iterate then the procedure from the resulting point. Taking this idea as a starting
point, we present in this section a complete procedure for solving the motion plan-
ning problem. This procedure, which is inspired by the one in [JOV05], has been
introduced in [CJL13].

3.3.1 Steering by approximation

Let us first explain informally the principle of a method by approximation.
Given an initial point xinitial and a final point xfinal, one first solves the motion

planning problem for a nilpotent approximation of (Σ ) at xfinal by using one of the
methods described in Section 3.2; then, one applies the resulting input û to (Σ )
and iterates the procedure from the current point. If we use γ̂(t; p,u), t ∈ [0,T ], to
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denote the trajectory of the nilpotent approximation associated with the control u
and starting at p, a local version of this algorithm is summarized in Algorithm 3.3
below, where d is the sub-Riemannian distance associated with (Σ ) and e is a fixed
positive real number.

Algorithm 3.3 Local Steering Algorithm
Require: xinitial, xfinal, e

k := 0;
xk := xinitial;
while d(xk,xfinal)> e do

Compute ûk such that xfinal = γ̂(T ;xk, ûk);
Set xk+1 := γ(T ;xk, ûk);
k := k+1;

The “while” loop in Algorithm 3.3 defines a mapping AppSteer : (xk,xfinal) 7→
γ(T ;xk, ûk). The algorithm converges locally provided that AppSteer is locally con-
tractive with respect to the distance d, i.e., for xfinal ∈ Ω , there exists ε(xfinal) > 0
and c(xfinal) ∈ (0,1) such that

d(xfinal,AppSteer(x,xfinal))≤ c(xfinal)d(xfinal,x), (3.29)

for x ∈Ω and d(xfinal,x)< ε(xfinal).
Assume now that we have a uniformly locally contractive mapping AppSteer on

a connected compact set K ⊂ Ω , i.e. that there exists εK > 0 and cK ∈ (0,1) such
that

d(xfinal,AppSteer(x,xfinal))≤ cKd(xfinal,x), (3.30)

for x, xfinal ∈ K and d(xfinal,x) < εK . In this case the local algorithm above can
be transformed into a global one (on K), for instance by using the following idea.
Choose a path Γ ⊂ K connecting xinitial to xfinal and pick a finite sequence of inter-
mediate goals {xd

0 = xinitial,xd
1 , . . . ,x

d
j = xfinal} on Γ such that d(xd

i−1,x
d
i ) < εK/2,

i = 0, . . . , j. It is then clear that the iterated application of a uniformly locally con-
tractive AppSteer(xi−1,xd

i ) from the current state to the next subgoal (having set
xd

i = xfinal for i≥ j) yields a sequence xi converging to xfinal.
To turn the above idea into a practically efficient algorithm, two issues must be

successfully addressed:

• construct a mapping AppSteer which is uniformly locally contractive;
• devise a globally convergent algorithm that do not use explicitly the “critical

distance” εK , the knowledge of the latter being not available in practice.
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3.3.2 Local steering method

In this subsection and the next one we will assume that the vectors fields X1, . . . ,Xm
generate a free up to step r Lie algebra. We have seen in Section 3.1 that, up to a
desingularization, we can always reduce the problem to that case. Recall that with
that assumption every point x ∈ Ω is regular, the growth vector is constant on Ω ,
and the weights at every point are equal to the free weights, that is w j = w̃ j for
j = 1, . . . ,n. Moreover the dimension n is equal to the dimension ñr of L r.

Our aim now is to design a mapping AppSteer which is uniformly locally con-
tractive, so that the corresponding steering algorithm 3.3 is locally convergent. The
first ingredient is the construction of a continuous nilpotent approximation, which
itself requires the construction of a continuous varying system of privileged coor-
dinates. For the latter we adapt the algebraic coordinates given in Subsection 2.1.2.

Construction of the nilpotent approximation A

Denote by x = (x1, . . . ,xn) the canonical coordinates in Rn. For every point p in
Ω , we construct the nilpotent approximation A (p) of (X1, . . . ,Xm) at p as follows.

(i) Take {XI j : I j ∈H r}.
(ii) Compute the affine change of coordinates x 7→ y= (y1, . . . ,yn) such that the new

coordinates y satisfy ∂y j = XI j(p), j = 1, . . . ,n.
(iii) Build the system of privileged coordinates z̃ = (z̃1, . . . , z̃n) by the following it-

erative formula, for j = 1, . . . ,n,

z̃ j := y j−
w j−1

∑
k=2

hk(y1, . . . ,y j−1), (3.31)

where, for k = 2, . . . ,w j−1,

hk(y1, . . . ,y j−1) = ∑
|α|=k

w(α)<w j

Xα1
I1

. . .X
α j−1
I j−1
· (y j−

k−1

∑
q=2

hq)(y)|y=0
yα1

1
α1!
· · ·

y
α j−1
j−1

α j−1!
,

with |α|= α1 + · · ·+αn.
(iv) For i = 1, . . . ,m, compute the Taylor expansion of Xi(z̃) at 0, and express every

vector field as a sum of vector fields which are homogeneous with respect to the
weighted degree defined by the sequence (w j) j=1,...,n:

Xi(z̃) = X (−1)
i (z̃)+X (0)

i (z̃)+ · · · ,

where we use X (k)
i (z̃) to denote the sum of all the terms of weighted degree

equal to k.
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(v) Define the vector fields X̂ p
1 , . . . , X̂

p
m on Ω by X̂ p

i := z̃∗X (−1)
i for i = 1, . . . ,m. Set

A (p) := (X̂ p
1 , . . . , X̂

p
m).

(vi) For j = 1, . . . ,n, identify homogeneous polynomials Ψj of weighted degree
equal to w j such that, in the system of privileged coordinates z = (z1, . . . ,zn)
defined by

z j = z̃ j +Ψj(z̃1, . . . , z̃ j−1), j = 1, . . . ,n,

the family (X̂ p
1 , . . . , X̂

p
m) is in the canonical form.

(vii) Define Φ(p, ·) as the mapping x 7→ z.

The outputs of this algorithm are the mappings Φ and A , which are respectively
a continuously varying system of privileged coordinates and a continuous nilpotent
approximation of (X1, . . . ,Xm) on Ω (see also Subsection 2.2.2).

Remark 3.5. The existence of the polynomials Ψj in Step (vi) is guaranteed by the
same kind of arguments than the one in Step (v) of the Desingularization Algo-
rithm, see Remark 2.8. The role of that step is to construct an approximated system
A (p) that has always the same form in coordinates z, regardless of the vector fields
(X1, . . . ,Xm) and of the approximation point p ∈ Ω . The specificity of each system
or each approximation point is then hidden in the change of coordinates Φ .

Now that a nilpotent approximation has been chosen, one must choose a way
to control it. Let us denote by Λ ⊂ Ω ×Ω the neighbourhood of the diagonal
{(p, p), p ∈Ω} where the mapping (p,q) 7→A (p)(q) is well-defined and continu-
ous .

Definition 3.3. A steering law for A is a mapping which, with every pair (x, p)∈Γ ,
associates a control û∈ L1([0,T ],Rm), henceforth called a steering control, such that
the trajectory γ̂(·;x, û) of the approximated system,

ẋ =
m

∑
i=1

ûiX̂
p
i (x), (3.32)

is defined on [0,T ] and satisfies γ̂(T ;x, û) = p. In other words, û(·) steers (3.32)
from x to p.

A steering law of a nilpotent approximation is intended to be used as an approx-
imate steering law for the original system. For that purpose, it is important to have
a continuity property of the steering control: the closest are x and p, the smaller is
the length of û. We thus introduce the notion of sub-optimality (which is a sort of
Lipschitz continuity of the steering law).

Definition 3.4. We say that a steering law for A is sub-optimal if there exists a
constant C` > 0 and a continuous positive function ε`(·) such that, for any (p,x)∈Γ

with d(p,x)< ε`(p), the control û(·) steering (3.32) from x to p satisfies:

‖û‖L1 ≤C` d̂p(x, p) =C` d̂p(γ̂(0;x, û), γ̂(T ;x, û)), (3.33)

where d̂p is the sub-Riemannian distance associated with A (p).
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Recall that by definition, d̂p(x, p) is the infimum of ‖u‖L1 among all controls u
steering (3.32) from x to p. As a consequence, sub-optimal steering laws always
exist (and the constant C` can not be smaller than 1).

Looking for a steering law for A is much simpler in coordinates z = Φ(p, ·).
Indeed, in these coordinates A (p) is in canonical form and so independent of p,
and z(p) = 0. Hence all conditions are met in order to use the function Steerm,r(·)
constructed in Subsection 3.2.2 for steering (3.32) from a point of coordinate z to p.
Moreover one has d̂p(x, p) = d0(z(x),0), where d0 is the distance on Rñ associated
with the canonical form. As a direct consequence of Proposition 3.1 we then obtain
the following result.

Corollary 3.1. The mapping (x, p) 7→ Steerm,r(Φ(p,x)) is a sub-optimal steering
law for A .

From now on, we assume that a sub-optimal steering law for A is given. We do
not impose the choice of Steerm,r ◦Φ since there exist other solutions to the motion
planning problem for nilpotent systems.

Definition 3.5. Given a steering law for A , we define the mapping AppSteer from
Γ to Ω as

AppSteer(x, p) = γ(T ;x, û),

where û(·) is the steering control of A (p) associated with (x, p).

Using a fixed point argument, the following result will ensure the local conver-
gence of the local steering algorithm (Algorithm 3.3, page 72) based on the mapping
AppSteer.

Proposition 3.2. Let K be a compact subset of Ω . Assume that A is provided with
a sub-optimal steering law. Then the associated mapping AppSteer is uniformly
locally contractive on K, that is, there exists a constant εK > 0 such that, for every
pair (p,x) ∈ (K×K)∩Γ verifying d(p,x)< εK , there holds,

d(p,AppSteer(x, p)) ≤ 1
2

d(p,x), (3.34)

‖z(AppSteer(x, p))‖p ≤
1
2
‖z(x)‖p, (3.35)

where z = Φ(p, ·).

Note that the pseudo-norm ‖ · ‖p does not depend on p ∈ K since the growth vector
is constant on K.

Proof. Since Φ is a continuous varying system of privileged coordinates and A a
continuous nilpotent approximation, it follows from Theorem 2.3 that there exist
continuous positive functions C(·) and ε(·) such that, for every pair (x, p) ∈Ω ×Ω

with d(x, p)< ε(p) and every control u(·) with ‖u‖L1 < ε(p), there holds,

‖z(γ(T ;x,u))− z(γ̂(T ;x,u))‖p ≤C(p)max
(
‖z(x)‖p,‖u‖L1

)
‖u‖1/r

L1 ,
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where r is the degree of nonholonomy at p, and γ̂(·;x,u) is a trajectory of the non-
holonomic system defined by A (p). Using the definition of a sub-optimal steering
law and Inequality (2.13) in Theorem 2.3, one concludes easily. ut

Remark 3.6. Another way to construct a uniformly locally contractive mapping
AppSteer is to extend the method described at the end of Subsection 3.2.3 to the
situation where the system is not nilpotent. The difficulty in that case is that the Lie
algebra Lie(X1, . . . ,Xm) is not finite-dimensional, implying that:

(i) the Campbell-Hausdorff formula contains an infinite number of terms, and so
the procedure for constructing piecewise constant controls is no more finite;

(ii) the expression (3.27) is a composition of an infinite number of terms.

The approximation process consists then in keeping only the factors generated by
brackets of order not greater than r in these formula. We can in this way define a
mapping AppSteer which is locally contractive, see [LS92] for more details.

3.3.3 Global steering method

Let K ⊂Ω be a connected compact set and xinitial, xfinal be two points in K. We de-
vise, under the assumptions of Proposition 3.2, an algorithm (Algorithm 3.4 below)
which steers (Σ ) from xinitial to a point arbitrarily close to xfinal. That algorithm is a
globalization of the local steering method Algorithm 3.3 but it does not require any
a priori knowledge on the critical distance εK . This approach of the globalization is
inspired by the trust-region methods in optimization (see for instance [BGLS06]).

Recall first that the family of vectors fields (X1, . . . ,Xm) is assumed to be free up
to step r. As a consequence the weights (w1, . . . ,wn), and so the pseudo-norm, are
the same at any point p ∈ Ω . We use the notation ‖ · ‖0 for the pseudo-norm at any
point of Ω . We introduce the parameterized path t 7→ δt(x), which is defined by

δt(x) = (tw1z1(x), . . . , twnzn(x)), for x ∈Ω ,

where z = Φ(xfinal, ·). Note that δt is the (weighted) dilation in privileged coor-
dinates at xfinal with parameter t. In particular, ‖z(δt(x))‖0 = |t|‖z(x)‖0. We also
define the function Subgoal as follows.

Subgoal(x,η , j)
1. t j := max(0,1− jη

‖z(x)‖0
);

2. Subgoal(x,η , j) := δt j(x)

We note that the formula for generating t j guarantees that

‖z(Subgoal(x,η , j))− z(Subgoal(x,η , j−1))‖0 ≤ η ,

and that xd = xfinal for j large enough.



3.3 Method by approximation 77

The global algorithm is described in Algorithm 3.4 below and used the mapping
AppSteer as a sub-process. It steers (Σ) from xinitial to a point x such that ‖z(x)‖0 ≤
e, where e > 0 is the desired precision (remind that z = Φ(xfinal, ·), and so that
‖z(xfinal)‖0 = 0). Note that the Euclidean norm ‖ ·‖ is smaller than the pseudo-norm
‖ · ‖0, hence the final point x of the algorithm satisfies ‖z(x)− z(xfinal‖ ≤ e.

Algorithm 3.4 Global (xinitial,xfinal,e,K,AppSteer)
1: i := 0; j := 1;

2: xi := xinitial; x := xinitial;

3: η := ‖z(xinitial)‖0; {initial choice of the maximum step size}
4: while ‖z(xi)‖0 > e do
5: xd := Subgoal (x,η , j);

6: x := AppSteer (xi,xd);

7: if ‖Φ(xd ,x)‖0 >
1
2‖Φ(xd ,xi)‖0 then {if the system is not approaching the subgoal,}

8: η := η

2 ; {reduce the maximum step size}
9: x := xi; j := 1; {change the path δ0,t(x̄)}

10: else
11: i := i+1; j := j+1;

12: xi := x; xd
i := xd ;

13: return xi.

Proposition 3.3. Let K ⊂ Ω be a connected compact set equal to the closure of its
interior. Assume that the mapping AppSteer is defined by a sub-optimal steering law
of A .

Then, for any pair of points (xinitial,xfinal) ∈ K×K, Algorithm 3.4 terminates in
a finite number of steps for any choice of the tolerance e > 0 provided that the
sequences (xi)i≥0 and (xd

i )i≥0 both belong to K.

Remark 3.7. The last assumption of the proposition prevents the sequences (xi)i≥0
and (xd

i )i≥0 from accumulating on the boundary of the compact K. This assumption
is of a purely numerical nature, and it can be removed either by adding suitable
intermediate steps to Algorithm 3.4 as in [CJL13], or by using numerical artifacts of
probabilistic nature. Note also that if the points xinitial and xfinal are far enough from
the boundary of K, one can prove that the sequences (xi)i≥0 and (xd

i )i≥0 will remain
in K.

Proof (of Proposition 3.3). Note first that, if the conditional statement of Line 7
is not true for every i greater than some i0, then xd

i = xfinal after a finite number
of iterations. In this case, the error ‖z(xi)‖0 is reduced at each iteration and the
algorithm stops when it becomes smaller than the given tolerance e. This happens
in particular if d(xi,xd) < εK for all i greater than i0 because condition (3.35) is
verified. Another preliminary remark is that, due to the continuity of the distance d
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and of the function ‖z(·)‖0, there exists η > 0 such that, for every pair (x1,x2) ∈
K×K, one has

‖z(x1)− z(x2)‖0 < η =⇒ d(x1,x2)<
εK

2
. (3.36)

In the following, we will prove by induction that if, at some step i0, one has
η < η , then, for all i > i0,

d(xi−1,xd
i )< (1/2+ · · ·+(1/2)i−i0)εK < εK .

We assume without loss of generality that i0 = 0 and x = x0. For i = 1, by con-
struction, xd = Subgoal(x0,η ,1) and

‖z(x0)− z(xd)‖0 ≤ η < η .

In view of (3.36), one obtains d(x0,xd) < εK/2, which implies by (3.35) that the
conditional statement of Line 7 is not true. Therefore xd

1 = xd and d(x0,xd
1)< εK/2.

Assume now that for i > 1 one has

d(xi−2,xd
i−1)< (1/2+ · · ·+(1/2)i−1)εK . (3.37)

The subgoal xd
i−1 is of the form Subgoal(x,η , j). Letting xd = Subgoal(x,η , j+1),

one has
d(xi−1,xd)≤ d(xi−1,xd

i−1)+d(xd
i−1,x

d).

By construction, it is
‖z(xd

i−1)− z(xd)‖0 ≤ η < η ,

which implies d(xd
i−1,x

d)< εK/2. The induction hypothesis (3.37) implies that

d(xi−1,xd
i−1)≤

1
2

d(xi−2,xd
i−1).

Finally, one gets

d(xi−1,xd) ≤ 1
2

d(xi−2,xd
i−1)+d(xd

i−1,x
d)

≤ (1/2+ · · ·+(1/2)i)εK .

In view of (3.35), the conditional statement of Line 7 is not true, and so xd
i = xd .

This ends the induction.

Notice that, at some step i, η ≥ η , the conditional statement of Line 7 could be
false. In that case, η is decreased as in Line 8. The updating law of η guarantees
that after a finite number of iterations of Line 8, there holds η < η . This ends the
proof. ut
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3.3.4 A complete algorithm

We can now put together the elements developed in the section and present a global
motion planning strategy. It is presented as an algorithmic procedure associated with
a given nonholonomic system (Σ ) defined on Ω ⊂ Rn by m vector fields X1, . . . ,Xm
which satisfy Chow’s Condition. The required inputs are initial and final points
xinitial and xfinal belonging to Ω , a tolerance e > 0, and a compact connected set K ⊂
Ω (of appropriate size) equal to the closure of its interior which is a neighbourhood
of both xinitial and xfinal. For instance, K can be chosen to be a large enough compact
tubular neighbourhood constructed around a curve joining xinitial and xfinal.

Global Approximate Steering Method

Let (xinitial,xfinal,e,K) be given.

1. Build a decomposition (3.2) of K into a finite number of compact sets Ki ⊂ VJi ,
with i = 1, . . . ,M. Up to renumbering we assume xinitial ∈ K1, xfinal ∈ KM̄ for
some integer M̄≤M, and Ki∩Ki+1 6= /0 for i= 1, . . . ,M̄−1. We can then choose
a sequence (xi)i=1,...,M̄−1 such that xi ∈ Ki∩Ki+1 and we set xM̄ = xfinal.

2. Set x := xinitial.
3. For i = 1, . . . ,M̄:

a. Apply the Desingularization Algorithm at p = xi with J = Ji (see Sec-
tion 2.4.2). The output is a system of coordinates z on VJi ×Rñr−n, and m
vector fields ξ1, . . . ,ξm on this domain.

b. Define AppSteer as the mapping associated with the nilpotent approxima-
tion A of (ξ1, . . . ,ξm) on VJi×Rñr−n and with its steering law Steerm,r ◦Φ

(see Subsection 3.3.2).
c. Set x̃initial := (x,0), x̃final := (xi,0). Choose ei > 0 so that the set {y ∈ Ki :
‖z(y)−z(xi)‖≤ ei} is included in Ki+1 if i< M̄, and ei = e if i= M̄. Choose
also a closed Euclidean ball B(0,R) in Rñr−n of large radius R, and set
K̃i = Ki×B(0,R).

d. Apply Global(x̃initial, x̃final,ei, K̃i,AppSteer) to (ξ1, . . . ,ξm). The algorithm
stops at a point x̃ which is ei-close to x̃final (in the Euclidean norm associated
with the coordinates z).

e. Replace x by π(x̃), where π : VJi ×Rñr−n→ VJi is the canonical projec-
tion, and return to step 3a with i := i+1 if i < M̄.

This method steers, in a finite number of steps, the nonholonomic system (Σ )
from xinitial to a point x ∈ K arbitrarily close to xfinal as e→ 0.

Let us mention some advantages of this method. First, it may be easily adapted
for stabilization tasks since it relies on an iterative procedure (see [OV05]). Sec-
ond, taking advantage of the fact that the algorithm may be adapted to produce a
C1 input, one can address the motion planning problem for the dynamical exten-
sions of nonholonomic systems, that is, systems for which the control is not u but
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its derivative. Finally, let us point out the modular nature of the method: one can
propose other approaches to obtain uniformly contractive local methods (like the
one of Remark 3.6), or replace Steerm,r(·) by another control strategy for nilpotent
systems.

3.4 Two other methods

Beside the method by approximation developed in the previous section we present
with less details two other motion planning methods that reveal interesting charac-
teristics of nonholonomic systems.

3.4.1 Path approximation

Assume that the degree of nonholonomy of (Σ ) is bounded by an integer r on the
whole domain Ω and consider the elements I1, . . . , Iñr of H r. For every x ∈ Ω the
family X1(x), . . . ,Xñ(x) generates the whole Rn. It follows that any smooth curve in
Ω is a trajectory of the extended system defined as,

ẋ = v1XI1(x)+ · · ·+ vñr XIñr
(x), x ∈Ω , (3.38)

where v = (v1, . . . ,vñr) is the control.
The idea of the path approximation method is to construct trajectories of the

nonholonomic system (Σ ) approaching the ones of the extended system. More pre-
cisely, given a trajectory γ of the extended system, we will explicitly construct a
sequence u j = (u j

1, . . . ,u
j
m) of controls such that the corresponding trajectories of

(Σ ) converge uniformly in time to γ when j tends to infinity. This result gives an
approximate solution to the motion planning problem: choosing any smooth curve γ

(which is also a trajectory of the extended system) that joins xinitial to xfinal, the con-
trol u j constructed above will steer (Σ ) arbitrarily close to xfinal for j large enough.

The main advantage of the construction is its universal character: it is indepen-
dent of the particular values taken by the vector fields, and depends only on the
structure of the Lie brackets. Therefore, the natural environment to present this con-
struction is that of the free Lie algebra. However, this abstraction makes thinks diffi-
cult to understand, so we have chosen to describe the method on a simple example.
We refer the reader to the papers of Sussmann and Liu for a complete presenta-
tion (first appearance in [SL91], all technical details in [Liu97], and a simplified but
more affordable presentation in [SL93]).

Consider then the case of a system with two inputs in R5, that is,

ẋ = u1X1(x)+u2X2(x), x ∈ R5, (3.39)
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whose degree of nonholonomy is never greater than 3. The elements I1, . . . , Iñr of
H 3 are I1 = 1, I2 = 2, I3 = [1,2], I4 = [1, [1,2]], and I5 = [2, [1,2]]. Fix two points
xinitial,xfinal in R5 and choose a C1 curve γ : [0,1]→ R5 such that γ(0) = xinitial and
γ(1) = xfinal. There exist smooth real-valued functions v1, . . . ,v5 defined on [0,1]
such that t→ γ(t) is the solution of the Cauchy problem

ẋ = v1(t)XI1(x)+ · · ·+ v5(t)XI5(x), x(0) = xinitial.

We seek to build a control sequence (u j) j∈N such that the sequence of trajectories
of (3.39) associated with (u j) j∈N converges uniformly in time to γ when j tends to
infinity.

As in Subsection 3.2.2, we use oscillating controls that are linear combinations
of sinusoidal functions with carefully chosen frequencies. Consider three groups of
real-valued frequencies Ωk = {ωk,1,ωk,2}, for k = 1,2,3, and assume that the ωk,l
satisfy the following conditions:

(i) ω1,1 +ω1,2 = 0, 2ω2,1 +ω2,2 = 0, ω3,1 +2ω3,2 = 0;
(ii) for any integer αk in [−2,2] and any ωk ∈Ωk, k = 1,2,3, one has,

α1ω1 +α2ω2 +α3ω3 = 0 =⇒ α1 = α2 = α3 = 0.

Now, fix some C1 functions η1,η2,ηk,l , k = 1,2,3 and l = 1,2. We define the se-
quence of controls u j = (u j

1,u
j
2), j ∈ N, by

u j
1(t) = η1(t)+u j

1,1(t)+u j
2,1(t)+u j

3,1(t),

u j
2(t) = η2(t)+u j

1,2(t)+u j
2,2(t)+u j

3,2(t),

where

u j
1,1(t) = j

1
2 η1,1(t)sinω1,1 jt, u j

1,2 = j
1
2 η1,2(t)cosω1,2 jt, (3.40)

u j
2,1(t) = j

2
3 η2,1(t)cosω2,1 jt, u j

2,2 = j
2
3 η2,2(t)cosω2,2 jt, (3.41)

u j
3,1(t) = j

2
3 η3,1(t)cosω3,1 jt, u j

3,2 = j
2
3 η3,2(t)cosω3,2 jt. (3.42)

Then the sequence of trajectories of the system (3.39) associated with the sequence
of controls u j converges uniformly to the solution of

ẋ = η1XI1(x)+η2XI2(x)−
η1,1η1,2

2ω1,1
XI3(x)−

η2
2,1η2,2

8ω2
2,1

XI4(x)−
η3,1η2

3,2

4ω3,1ω3,2
XI5(x).

As a consequence, by choosing the functions η1,η2,ηk,l such that
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η1(t) = v1(t), η2(t) = v2(t), −
η1,1(t)η1,2(t)

2ω1,1
= v3(t),

−
η2

2,1(t)η2,2(t)

8ω2
2,1

= v4(t), −
η3,1(t)η2

3,2

4ω3,1ω3,2
= v5(t),

the sequence of controls (u j) j∈N produces a sequence of trajectories of (3.39) that
converge uniformly to γ . This ends the construction.

It is important to notice the role of the conditions (i) and (ii). For instance, the
resonance condition (i) ensures that a control such as (3.40) does a motion in the
direction X3, whereas the independence condition (ii) guarantees that the controls
(3.41) and (3.42) do not produce any displacement in that direction. Thus these con-
ditions play exactly the same role as (3.15) and (3.16) do respectively for steering
nilpotent systems.

However there is a huge difference between both strategies. Indeed, the path
approximation requires to use sinusoidal controls whose frequencies tend to infinity
in order to ensure that the final state converges to the goal, even if the system under
consideration is nilpotent. This makes the method hardly usable in practice for most
applications.

3.4.2 Continuation Method

Fix a point p ∈ Ω and a time T > 0. We will consider only L2 control functions,
so we define the set of admissible controls as U = L2([0,T ],Rm). The end-point
mapping at p in time T is defined by

Ep,T : v ∈U 7→ γ(T ; p,v).

Using this mapping, the motion planning problem may be restated as follows: given
a pair (xinitial,xfinal) ∈Ω ×Ω , find a control u ∈U such that

Exinitial,T (u) = xfinal.

Thus, we want to invert the application Exinitial,T , or more precisely, we are looking
for a right inverse of Exinitial,T because it is surjective (the system is controllable),
but it is not injective (there are several controls u such that Exinitial,T (u) = xfinal). We
proceed as follows.

Take any control u0 ∈ U . The idea is to build a path in U that allows to go
from u0 to a control u1 satisfying Exinitial,T (u

1) = xfinal. Set x0 = Exinitial,T (u
0), and

choose a path π : [0,1]→ Ω such that π(0) = x0 and π(1) = xfinal. We seek a path
Π : [0,1]→U such that, for almost every s ∈ [0,1],

Exinitial,T (Π(s)) = π(s).
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Taking the derivative with respect to s, we obtain

dExinitial,T (Π(s)) · dΠ

ds
(s) =

dπ

ds
(s), (3.43)

where dExinitial,T (v) denotes the differential of Exinitial,T at v ∈U .
If dExinitial,T (Π(s)) is of full rank, it admits right inverses. Choose one of them

(for instance the Moore-Penrose pseudo-inverse), and denote it by P(Π(s)). We can
form a differential equation,

dΠ

ds
(s) = P

(
Π(s)

)
· dπ

ds
(s), (3.44)

whose solutions satisfy (3.43). As a consequence, the solution of the Cauchy prob-
lem, 

dΠ

ds
(s) = P

(
Π(s)

)
· dπ

ds
(s),

Π(0) = u0,
(3.45)

is by construction a solution of (3.43), provided it is defined on the whole interval
[0,1], and its final value u1 = Π(1) is a solution of the motion planning problem
between xinitial and xfinal. It can be obtained through a numerical integration of (3.45)
on [0,1] using for example an Euler scheme.

Hence we are led to study the lifting equation (3.44) as an ordinary differential
equation on U . In order to use this equation to solve the motion planning problem,
we have to guarantee two conditions:

(a) non degeneracy: the path π must be chosen so that dExinitial,T (Π(s)) is of full
rank for every s ∈ [0,1];

(b) non explosion: for any initial choice u0, the solution of the Cauchy problem
(3.45) must be defined on the whole interval [0,1].

Point (a) ensures the existence of P(Π(s)) for all s ∈ [0,1], and so that (3.44) is
well-defined. Point (b) ensures the existence of Π(1). Note that the end-point map-
ping is smooth, so we always have local existence and uniqueness of the solution of
(3.45).

Both conditions are very difficult to guarantee. For the first point one has to deal
with the singular controls, which are the critical points of the end-point mapping.
A way to ensure (a) would be to require that the path π avoids the set of the critical
values of the end-point mapping. However there is no general characterization of
this set, we do not even know if it is of zero measure (that is, if the end-point map-
ping satisfies a Sard type property). We refer to [Rif14] for a discussion on singular
controls.

Point (b) consists in proving the global existence of the solutions of a highly
nonlinear differential equation, which is particularly difficult in the general case.
It is related to (a) since the interval of definition of the solutions depends on the
domain of definition of the differential equation itself. Results exist only under very
restrictive assumptions [Chi06, CC03].



84 3 Nonholonomic motion planning

Thus from a theoretical point of view, the validity of the continuation method
is not settled. In particular a proof of convergence in a general setting seems to be
very difficult to obtain. However the numerical implementation of this method (or of
some of its variants) for concrete examples often provide rapidly a very satisfactory
approximate solution to the motion planning problem. It is then worth to consider
this method in practical problems, and to further investigate its mathematical setting.

3.5 An overview of the motion planning algorithms

To conclude this section, let us give a brief overview of the existing solutions to the
motion planning problem. Recall that such a solution is an algorithm whose inputs
are the points (xinitial,xfinal), and whose output is a control u steering the system
from xinitial to xfinal, or to a point arbitrarily close to xfinal. Several criteria may be
introduced to judge such a procedure, we propose the following ones.

1. Generality: to which class of nonholonomic systems applies the algorithm? The
larger the class is, the more general the algorithm will be. The most general
algorithms apply to systems satisfying the sole Chow Condition.

2. Global character of the algorithm: does the algorithm produce a steering control
for every pair of points in Ω? Or just for points close enough one to each other?
Note that the core of many algorithms consists in a local procedure and turning
the latter into a global one may be a serious obstacle to overcome.

3. Convergence: does a mathematical proof of convergence exist?
4. Usefulness for practical applications:

• is the dimension n of the state drastically limited?
• is the procedure robust with respect to the dynamics?
• does it produce “nice” trajectories, e.g. smooth enough, without cusps nor

large oscillations?
• does it have a good local behaviour, i.e., is it possible to reduce the state

space Ω to any smaller open and connected subset of Rn?

5. Efficiency of the numerical implementations.

Let us present now the existing solutions to the nonholonomic motion planning
problem at the light of the aforementioned criteria. We restrict our overview to the
algorithms that present a sufficient degree of generality. In particular we do not men-
tion algorithms applying to very specific systems, or to systems in small dimension
(typically, there exist several particular methods in dimension 3).

At first, in the case of specific classes of nonholonomic systems (i.e. where
more is known than the sole Chow Condition), effective techniques have been pro-
posed, among which a Lie bracket method for steering nilpotentizable systems (see
[Laf91, LS92] and Subsection 3.2.3), sinusoidal controls for chained systems (see
[MS93] and Subsection 3.2.1), averaging techniques for left-invariant systems de-
fined on a Lie group (see [LK95, BLL00]), and a trajectory generation method for
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flat systems (see [FLMR95]). Depending on the applications, these methods turn
out to be extremely efficient, especially when the system to be steered is shown to
be flat with an explicit flat output.

However, the class of systems considered previously is rather restrictive. For
instance for 2-input nonholonomic systems (i.e. m = 2), under suitable regular-
ity assumptions, a flat system is feedback equivalent to a chained system (cf.
[Mur94, MMR01]), which is a non generic property among nonholonomic systems
as soon as the dimension of the state space is larger than 4. As already mentioned in
Section 3.2, the same property of non genericity holds for nilpotentizable systems.
Moreover, there exist standard nonholonomic systems whose kinematic model does
not fall into any of the aforementioned categories. For instance, mobile robots with
more than one trailer cannot be transformed in chained-form unless each trailer is
hinged to the midpoint of the previous wheel axle, an unusual situation in real vehi-
cles. Another similar example is the rolling-body problem: even the simplest model
in this category, the so-called plate-ball system, does not allow any chained-form
transformation and is not flat.

Regarding general nonholonomic systems, various steering techniques have been
proposed in the literature. Let us first mention the generic loop method, presented
in [Son95]. It is based on a local deformation procedure but requires an a priori es-
timate of some “critical distance” which is an unknown parameter in practice. That
fact translates into a severe drawback for constructing a globally valid algorithm.
The path approximation of [Liu97, SL91], which uses unbounded sequence of sinu-
soids, is also worth noticed (see Subsection 3.4.1). It is however not adapted to most
of the practical motion planning tasks, since it relies on a limit process of highly os-
cillating inputs. A series of papers ([GJZ10, BG13] and references therein) presents
another method of path approximation based on optimal control but it applies only
for certain classes of nonholonomic systems.

The continuation method of [Sus93] and [Chi06] (presented in Subsection 3.4.2)
belongs to the class of Newton type methods. Proving its convergence amounts to
show the global existence for the solution of a non linear differential equation, which
relies on handling the singular controls of the nonholonomic system. That latter
issue turns out to be a hard one, see [CJT06, CJT08] for instance. This is why, in the
current state of knowledge, the continuation method can be proved to converge only
under restrictive assumptions (see [CC03, Chi02, CS98]). However the numerical
implementations of this method seem to be very efficient in practice [PW00, TJM09,
ACL10].

The most complete methods, with respect to the criteria defined previously, are
iterative methods based on exact solution to the motion planning problem for nilpo-
tent systems. The first one has been introduced in [Laf91] and improved in [LS92].
It is a completely general method that suffers however from important limitation
for practical use. First, the method is actually a local one, since its globalization
requires the knowledge of a critical distance, which is not available in practice.
Second, either the resulting trajectories in [LS92] contain a large number of cusps
(exponential with respect to the degree of nonholonomy), or the computation of the
steering control in [Laf91] requires the inversion of a system of algebraic equations.
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The latter turns out to be numerically intractable as soon as the dimension of the
state is larger than six. The second iterative method, introduced in [JOV05] and de-
veloped in [CJL13], is based on the notion of nilpotent approximation and has been
detailed in Section 3.3. This method meets all our criteria except the last one. It has
indeed not been fully implemented up to now, so its numerical efficiency remains to
be seen.



Appendix A
Composition of flows of vector fields

This chapter is dedicated to the proof of Campbell-Hausdorff type formulas for
flows of vector fields. The result in Section A.1 has been used in Section 1.4, the
one in Section A.2 will be necessary for the next appendix.

Let U be an open subset of Rn and V F(U) the set of smooth vector fields on U .
Given a vector field X ∈V F(U), we denote its flow by exp(tX).

A.1 Campbell-Hausdorff formula for flows

We will need in this chapter the Campbell-Hausdorff formula which we recall briefly
here (for a more detailed presentation see for instance [Bou72, Ch. II]). Let x and y
be two non commutative unknowns, and [x,y] = xy− yx their commutator, also de-
noted by [x,y] = (adx)y. The length of an iterated commutator (adx1) · · ·(adxk−1)xk,
where each x1, . . . ,xk equals x or y, is defined to be the number of occurrences k of
x and y. Define also ex and ey to be the series ∑k≥0

xk

k! and ∑k≥0
yk

k! . Then we have
exey = eH(x,y) in the sense of formal power series, where

H(x,y) = x+ y+
1
2
[x,y]+R(x,y), (A.1)

and R(x,y) is a series whose terms are linear combination of iterated commutators
of x and y of length greater than 2. For an integer N we denote by HN(x,y) the partial
sum of H(x,y) containing only iterated commutators of length not greater than N.
In particular, H1 = x+ y and H2 = x+ y+ 1

2 [x,y].

Consider now two vector fields X ,Y ∈ V F(U). Given t ∈ R and an integer N,
HN(tY, tX) is a smooth vector field on U which writes as ∑

N
i=1 t iYi, where the vector

fields Y1, . . . ,YN belong to the Lie algebra generated by X and Y .

Lemma A.1. For any p∈M, there exist positive constants δ and C such that |t|< δ

implies

87
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‖exp(tX)◦ exp(tY )(p)− exp(HN(tY, tX))(p)‖ ≤C|t|N+1.

Proof. Set ψ(t) = exp(tX) ◦ exp(tY )(p), which is a function defined and C∞ in
a neighbourhood of 0 ∈ R, and let (x1, . . . ,xn) be a system of local coordinates
on a neighbourhood of p in U . We will compute the Taylor expansion of ev-
ery component xi(ψ(t)), for i = 1, . . . ,n. To do this, we introduce the function
φ(t,s) = exp(tX) ◦ exp(sY )(p), so that ψ(t) = φ(t, t), and we compute the partial
derivatives of xi ◦φ at 0 ∈ R2. We have:

∂xi ◦φ

∂ t
(t,s) =

d
dt

[xi ◦ exp(tX)] (exp(sY )(p)) = Xxi(φ(t,s)),

where Xxi denotes the Lie derivative of xi along X . Repeating this computation, we
obtain for any integer k,

∂ kxi ◦φ

∂ tk (t,s) = Xkxi(φ(t,s)).

In the same way, we have:

∂ k+lxi ◦φ

∂ sl∂ tk (0,0) =
∂ l

∂ sl
∂ kxi ◦φ

∂ tk (0,s)
∣∣
s=0

=
∂ l

∂ sl

[
Xkxi(exp(sY )(p))

]∣∣
s=0 = Y lXkxi(p).

We then deduce that the formal Taylor series of xi(ψ(t)) = xi(φ(t, t)) at 0 is

∑
k,l≥0

tk+l

k!l!
Y lXkxi(p) =

[
∑
l≥0

t l

l!
Y l

][
∑
k≥0

tk

k!
Xk

]
xi(p),

where X and Y are considered as derivation operators. From the Campbell-Hausdorff
formula, the product of the formal series etY = ∑l≥0

t l

l!Y
l with etX = ∑k≥0

tk

k! Xk is
equal to the series eH(tY,tX). As a consequence, the Taylor expansion of xi(ψ(t)) up
to degree N is given by the terms of degree ≤ N in the series eH(tY,tX)xi(p), which
coincide with the terms of degree ≤ N in the series eHN(tY,tX)xi(p).

On the other hand, it results from Lemma A.2 below that eHN(tY,tX)xi(p) is the
Taylor series at 0 of the function t 7→ xi ◦ exp(HN(tY, tX))(p). Thus

xi ◦ψ(t)− xi ◦ exp(HN(tY, tX))(p) = O(|t|N+1)

for every coordinate xi. ut

Lemma A.2. Let Y1, . . . ,Y` be vector fields on U, f : U → R a smooth function,
and p ∈ U. The formal Taylor series at 0 ∈ R` of the function (z1, . . . ,z`) 7→
f (exp(∑i ziYi)(p)) is given by
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∑
k≥0

1
k!
(∑

i
ziYi)

k f (p) = e∑i ziYi f (p).

The formal Taylor series at 0∈R of the function t 7→ f (exp(Y (t))(p)), where Y (t) =
∑
`
i=1 t iYi, is given by

∑
k≥0

1
k!

Y (t)k f (p) = eY (t) f (p). (A.2)

Proof. The second statement is obviously a consequence of the first one, so it is
sufficient to prove the latter. We introduce the functions g(z) = f (exp(∑i ziYi)(p))
and G(t,z) = g(tz) which are well-defined and smooth on a neighbourhood of 0 in
R`, respectively R×R`. We are looking for the Taylor series of g at 0.

Since G(t,z) = f (exp(t ∑i ziYi)(p)), we have, for any integer k ≥ 0,

∂ kG
∂ tk (0,z) = (∑

i
ziYi)

k f (p).

On the other hand G(t,z) = g(tz), and hence the previous derivative can also be
computed as

∂ kG
∂ tk (0,z) = ∑

α1+···+α`=k

k!
α1! · · ·α`!

zα1
1 · · ·z

α`
`

∂ kg
∂ zα1

1 · · ·∂ zα`
`

(0).

Combining both expressions, we obtain

∑
α1+···+α`=k

zα1
1 · · ·z

α`
`

α1! · · ·α`!
∂ kg

∂ zα1
1 · · ·∂ zα`

`

(0) =
1
k!

(
∑

i
ziYi

)k

f (p),

and the lemma follows. ut

Lemma A.1 can be extended in two ways. First, since the vector fields and their
flows are smooth on U , the estimate holds uniformly with respect to p. Second,
by Lemma A.2, the vector fields tX and tY may be replaced by the one-parameter
families of vector fields X(t) = tX1 + · · ·+ tkXk and Y (t) = tY1 + · · ·+ t`Y`, where
X1, . . . ,Xk and Y1, . . . ,Y` are vector fields on U . As an example, HN(tY, tX) is of this
form. To summarize, a slight change in the proof of Lemma A.1 actually shows the
following result.

Corollary A.1. Let K ⊂ U be a compact. There exist two positive constants δ ,C
such that, if p ∈ K and |t|< δ , then:

‖exp(X(t))◦ exp(Y (t))(p)− exp(HN(X(t),Y (t)))(p)‖ ≤C|t|N+1.

We are now in a position to prove formula (1.7), that we used in the proof
of Lemma 1.1. Let X1, . . . ,Xm be m elements of V F(U). For every element I ∈
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L (1, . . . ,m), we define the local diffeomorphisms φ I
t on U by induction on the

length |I| of I. Let φ i
t = exp(tXi) and set, if I = [I1, I2],

φ
I
t = φ

I2
−t ◦φ

I1
−t ◦φ

I2
t ◦φ

I1
t .

Proposition A.1. Let K ⊂ U be a compact and I ∈ L (1, . . . ,m). There exist two
positive constants δ ,C such that, if p ∈ K and |t|< δ , then∥∥∥φ

I
t (p)− p− t |I|XI(p)

∥∥∥ ≤ C|t||I|+1. (A.3)

Proof. For δ > 0 small enough, the mapping (p, t) 7→ φ I
t (p) is defined and C∞ on

K× (−δ ,δ ). As a consequence, we are reduced to prove (A.3) for a fixed p ∈ K.
When |I| = 1, φ I

t (p) = exp(tXi)(p) for some i ∈ {1, . . . ,m}, which is equal to
p+ tXi(p)+O(|t|2).

Now, let I be an element of L (1, . . . ,m) and N > |I| an integer. Corollary A.1
implies that φ I

t (p) = exp(HI
N(t))(p)+O(tN+1) where the series HI

N(t) is defined by
induction on the length |I|: if I = i, then HI

N(t) = tXi, and if I = [I1, I2], then

HI
N(t) = HN(HN(H

I1
N (t),HI2

N (t)),HN(−HI1
N (t),−HI2

N (t))).

Applying (A.1) iteratively, we can write HI
N(t) = t |I|XI + t |I|+1RI(t), the latter term

being a one-parameter vector field. As a consequence,

φ
I
t (p) = p+ t |I|XI(p)+ terms of degree greater than |I|+1,

which completes the proof. ut

Remark A.1. Assume that X1, . . . ,Xm are real analytic vector fields which generate
a nilpotent Lie algebra of step r. In this case, for any pair of vector fields X ,Y in
Lie(X1, . . . ,Xm) and any t ∈R, we have HN(X ,Y ) =Hr(X ,Y ) whenever N ≥ r. Thus,
following Lemma A.1, exp(tX)◦exp(tY )(p) and exp(Hr(tY, tX))(p) have the same
Taylor expansion at t = 0. Since both are analytic functions of t they are equal for t
small enough,

exp(tX)◦ exp(tY )(p) = exp(HN(tY, tX))(p).

Using this property in the proof of Proposition A.1, one proves that (A.3) can be
replaced by the following equality,

φ
I
t (p) = exp

(
t |I|XI + t |I|+1RI(t)

)
= exp

(
t |I|+1R′I(t)

)
◦ exp

(
t |I|XI

)
,

where RI(t) and R′I(t) are linear combinations of brackets XJ with |I|< |J| ≤ r.
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A.2 Push-forward formula

Given two vector fields X ,Y ∈ V F(U), we write (adX)Y for [X ,Y ], (adX)2Y for
(adX)((adX)Y ), etc.

Proposition A.2. Let K ⊂U be a compact, N a positive integer, and X, Y , Y1, . . . ,Y`
vector fields in V F(U). There exist two positive constants δ ,C such that, if p ∈ K,
t ∈ R and z ∈ R` satisfy |t|< δ and ‖z‖< δ , then∥∥∥∥exp(tY )∗X(p)−∑

N
k=0

tk

k!
(adY )kX(p)

∥∥∥∥≤C|t|N+1,

∥∥∥∥exp(∑`
i=1 ziYi)∗X(p)−∑

N
k=0

1
k!
(
ad∑

`
i=1 ziYi

)k
X(p)

∥∥∥∥≤C‖z‖N+1,

where exp(tY )∗X = d(exp(tY ))◦X ◦exp(−tY ) denotes the push-forward of the vec-
tor field X by the diffeomorphism exp(tY ).

Proof. Let us begin with the first inequality. Set φp(t) = exp(tY )∗X(p). For δ > 0
small enough, the mapping (p, t) 7→ φp(t) is defined and C∞ on K× (−δ ,δ ). As a
consequence, there exists a constant C > 0 such that, for every p ∈ K and |t| < δ ,
we have ∥∥∥∥∥φp(t)−

N

∑
k=0

tk

k!
dkφp

dtk (0)

∥∥∥∥∥ ≤ C|t|N+1.

It remains to prove that dkφp
dtk (0) = (adY )kX(p) for any integer k. Note first that

φp(0) = X(p), and that

dφp

dt
(0) =

d
dt

[exp(tY )∗X ]
∣∣
t=0(p)

is by definition equal to −LY X(p), where LY X is the Lie derivative of X along Y
(see for instance [Boo86]). Since LY X(p) = (adY )X(p), the cases k = 0 and k = 1
are done.

We need now to compute dφp
dt (t) at t 6= 0, or equivalently dφp(t+s)

ds at s= 0. Writing
φp(t + s) as exp(tY )∗ exp(sY )∗X(p), we have

dφp

dt
(t) =

dφp(t + s)
ds

|s=0= exp(tY )∗
d
ds

[exp(sY )∗X ]
∣∣
s=0(p)

= exp(tY )∗((adY )X)(p).

This derivative has the same form as φp(t), X being replaced by (adY )X . Iterating

the argument above, we obtain by induction dkφp
dtk (0) = (adY )kX(p), and the first

inequality of the proposition is proved.
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As for the second inequality, the same reasoning applies and we only need to
compute the partial derivatives at 0 ∈ R` of the function φ̃(z) = exp(∑i ziYi)∗X(p).
This can be done as in the proof of Lemma A.2. The proposition follows. ut



Appendix B
The different systems of privileged coordinates

This appendix is devoted to the proof that the examples of coordinates introduced
in Subsection 2.1.2 are actually privileged coordinates.

B.1 Canonical coordinates of the second kind

Let p ∈ M and let us choose an adapted frame at p, i.e. a family of vector fields
Y1, . . . ,Yn such that {

Y1(p), . . . ,Yn(p) is a basis of TpM,
Yi ∈ ∆ wi , i = 1, . . . ,n.

The map
φ : (z1, . . . ,zn) 7→ exp(znYn)◦ · · · ◦ exp(z1Y1)(p)

is a local diffeomorphism near 0∈Rn and its inverse defines some coordinates called
canonical coordinates of the second kind near p.

The following result is due to Hermes [Her91].

Lemma B.1. Canonical coordinates of the second kind are privileged at p.

For sake of simplicity, we will write the compositions of maps as products; for
instance, we write

φ(z) = exp(z1Y1) · · ·exp(znYn)(p).

Proof. First, let us recall that φ is a local diffeomorphism at z = 0 because its dif-
ferential at 0 is an isomorphism. This results from

∂φ

∂ zi
(0) =

d
dt

(φ(0, . . . , t, . . . ,0))
∣∣
t=0 =

d
dt

(exp(tYi)(p))
∣∣
t=0 = Yi(p),
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for i = 1, . . . ,n. This computation also reads as φ∗
∂

∂ zi
(p) = Yi(p), which implies

Yizi(p) = 1 (as in Subsection 2.1.1, Yizi denotes the Lie derivative of the function zi
along the vector field Yi). Hence the order of zi at p is not greater than wi.

It remains to show that the order of zi at p is at least wi for each i = 1, . . . ,n. This
is a direct consequence of the following assertion.

Claim. Let X be one of the vector fields X1, . . . ,Xm. Then, for i = 1, . . . ,n, the Tay-
lor expansion at z = 0 of the function ai(z) = Xzi (φ(z)) is a sum of homogeneous
polynomials in the coordinates z of weighted degree ≥ wi−1.

From the very definition of ai(z), we have

X(φ(z)) =
n

∑
i=1

ai(z)
∂φ

∂ zi
(z). (B.1)

Given z, let ϕ be the diffeomorphism defined on a neighbourhood of p by ϕ(q) =
exp(z1Y1) · · ·exp(znYn)(q). In particular, ϕ(p) = φ(z). In order to obtain an equality
in TpM, we apply the isomorphism (dϕp)

−1 to both sides of (B.1), and we get

(ϕ−1)∗X(p) =
n

∑
i=1

ai(z)(ϕ−1)∗
∂

∂ zi
(p).

This equality is of the form W = ∑
n
i=1 aiVi, where the vectors W = W (z) and Vi =

Vi(z), i = 1, . . . ,n, belong to TpM. If we denote by b = b(z) ∈ Rn the coordinates of
W in the basis (Y1(p), . . . ,Yn(p)) of TpM, and by P = P(z) the (n×n)-matrix of the
coordinates of V1, . . . ,Vn in the same basis, then the vector a(z) = (a1(z), . . . ,an(z))
appears as the solution of Pa = b.

Note first that P(0) equals the identity matrix Id. Therefore both matrices P(z)
and P(z)−1 are equal to Id+homogeneous terms of positive degree. Hence the Taylor
expansion of ai(z) and the one of bi(z) have the same homogeneous terms of lower
degree.

On the other hand, since ϕ−1 = exp(−znYn) · · ·exp(−z1Y1), we have

W (z) = exp(−znYn)∗ · · ·exp(−z1Y1)∗X(p).

Let us choose an integer N bigger than all the weights wi, and apply Proposition A.2
to exp(−z1Y1)∗X , then to exp(−z2Y2)∗(adY1)

l1X , and so on,

W (z) = exp(−znYn)∗ · · ·exp(−z2Y2)∗
N

∑
l1=0

(−z1)
l1

l1!
(adY1)

l1X(p)+O(|z1|N+1)

...

=
N

∑
l1,...,ln=0

(−z1)
l1

l1!
· · · (−zn)

ln

ln!
(adYn)

ln · · ·(adY1)
l1 X(p)+O(|z|N+1).

Hence every coordinate bi(z) of W (z) satisfies
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bi(z) =
N

∑
l1,...,ln=0

(−z1)
l1

l1!
· · · (−zn)

ln

ln!
β

l
i +O(|z|N+1), (B.2)

where β l
i denotes the ith coordinate of the vector (adYn)

ln · · ·(adY1)
l1X(p) in the

basis (Y1(p), . . . ,Yn(p)). The latter vector belongs to ∆ w(p), where w = 1+ l1w1 +
· · ·+ lnwn (recall that X ∈ ∆ 1 and Yi ∈ ∆ wi ). Since (Y1, . . . ,Yn) is an adapted frame
at p, β l

i is zero when 1+ l1w1 + · · ·+ lnwn < wi. It follows that bi(z) – and then
ai(z) – contains only homogeneous terms of weighted degree greater than or equal
to wi−1. This ends the proofs of both the claim and the lemma. ut

B.2 Canonical coordinates of the first kind

Let p ∈M and Y1, . . . ,Yn an adapted frame at p. The map

φ̃ : (z1, . . . ,zn) 7→ exp(z1Y1 + · · ·+ znYn)(p)

is a local diffeomorphism near 0 ∈ Rn since its differential at 0 is an isomorphism.
This results from

∂ φ̃

∂ zi
(0) =

d
dt

(
φ̃(0, . . . , t, . . . ,0)

)∣∣
t=0 =

d
dt

(exp(tYi)(p))
∣∣
t=0 = Yi(p),

for i= 1, . . . ,n. The inverse of φ̃ defines some local coordinates near p called canon-
ical coordinates of the first kind.

Lemma B.2. Canonical coordinates of the first kind are privileged at p.

The first proof of this lemma appeared in [RS76], with a different formulation.
The proof we present here is rather different.

Proof. The proof follows exactly the same lines as the one of Lemma B.1, replacing
φ by φ̃ , and ϕ by ϕ̃ = exp(∑ j z jYj). We are left to compute the coordinates b̃i(z),
i= 1, . . . ,n, of the vector W̃ (z)= (ϕ̃−1)∗X(p) in the basis (Y1(p), . . . ,Yn(p)) of TpM.
It results directly from Proposition A.2 that

W̃ (z) =
N

∑
k=0

1
k!

(
ad

`

∑
i=1

z jYj

)k

X(p)+O(|z|N+1),

=
N

∑
k=0

∑
l1+···+ln=k

alz
l1
1 · · ·z

ln
n Zl(p)+O(|z|N+1),

where Zl belongs to ∆ w(p), with w = 1+ l1w1 + · · ·+ lnwn. Thus every coordinate
b̃i(z) of W̃ (z) satisfies
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b̃i(z) =
N

∑
k=0

∑
l1+···+ln=k

alz
l1
1 · · ·z

ln
n β̃

l
i +O(|z|N+1),

β̃ l
i being the ith coordinate of Zl in the basis (Y1(p), . . . ,Yn(p)). This expression is

similar to (B.2), and the same conclusion follows. ut

B.3 Algebraic coordinates

Let us recall the construction of the algebraic coordinates (z1, . . . ,zn) given in
page 23. Let Y1, . . . ,Yn be an adapted frame at p, and (y1, . . . ,yn) be local coordi-
nates centered at p such that ∂yi |p = Yi(p). For j = 1, . . . ,n, we set

z j = y j−
w j−1

∑
k=2

hk(y1, . . . ,y j−1), (B.3)

where, for k = 2, . . . ,w j−1,

hk(y1, . . . ,y j−1) = ∑
|α|=k

w(α)<w j

Y α1
1 . . .Y

α j−1
j−1

(
y j−

k−1

∑
q=2

hq(y)
)
(p)

yα1
1

α1!
· · ·

y
α j−1
j−1

α j−1!
,

with |α|= α1 + · · ·+αn.

Lemma B.3. The algebraic coordinates (z1, . . . ,zn) are privileged at p.

The proof of the lemma is based on the following result.

Lemma B.4. A function f is of order ≥ s at p if and only if

(Y α1
1 · · ·Y

αn
n f )(p) = 0

for all α such that w(α)< s.

Proof. Let f be a function of order ≥ s at p. Using the rules (2.1), we have
ordp(Yi) ≥ −wi for i = 1, . . . ,n, and hence ordp(Y

α1
1 · · ·Y αn

n ) > −s for every α =
(α1, . . . ,αn) such that w(α)< s. Consequently, for such an α the iterated derivative
Y α1

1 · · ·Y αn
n f is a function of positive order, and so vanishes at p.

Conversely, let f be a function of order < s at p. We introduce the canonical
coordinates of the second kind (x1, . . . ,xn) defined by means of the adapted basis
Y1, . . . ,Yn. Proposition 2.2 implies that there exists α such that w(α) = ordp( f )< s
and (∂ α1

x1 · · ·∂ αn
xn f )(p) 6= 0. Moreover, every vector field Yi, i = 1, . . . ,n, writes in

coordinates x as

n

∑
j=1

Y j
i (x)∂x j , where ordp(Y

j
i )≥ w j−wi.
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There also holds Y j
i (0) = δi j since Yi(p) = ∂xi . As a consequence,

Y α1
1 · · ·Y

αn
n (p) = ∂

α1
x1
· · ·∂ αn

xn (p)+ ∑
w(β )<w(α)

aβ ∂
β1
x1
· · ·∂ βn

xn (p),

and thus (Y α1
1 · · ·Y αn

n f )(p)= (∂ α1
x1 · · ·∂ αn

xn f )(p) 6= 0 since w(α)= ordp( f ). This ends
the proof. ut

Proof (of Lemma B.3). Let i∈ {1, . . . ,n}. Note first that Yizi(p) =Yiyi(p) = 1, which
implies ordp(zi)≤wi. It remains to show that ordp(zi)≥wi. For this we will use the
criterion of Lemma B.4.

Let α such that w(α) < wi (and so |α| < wi). Using the expression (B.3) of zi,
we obtain

Y α1
1 · · ·Y

αn
n zi = Y α1

1 · · ·Y
αn
n

(
yi−

wi−1

∑
k=2

hk(y)

)

= Y α1
1 · · ·Y

αn
n

(
yi−

|α|−1

∑
k=2

hk(y)

)
−Y α1

1 · · ·Y
αn
n

(
wi−1

∑
k=|α|

hk(y)

)
. (B.4)

The functions hk are given by

hk(y) = ∑
|β |=k

w(β )<wi

Y β1
1 . . .Y βi−1

i−1

(
yi−

k−1

∑
q=2

hq(y)
)
(p)

yβ1
1

β1!
· · ·

yβi−1
i−1

βi−1!
.

Therefore, we clearly have
(
Y α1

1 · · ·Y αn
n hk

)
(p) = 0 if k > |α|, and

(
Y α1

1 · · ·Y
αn
n h|α|

)
(p) = Y α1

1 · · ·Y
αn
n

(
yi−

|α|−1

∑
k=2

hk(y)

)
(p).

Plugging this expression into (B.4), we obtain (Y α1
1 · · ·Y αn

n zi)(p) = 0, which ends
the proof. ut
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