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We consider the control of patient flow through physicians in emergency departments (EDs). The physi-

cians must choose between catering to patients right after triage, who are yet to be checked, and those that

are in-process (IP), who are occasionally returning to be checked. Physician capacity is thus modeled as a

queueing system with multi-class customers, where some of the classes face deadline constraints on their

time-till-first-service, while the other classes feedback through service while incurring congestion costs. We

consider two types of such costs: per individual visit to a server or cumulative over all visits. The former

is our base-model, which paves the way for the latter (more ED-realistic) one. In both cases, we propose

and analyze scheduling policies that, asymptotically in conventional heavy-traffic, minimize congestion costs

while adhering to all deadline constraints. Our policies have two parts: the first chooses between triage and

IP patients; assuming triage patients are chosen, the physicians serve the one with the largest delay relative

to deadline; alternatively, IP patients are served according to some Gcµ policy, in which µ is simply modified

to account for feedbacks. For our proposed policies, we establish asymptotic optimality, and develop some

congestion laws that support forecasting of waiting and sojourn times. Finally, via data from the complex

ED reality, we use our models to quantify the value of refined individual information, for example whether

an ED patient will be admitted to the hospital as opposed to being discharged.

Key words : Emergency Department, Triage, ED Congestion, Heavy Traffic, Feedback Queues, Stochastic

Control

1. Introduction

Control of patient flow is a major factor for improving hospital operations. Indeed, patient flow is

a central driver of a hospital’s operational performance, which is tightly coupled with the overall

quality and cost of health care (Armony et al. (2011), Pitts et al. (2008), Niska et al. (2010)). In

this work, we address the challenge of flow control at the main hospital “gate” - the Emergency

Departments (ED). The challenge stems from two flow characteristics: deadlines and feedbacks.

First, arriving patients must be served within time-deadlines that are assigned after triage,

based on clinical considerations (Farrohknia et al. (2011), Mace and Mayer (2008)). Second,

ED flows have a significant feedback component that must be accounted for: in-process (IP)

patients possibly return several times to physicians during their ED sojourn, before ultimately

being either released or hospitalized (Yom-Tov and Mandelbaum (2011), Table 2).
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Thus, IP patients impose operational congestion (e.g. they occupy beds), which must be

controlled while adhering to clinical triage constraints (e.g. stabilizing patient conditions). It is

this operational-clinical friction that we focus on, from the viewpoint of the ED physician: when

becoming idle, what class should be served next - triage or in-process - after which one must

decide on the specific patient to be examined. To this end, we propose a flow control policy

that minimizes congestion costs subject to deadline constraints, doing so under the prevalent

conditions of ED heavy-traffic.

We consider two models in this paper, which differ by their congestion costs: the first is a

basic ED model where queueing costs are incurred per individual doctor visits; in the second,

congestion costs accumulate over all visits during patient sojourn-times. The basic model is

introduced in §1.1 and 1.2, and the alternative model, together with a realistic ED example, in

§1.3.

Our mathematical framework is conventional heavy-traffic, in which one analyzes a sequence

of systems that converge to critical loading. This is a relevant operational regime, despite the

fact that EDs are inherently time-varying. Specifically, our experience suggests that, during

regular peak shifts between late morning till late evening, the ED can be usefully viewed as a

critically-loaded stationary system (Armony et al. (2011)). Within this asymptotic framework,

the in-process analysis follows the Gcµ-rule of van Mieghem (1995), after generalizing it to mod-

els with feedback. The triage analysis combines the due-date scheduling in van Mieghem (2003)

with the formulation of Plambeck et al. (2001). The latter offers a rigorous meaning for adher-

ence to (triage) time-constraints, by introducing “asymptotic compliance” as a relaxation for

“feasibility”. Together, triage and in-process controls yield what we prove to be asymptotically

optimal flow-control policies: they minimize IP congestions costs subject to triage compliance.

We now continue with describing such policies for our two IP models - individual queueing and

cumulative sojourn time costs.

1.1. A basic ED model and its flow control - cost per individual visits

ED dynamics is captured by a multiclass queueing system, with S servers (physicians), J

classes of triage patients and K classes of in-process (IP) patients. Triage patients are yet to

be examined by a physician, and in-process (IP) patients require further treatment. (A patient

class could embody information such as treatment type, emergency level or age; see Carmeli

(2012).) The system is depicted in the following figure:
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The J classes of triage patients are subject to deadline constraints, and the K classes of

IP patients incur queueing costs. Patients within each class are served on a First-Come-First-

Served (FCFS) basis. Denote j ∈ J and l, k ∈ K the class indices for triage patients and IP

patients, respectively.

The j-triage patients arrive to the system exogenously at rate λ0
j ; each such patient requires

mean service (triage) time of m0
j , and must be served within a deadline of dj time units from

its arrival time. Formally, a j-triage patient arriving to the system at time t must start service

before time t+ dj; equivalently, τj(t)≤ dj, for all j ∈J and t≥ 0, where τj(t) is the age of the

head-of-the-line j-triage patient at time t. Note that τj(t) is random and dj is deterministic,

hence consistently satisfying this last deadline constraint is too much to hope for, which calls

for a rigorous formulation in an asymptotic sense (later in §4). Here we only introduce the

minimal notation that suffices for describing our flow control problem and its solution.

After completing their first service, j-triage patients join the queue of k-IP patients with

probability Pjk, k ∈ K, or exit the system with probability 1−
∑

k∈KPjk. Turning attention

to IP patients, they originate from either triage patients or from other IP patients: Plk is the

probability of switching from IP-class l to k, and 1−
∑

k∈KPlk is the probability that an l-IP

patient exits the ED, after service. The k-IP patients have mean service requirements of mk

and, while waiting, they incur queueing costs at rate Ck(Qk(t)); here Ck is an increasing convex

function (Ck(0) = 0) and Qk(t) is the queue length of k-IP patients at time t. (We also offer

an alternative formulation of costs that depend on waiting times, in §6.3.) Our objective is to

minimize the cumulative queueing costs (alternatively waiting costs) incurred by IP patients,

among all policies that satisfy the deadline constraints.

To formulate our proposed flow control, let me
j denote the mean effective service time of

j-triage patients. Vector-wise, M e
J = MJ + PJK[I − P ]−1M , where M e

J = (me
j), MJ = (mj),

PJK = [Pjk] is the triage-to-IP transition matrix, P = [Plk] is the IP-to-IP transition matrix, and
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M = (mk). Thus, me
j is the expected total service time, required by j-triage patients throughout

their ED stay. The traffic intensity is then

ρ=
1

S

∑
j∈J

λ0
jm

e
j ,

and we think in terms of ρ≈ 1 (ED in heavy-traffic). Finally, let me
k denote the mean effective

service time of k-IP patients. Vector-wise, M e = [I −P ]−1M , where M e = (me
k).

Notation has been now set for describing flow control policies. Choose any one of the triage

classes (conceivably the least dj, say d1). Then a physician that becomes idle at time t adopts

the following guidelines:

• Serve triage patients if τ1(t)≥ d1− ε, where ε is small relative to d1 (e.g. d1 = 30 minutes

while ε = 3 minutes);

• Given that a triage patient is to be served, choose the head-of-the-line patient from the

class with index

j ∈ arg max
j∈J

τj(t)

dj
;

• Given that an IP patient is to be served, choose the head-of-the-line patient from the class

with index

k ∈ arg max
k∈K

C ′k(Qk(t))

me
k

.

Within a suitable heavy traffic framework (Section 3), the above policy is asymptotically

“feasible” and asymptotically optimal among all asymptotically “feasible” policies. The sim-

plicity of our asymptotically optimal policies, as well as state-space collapse and snap-shot

properties that it enjoys (Theorem 3 and Proposition 3), are all due to the fact that heavy-

traffic analysis exposes macroscopic and mesoscopic essentials, which is formalized by fluid and

diffusion approximations (§EC.4). For example, our S-server system behaves as a single-server

one, in which this virtual server is S-times faster than each of the original servers; accordingly,

and without loss of generality by Chen and Shanthikumar (1994), our subsequent analysis will

assume S = 1.

Non-unique optima: Under the relative crudeness of heavy-traffic dynamics, there are other

policies that emerge as asymptotically optimal (Section 6). For example, the decision of triage

vs. IP can be formulated in terms of a threshold ω =
∑

j∈J λ
0
jdjm

e
j : if

∑
j∈J m

e
jQj(t) ≥ ω,

a server just becoming idle caters to triage patients, otherwise to IP patients. Furthermore,

triage classes can be alternatively prioritized according to shortest-deadline-first, that is, serve

j ∈ arg minj∈J [dj − τj(t)]; and the selection criterion of IP-classes can also be any rule that

satisfies (13), in particular the one conjectured in page 853 of Mandelbaum and Stolyar (2004).
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1.2. Intuition

The idea is first to maximize service effort for IP patients which, given the server’s fixed capacity,

is the same as minimizing it for triage patients subject to adhering to their deadline constraints;

then one allocates the service capacity to IP patients to greedily minimize the queueing cost

rate. This is a reasonable approach since, in our critically loaded (heavy traffic) system, there

is enough capacity for the triage patients to “see” the system in light-traffic, which implies that

their needs can be accommodated essentially ad hoc. (The situation could be very different in

a significantly time-varying environment, in contrast to our assumed stationarity. An example

is a mass-casualty event during which triage patients overload the system; see Section 8 for

further discussion.)

The driver of heavy-traffic dynamics is the (total) workload in our system. At time t, while

conditioning on all queue lengths, its definition is∑
j∈J

me
jQj(t) +

∑
k∈K

me
kQk(t),

which can be interpreted as the average time that a single server would empty the system,

assuming there are no new arrivals after time t. The significance of the workload is due to the

fact that it is invariant to, and minimized by, any work-conserving policy (Proposition 1 and

(EC.18)). Since most j-triage customers at time t arrived to the system during (t− τj(t), t], it

must be that Qj(t)≈ λ0
jτj(t) and the workload equals approximately∑

j∈J

me
jλ

0
jτj(t) +

∑
k∈K

me
kQk(t).

The invariance of the potential workload now implies that minimizing
∑

k∈Km
e
kQk(t) (which is

in concert with minimizing IP congestion costs) is equivalent to maximizing
∑

j∈J m
e
jλ

0
jτj(t).

Triage vs. IP: By the deadline constraints, an upper bound for
∑

j∈J m
e
jλ

0
jτj(t) is ω =∑

j∈J λ
0
jdjm

e
j , and our policy should thrive to narrow their gap. From the light-traffic view of

triage patients, this can be achieved by serving triage patients only as their deadline in getting

“dangerously” close - a “threat” that can be monitored through the status of (any) single triage

class, as we explain next.

Triage selection: The selection rule among triage classes is designed to ensure that their

age processes are so balanced that one class of triage patients is about to violate its deadline

constraint if and only if all other classes are close to their deadlines as well. In fact,
τj(t)

dj
≈ τj′ (t)

dj′
,

for any j, j′ ∈J , at all times t, which implies that the age of any one triage class tells those of

the others. (Such balancing rules are common in heavy traffic; see the age processes of Plambeck

et al. (2001) in conventional heavy traffic, and the QIR controls of Gurvich and Whitt (2009) in

the QED regime.) Alternative selection rules could also achieve the desired balance, as described

in §6.1.
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IP selection: After applying the threshold guideline and the triage selection rule, one expects

that
∑

k∈Km
e
kQk(t) is minimized, thus invariant under any work conserving policy. To minimize

cumulative queueing cost, it suffices to minimize cost rates greedily at each time. We are thus

led to a convex optimization problem with linear constraints (9). The KKT condition now

yields our generalized cµ rule, as in van Mieghem (1995) but with the µ’s replaced by 1/me
k to

account for feedbacks.

The above outline also guides the proofs of our main results, Theorems 2 and 1. These results

are consequences of the parsimonious nature of heavy-traffic dynamics, which is also manifested

through some congestion laws that will be now described.

A Snapshot principle: This is again a common feature of heavy traffic (Reiman (1982)) which,

as explained in page 187 of Whitt (2002) and adopted here, during the sojourn time of a patient

within the ED, the various queue lengths do not change significantly (or rather negligibly in

diffusion scale). In some sense, the ED is temporarily in “steady state”, which leads one to

expect that some congestion laws in steady state, for example Little’s Law or ASTA, would

also prevail temporarily. This snapshot principle then enables predictions of virtual waiting and

sojourn times, as we now explain.

Waiting times: When a patient of a particular class completes service, the queue length of

that class approximately equals the number of arrivals during this patient’s queueing time.

(The service duration is negligible relative to queueing time.) By the snapshot principle, the

queue length Qk and the virtual waiting time ωk are then related via Qk(t) ≈ λkωk(t), with

λk being the arrival rate to class k. On the other hand, Qk(t)≈ λkτk(t), as those patients in

the queue at time t arrive during the interval (t− τk(t), t]. It follows that ωk(t)≈ τk(t), which

suggests that an estimate of the virtual waiting time (or the waiting duration, predicted at an

arrival time) is simply the age of the head-of-the-line patient (See §5.4, which is in the spirit of

Ibrahim and Whitt (2009)).

Sojourn times: By the snapshot principle, the ED sojourn time of a patient arriving at time

t constitutes the sum of all virtual waiting times at time t over the patient’s route. Moreover,

virtual waiting times remain unchanged during successive visits of the patient to a specific

queue. It follows that, asymptotically, the ED sojourn time of a patient is ωj(t)+
∑

k∈K hkωk(t),

given that the patient experiences hk physician visits as a class k patient. Now replace waiting

times on the route by the ages of the head-of-the-line patients at the time of arrival. One

concludes that τj(t) +
∑

k∈K hkτk(t) can be taken as a forecast for the ED sojourn time, over a

pre-specified route of a patient that arrives at time t (§5.5).

1.3. An alternative ED model - cost per IP sojourn times

Our alternative ED model differs in its IP congestion costs. To be specific, the model is the

same as in Figure 1, except that the cost now depends on the total time spent within the ED.
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The problem is to minimize sojourn time costs, incurred by all patients who arrived to the ED

within a finite horizon, while again adhering to triage constraints.

For our analysis, we make the additional assumption that the transition matrix P is upper-

triangular; this is needed for our method of proof but it is practically unrestrictive, at the

possible cost of some class proliferation. Formally, a triage patient, turning first into a k-IP

patient and ultimately spending W time units in the ED, incurs congestion cost Ck(W ); here

Ck(·) is a convex increasing function (which differs from those in the previous section).

For choosing between triage vs. IP patients, and selecting a specific triage patient to be served,

our proposed asymptotically optimal policies are the same as before. The rule for choosing which

IP class to serve is modified, however: one assigns priority to those patients who have already

received at least one IP treatment; one then allocates any remaining service capacity to the

new IP patients, according to our modified Gcµ rule - see (24). Note that such a service policy

is not FCFS within classes: indeed, if patients in an IP class can originate from both triage and

IP patients, priority must be given to the latter. It follows that, even under Markovian routing,

it is necessary to record the class-history of each patient. We do so by further enlarging the

set of classes, having IP patients follow one of finitely-many disjoint, deterministic IP routes;

this, in practice, might require predictions of class designations - more on that in the following

discussions.

Congestion laws: Similarly to our cost-per-visit model, and assuming the above class desig-

nation, the snapshot principle also prevails for the IP cost per sojourn time model, under our

proposed policy. The snapshot principle then implies the sample-path version of Little’s law:

the relation between waiting time and queue length for any starting class, where the former is

asymptotically identical to the age of head-of-the-line patient in that class. Moreover, the over-

all IP sojourn time is approximately the waiting time in the corresponding starting class, since

higher priority is given to the subsequent classes. Thus, a predictor for the sojourn time of a

patient, who is starting the IP process in class k, would be simply the age of the head-of-the-line

patient in class k.

The value of information: We apply our sojourn time framework, with the expert-elicited

sojourn time costs from Carmeli (2012), to support analysis of the value of information in ED

flow-control (§7). Specifically, we show that accurate prediction of both the number of visits

to a physician and whether a patient will be hospitalized or discharged, reduces IP congestion

cost by as much as 27%. From our ED sources, and supported by Saghafian et al. (2011, 2012),

we learn that such predictions can be accurately made and, hence, are worth being accounted

for.

Beyond our two ED models: Saghafian et al. (2012) remark that, due to the complexity of

ED operations, it is challenging to capture prevalent ED features within a single tractable

analytic model. While this is precisely what we do here, ours is by no means the final story.
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Additional ED features that seek modeling include time-varying arrival rates, treatment times

between successive visits to the physician, ambulance diversion (admission control) and patients

who Leave-Without-Being-Seen (LWBS) or Against-Medical-Advice (LAMA). We comment on

these features, and offer related conjectures, in Section 8.

1.4. Literature review and contributions

There is ample medical literature about triage systems, to which we refer the reader through

Farrohknia et al. (2011), Mace and Mayer (2008). Our research focus here is operational (Mar-

mor et al. (2012)) and, accordingly, so is the following literature review.

To the best of our knowledge, our paper is the first to analyze control of patient flow in an ED,

from a queueing-theory perspective. (In contrast, there are practically hundreds of simulation-

based studies; see Brailsford et al. (2009).) After starting this project, additional work has

appeared on ED operations. The closest to ours are Saghafian et al. (2011, 2012): Saghafian

et al. (2011) discuss a complexity-based triage systems, based on the number of visits that

patients pay to the ED physician (serving as an up-front proxy for complexity); and Saghafian

et al. (2012) analyze the advantage of streaming patients (separating them into classes, e.g. by

their admission vs. discharge status), comparing this practice vs. pooling and, what they call,

“virtual-streaming”. The latter supplements class-separation with dynamic resource allocation,

and it is shown to dominate the other two. We return to Saghafian et al. (2011, 2012) in

Section 7, where we analyze the value of the information they require. There are additional

papers that cater to specific ED characteristics: Yom-Tov and Mandelbaum (2011) model the

ED as a single-class time-varying queueing system with feedback (Erlang-R), operating in the

QED regime, and in support of staffing physicians and nurses; Dobson et al. (2012) develop an

overloaded queueing network to analyze the impact of interruptions on ED throughput; and

Atar et al. (2012) address synchronization of ED activities (e.g. interpretations of a blood-test

and x-ray imaging must precede a visit to the ED physician), by analyzing a fork-join queueing

network in heavy-traffic.

Our ED models and analysis follow two main lines of research: formulation of the triage

constraints is adapted from Plambeck et al. (2001), who analyze admission control; and our IP

control generalizes van Mieghem (1995), who solves a cost minimization problem for a multi-

class queue without feedback. The results in van Mieghem (1995) have been generalized by

Mandelbaum and Stolyar (2004) to a feedforward network of parallel queues, and both papers

establish asymptotic optimality of the generalized cµ-rule. Here we generalize van Mieghem

(1995) to a model with both feedback and deadlines, and prove asymptotic optimality of a

routing rule in which a modified generalized cµ-rule plays a central role.

Our model structure for IP patients resembles Klimov (1974, 1978), where the author con-

siders a dynamic scheduling problem of a multiclass M/GI/1 queueing system with Markovian
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feedback. Unlike Klimov (1974, 1978), who minimizes a cost function that is linear in average

queue lengths and proves the optimality of a static routing policy, here we consider a mini-

mization problem with cumulative costs over a finite horizon, with cost rates that are convex

functions of queue lengths (or waiting times), which gives rise to asymptotic optimality of a

dynamic routing policy. Notably, our analysis of IP patients in fact covers Klimov: simply take

the deadlines and means of service times for triage patients to be 0. We thus establish, indi-

rectly, asymptotic optimality of the generalized cµ-rule also for Klimov’s model (with convex

costs). A final related references is Chen and Yao (1993), which concerns dynamic scheduling

of a multi-class fluid network with feedbacks.

Diffusion approximations for queueing systems with multiclass customers and feedback have

been analyzed in Reiman (1988), Dai and Kurtz (1995), restricting to a global FCFS service

discipline among all classes. Our analysis can be also adapted to the FCFS discipline, as well

as to other work-conserving disciplines. Indeed, we provide a detailed analysis of all work-

conserving disciplines; then, the additional work required for a specific discipline entails proving

state-space collapse, which can follow the framework in Bramson (1998).

To summarize, we view our main contributions to be the following:

• Methodological: we analysis multiclass queueing systems with feedback, particularly,

1. Proving the conjecture in Mandelbaum and Stolyar (2004) regarding feedback, and improv-

ing upon it by identifying simpler asymptotically optimal policies;

2. Solving Klimov’s model with convex costs, for both individual waiting times and cumula-

tive sojourn times;

3. Analyzing multiclass queueing systems with feedback, under any work-conserving policy;

4. Accommodating jointly delay constraints and congestion costs.

• Practical: We model and analyze the control of patient flow in EDs, from the point of

view of ED physicians, which naturally gives rise to a queueing perspective:

1. Our models capture the tradeoff between catering to triage- vs. IP-patients;

2. They give rise to scheduling policies that are insightful and implementable;

3. They enable analysis of the value of information in a real ED setup.

Additional references are provided in Section 8, where we propose generalizations and offer

conjectures to our main models.

Paper Outline: The rest of the paper is organized as follows. We end this introduction with a

summary of notation. A detailed description of the basic ED model is given in §2. Heavy traffic

conditions, asymptotic compliance and optimality are introduced in §3 and §4, respectively.

The main results and some auxiliary propositions and extensions are presented in §5, with their

discussions in §6. Our alternative ED model, with sojourn time costs, is applied in §7, using

data from an Israeli ED, and expert-elicited costs. We conclude with a discussion of future

research directions in §8. The proofs for the main theorems, as well as additional proofs (for

propositions) and complements are provided in the Appendix.
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1.5. Notation

We use the standard notation R+ to denote the set of nonnegative real numbers. For a real

number x, dxe is the maximal integer less than or equal to x; RJ+ and RK+ are the J-times and K-

times products of R+, respectively; ZK+ is the subset of RK+ with all components integers. Unless

otherwise specified, all vectors are assumed to be column vectors. We reserve the notation {ek}

for the standard basis of RK . The transposition of a vector or a matrix is indicated with a

superscript T . Vector inequalities are understood to be componentwise; e.g., for x, y ∈RN , x< y

if and only if xi < yi, for all i= 1,2, . . . ,N . We also use 0 to denote a column vector with all

components being 0, with the dimension being clear from the context. For a matrix M , we use

Mj· to denote the jth row, and M·k the kth column of M . The function 1(·) is the indicator

function, the value of which is 1 when the event within (·) prevails, and 0 otherwise.

We assume that all random variables are defined on a common probability space (Ω,F ,P).

Expectation with respect to P is E. Let D[0,∞) be the standard Skorohod space of right-

continuous left-limit (RCLL) functions defined on [0,∞) and equipped with the Skorohod J1

topology. Similar to D[0,∞), D[0, t] is the space of functions on [0, t]. The symbol ⇒ denotes

weak convergence of stochastic processes, and→ stands for convergence of non-random elements

in D[0,∞). Finally, e(·) is the 1-dimensional identity function on R+, where e(t) = t, t≥ 0.

2. The basic model

Consider a single-server queueing system: it constitutes J classes of triage customers subject

to deadline constraints, jointly with K classes of in-process (IP) customers who incur queueing

costs. To highlight the application to EDs, we use “patient” interchangeably with “customer”

and “physician” with “server”. Let J and K denote the index sets of triage and IP patients,

respectively: j ∈ J is an index for triage patients, and l, k ∈ K are indices for IP patients. It

will be convenient to let J = {1,2, . . . , J} and K= {1,2, . . . ,K}, while keeping in mind that the

indices 1,2, . . . in J differ from those in K. To simplify notation, we shall omit the superscript

0 from the arrival rates and mean service times of triage patients: their index j ∈J suffices for

their characterization.

2.1. Triage patients

For each triage patient class j ∈ J , we are given two independent sequences of i.i.d. random

variables, {uj(i), i= 1,2, . . .} and {vj(i), i= 1,2, . . .}, as well as two real numbers λj and mj. We

assume E[uj(1)] = 1, E[vj(1)] = 1 and denote a2
j = var(uj(1)), b2

j = var(vj(1)). Among j-triage

patients, the interarrival time between the (i− 1)st and ith arrivals is uj(i)/λj and the service

time required for the ith patient is mjvj(i). As a result, λj is the arrival rate and mj is the

mean service time requirement of a j-triage patient. We assume λj > 0 for all j ∈ J and use

ΛJ to denote the vector with components λj, j ∈J . Denote MJ as the vector with components

mj, j ∈J .
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For t≥ 0 and j ∈J , let the renewal process

Ej(t) := max

{
n≥ 0 :

n∑
i=1

uj(i)≤ λjt

}
indicate the number of j-triage arrivals till time t, and the renewal process

Sj(t) := max

{
n≥ 0 :

n∑
i=1

mjvj(i)≤ t

}
denote the number of service completions if the physician has devoted t time units to j-triage

patients. Denote µj = 1/mj, which is the service rate for j-triage patients.

Among each class of triage patients, the service discipline is First-Come-First-Served (FCFS).

After completing service, a j-triage patient will join the queue of k-IP patients, with probability

Pjk, or leave the system directly, with probability 1−
∑

k∈KPjk. Let the matrix PJK = (Pjk)J×K

be the triage-to-IP matrix. We use φj(n) to denote the indicator function recording to which

class the nth j-triage patient will transfer: this patient will transfer to the queue of k-IP patients

if φj(n) = ek, or leave the system directly if φj(n) = 0. Then {φj(n), n≥ 1} is a sequence of i.i.d.

random vectors with P(φj(n) = ek) = Pjk, and P(φj(n) = 0) = 1−
∑

k∈KPjk. We use φjk(n) to

denote (φj(n))k, the kth element of φj(n), and use

Φj(n) :=
n∑
i=1

φj(i),

to record the transition of the first n j-triage patients.

2.2. IP patients

For IP classes, there are no external arrivals. All IP patients are transferred from either triage

or IP patients. We use Ek(t) to denote the number of k-IP arrivals till time t. Just like triage

patients, for each class k ∈K, we are given a sequence of random variables {vk(i), i= 1,2, . . .}

and a real numbermk. We assume E[vk(1)] = 1 and denote b2
k = var(vk(1)). Among k-IP patients,

the service time required for the ith patient receiving service is mkvk(i). (Unless specified, we

do not require the service discipline among each IP class to be FCFS.) Then, mk is the mean

service time requirement of a k-IP patient. Denote by M the vector with components mk, k ∈K.

For t≥ 0 and k ∈K, use the renewal process

Sk(t) := max

{
n≥ 0 :

n∑
i=1

mkvk(i)≤ t

}
represent the number of service completions if the physician has devoted t time units to k-IP

patients. Denote µk = 1/mk; then this is the service rate for k-IP patients.

After completing service, an l-IP patient will join the queue of k-IP patients, with probability

Plk, or exit the system with probability 1−
∑

k∈KPlk. Denote the matrix P = (Plk)K×K to be

the IP-to-IP transition matrix and assume that its spectral radius is strictly less than 1. Let
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φl(n) be the indicator function, showing which class the nth served l-IP patient will transfer to;

that is, the nth l-IP patient finishing service will go to the queue of k-IP patients if φl(n) = ek,

and leave the system if φk(n) = 0. Then {φl(n), n ≥ 1} is a sequence of i.i.d. random vectors

with P(φl(n) = ek) = Plk and P(φl(n) = 0) = 1−
∑

k∈KPlk. We use φlk(n) to denote (φl(n))k,

the kth element of φl(n) and, as before, use

Φl(n) :=
n∑
i=1

φl(i),

to record the transition of the first n served l-IP patients.

We assume that all the arrivals of triage classes, services and transitions of all triage and

IP classes, are mutually independent. This assumption is not necessary for our proofs, but

it simplifies calculations and saves our notation (as in Plambeck et al. (2001)). (Practically,

arrivals of triage classes can be correlated with service times of triage and IP classes, as in Dai

and Kurtz (1995).)

Introduce a K-dimensional vector Λ = (λk)k∈K, in which λk is interpreted as the effective

arrival rate for k-IP patients, through the following equation:

ΛT = (ΛJ )TPJK+ ΛTP. (1)

Then

ΛT = (ΛJ )TPJK(I −P )−1. (2)

Define M e
J = (me

j)j∈J as

M e
J =MJ +PJK(I −P )−1M, (3)

in which me
j is called the effective mean service time of j-triage patients, and define M e =

(me
k)k∈K to be

M e = (I −P )−1M, (4)

in which me
k is called the effective mean service time of k-IP patients. Then (3) can be written

as

M e
J =MJ +PJKM

e. (5)

The reason we call me
j “effective” is because it is the expected total service requirement of a

j-triage patient, accumulated up to leaving the system. The reason for me
k to be “effective” is

similar.

2.3. An infeasible problem

Service goals for triage and IP patients are different:

• Triage patients facing deadlines: Denote by τj(t) the age of the head-of-the-line j-triage

patient at time t. Then a feasible policy must ensure τj(t)≤ dj, for j ∈J and t≥ 0.
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• IP patients incurring costs: Denote by Qk(t) the number of k-IP patients in the system

at time t. Those k-IP patients will incur cost at rate Ck(Qk(t)), for some functions Ck, k ∈K.

Consequently, the total cost will be incurred at rate
∑

k∈KCk(Qk(t)).

A control policy is defined as π = {Tj, j ∈ J ; Tk, k ∈ K}, in which Tj(t), j ∈ J , and Tk(t),

k ∈ K, are, respectively, the cumulative time allocated to j-triage patients and k-IP patients

during the first t time units. Then the objective is to solve the following optimization problem

for any T ≥ 0,

min
Π

∫ T

0

∑
k∈K

Ck(Qk(s))ds

s.t. τj(t)≤ dj, ∀j ∈J and 0≤ t≤ T.
(6)

Here π is implicit in the formulation, and π ∈Π, the set of all candidate control policies (to be

defined later).

Our problem above is clearly infeasible, as the age processes τj(·), j ∈J , are stochastic. Our

first task is to generalize (6) to one with a plausible meaning. To this end, we will consider a

sequence of systems with the same structure as above, and show that in conventional heavy

traffic, there is a plausible generalization of “feasibility” for the triage constraints.

However, even if one can generalize the problem (6) to a reasonable one, the optimal policy

could not be a trivial one: if the physician always gives priority to triage patients, the queue

length of the IP patients will get large and the cost high; on the other hand, if the physician

always gives priority to IP patients, this reduces the cost but the triage patients are likely to not

start their service before their deadlines. Indeed, we propose a threshold policy that determines

between triage patients and IP patients and we shall prove that this policy is asymptotically

optimal in the following sense: it is asymptotically feasible and it stochastically minimizes total

congestion cost, among all asymptotically feasible policies.

3. Heavy traffic condition

From now on, we consider a sequence of systems, as discussed in Section 2. The sequence will

be indexed by r ↑∞, and r will be appended as a superscript to denote quantities associated

with the rth system. Then, in the rth system, the arrival rate of j-triage class is λrj and the

effective arrival rate for k-IP class is λrk. The deadline for j-triage patients is drj , while the cost

function Ck for k-IP patients will be specified in the next section. We assume that the service

times and transition vectors are invariant with respect to r, hence there will be no superscript

for terms relating to the service times and transition vectors.

The traffic intensity for the rth system is defined to be

ρr :=
∑
j∈J

λrjmj +
∑
k∈K

λrkmk.
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By (2) and (3), it can also be represented as

ρr =
∑
j∈J

λrjm
e
j .

This underscores the meaning of me
j being the effective mean service time for j-triage patients.

Assume that the sequence of our systems is under (conventional) heavy-traffic, that is,

λrj→ λj, j ∈J , and

r(ρr− 1)→ β, as r→∞,
(7)

for some λj > 0, j ∈ J , and β ∈ R. Let Λ = (λk)k∈K be the vector obtained from (2), with

ΛJ = (λj)j∈J in (7).

Under condition (7), the queue lengths are expected to be O(r), and similarly the ages of

head-of-the-line triage patients. Hence, for each j ∈J , we assume the following convergence for

the deadline of j-triage patients:

drj
r
→ d̂j, as r→∞,

where d̂j, j ∈J , are strictly positive constants.

Denote by Qr
j(t) and Qr

k(t) the number of j-triage and k-IP patients in the rth system at

time t, respectively. We assume that the following initial condition holds:

Assumption 1 When r→∞,

r−1Qr
j(0) ⇒ 0, j ∈J ,

r−1Qr
k(0) ⇒ 0, k ∈K.

4. Asymptotic compliance and optimality

A control policy πr = {T rj , j ∈ J , T rk , k ∈ K} determines the age processes of the head-of-

the-line patients in the rth system, τ r(·) = {τ rj (·), j ∈ J }. We define the diffusion scaled age

processes through

τ̂ rj (t) = r−1τ rj (r2t), j ∈J .

We will consider policies that are asymptotically compliant, which is a generalization of

“feasibility” for the optimization problem (6).

Definition 1 A family of policies {πr} is said to be asymptotically compliant if, for any fixed

T ≥ 0,

sup
0≤t≤T

[
τ̂ rj (t)− d̂j

]+

⇒ 0, as r→∞, for all j ∈J .
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Define the diffusion scaled number of k-IP patients in the system by

Q̂r
k(t) = r−1Qr

k(r
2t), k ∈K.

We assume that, at time t, k-IP patients incur a queueing cost at rate Ck(Q̂
r
k(t)), for some func-

tion Ck. (Concrete assumptions on Ck will be provided in Assumption 2.) Then the cumulative

queueing cost is

Ur(t) :=

∫ t

0

∑
k∈K

Ck

(
Q̂r
k(s)

)
ds. (8)

Our heavy-traffic adaptation of problem (6) is to stochastically minimize Ur(t), for each t, over

all asymptotically compliant families of policies. Formally:

Definition 2 A family of control policies {πr∗} is said to be asymptotically optimal if

1. it is asymptotically compliant and

2. for every t > 0 and every x> 0,

limsup
r→∞

P{Ur∗ (t)>x} ≤ lim inf
r→∞

P{Ur(t)>x} ;

here {Ur∗} is the family of cumulative queueing costs defined through (8) under the family of

control policies {πr∗}, and {Ur} is the sequence of queueing costs corresponding to any other

asymptotically compliant family of policies {πr}.

5. Main results

5.1. Cost functions and an optimization problem

For any given a≥ 0, consider the optimization problem over x= (xk)k∈K:

min
x

∑
k∈K

Ck(xk)

s.t.
∑
k∈K

me
kxk = a,

x≥ 0.

(9)

We denote the optimal solution as

x∗ = ∆K(a).

The mapping ∆K : R+ → RK+ is part of the lifting mapping used in our state-space collapse

result; see Theorem 3.

We assume that the cost functions Ck, k ∈K, satisfy the following, in analogy to van Mieghem

(1995).

Assumption 2 (Cost regularity) The nondecreasing cost functions {Ck, k ∈K} are strictly

convex, continuously differentiable. In addition, for all a> 0, there is an optimal solution x∗ to

the optimization problem (9) such that x∗k > 0, k ∈K.
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By this assumption and the KKT condition, a sufficient condition for a nonnegative vector

x∗ = (x∗k)k∈K to be optimal is the existence of α0 ∈R such that

C ′k(x
∗
k)−α0m

e
k = 0,∑

k∈K

me
kx
∗
k = a.

(10)

It is easy to see that this optimal vector x∗ satisfies C ′l(x
∗
l )/m

e
l = C ′k(x

∗
k)/m

e
k, for all l, k ∈ K.

Using this fact, the proof of the following is elementary:

Lemma 5.1 The function ∆K(·) is well defined, and ∆k(a) is nondecreasing in a, for each

k ∈K.

5.2. A lower bound

Our first result gives a lower bound for the costs, among all asymptotically compliant families

of policies.

For j ∈J and k ∈K, define K ×K matrices Γj = (Γjll′) and Γk = (Γkll′) through

Γjll′ =

{
Pjl(1−Pjl′), if l= l′

−PjlPjl′ , if l 6= l′
and Γkll′ =

{
Pkl(1−Pkl′), if l= l′

−PklPkl′ , if l 6= l′
.

Define Q̂w = Φ(X̂); here Φ is the 1-dimensional Skorohod mapping (Chen and Yao (2001)), and

X̂ is a Brownian motion with drift rate β and variance

∑
j∈J

(me
j)

2λja
2
j +
∑
j∈J

(∑
k∈K

me
kPjk−me

j

)2

λjb
2
j +
∑
k∈K

(∑
l∈K

Pklm
e
l −me

k

)2

λkb
2
k

+
∑
j∈J

λj(M
e)TΓjM e +

∑
k∈K

λk(M
e)TΓkM e.

(11)

Finally define ω̂=
∑

j∈J λj d̂jm
e
j .

Theorem 1 (Lower Bound) Fix any asymptotically compliant family of policies, with the

corresponding cumulative costs Ur defined in (8). Then for any t, x > 0,

lim inf
r→∞

P{Ur(t)>x} ≥ P

{∫ t

0

∑
k∈K

Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds > x

}
.

This theorem is proved in §EC.2.

5.3. The proposed policy and its asymptotic optimality

We propose the following sequence of scheduling policies, which we denote by {πr∗}.

• When becoming idle, the physician deploys a threshold policy to determine which type of

patient classes to serve next – a triage-type patient or an IP-type patient. Fix any j ∈ J , for

example, 1∈J :

— If Qr
1(t)≥ λr1dr1, priority is given to triage-type patients;
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— Otherwise, priority is given to IP-type patients.

• If the triage classes are chosen to be served at time t, the physician chooses the head-of-

the-line patient from the class with index

j ∈ arg max
j∈J

τ rj (t)

drj
. (12)

• If the IP classes are chosen to be served at time t, the physician uses a policy ensuring (for

any T > 0)

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣C ′l(Q̂r
l (t))

me
l

− C
′
k(Q̂

r
k(t))

me
k

∣∣∣∣∣ ⇒ 0. (13)

An example of such a policy is to choose k ∈ arg maxk∈K
C′k(Q̂r

k(t))

me
k

, which is a modified generalized

cµ-rule. (More examples of policies ensuring (13) can be found in §6.2.)

Our main result is the following theorem, which we prove in §EC.5.

Theorem 2 (Asymptotic Optimality) The family of control policies {πr∗} is asymptotically

optimal.

In proving Theorem 2, we show that the proposed policy makes the system “well behaved”,

in the sense that the weighted queue length converges, and there is state-space collapse for the

queue length processes; see Proposition 1 and Theorem 3 below.

Proposition 1 indeed holds under any family of work-conserving policies. To state it, define

the diffusion scaled queue length processes for triage classes: Q̂r
j(t) = r−1Qr

j(r
2t), j ∈ J , and

diffusion scaled weighted queue length processes

Q̂r
w(t) =

∑
j∈J

me
jQ̂

r
j(t) +

∑
k∈K

me
kQ̂

r
k(t). (14)

Proposition 1 (Invariance principle for work-conserving policies) Under any family

of work-conserving policies,

Q̂r
w ⇒ Q̂w, as r→∞. (15)

This proposition is proved in §EC.3.

To state the state-space collapse result, define the lifting vector ∆J : R+ → RJ+ as the J-

dimensional vector x= ∆J a, which is the solution to the following equation∑
j∈J

me
jxj = a,

xj

λj d̂j
=

xj′

λj′ d̂j′
, for j, j′ ∈J .

As in Lemma 5.1, we can also prove ∆J (·) is well-defined, and ∆j is nondecreasing for each

j ∈J . Unlike ∆K, the mapping ∆J is linear. The function pair (∆J ,∆K) is the lifting mapping

in the state-space collapse result. Let Q̂r = {Q̂r
j , j ∈J , Q̂r

k, k ∈K} and recall ω̂=
∑

j∈J λj d̂jm
e
j .
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Theorem 3 (State-Space Collapse) Under the family of control policies {πr∗}, Q̂r ⇒ Q̂,

where Q̂= {Q̂j, j ∈J , Q̂k, k ∈K} is specified by

Q̂j(t) = ∆j min
(
Q̂w(t), ω̂

)
, j ∈J ,

Q̂k(t) = ∆k

(
(Q̂w(t)− ω̂)+

)
, k ∈K.

This theorem is proved in §EC.4.

5.4. Virtual waiting times

In this and the next subsection, we analyze our family of control policies {πr∗}. In addition, we

assume that the service discipline among each IP class is FCFS.

Define the virtual waiting time of a patient class at time t as the time that a virtual patient of

this class, arriving at t, would have to wait till completing the service. (Note that this definition

is slightly different from the traditional one, which is the waiting time till service starts. As the

service time is negligible in heavy traffic scaling, these two definitions yield the same result.)

Denote ωrj (t) and ωrk(t) as the virtual waiting times for j-triage class and k-IP class respectively,

and define the diffusion scaled virtual waiting time processes by

ω̂rj (t) = r−1ωrj (r
2t), j ∈J , and ω̂rk(t) = r−1ωrk(r

2t), k ∈K. (16)

Proposition 2 (Asymptotic Sample-Path Little’s Law) Under the family of control

policies {πr∗}, with FCFS service discipline among each IP patient class, when r→∞,

ω̂rj − Q̂r
j/λ

r
j ⇒ 0, j ∈J ,

ω̂rk− Q̂r
k/λ

r
k ⇒ 0, k ∈K.

This proposition is proved in §EC.7.

Remark 1 From the convergence of Q̂r in Theorem 3, one can obtain the convergence of the

vector of virtual waiting times under the family of control policies {πr∗}.

Recall that τ rj (t) is defined as the age of the head-of-the-line j-triage patient in the rth

system. Now, define τ rk (t) as the age of the head-of-the-line k-IP patient in the rth system,

and similarly its diffusion scaling τ̂ rk (t) = r−1τ rk (r2t), k ∈ K. Our next proposition establishes

connections between the virtual waiting time processes and the age processes. This kind of

result is often referred to as a snapshot principle.

Proposition 3 (Snapshot Principle – Virtual Waiting Time and Age) Under the

family of control policies {πr∗}, with FCFS among each IP patient class, when r→∞,

ω̂rj − τ̂ rj ⇒ 0, j ∈J ,

ω̂rk− τ̂ rk ⇒ 0, k ∈K.

This proposition is proved in §EC.8.
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5.5. Sojourn times

We consider sojourn times associated with specific routes through the system, as in Reiman

(1984). We associate a route vector h ∈ ZK+ with each patient who goes through the system,

where hk denotes the number of times that the patient visits the physician as a k-IP patient

before leaving the system. A vector h ∈ ZK+ is called j-feasible if it is possible that a patient

entering the system as a j-triage patient has a route vector h. Denote W r
jh(t) as the sojourn

time of the next j-triage patient, arriving after t, with route vector h, and the diffusion scaled

processes

Ŵ r
jh(t) = r−1W r

jh

(
r2t
)
, j ∈J .

Proposition 4 (Snapshot Principle – Sojourn Time and Queue Lengths) Under the

family of control policies {πr∗}, with FCFS among each IP patient class, if a route vector h is

j-feasible, then as r→∞,

Ŵ r
jh−

Q̂r
j

λrj
−
∑
k∈K

hk
λrk
Q̂r
k ⇒ 0, j ∈J .

This proposition is proved in §EC.9.

Remark 2 From Theorem 3, when r→∞,

Q̂r
j

λj
+
∑
k∈K

hk
λk
Q̂r
k ⇒ ∆j min

(
Q̂w, ω̂

)
+
∑
k∈K

hk
λk

∆k

(
(Q̂w− ω̂)+

)
.

Then Proposition 4 gives rise to

∆j min
(
Q̂w(·), ω̂

)
+
∑
k∈K

hk
λk

∆k

(
(Q̂w(·)− ω̂)+

)
being a good candidate for estimating the distribution of Ŵ r

jh(·).

The following is a direct corollary of Propositions 2, 3 and 4.

Corollary 1 (Snapshot Principle – Sojourn Time and Ages) Under the family of con-

trol policies {πr∗}, with FCFS among each IP patient class, if a route vector h is j-feasible, then

as r→∞,

Ŵ r
jh− τ̂ rj −

∑
k∈K

hkτ̂
r
k ⇒ 0, j ∈J .

Remark 3 This corollary suggests that, upon arrival, patients can estimate their sojourn time

by using the current age of the head-of-the-line patients on their routes (assuming they know

their route). As in Reiman (1984), the diffusion limit does not depend on the specific order in

which the physician is visited.
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6. Extensions and further discussion

6.1. Alternative triage policies to (12)

The recipe in (12), as part of an asymptotically optimal policy, is not unique. From our proof

in §EC.4, it will be seen that any asymptotically compliant family of control policies ensuring∑
j∈J

me
jQ̂

r
j(·) ⇒ min

(
Q̂w(·), ω̂

)
, as r→∞, (17)

is asymptotically optimal (recall that Q̂w and ω̂ are defined in §5.2). One such control policy,

assuming that triage classes are chosen to be served at time t, is having the physician cater to

the head-of-the-line patient from the class with index

j ∈ arg max
j∈J

Qr
j(t)

λrjd
r
j

;

the latter can be easily proved asymptotically equivalent to (12).

Next we consider the Shortest-Deadline-First policy: when the triage classes are chosen to be

served at time t, the physician chooses the head-of-the-line patient from the class with index

j ∈ arg min
j∈J

(
drj − τ rj (t)

)
. (18)

From Lemma EC.6.2, the above is asymptotically equivalent to choosing the head-of-the-line

patient from the class with index

j ∈ arg min
j∈J

(
drj −Qr

j(t)/λ
r
j

)
.

Following the same framework in §EC.4.1 and §EC.4.2, one can prove that, for any T ≥ 0, as

r→∞,

sup
0≤t≤T

∣∣∣∣∣Q̂r
j(t)− ∆̃j min

(∑
j∈J

me
jQ̂

r
j(t) +

∑
k∈K

me
kQ̂

r
k(t), ω̂

)∣∣∣∣∣ ⇒ 0.

Here ∆̃J (a) = (∆̃j(a))j∈J is defined as follows (where we assume that the indices of triage classes

are ordered such that d̂j is decreasingly in j): if
∑

j∈J λjm
e
j(d̂j − d̂j′)+ ≤ a <

∑
j∈J λjm

e
j(d̂j −

d̂j′+1)+, then

∆̃j1(a) =

{
λj1

(
d̂j1 − d̂j′ +

(
a−

∑
j∈J λjm

e
j(d̂j − d̂j′)+

)
/j′
)
, for j1 ≤ j′,

0, for j1 > j
′.

One can now prove that the family of control policies, with (18) replacing (12), is asymptotically

compliant, and satisfies (17) – it is thus asymptotically optimal.

The expression of ∆̃J is more complicated than ∆J . On the other hand, a discussion in

Plambeck et al. (2001) suggests that the policy in (12) is a more natural one, as it uses a

‘relative’ term. As a result, we choose (12) for elaboration. The comparison of (12) to (18) may

involve rates of convergence, which is beyond the scope of the present paper.
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6.2. IP-Policies that imply (13)

For any K ×K-dimensional invertible matrix G, with all components of GM e nonzero, let H

denote the K-dimensional vector with the kth component 1/(GM e)k. When the IP classes are

chosen to be served at time t, the physician chooses a patient from the class with index

k ∈ arg max
k∈K

Hk

(
GC ′

(
Q̂r(t)

))
k

; (19)

here C ′(Q̂r(t)) is a K-dimensional column vector with C ′k(Q̂
r
k(t)) being its kth component.

For any l, k ∈K, denote

Hr
kl(t) =Hk

(
GC ′

(
Q̂r(t)

))
k
−Hl

(
GC ′

(
Q̂r(t)

))
l
.

Similarly to the proof of Proposition 1 in van Mieghem (2003), one can prove that, for any

T ≥ 0, as r→∞,

sup
l,k∈K

sup
0≤t≤T

|Hr
kl(t)| ⇒ 0. (20)

For any fixed k ∈K, note that Hr
kl(t) is the lth component of the following

Hr
k(t) :=BkGC ′(Q̂r(t)); (21)

here Bk is a K ×K matrix defined as Bk = Υ + Θk, where Υ is a K ×K diagonal matrix with

component −Hl in the lth place, and Θk is a K×K matrix with its kth column being Hk while

all others are 0, that is,

Υ =



−H1 · · · 0 · · · 0
...

. . . · · · · · ·
...

0 · · · . . . · · · 0
... · · · · · · . . .

...
0 · · · 0 · · · −HK

 and Θk =


0 · · · Hk · · · 0
...

. . .
... · · ·

...
0 · · · Hk · · · 0
... · · ·

...
. . .

...
0 · · · Hk · · · 0

 .

It is easy to verify that the vector M e is the only column vector (up to scaling) satisfying

BkGM e = 0.

From this uniqueness and me
k 6= 0, we deduce that, after deleting the kth column of BkG, the

remaining matrix has rank K− 1. Denote this new matrix by Wk and fix any l ∈K\{k}. Then

we can always find a vector Dkl ensuring that all the elements of DT
klWk are 0, except the lth

components, which we denote by dl (for example, we require dl = 1). Denote by −dk the term

in the kth places of DT
klBkG. From DT

klBkGM e = 0 and M e > 0, we deduce that dkm
e
k = dlm

e
l .

As a result, dk 6= 0 and dk/dl =me
l /m

e
k.

According to (20) and (21), for any T > 0 and l, k ∈K,

sup
0≤t≤T

∣∣∣dkC ′k (Q̂r
k(t)

)
− dlC ′l

(
Q̂r
l (t)
)∣∣∣ ⇒ 0.
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Using dk/dl =me
l /m

e
k, we have

sup
0≤t≤T

∣∣∣∣∣∣
C ′k

(
Q̂r
k(t)

)
me
k

−
C ′l

(
Q̂r
l (t)
)

me
l

∣∣∣∣∣∣ ⇒ 0,

for all l, k ∈K, (13) holds.

There are two special choices of G which are especially interesting:

1. G= I: then Hk = 1/me
k; hence (19) is

k ∈ arg max
k∈K

C ′k(Q̂
r
k(t))

me
k

.

This is a generalized cµ policy, modified from van Mieghem (1995) and Mandelbaum and Stolyar

(2004) to account for feedbacks.

2. G = I − P : noticing that M e = (I − P )−1M , then H is a vector with µk being the kth

component; hence (19) is

k ∈ arg max
k∈K

[
C ′k

(
Q̂r
k(t)

)
−
∑
l∈K

PklC
′
l

(
Q̂r
l (t)
)]

µk.

Note that this is the policy conjectured in Mandelbaum and Stolyar (2004).

Our expression in (13) is similar to equation (51) in van Mieghem (1995), with the waiting

times there replaced by the queue lengths, and the mean service times there replaced by the

effective mean service times. As the effective mean service time is in fact the expected total

service time of a patient, accumulated over all visits, the following exhaustive policy is also

expected to satisfy (13): when the IP classes are chosen to be served, the physician chooses a

patient from the class with index k ∈ arg maxk∈KC
′
k(Q̂

r
k(t))/m

e
k, and serves this patient con-

tinuously until completing all services – the current one as well as feedbacks. This exhaustive

policy is not FCFS within each IP class. Alternatively, this system can be viewed as a new one

with no feedback, but with the service times for k-IP patients being now the cumulative service

requirement – with mean me
k. To have this system enjoy asymptotically the queueing-cost lower

bound in Theorem 1, there must exist at least one triage class for each IP class, such that after

the triage service, this class of triage patients will transfer directly to the IP class with positive

probability – that is, for each column in PJK, there must be at least one positive element.

Needless to say, such is not plausible in an ED setup.

6.3. Waiting costs

We now consider waiting costs, instead of queueing costs. To this end, we assume that the

service discipline among each IP class is FCFS. Recall that ωrk(t) is the virtual waiting time of a

k-IP patient at time t, and its diffusion scaling ω̂rk(t) is defined in (16). We seek to stochastically

minimize the following cost:

Ũr(t) :=
∑
k∈K

∫ t

0

Ck (ω̂rk(s))d
¯̄Er
k(s), (22)
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among all asymptotically compliant families of control policies. Here ¯̄Er
k(t) = r−2Er

k(r
2t).

We now slightly modify the control policy {πr∗} in Section 5. The first step, using a threshold

policy to determine between triage classes and IP classes, and the step using (12) to determine

priorities among triage patients, do not change. The step determining the priority among IP

classes changes as follows:

• If the IP classes are chosen to be served at time t, the physician uses a policy ensuring

that, for any T ≥ 0,

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣∣
C ′l

(
Q̂r

l (t)

λr
l

)
me
l

−
C ′k

(
Q̂r

k(t)

λr
k

)
me
k

∣∣∣∣∣∣ ⇒ 0.

An example of such a policy is to choose k ∈ arg maxk∈K
C′k(Q̂r

k(t)/λrk)
me

k
. Other examples of policies

satisfying the above can be deduced from the policies in §6.2.

Denote this family of modified policies by {π̃r∗}.

Proposition 5 (Waiting Time Cost) The family of control policies {π̃r∗} is asymptotically

compliant. It is also asymptotically optimal among all asymptotically compliant families of

work-conserving control policies, in the sense that for any fixed t > 0 and x> 0,

limsup
r→∞

P
{
Ũr∗ (t)>x

}
≤ lim inf

r→∞
P
{
Ũr(t)>x

}
,

where {Ũr∗} is the family of cumulative cost, defined through (22) under the family of control

policies {π̃r∗}, and {Ũr} is the corresponding cost under any other asymptotically compliant

family of work-conserving policies {πr}.

The outline of the proof can be found in §EC.10.

6.4. An alternative criterion: IP sojourn time

In this subsection, we consider the alternative model discussed in §1.3. The structure is identical

to the figure in §1.1, except that congestion cost is associated with each patient’s sojourn time in

the IP stage (as opposed to queueing and waiting costs previously). We now add the assumption

that the routing matrix P is upper-triangular. By enlarging the number of IP classes, the

routing behavior in the IP stage can be assumed to be deterministic; that is, the routing is not

random now. With the upper-triangular assumption, the number of routing vectors is finite.

Thus, without loss of generality, we assume that each patient has a deterministic routing vector

and there are finite number of routing vectors. We use C0 to denote the set of starting classes

of routes, for k ∈ C0, let Ck denote all the classes on the route that starts at k. If the waiting

time of a patient with starting class k waits ωk′ , as a k′-IP patient (k′ ∈ Ck), then the sojourn

time of this patient is
∑

k′∈Ck
ωk′ . We call the class in

⋃
k∈C0 Ck\{k} a subsequent class.
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Our problem is to stochastically minimize the cost

S̃r(t) =
∑
k∈C0

∫ t

0

Ck

∑
k′∈Ck

ω̂rk′(s)

d ¯̄Er
k(s), (23)

among all asymptotically compliant families of control policies, for all t > 0.

We propose the following routing policy: the first step, using a threshold policy to determine

the priority between triage classes and IP classes, and the step using (12) to determine priorities

among triage patients, do not change. The step determining the priority among IP classes will

change as follows:

• Give priority to all subsequent classes, while allocating the service capacity to all starting

classes to ensure the following

max
l,k∈C0

sup
0≤t≤T

∣∣∣∣∣∣
C ′l

(
Q̂r

l (t)

λr
l

)
me
l

−
C ′k

(
Q̂r

k(t)

λr
k

)
me
k

∣∣∣∣∣∣ ⇒ 0. (24)

Here Ql,Qk are the queue lengths of the starting classes j, k ∈ C0, and me
l ,m

e
k are the cor-

responding effective means of service times. An example of such a policy is to choose k ∈
arg maxk∈C0

C′k(Q̂r
k(t)/λrk)
me

k
. Other examples of policies satisfying the above can be modified from

the policies in §6.2.

We denote this family of policies by {π̃r∗∗}.

Proposition 6 (Sojourn Time Cost) The family of control policies {π̃r∗∗} is asymptotically

compliant. It is asymptotically optimal among all asymptotically compliant families of control

policies in the sense that for any fixed t > 0 and x> 0,

limsup
r→∞

P
{
S̃r∗∗(t)>x

}
≤ limsup

r→∞
P
{
S̃r(t)>x

}
; (25)

here {S̃r∗∗} is the family of cumulative cost defined through (23) under the family of control

policies {π̃r∗∗}, and {S̃r} is the corresponding cost under any other asymptotically compliant

family of policies {πr}.

The outline of the proof can be found in §EC.11.

Giving priority to all subsequent classes when serving IP classes is consistent with the obser-

vation in Saghafian et al. (2012), where it is referred to as ‘Prioritize Old’ policy.

6.5. Remark on FCFS multiclass queues with feedback

As mentioned already, Dai and Kurtz (1995) analyzed a multiclass queueing network with

Markovian feedback, under the FCFS policy across all classes. We remark that our analysis can

be also applied to prove convergence of the queue length processes there. Indeed, our present

results yield convergence of the weighted queue length to a reflected Brownian motion, under

any work-conserving policy. Proving convergence of individual queue lengths, for each class,

amounts to establishing state-space collapse, which will follow from standard arguments (e.g.

Bramson (1998)) - details are omitted.
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7. An ED case study: the value of information & imputed costs

Most triage indices are based on 5 severity levels (Farrohknia et al. (2011), Mace and Mayer

(2008)). This granularity is typically too lean to account for patient characteristics that are

relevant for decision making - clinical and operational. For example, our ED-Partner (Carmeli

(2012)), which uses the Canadian Triage and Acuity Scale (CTAS), attempts to also take into

account age and predicted A&D status (will the patient be Admitted, Discharged or transferred

to another facility); other EDs, for example those implementing the U.S. Emergency Severity

Index (ESI), consider the number of ED resources used by the patient, a proxy for which could

be the number of visits to an ED physician that a patient experiences. Note that A&D status

and the number of IP phases are unknown at the triage state, but our hospital partners tell

us that experienced ED physicians or nurses can predict them accurately; see Saghafian et al.

(2011, 2012). In this subsection, based on data from our ED-Partner, we use our models to

assess the operational benefits of such predictions.

For simplicity and insight, we analyze only the IP part of the ED patient flow, and we focus

on A&D status and the number of IP visits to an ED physician (which we refer to as IP phases:

each such phase will be regarded as a separate class in our formal model.) In ED-Partner,

patients experience 1-5 IP phases: 28% go through 1 phase only, 30% have 2 phases, 28% -

3 phases, 11% - 4 phases, and 3% go through 5 IP phases. The fractions of patients who are

Discharged is close to 60%; the others are admitted or transferred elsewhere - both referred to

as Admitted. We assume that A&D status and the number of IP phases are independent; hence,

for example, the fraction of patients who will be admitted after 3 IP phases is 40%× 28% =

11.2%. Expert-solicitation in Carmeli (2012) revealed that sojourn time costs can be assumed

quadratic. Specifically, the cost function for admitted patients is ca(t) =Ct2 for some constant

C; the specific value of C turns out unimportant for the comparisons that we shall perform

- we thus assume C = 1. For discharged patients, the cost is twice that of the admitted ones,

hence it is cd(t) = 2t2. Assume that the external arrival rate is 1, and the mean service time for

IP patients is equal across all phases (this is not unreasonable from our experience); we denote

this common value by m, which is determined so that the ED operates in heavy traffic (traffic

intensity ρ≈ 1).

We now compare three scenarios: no-information, where the ED controller is aware of neither

A&D status nor the number of IP phases; partial-information, where only the number of IP

phases is known, which will be shown to lead to a reduction of 18% in congestion costs; and

full-information, where both are known, which results in about 27% reduction relative to the

no-information cost.

No information: Each patient goes (stochastically) through 1 to 5 phases; e.g. the probability

of continuing to phase 3 after a 2nd physician visit is P23 = (1− 0.28− 0.3)/(1− 0.28)≈ 0.583).

The individual sojourn cost function is

c(t) = 0.4ca(t) + 0.6cd(t) = 1.6t2. (26)
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In §EC.12 of the Appendix, we analyze a system with only two phases. From the analysis

there, with the above cost functions and means of service times, an asymptotically optimal

policy is to give priority to the second phase. This argument can be generalized to multi-

phases: for example, in our 5 phase problem, we first consider the last two phases. It can be

argued, similarly to §EC.12, that an optimal policy assigns priority to the last phase. Then

the 2-phase system is reduced to a system with only one phase and, in turn, our 5-phase

to a 4-phase system. Continuing this way, an optimal policy assigns priority to phases 2 – 5

over phase 1, and only the queue length of the latter remains non-negligible asymptotically.

From the argument in the Appendix, the minimal queueing costs, corresponding to the above

policy, accrues approximately at rate 1.6( (Q̃w−ω̂)+

me
1

)2 = 1.6× 0.1874 (Q̃w−ω̂)2

m2 = 0.2998 (Q̃w−ω̂)2

m2 . As

a reminder, here Q̃w is a reflected Brownian motion, ω̂ is a weighted summation of the triage

deadlines, and both can be calculated via the formulae in §5.2.

Partial information: Now assume that the ED controller knows, for individual patients, their

number of IP phases (1-5). Then the cost function is still as in (26). The patients are initially

classified into 5 IP classes; e.g. Class 3 returns 3 times to the physician, giving rise to 2 additional

classes along the way and ultimately being either admitted or discharged. (There is a total of

15 classes.) From our sojourn time analysis in the previous section, an asymptotically optimal

policy assigns priority to all non-starting IP classes, while allocating the remaining service

capacity to the 5 starting phases as follows: serve a class with index

k ∈max
l∈K

Ql(t)

l× pl
. (27)

Here Ql is the queue length of class l IP patients, and pl is the fraction of patients that visit

the physician l times, l= 1, · · · ,5. From the argument in the Appendix (especially (EC.61) and

the paragraph above it), the minimal cost rate will be the value of the following problem:

min 0.28c(
Q1

0.28
) + 0.30c(

Q2

0.30
) + 0.28c(

Q3

0.28
) + 0.11c(

Q4

0.11
) + 0.03c(

Q5

0.03
)

s.t. m(Q1 + 2Q2 + 3Q3 + 4Q4 + 5Q5) = (Q̃w− ω̂)+.

with Qi being the queue length of starting class i (i phases). Then the optimal solution satisfies

Q∗5 = 0.15
0.28

Q∗1,Q
∗
4 = 0.44

0.28
Q∗1,Q

∗
3 = 0.84

0.28
Q∗1,Q

∗
2 = 0.6

0.28
Q∗1, with

Q∗1
0.28

= (Q̃w−ω̂)+

m(0.28+1.2+2.52+1.76+0.75)
. Simple

algebra leads to the asymptotically minimal cost rate of

(0.28 + 0.3× 4 + 0.28× 9 + 0.11× 16 + 0.03× 25)× 1.6×
(
Q∗1

0.28

)2

=
1.6× (Q̃w− ω̂)2

m2(0.28 + 1.2 + 2.52 + 1.76 + 0.75)
= 1.6× 0.1536

(Q̃w− ω̂)2

m2
= 0.2458

(Q̃w− ω̂)2

m2
.

Calculating 0.2998−0.2458
0.2998

= 0.1801, it follows that having the information on the number of IP

visits will reduce 18.01% of the no-information cost. This is consistent with Saghafian et al.

(2011), in which this number of visits (complexity) is identified as an important factor for

improving ED operations.
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Complete information: Now assume, at the controller’s disposal, an accurate prediction of

both the number of IP phases and the A&D status. By the assumed independence of these two

pieces of information, one can first analyze the unilateral impact of A&D status, then multiply

the two impacts together. For completeness, we present an analysis that accounts jointly for

both factors.

Denote by Qai and Qdi the queue length of i-phase patients who will be admitted and dis-

charged, respectively. From our analysis in the Appendix (especially (EC.61) and the paragraph

above it), and now having 10 initial classes (the rest, due to their high-priority, enjoy neg-

ligible queueing), the minimal cost rate is approximately the optimal value of the following

optimization problem:

min
1

0.6

(
0.28ca(

Qa1

0.28
) + 0.30ca(

Qa2

0.30
) + 0.28ca(

Qa3

0.28
) + 0.11ca(

Qa4

0.11
) + 0.03ca(

Qa5

0.03
)

)
+

1

0.4

(
0.28cd(

Qd1

0.28
) + 0.30cd(

Qd2

0.30
) + 0.28cd(

Qd3

0.28
) + 0.11cd(

Qd4

0.11
) + 0.03cd(

Qd5

0.03
)

)
s.t. m(Qa1 + 2Qa2 + 3Qa3 + 4Qa4 + 5Qa5 +Qd1 + 2Qd2 + 3Qd3 + 4Qd4 + 5Qd5) = (Q̃w− ω̂)+.

(In the above, we use the fact that ca and cd are quadratic functions, and b(x
b
)2 = 1

b
x2).) Similarly

to the partial information case, our problem can be further reduced to the following:

min (0.28 + 0.3× 4 + 0.28× 9 + 0.11× 16 + 0.03× 25)×

(
2

0.6
×
(
Qa1

0.28

)2

+
1

0.4
×
(
Qd1

0.28

)2
)

s.t.
Qa1 +Qd1

0.28
=

(Q̃w− ω̂)+

m(0.28 + 1.2 + 2.52 + 1.76 + 0.75)
.

The optimal value, namely the minimal cost rate, is 10
7
× 0.1536 (Q̃w−ω̂)2

m2 = 0.2194 (Q̃w−ω̂)2

m2 . As

0.2458−0.2194
0.2458

= 0.1074 and 0.2998−0.2194
0.2998

= 0.2682, we conclude that the information of A&D status

unilaterally reduces 10.7% cost; this is consistent with Saghafian et al. (2012), who showed that

A&D status contributes to improving ED operations. Furthermore, having jointly the A&D

status and the number of IP phases reduces congestion costs by 26.8%.

7.1. Imputed cost

Our ED case study was based on expert estimates of costs in an Israeli hospital. Generally,

such cost parameters are unavailable, which raises a natural question: assume that an ED, after

accumulating ample experience, operates close to optimally; can one then infer the relative

costs associated with patient classes? The answer will shed light on the implicit understanding

of these costs by ED physicians. As an example, assume that patients are classified into two

classes: admitted and discharged, with the same means of service times; assume further that

sojourn time costs are quadratic, but the parameters are unknown. Our results suggest that, if

the proportion of the queue lengths of the admitted class to the discharged class are roughly a

constant (state-space collapse), then the inverse of this constant is an estimator of the ratio of
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the cost parameters. This is because, under our assumptions on mean service times, we expect

that

caQa(t)≈ cdQd(t)

from our state-space collapse results; here ca, cd are the cost parameters of patients admitted

and discharged, respectively, and Qa,Qd are the corresponding rate. Then one has, as discussed

above,
ca
cd
≈ Qd(t)

Qa(t)
.

8. Some future research directions

We considered the control problem of a multiclass queueing system with feedback and deadlines,

motivated by its application to EDs. While our model, already as is, captures usefully the control

of ED patient flow, it does leave out several noticeable ED characteristics. In the following, we

list some of the features that, we believe, are research worthy.

8.1. Adding delays between transfers

In emergency department, there are delays between successive patient visits to physicians.

In Yom-Tov and Mandelbaum (2011), the delay phases are modeled as infinite-server queues

(content phases). One would expect that, if the delays are short, those delays will have no impact

asymptotically; at the other extreme, if the delays are long, then those patients experiencing

long delays can be regarded as new arrivals and the system’s performance will change. The

question is the precise meaning of “short” and “long”, which we now formalize.

We consider the basic model as an example. Similarly to Yom-Tov and Mandelbaum (2011),

we model the delays as infinite-server queues with exponential service times. The individual

service rate for the infinite-server queue between j-triage patients and k-IP patients is rαjkµjk,

and the one between l-IP patients and k-IP patients is rαlkµlk. Here µjk and µlk are fixed

positive constants. The magnitude of the α’s will determine “short” delays (large α) vs. “long”

(small). Specifically, we conjecture that when α > −2 (for all α’s), the delays are then short

enough to leave our results intact. Conversely, αjk <−2 (for all j, k) decouples the triage from

IP - both can be controlled separately; and αlk <−2 (for all l, k) pushes the IP feedback far

enough into the future so that the IP sub-system can be analyzed as a queueing system without

feedback. All other cases require further thought and plausibly a more delicate analysis. We

further provide a brief discussion in §EC.13.

8.2. Time-varying arrival rates

Emergency departments, like many other service systems, must cope with arrival rates that are

significantly time-varying (Yom-Tov and Mandelbaum 2011, Figure 10). In the present paper,

we have focused our attention on the ED afternoon-evening peak, which rendered relevant a
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stationary critically-loaded model. Nevertheless, it is still of interest, and theoretically challeng-

ing, to view the ED as a time-varying queueing system. This is especially true when staffing

capacity can not be matched well with demand - an unfortunate recurring scene in EDs - in

which case the system could alternate between underloaded and overloaded periods of a day

(Mandelbaum and Massey (1995), Liu and Whitt (2012)). The triage part of the time-varying

ED flow control is analyzed in Carmeli (2012), where the following problem is solved, in a fluid

framework and for a single triage-class: minimize service capacity for triage patients subject

to adhering to their triage constraints. A corresponding IP part is carried out in Bäuerle and

Stidham (2001). Combining these two results could provide the starting point for solving the

flow control problem for a time-varying ED, within a fluid framework.

8.3. Length-of-Stay constraints

Many EDs implement, or at least strive for, an upper bound on patients’ overall Length of

Stay (LOS). In our ED-Partner, for example, the goal is to release a patient within at most 4

hours. Note, however, that if there are too many patients within the ED, LOS constraints could

simply turn infeasible. To this end, one could, perhaps should apply a rationalized admission

control - a rare protocol in our ED-Partner, but relatively prevalent in U.S. EDs in the form

of ambulance diversion (Deo and Gurvich (2011), Allon et al. (2008), Armony et al. (2011)).

Interestingly, admission control problems, with costs incurred by blocked customers, in fact

motivated Plambeck et al. (2001). But we opted for the analysis of triage-constraints first, in

the belief that they play a higher order (clinical) role. Nevertheless, accommodating LOS and

Triage constraints simultaneously is of interest and significance - we thus leave it for future

research.

8.4. Adding abandonment to triage or IP patients

Statistical evidence shows that the fraction of registered emergency patients who ‘Leave With-

out Being Seen’ (LWBS) is around 5% (Armony et al. (2011)). This has become a growing

concern in overcrowded EDs, as those LWBS patients may miss out their necessary care and

be exposed to unnecessary medical risk. The ‘LWBS’ phenomenon corresponds to adding aban-

donment in our model. Customer abandonment has been analyzed in service systems such as

call centers, and has proved significant in affecting system performance and optimal decisions;

see Garnett et al. (2002), Mandelbaum and Zeltyn (2009).

Indeed, abandonment could significantly impact the structure of optimal policies. For systems

without feedback, Kim and Ward (2012) considered linear cost, with hazard rate scaling of

patience time distributions, and Ata and Tongarlak (2012) covered general cost functions with

exponential patience time distributions. Both the works analyze the corresponding Brownian

control problem, and then interpret the results to the original queueing systems. Both works

show that the cµ (or the generalized cµ) is no longer an optimal policy. As a result, for systems



Huang, Carmeli, and Mandelbaum: Patient Flow Control in ED
30 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

with feedback, it is also natural to conjecture that the generalized cµ rule is not optimal. But

more fundamentally, understanding of the impact of abandonment on systems with feedback is

still lacking.
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Proofs

EC.1. Preliminary analysis

We start with an analysis that covers any asymptotically compliant family of control policies.

For j-triage class, j ∈J , define diffusion scaled processes

Êr
j (t) = r−1

(
Er
j (r

2t)−λrjr2t
)
,

Ŝrj (t) = r−1(Sj(dr2te)−µjr2t), T̂ rj (t) = r−1
(
T rj (r2t)−λrjmjr

2t
)
,

and fluid scaled processes

¯̄Qr
j(t) = r−2Qr

j(r
2t), ¯̄Er

j (t) = r−2Er
j (r

2t),

¯̄T rj (t) = r−2T rj (r2t), ¯̄Srj (t) = r−2Sj(r
2t).

From Donsker’s Theorem, when r→∞,

(Êr
j , Ŝ

r
j , j ∈J ) ⇒ (Êj, Ŝj, j ∈J ); (EC.1)

here (Êj, j ∈ J ) and (Ŝj, j ∈ J ) are independent driftless Brownian motions, with the corre-

sponding covariance matrices

diag(λja
2
j), diag(µjb

2
j).

Lemma EC.1.1 Under any asymptotically compliant family of control policies, and for all

T ≥ 0,

max
j∈J

sup
0≤t≤T

∣∣∣Q̂r
j(t)−λj τ̂ rj (t)

∣∣∣ ⇒ 0, as r→∞. (EC.2)

Proof: For each triage class j ∈ J , the patients in queue at time t are those patients arriving

between [t− τ rj (t), t], thus

Qr
j(t) =Er

j (t)−Er
j

(
(t− τ rj (t))−

)
.

Then

Q̂r
j(t)−λrj τ̂ rj (t) = Êr

j (t)− Êr
j

(
(t− ¯̄τ rj (t))−

)
, j ∈J . (EC.3)

Here ¯̄τ rj (t) = r−2τ rj (r2t). From the definition of asymptotic compliance, ¯̄τ rj ⇒ 0 and τ̂ rj are

stochastically bounded for all j ∈ J . Together with (EC.1) and (7), (EC.2) is easily proved

from (EC.3), in view of the Random-Time-Change theorem. �

The following is a direct corollary, which translates the asymptotic compliance condition to

the language of queue length processes.

Corollary 2 Under any asymptotically compliant family of control policies, when r→∞,

sup
0≤t≤T

[
Q̂r
j(t)/λj − d̂j

]+

⇒ 0, j ∈J .
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Lemma EC.1.2 Under any asymptotically compliant family of control policies, when r→∞,

¯̄T rj (·) ⇒ λjmje(·), (EC.4)

Q̂r
j(·) +µjT̂

r
j (·) ⇒ Êj(·)− Ŝj (λjmje(·)) . (EC.5)

As a result, Q̂r
j and T̂ rj are stochastically bounded.

Proof: For j ∈J , as

Qr
j(t) =Qr

j(0) +Er
j (t)−Sj(T rj (t)),

then

¯̄Qr
j(t) = ¯̄Qr

j(0) + ¯̄Er
j (t)−λrjt−

[
¯̄Srj

(
¯̄T rj (t)

)
−µj ¯̄T rj (t)

]
+µj

[
λrjmjt− ¯̄T rj (t)

]
(EC.6)

and

Q̂r
j(t) = Q̂r

j(0) + Êr
j (t)− Ŝrj ( ¯̄T rj (t))−µjT̂ rj (t). (EC.7)

From Corollary 2 and the Functional Law of Large Numbers, for any T ≥ 0, when r→∞,

sup
0≤t≤T

¯̄Qr
j(t)⇒ 0, sup

0≤t≤T

∣∣∣ ¯̄Er
j (t)−λrjt

∣∣∣⇒ 0, (EC.8)

sup
0≤t≤T

∣∣∣ ¯̄Srj ( ¯̄T rj (t)
)
−µj ¯̄T rj (t)

∣∣∣≤ sup
0≤t≤T

∣∣∣ ¯̄Srj (t)−µjt∣∣∣⇒ 0, (EC.9)

and (EC.4) can be easily obtained from (EC.6). Then (EC.1) and (EC.7), together with the

Random-Time-Change theorem, imply (EC.5). �

We next discuss system dynamics, without assuming a specific policy. Thus the following

discussion (till the end of this subsection) can be applied to all policies.

Define the diffusion scaled processes for j ∈J , l, k ∈K:

Êr
k(t) = r−1(Er

k(r
2t)−λrkr2t),

Ŝrk(t) = r−1(Sk(r
2t)−µkr2t), T̂ rk (t) = r−1(T rk (r2t)−λrkmkr

2t),

Φ̂r
jk(t) = r−1

(
Φjk(dr2te)−Pjkr2t

)
, Φ̂r

lk(t) = r−1
(
Φlk(dr2te)−Plkr2t

)
.

Then from Donsker’s Theorem, when r→∞,(
Φ̂r
jk(·), Φ̂r

lk(·), Ŝrk(·); j ∈J , l, k ∈K
)

⇒
(

Φ̂jk(·), Φ̂lk(·), Ŝk(·); j ∈J , l, k ∈K
)

;
(EC.10)

here (Φ̂jk(·), k ∈K), j ∈J , (Φ̂kl(·), l ∈K), k ∈K, (Ŝk(·), k ∈K) are independent driftless Brow-

nian motions, with covariance matrices

Γj, j ∈J , Γk, k ∈K, and diag(b2
k),

respectively.
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Recall that Er
k(t) is the arrival process for k-IP patients, k ∈K. Then

Qr
k(t) =Qr

k(0) +Er
k(t)−Sk(T rk (t)), (EC.11)

and

Er
k(t) =

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t))) .

From this and (1), similar to (EC.7),

Q̂r
k(t) = Q̂r

k(0) + Êr
k(t)− Ŝrk( ¯̄T rk (t))−µjT̂ rk (t)

= Q̂r
k(0) + Êrk(t)− Ŝrk( ¯̄T rk (t)) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t)−µkT̂ rk (t);

(EC.12)

here

Êrk(t) =
∑
j∈J

Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑
l∈K

Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))
+
∑
j∈J

PjkŜ
r
j

(
¯̄T rj (t)

)
+
∑
l∈K

PlkŜ
r
l

(
¯̄T rl (t)

)
.

(EC.13)

Denote (Q̂r
w(t) is defined in the paper, but we would like to repeat it here)

Q̂r
w(t) =

∑
j∈J

me
jQ̂

r
j(t) +

∑
k∈K

me
kQ̂

r
k(t),

X̂r
w(t) =Q̂r

w(0) + r(ρr− 1)t+
∑
j∈J

me
j

[
Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]
+
∑
k∈K

me
k

[
Êrk(t)− Ŝrk

(
¯̄T rk (t)

)]
,

T̂ r+(t) =r−1

(
r2t−

∑
j∈J

T rj (r2t)−
∑
k∈K

T rk (r2t)

)
.

(EC.14)

From (5) and (4), one can verify that

−me
jµj +

∑
k∈K

Pjkµjm
e
k =−1, (EC.15)

−me
kµk +

∑
l∈K

Pklµkm
e
l =−1. (EC.16)

Multiply (EC.7) by me
j , (EC.12) by me

k, and summing them together, one has

Q̂r
w(t) = X̂r

w(t) + T̂ r+(t),

Q̂r
w(t)≥ 0,

T̂ r+(·) is nondecreasing with T̂ r+(0) = 0.

(EC.17)

Note that the policy may not be work-conserving, thus it is possible that T̂ r+ increases at t when

Q̂r
w(t) 6= 0. Hence

Q̂r
w(t)≥Φ(X̂r

w)(t); (EC.18)

here Φ is the 1-dimensional Skorohod mapping; see for example, Mandelbaum and Stolyar

(2004). Equality in (EC.18) holds when the system operates under any work-conserving policy.
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EC.2. Proof of Theorem 1: Lower Bound

Proof of Theorem 1: Fix an arbitrary family of control policies {πr} which is asymptotically

compliant. Define

Γr1(t) =

{
Ur(t)>x, max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)≤

1

r1/4

}
,

Γr2(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s)>

1

r1/4

}
,

Γr3(t) =

{
Ur(t)≤ x, max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)>

1

r1/4

}
.

Here ¯̄Qr
k is the fluid scaled number of k-IP patients in the system, defined via

¯̄Qr
k(t) = r−2Qr

k(r
2t), k ∈K.

Then

{Ur(t)>x}= (Γr1(t)∪Γr2(t))\Γr3(t). (EC.19)

First we prove

lim
r→∞

P{Γr3(t)}= 0. (EC.20)

For notation simplicity, denote Ir(s,ϑ) = [s, s+ 1

ϑr1/4
] and ϑ0 = 4maxk∈K µk. For s < u, denote

Srk(s,u) = Sk (T r(r2s) + r2(u− s))−Sk (T r(r2s)) and ¯̄Srk(s,u) = r−2Srk(s,u). One can prove that

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

¯̄Srk(s,u)>
1

2r1/4

}
= 0.

Note that for all k ∈K and u> s, Qr
k(r

2s)≤Qr
k(r

2u) +Srk(s,u) because Srk(s,u) is the number

of departures of k-IP patients during [r2s, r2u] if the physician allocates all the capacity to k-IP

patients in this period. Thus ¯̄Qr
k(s)− ¯̄Qr

k(u)≤ ¯̄Srk(s,u) and

lim
r→∞

P

{
max
k∈K

sup
0≤s≤t

sup
u∈Ir(s,ϑ0)

[
¯̄Qr
k(s)− ¯̄Qr

k(u)
]
>

1

2r1/4

}
= 0.

It follows that

lim
r→∞

P{Γr3(t)} ≤ limsup
r→∞

P
{
Ur(t)≤ x,max

k∈K
sup

0≤s≤t
inf

u∈Ir(s,ϑ0)

¯̄Qr
k(u)>

1

2r1/4

}
≤ limsup

r→∞
P
{

min
k∈K

2

ϑ0r1/4
Ck

(
1

2
r3/4

)
≤ x,max

k∈K
sup

0≤s≤t
inf

u∈Ir(s,ϑ0)

¯̄Qr
k(u)>

1

2r1/4

}
≤ limsup

r→∞
P
{
r1/2

ϑ0

min
k∈K

2

r3/4
Ck

(
1

2
r3/4

)
≤ x
}

= 0.

This completes the proof of (EC.20).

We conclude from (EC.19) and (EC.20) that,

lim inf
r→∞

P{Ur(t)>x}= lim inf
r→∞

P{Γr1(t)∪Γr2(t)} . (EC.21)

Next we derive a lower bound for the latter term.
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Denote

Γr0(t) =

{
max
k∈K

sup
0≤s≤t

¯̄Qr
k(s)≤ r−1/4

}
.

We first prove that, on sets Γr0(t), the following is true on D[0, t]:

¯̄T rk (·) ⇒ λkmke(·), k ∈K. (EC.22)

For s≤ t, define T̃ rj (s) = r−1T̂ rj (s) for j ∈J , and

Q̃r
k(s) = r−1Q̂r

k(s), Ẽrk(s) = r−1Êrk(s),

S̃rk(s) = r−1Ŝrk(s), T̃ rk (s) = r−1T̂ rk (s),

Φ̃r
jk(s) = r−1Φ̂r

jk(s), Φ̃r
lk(s) = r−1Φ̂r

lk(s),

for j ∈J , l, k ∈K. Then from (EC.12),∑
l∈K

PlkµlT̃
r
l (s)−µkT̃ rk (s) = Q̃r

k(s)− Q̃r
k(0)− Ẽrk(s) + S̃rk

(
¯̄T rk (s)

)
−
∑
j∈J

PjkµjT̃
r
j (s). (EC.23)

On Γr0(t), we know that sup0≤s≤t Q̃
r
k(s)⇒ 0. Together with (EC.4), the expression of Ẽrk in

(EC.13), and ¯̄T rk (s) ≤ s for all k ∈ K (those hold for all asymptotic compliant policies), we

deduce that the terms on the right-hand side of (EC.23) converge to 0. Then on Γr0(t),∑
l∈K

PlkµlT̃
r
l (·)−µkT̃ rk (·)⇒ 0, on D[0, t].

Introducing a K-dimensional process T̃ rµ(s) = (µkT̃
r
k (s))k∈K on D[0, t], the above is then

(P T − I)T̃ rµ(·)⇒ 0, on Γr0(t).

As P T − I is invertible, and all µk, k ∈K, are nonzero, then

T̃ rk (·)⇒ 0, k ∈K on D[0, t],

which is equivalent to (EC.22).

For s≤ t, define X̂ r
0 (s) = X̂r

w(s) on Γr0(t), and otherwise,

X̂ r
0 (s) =

∑
j∈J

me
jQ̂

r
j(0) +

∑
k∈K

me
kQ̂

r
k(0) + r(ρr− 1)s

+
∑
j∈J

me
j

[
Êr
j (s)− Ŝrj

(
λrjmjs

)]
+
∑
k∈K

me
k

[
ˇ̂E
r

k(s)− Ŝrk (λrkmks)
]

;

here for k ∈K,

ˇ̂E
r

k(s) =
∑
j∈J

Φ̂r
jk

(
λrjs
)

+
∑
l∈K

Φ̂r
lk (λrl s) +

∑
j∈J

PjkŜ
r
j

(
λrjmjs

)
+
∑
l∈K

PlkŜ
r
l (λrlmls) .

From (EC.22) on Γr0(t), (EC.4) and λrk→ λk, k ∈K, when r→∞,

X̂ r
0 ⇒ X̂



e-companion to Huang, Carmeli, and Mandelbaum: Patient Flow Control in ED ec7

on D[0, t]. Here X̂ is the Brownian motion defined in §5.2. For s≤ t, denote

Ẑr+(s) =

(
Φ(X̂ r

0 )(s)−
∑
j∈J

me
j(Q̂

r
j(s)−λrj d̂j)+−

∑
j∈J

me
jλ

r
j d̂j

)+

;

then by the continuity of Φ and the definition of asymptotic compliance, on D[0, t], when r→∞,

Ẑr+(·) ⇒
(
Q̂w(·)− ω̂

)+

.

From (EC.18), on Γr0(t), ∑
k∈K

meQ̂r
k(s)≥ Ẑr+(s), s≤ t.

By the definition of ∆K and the nondecreasing property of ∆k for all k ∈K, we have

Γr1(t)∪Γr2(t) ⊇

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x,max

k∈K
sup

0≤s≤t

¯̄Qr
k(s)≤ r−1/4

}
∪Γr2(t)

⊇

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

Combined with (EC.21),

lim inf
r→∞

P{Ur(t)>x} ≥ lim inf
r→∞

P

{∫ t

0

∑
k∈K

Ck

(
∆k(Ẑr+(s))

)
ds > x

}
.

From the convergence of Ẑr+, the right-hand side is exactly the lower bound in Theorem 1. This

completes the proof. �

EC.3. Proof of Proposition 1: Invariant principle for work-conserving policies

Proof of Proposition 1: For any family of work-conserving policies, besides (EC.17), the

following is also true:

T̂ r+ increases at t only when Q̂r
w(t) = 0.

As a result, equality holds in (EC.18).

From (EC.10), (EC.1) and the fact that ¯̄T rj (s)≤ s, j ∈J and ¯̄T rk (s)≤ s, k ∈K, it is easy to see

that X̂r
w in (EC.14) is stochastically bounded. By the Lipschitz continuity of Φ (Mandelbaum

and Stolyar (2004)), Q̂r
w is stochastically bounded, which implies the stochastic boundedness of

Q̂r
j , j ∈J , and Q̂r

k, k ∈K. Then ¯̄Qr
j⇒ 0 for j ∈J . Note that (EC.6) is still true. One then has

¯̄T rj (·) ⇒ λjmje(·), j ∈J . (EC.24)

For k ∈K, following the procedure in proving (EC.22) in the proof of Theorem 1, one also has

¯̄T rk (·) ⇒ λkmke(·), k ∈K. (EC.25)

Together with (EC.24), (EC.10), (EC.1) and the Random-Time-Change theorem, when r→∞,

X̂r
w⇒ X̂. (EC.26)

By the continuity of the mapping Φ, (15) follows. �
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EC.4. Proof of Theorem 3: State-Space Collapse

EC.4.1. Hydrodynamic limit

We now start to analyze the family of control policies {πr∗}. In the present subsection, we focus

only on the triage part.

Under the policies {πr∗}, one has the following dynamic equations of the system:

Qr
j(t) =Qr

j(0) +Er
j (t)−Dr

j (t), j ∈J ,

Dr
j (t) = Sj

(
T rj (t)

)
, j ∈J ,

Qr
k(t) =Qr

k(0) +Er
k(t)−Dr

k(t), k ∈K,

Er
k(t) =

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t))) , k ∈K,

Dr
k(t) = Sk (T rk (t)) , k ∈K,∑

j∈J

[
T rj (t)−T rj (s)

]
+
∑
k∈K

[T rk (t)−T rk (s)]≤ t− s, for s < t,

Y r(t) = t−

(∑
j∈J

T rj (t) +
∑
k∈K

T rk (t)

)
,

∫ ∞
0

(
max
j∈J

τ rj (t)

drj
−
τ rj′(t)

drj′

)+

∧ 1dT rj′(t) = 0, j′ ∈J ,∫ ∞
0

1 (Qr
1(t)>λr1d

r
1)d

∑
k∈K

T rk (t) = 0,

∫ ∞
0

1

(
Qr

1(t)<λr1d
r
1,
∑
k∈K

Qr
k(t)> 0

)
d
∑
j∈J

T rj (t) = 0,

∫ ∞
0

1

(∑
j∈J

me
jQ

r
j(t) +

∑
k∈K

me
kQ

r
k(t)> 0

)
dY r(t) = 0.

We define the hydrodynamic scaled processes for j-triage classes, j ∈J ,

Ēr
j (t) = r−1Er

j (rt), S̄rj (t) = r−1Sj(rt), τ̄ rj (t) = r−1τ rj (rt),

T̄ rj (t) = r−1T rj (rt), Q̄r
j(t) = r−1Qr

j(rt), D̄r
j (t) = r−1Dr

j (rt),

and for k-IP classes, k ∈K,

Ēr
k(t) = r−1Er

k(rt), S̄rk(t) = r−1Sk(rt),

T̄ rk (t) = r−1T rk (rt), Q̄r
k(t) = r−1Qr

k(rt), D̄r
k(t) = r−1Dr

k(rt).

First we can prove the following lemma, which is similar to Lemma EC.1.1.

Lemma EC.4.1 For any T > 0, sup0≤t≤T

∣∣λrj τ̄ rj (t)− Q̄r
j(t)
∣∣⇒ 0.

Proof: For each triage class j ∈ J , the patients in queue at time t are those patients arriving

between [t− τ rj (t), t], thus

Qr
j(t) =Er

j (t)−Er
j

(
(t− τ rj (t))−

)
.
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Then

Q̄r
j(t) = Ēr

j (t)− Ēr
j

(
(t− τ̄ rj (t))−

)
, j ∈J . (EC.27)

By the functional law of large numbers, sup0≤t≤T |Ēr
j (t)−λrjt| ⇒ 0, together with (EC.27), the

conclusion can be easily proved. �

Similar to Plambeck et al. (2001), we have the following

Proposition 7 Almost surely, every sequence contains a subsequence {rn} such that, the

hydrodynamic scaled processes Ērn
j , S̄

rn
j , τ̄

rn
j , T̄ rnj , Q̄rn

j , D̄
rn
j , j ∈ J , Ērn

k , S̄
rn
k , T̄

rn
k , Q̄rn

k , D̄
rn
k , k ∈

K, converge uniformly on compact time sets to limit processes Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J ,

Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈K which satisfy the following equations

Q̄j(t) = Q̄j(0) +λjt− D̄j(t), j ∈J , (EC.28)

D̄j(t) = µjT̄j(t), j ∈J , (EC.29)

Q̄k(t) = Q̄k(0) + Ēk(t)− D̄k(t), k ∈K, (EC.30)

Ēk(t) =
∑
j∈J

µjPjkT̄j(t) +
∑
l∈K

µlPlkT̄l(t), k ∈K, (EC.31)

D̄k(t) = µkT̄k(t), k ∈K, (EC.32)

λj τ̄j(t) = Q̄j(t), j ∈J , (EC.33)∑
j∈J

[T̄j(t)− T̄j(s)] +
∑
k∈K

[T̄k(t)− T̄k(s)]≤ t− s, for s < t, (EC.34)

Ȳ (t) = t−

(∑
j∈J

T̄j(t) +
∑
k∈K

T̄k(t)

)
, (EC.35)

∫ ∞
0

(
max
j∈J

Q̄j(t)

λj d̂j
− Q̄j′(t)

λj′ d̂j′

)+

∧ 1dT̄j′(t) = 0, j′ ∈J , (EC.36)∫ ∞
0

1
(
Q̄1(t)>λ1d̂1

)
d
∑
k∈K

T̄k(t) = 0, (EC.37)

∫ ∞
0

1

(
Q̄1(t)<λ1d̂1,

∑
k∈K

Q̄k(t)> 0

)
d
∑
j∈J

T̄j(t) = 0, (EC.38)

∫ ∞
0

1

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t)> 0

)
dȲ (t) = 0. (EC.39)

Remark 4 We call any S̄ = (Ēj, S̄j, τ̄j, T̄j, Q̄j, D̄j, j ∈ J , Ēk, S̄k, T̄k, Q̄k, D̄k, k ∈ K) satisfying

(EC.28)-(EC.39) a hydrodynamic model solution, and we can prove that, any hydrodynamic

model solution is Lipschitz, hence absolutely continuous and differentiable almost everywhere.

Proposition 8 Any hydrodynamic model solution satisfies∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t) =

∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0).



ec10 e-companion to Huang, Carmeli, and Mandelbaum: Patient Flow Control in ED

Proof: From the fact that
∑

j∈J λjm
e
j = 1, (EC.15)-(EC.16) and (EC.28)-(EC.32), we can prove∑

j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t) =

∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0) + Ȳ (t).

From (EC.39), (EC.34) and (EC.35), Ȳ (·) = 0. This completes the proof. �

EC.4.2. State-space collapse for triage patients

First we prove a state-space collapse result for the hydrodynamic model solution.

Proposition 9 (State-space collapse for hydrodynamic model solution) Fix C > 0.

For any hydrodynamic model solution with
∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0)<C, there exists a

constant T0 such that, for all t≥ T0,

Q̄J (t) = ∆J min

(∑
j∈J

me
jQ̄j(t) +

∑
k∈K

me
kQ̄k(t), ω̂

)
.

Furthermore, if

Q̄J (0) = ∆J min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

)
,

then Q̄J (t) = Q̄J (0).

Proof: For j ∈J , we define

fj(t) =
1

λj d̂j

(
Q̄j(t)−∆j min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

))−
.

If f1(t)> 0 and is differentiable, then we claim

f ′1(t) =− 1

d̂1

< 0.

Indeed, if this is not true, then T̄ ′1(t) 6= 0 and from (EC.36), one has Q̄1(t)

λ1d̂1
= maxj∈J

Q̄j(t)

λj d̂j
.

Together with f1(t)> 0, one can prove by contradiction that Q̄1(t)<λ1d̂1. Then from (EC.38),

one has Q̄k(t) = 0 for all k ∈ K. This, together with f1(t)> 0, will contradict the definition of

∆j.

As a result, f1 will decrease to 0 in a finite time (denote it as T1) and once becoming 0, it

will never be positive again. Then for each j ∈ J , if fj(t)> 0 for some t≥ T1, then T̄ ′j(t) = 0

from (EC.36), hence

f ′j(t) =− 1

d̂j
< 0.

Consequently, after a finite time (denote it by T2 ≥ T1), all fj will be 0 and will never be positive

again.
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For t≥ T2, we now have fj(t) = 0 for all j ∈J . Define

gj(t) =
1

λj d̂j

(
Q̄j(t)−∆j min

(∑
j∈J

me
jQ̄j(0) +

∑
k∈K

me
kQ̄k(0), ω̂

))+

. (EC.40)

We can assume g1(t) > 0 whenever
∑

j∈J λj d̂jmjgj(t) > 0. Otherwise, if g1(t) = 0 and

there is another j ∈ J such that gj(t) > 0, then from the definition of ∆J , Q̄1(t)/λ1d̂1 <

maxj∈J Q̄j(t)/λj d̂j, and from (EC.36), T̄ ′1(t) = 0 and g′1(t) = 1

d̂1
> 0. Hence right after t, g1(·)

will be positive.

Now, as we have proved that fj(t) = 0 for all j ∈ J and over t≥ T2, together with g1(t)> 0

and the definition of ∆j, we have
∑

j∈J m
e
jQ̄j(t) +

∑
k∈Km

e
kQ̄k(t)> ω̂,

∑
k∈K Q̄k(t)> 0 and for

1∈J , Q̄1(t)>λ1d̂1. Then from (EC.37),
∑

k∈K T̄
′
k(t) = 0. From (EC.39), we know

∑
j∈J T̄

′
j(t) =

1. As a result, the derivative of
∑

j∈J λj d̂jmjgj(t) is∑
j∈J

λjmj − 1 < 0.

Thus in finite time (denote it by T0 ≥ T2),
∑

j∈J λj d̂jmjgj(t) will converge to 0. It fol-

lows that, for all t ≥ T0, fj(t) = gj(t) = 0, j ∈ J . Finally, from Proposition 8, Q̄J (t) =

∆J min
(∑

j∈J m
e
jQ̄j(0) +

∑
k∈Km

e
kQ̄k(0), ω̂

)
= ∆J min

(∑
j∈J m

e
jQ̄j(t) +

∑
k∈Km

e
kQ̄k(t), ω̂

)
,

for t≥ T0. �

Our main result in this subsection is the following proposition, which proves the state-space

collapse result for triage patients. The proof of it follows from Proposition 9 and the standard

framework of Bramson (1998), hence we omit it here.

Proposition 10 Under Assumption 1 and the proposed family of control policies, when r→∞,

sup
0≤t≤T

∣∣∣Q̂r
j(t)−∆j min

(
Q̂r
w(t), ω̂

)∣∣∣ ⇒ 0.

EC.4.3. State-space collapse for IP patients

From Propositions 1 and 10, when r→∞, one has∑
k∈K

me
kQ̂

r
k ⇒

(
Q̂w− ω̂

)+

. (EC.41)

Recall that the proposed policy for IP patients is to ensure

max
l,k∈K

sup
0≤t≤T

∣∣∣∣∣C ′l(Q̂r
l (t))

me
l

− C
′
k(Q̂

r
k(t))

me
k

∣∣∣∣∣ ⇒ 0. (EC.42)

Proposition 11 Under the family of control policies {πr∗}, we have (Q̂r
k, k ∈K)⇒ (Q̂k, k ∈K).

Here

Q̂k = ∆k

(
(Q̂w− ω̂)+

)
, k ∈K. (EC.43)
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Proof: The proof is similar to van Mieghem (1995); for completeness, we include it here. From

(EC.42), for any given T > 0,

max
l,k∈K

sup
0≤t≤T

∣∣∣∣C ′−1
l

(
me
l

me
k

C ′k

(
Q̂r
k(t)

))
− Q̂r

l (t)

∣∣∣∣ ⇒ 0. (EC.44)

From the assumption on C ′k, k ∈K, C ′−1
l

(
me

l
me

k
C ′k(·)

)
is a nondecreasing function.

From (EC.44) and (EC.41), we have∑
l∈K

me
lC
′−1
l

(
me
l

me
k

C ′k

(
Q̂r
k

))
⇒
(
Q̂w− ω̂

)+

.

As the function on the left-hand of the above equation has a continuous inverse, Q̂r
k converges.

From (EC.44), we know (Q̂r
l , l ∈K)⇒ (Q̂l, l ∈K). We also have,

C ′l(Q̂l)

me
l

=
C ′k(Q̂k)

me
k

, l, k ∈K.

This proves (EC.43). �

Proof of Theorem 3: This can be deduced from Propositions 1, 10 and 11. �

EC.5. Proof of Theorem 2: Asymptotic Optimality

Proof of Theorem 2: First, it can be verified that ∆j min(x, ω̂)≤ λj d̂j for any x and j ∈J .

Then from Theorem 3, under the proposed policies {πr∗}, Q̂r
j⇒ Q̂j ≤ λj d̂j. An analysis of work-

conserving policies will show that (EC.2) is equivalent to “asymptotic compliance” for work-

conserving policies (see Lemma EC.6.2); hence the family of the policies {πr∗} is asymptotically

compliant.

By Theorem 3, together with the continuity of the cost functions, we also have∫ t

0

∑
k∈K

Ck

(
Q̂r
k(s)

)
ds ⇒

∫ t

0

∑
k∈K

Ck

(
Q̂k(s)

)
ds=

∫ t

0

∑
k∈K

Ck

(
∆k

(
(Q̂w(s)− ω̂)+

))
ds.

Hence, under the family of the proposed policies, the lower bound in Theorem 1 is attained. As

a result, the family of the proposed policies is asymptotically optimal. �

EC.6. Additional results for work-conserving policies

In this section, we prove some additional results for work-conserving policies; in particular,

they apply to {πr∗}. From the discussion in proving Proposition 1, Q̂r
j , j ∈J , are stochastically

bounded and (EC.24) holds for any work-conserving policies. With these, notice that (EC.7) is

still true, hence we can verify the convergence (EC.5). As Q̂r
j , j ∈J , are stochastically bounded,

T̂ rj , j ∈J , are also stochastically bounded.

Next consider IP patients. Define ŶrK = (Ŷrk)k∈K with each k ∈K,

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑
j∈J

PjkµjT̂
r
j (t),
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and recall that Êrk is defined in (EC.13). Denote T̂ rµ = (µkT̂
r
k )k∈K. Then from (EC.12),

T̂ rµ = (P T − I)−1ŶrK. (EC.45)

We can easily verify the stochastic boundedness of ŶrK from the facts ¯̄T rj (s)≤ s and ¯̄T rk (s)≤ s,

for all j ∈J and k ∈K. This implies the stochastic boundedness of T̂ rµ , then T̂ rK = (T̂ rk )k∈K.

Note that, for all k ∈K,

Êr
k(t) = Êrk(t) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t). (EC.46)

Then the stochastic boundedness of Êr
k can be then obtained from the stochastic boundedness

of Êrk , T̂ rj and T̂ rl (j ∈J , k, l ∈K).

Define the fluid scaled virtual waiting time processes as

¯̄ωrj (t) = r−2ωrj
(
r2t
)
, j ∈J , ¯̄ωrk(t) = r−2ωrk

(
r2t
)
, k ∈K.

First we prove the following:

Lemma EC.6.1 Under any family of work-conserving policies, with FCFS among each IP

class, when r→∞,

¯̄ωrj ⇒ 0, j ∈J ,

¯̄ωrk ⇒ 0, k ∈K.

Proof: We only prove the results for j ∈J , as the proof for k ∈K is the same. First note that,

for any ε > 0, if ωrj (t)≥ ε, then

Sj
(
T rj (t+ ε)

)
≤Qr

j(0) +Er
j (t).

Then ¯̄ωrj (t)≥ ε ensures

Ŝrj

(
¯̄T rj (t+ ε)

)
+µjT̂

r
j (t+ ε) +λrjrε≤ Q̂r

j(0) + Êr
j (t).

Hence, for any fixed T > 0 and ε > 0, we have

P
{

sup
0≤t≤T

¯̄ωrj (t)≥ ε
}
≤ P

{
λrjrε≤ sup

0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
−µjT̂ rj (t+ ε)

∣∣∣} .
However, the stochastic boundedness of sup0≤t≤T

∣∣∣Q̂r
j(0) + Êr

j (t)− Ŝrj
(

¯̄T rj (t+ ε)
)
−µjT̂ rj (t+ ε)

∣∣∣,
together with the fact that λrjrε→∞, implies that the probability on the right-hand side above

converges to 0. Hence

lim
r→∞

P
{

sup
0≤t≤T

¯̄wrj (t)≥ ε
}

= 0.

This completes the proof. �
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Lemma EC.6.2 Under any family of work-conserving policies, for any given T > 0, we have

sup
0≤t≤T

∣∣∣λrj τ̂ rj (t)− Q̂r
j(t)
∣∣∣ ⇒ 0, j ∈J .

Proof: The proof follows exactly that of Lemma EC.1.1, by noticing sup0≤s≤t ¯̄τ rj (s)⇒ 0 which

follows from Lemma EC.6.1 and the fact sups≤t τ
r
j (s)≤ sups≤tω

r
j (s), for all t and j. Note that

the result here is slightly different from Lemma EC.1.1, as only after proving this lemma, can

we have the stochastic boundedness of τ̂ rj , j ∈J , for all work-conserving policies. �

EC.7. Proof of Proposition 2: Asymptotic Sample-Path Little’s Law

Lemma EC.7.1 Under the family of control policies {πr∗}, when r→∞,(
T̂ rj , j ∈J , Êr

k, T̂
r
k , k ∈K

)
⇒
(
T̂j, j ∈J , Êk, T̂k, k ∈K

)
,

for some continuous processes
(
T̂j, j ∈J , Êk, T̂k, k ∈K

)
satisfying

µjT̂j(t) =−Q̂j(t) + Êj(t)− Ŝj (λjmjt) , (EC.47)

Êk(t) = Êk(t) +
∑
j∈J

PjkµjT̂j(t) +
∑
l∈K

PlkµlT̂l(t), (EC.48)

(P T − I)
(
µkT̂k

)
k∈K

= ŶK. (EC.49)

Here

Êk(t) =
∑
j∈J

Φ̂jk (λjt) +
∑
l∈K

Φ̂lk (λlt) +
∑
j∈J

PjkŜj (λjmjt) +
∑
l∈K

PlkŜl (λlmlt) ,

Ŷk(t) = Q̂k(t)− Êk(t) + Ŝk(λkmkt)−
∑
j∈J

PjkµjT̂j(t).

Proof: From (EC.7), (EC.46) and (EC.45), we have (T̂ rµ = (µkT̂
r
k )k∈K)

T̂ rj (t) =
[
Q̂r
j(0)− Q̂r

j(t) + Êr
j (t)− Ŝrj

(
¯̄T rj (t)

)]
/µj, (EC.50)

Êr
k(t) = Êrk(t) +

∑
j∈J

PjkµjT̂
r
j (t) +

∑
l∈K

PlkµlT̂
r
l (t), (EC.51)

T̂ rµ(t) = (P T − I)−1ŶrK(t), (EC.52)

where

Êrk(t) =
∑
j∈J

Φ̂r
jk

(
¯̄Srj

(
¯̄T rj (t)

))
+
∑
l∈K

Φ̂r
lk

(
¯̄Srl

(
¯̄T rl (t)

))
+
∑
j∈J

PjkŜ
r
j

(
¯̄T rj (t)

)
+
∑
l∈K

PlkŜ
r
l

(
¯̄T rl (t)

)
,

Ŷrk(t) = Q̂r
k(t)− Q̂r

k(0)− Êrk(t) + Ŝrk(
¯̄T rk (t))−

∑
j∈J

PjkµjT̂
r
j (t).

As a result,
(
T̂ rj , j ∈J , Êr

k, T̂
r
k , k ∈K

)
can be represented as a continuous mapping from(

Q̂r
j , Ê

r
j , Ŝ

r
j ,

¯̄T rj , Φ̂
r
jk, Φ̂

r
lk, Q̂

r
k, Ŝ

r
k,

¯̄T rk , j ∈J , l, k ∈K
)

, whose convergence can be obtained from

the assumptions and Theorem 3. The expressions (EC.47)-(EC.49) in the lemma can be easily

verified from (EC.50)-(EC.52). This completes the proof. �
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Proof of Proposition 2: We prove the result for j-triage patients. For k-IP patients, the proof

is similar. The convergence of Q̂r
j , together with Lemma EC.6.1, ensure that, for any T > 0,

sup
0≤t≤T

∣∣∣Q̂r
j(t)− Q̂r

j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r→∞.

Thus it is enough to prove

sup
0≤t≤T

∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣ ⇒ 0, as r→∞.

Note that the j-triage patients that are present at time t+ωrj (t) arrive during the time interval

(t, t+ωrj (t)], and those j-triage patients arriving during this interval will remain in this class,

or finish this stage of service at t+ωrj (t). Hence

Qr
j

(
t+ωrj (t)

)
≤Er

j (t+ωrj (t))−Er
j (t)≤Qr

j

(
t+ωrj (t)

)
+ ∆Srj

(
t+ωrj (t)

)
; (EC.53)

here, with some abuse of notation, ∆Srj
(
t+ωrj (t)

)
= Sj

(
T r(t+ωrj (t))

)
− Sj

(
T r(t+ωrj (t)−)

)
.

From this relationship, we can get the following for the diffusion scaled processes:

∣∣∣λrj ω̂rj (t)− Q̂r
j

(
t+ ¯̄ωrj (t)

)∣∣∣≤ ∣∣∣Êr
j

(
t+ ¯̄ωrj (t)

)
− Êr

j (t)
∣∣∣+4Ŝrj (t+ ¯̄ωrj (t)) +µj4T̂ rj (t+ ¯̄ωrj (t)).

Here 4Ŝrj (t+ ¯̄ωrj (t)) = Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t))

)
− Ŝrj

(
¯̄T rj (t+ ¯̄ωrj (t)−)

)
and 4T̂ rj

(
t+ ¯̄ωrj (t)

)
= T̂ rj (t+

¯̄ωrj (t))− T̂ rj (t+ ¯̄ωrj (t)−). From the convergence of Ŝrj (
¯̄T rj (·)) and T̂ rj (·), both 4Ŝrj (·+ ¯̄ωrj (·)) and

4T̂ rj
(
·+ ¯̄ωrj (·)

)
converge to 0. Together with Lemma EC.6.1 and the convergence of Êr

j , j ∈J ,

the processes on the right-hand side above will converge to 0; thus the process on the left-hand

side will also converge to 0, which completes the proof. �

EC.8. Proof of Proposition 3: Snapshot Principle – Virtual Waiting Time
and Age

Lemma EC.8.1 Under the family of control policies {πr∗}, for any given T > 0, when r→∞,

sup
0≤t≤T

∣∣∣λrkτ̂ rk (t)− Q̂r
k(t)

∣∣∣ ⇒ 0, k ∈K.

Proof: The proof follows exactly as the one for Lemma EC.1.1. For k ∈K, note that the conver-

gence of Êr
k has been proved in Lemma EC.7.1. On the other hand, sups≤t τ

r
k (s)≤ sups≤tω

r
k(s)

for all t and k; hence, from Lemma EC.6.1 we have sup0≤s≤t ¯̄τ rk (s)⇒ 0. �

Proof of Proposition 3: This can be easily deduced from Proposition 2, Lemmas EC.6.2 and

EC.8.1. �
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EC.9. Proof of Proposition 4: Snapshot Principle – Sojourn Time and
Queue Lengths

The argument here follows the framework in Reiman (1984). Introduce the following notation:

τ rjh(t) is the time at which the patient of interest to us arrives to the system, and ζrjki(t) is the

time at which this patient becomes a k-IP patient for the ith time (it is also related to h, but

we omit h to simplify the notation). Then

t≤ ζrjki(t)≤ τ rjh(t) +W r
jh(t). (EC.54)

Define the fluid scaled processes

¯̄ζrjki(t) = r−2ζrjki(r
2t), ¯̄W r

jh(t) = r−2W r
jh(r2t), ¯̄τ rjh(t) = r−2τ rjh(r2t).

Lemma EC.9.1 Under the family of control policies {πr∗} with FCFS among each IP class, if

h is j-feasible, then for any T ≥ 0, as r→∞,

sup
0≤t≤T

¯̄W r
jh(t) ⇒ 0, (EC.55)

sup
0≤t≤T

[
¯̄τ rjh(t)− t

]
⇒ 0. (EC.56)

As a result, when r→∞,

sup
0≤t≤T

[
¯̄ζrjki(t)− t

]
⇒ 0. (EC.57)

We first assume this last lemma is true and prove Proposition 4.

Proof of Proposition 4: The sojourn time W r
jh(t) can be represented as

W r
jh(t) = ωrj (τ

r
jh(t)) +

∑
k∈K

hk∑
i=1

ωrk
(
ζrjki(t)

)
.

From this we then have

Ŵ r
jh(t)−

[
Q̂r
j(t)

λrj
+
∑
k∈K

hk
λrk
Q̂r
k(t)

]

= ω̂rj (¯̄τ rjh(t)) +
∑
k∈K

hk∑
i=1

ω̂rk

(
¯̄ζrjki(t)

)
−

[
Q̂r
j(t)

λrj
+
∑
k∈K

hk
λrk
Q̂r
k(t)

]

=

[
ω̂rj (t)−

Q̂r
j(t)

λrj

]
+
∑
k∈K

hk

[
ω̂rk(t)−

Q̂r
k(t)

λk

]

+
[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑
k∈K

hk∑
i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
.

From Lemma EC.9.1 and the convergence of ω̂rj , j ∈J and ω̂rk, k ∈K,

[
ω̂rj
(
¯̄τ rjh(t)

)
− ω̂rj (t)

]
+
∑
k∈K

hk∑
i=1

[
ω̂rk

(
¯̄ζrjki(t)

)
− ω̂rk(t)

]
⇒ 0.
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Together with Proposition 2, the conclusion is immediate. �

Proof of Lemma EC.9.1: We first prove (EC.55). It is enough to show that, for any ε > 0,

there exists an N <∞ such that, for all r≥N ,

P
{

sup
0≤t≤T

¯̄W r
jh(t)≥ ε

}
≤ ε.

Similarly to Reiman (1984), denote ‖h‖=
∑K

k=1 hk. Then we have

P
{

sup
0≤t≤T

¯̄W r
jh(t)≥ ε

}
≤max

k∈K
P
{

sup
0≤t≤T+ε

¯̄ωrk(t)≥
ε

‖h‖+ 1

}
+P

{
sup

0≤t≤T+ε

¯̄ωrj (t)≥
ε

‖h‖+ 1

}
.

(EC.58)

From Lemma EC.6.1, the right-hand side of (EC.58) converges to 0, hence (EC.55) holds.

The proof of (EC.56) follows the one in Reiman (1984). Let Lri,j,h = min{n> i;hr(j,n) = h},
where hr(j,n) is the visit vector associated with the nth j-triage patient. We can write

P
{

sup
0≤t≤T

[¯̄τ rjh(t)− t]≥ ε
}

≤ P
{

inf
0≤t≤T

[Er
j (r

2t+ r2ε)−Er
j (r

2t)]<
1

2
λjr

2ε

}
+P

{
Er
j (r

2T )> 2λjr
2
}

+P

{
sup

1≤i≤2λjr
2

[Lri,j,h− i]>
1

2
λjr

2ε

}
.

The first two terms on the right-hand side converge to zero by the strong law of large numbers.

The j-triage patients have i.i.d. paths and hence i.i.d. visit vectors. Let the probability of a

particular j-triage patient, having visit vector h, be gh, where gh > 0 since h is j-feasible. Define

ĝh = 1− gh, then

P

{
sup

1≤i≤2λjr
2

[Lri,j,h− i]>
1

2
λjr

2ε

}
≤ 1−

[
1− ĝ

1
2λkr

2ε

h

]2λkr
2

= 1−

[
1− r

2ĝ
1
2λkr

2ε

h

r2

]2λkr
2

.

The same reason as in Reiman (1984) then implies that the latter expression vanishes, as r→∞.

This establishes (EC.56).

Combining (EC.55), (EC.56) with (EC.54), now yields (EC.57). �

Proof of Corollary 1: This is implied by Proposition 4, 2 and 3. �

EC.10. Outline of the proof for Proposition 5: Waiting Time Cost

We only give an outline for the proof of a lower bound, which is similar to Theorem 1. One

can prove that the family of modified policies {π̃r∗} reaches the lower bound following the

discussion in §EC.4, especially, there are similar state-space collapse results. As a result, {π̃r∗}
is asymptotically optimal.

For all work conserving policies, Proposition 1 and Lemma EC.6.1 hold. Then, similarly to

the discussion in the proof of Proposition 4 in van Mieghem (1995), we can prove that, for any

0≤ a< b≤ T ,
1

¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −
∫ b

a

Q̂r
k(s)ds

)
⇒ 0.
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Similarly to the discussion in proving Proposition 6 of van Mieghem (1995), we can prove that

the following is true in stochastic sense:

lim inf
r→∞

Ũr(t)≥
∫ t

0

∑
k∈K

λkCk

(
∆̂k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds.

Here ∆̂K = (∆̂k)k∈K is defined for any a≥ 0 as the solution x∗ = ∆̂K(a) to the following:

min
x

∑
k∈K

λkCk(xk/λk)

s.t.
∑
k∈K

me
kxk = a,

x≥ 0.

(EC.59)

This yields

lim inf
r→∞

P
{
Ũr(t)>x

}
≥ P

{∫ t

0

∑
k∈K

λkCk

(
∆̂k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

}
.

EC.11. Proof of Proposition 6: Sojourn Time Cost

We first provide an outline for proving an asymptotic lower bound for all asymptotically compli-

ant policies. Note that, when an IP patient transfers to a next stage, the cost accumulates and

the cost function does not change. As a result, whenever there are IP patients in the ED, the

physician should not be idle, as the physician can always serve an IP patient to reduce sojourn

cost. Then for any asymptotically compliant family of control policies, one can prove that the

family {Q̂r
ω} is stochastically bounded, in particular the diffusion scaled queue length processes

of IP patients are stochastically bounded. We now restrict our discussion to asymptotically

compliant policies, in which the physician can not be idle if there are IP patients. Then one can

prove Lemma EC.6.1. Similarly to the discussion in the proof of Proposition 4 in van Mieghem

(1995), we can prove that, for any 0≤ a< b≤ T ,

1
¯̄Er
k(b)− ¯̄Er

k(a)

(∫ b

a

τ̂ rkd
¯̄Er
k −
∫ b

a

Q̂r
k(s)ds

)
⇒ 0.

Now, following the discussion in proving Proposition 6 of van Mieghem (1995), we can prove

that the following is true in stochastic sense:

lim
r→∞

S̃r(t)≥
∫ t

0

∑
k∈K

λkCk

(
∆̂∗k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds.

Here ∆̂∗K = (∆̂∗k)k∈K is defined, for any a≥ 0, via the solution to the following:

min
x

∑
k∈C0

λkCk

(∑
j∈Ck

xj/λk

)
s.t.

∑
k∈C0

∑
k′∈Ck

me
k′xk′ = a,

x≥ 0.

(EC.60)
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Then, following a discussion similar to the proof in Theorem 1, we get

lim inf
r→∞

P
{
Ũr(t)>x

}
≥ P

{∫ t

0

∑
k∈K

λkCk

(
∆̂∗k

(
(Q̂w(s)− ω̂)+

)
/λk

)
ds > x

}
.

The fact that the proposed family of control policies {π̃r∗∗} reaches the lower bound can be

proved easily, by showing the corresponding state-space collapse result. Here we just give some

structural insights on the optimal solution to the problem (EC.60). For classes in Ck, we know

that, if
∑

k′∈Ck
me
k′xk′ is fixed, then the solution minimizing Ck(

∑
j∈Ck

xj/λk) is making xk non-

zero, while all other xj with j ∈ Ck\{k} are 0 (this is because me
k >me

j , for all j ∈ Ck\{k}). As

a result, if the problem has an optimal solution with some k′ ∈ Ck\{k} for some k, then one

can always find a better solution, which is a contradiction. Now the problem is reduced to the

following problem:

min
x

∑
k∈C0

λkCk (xk/λk)

s.t.
∑
k∈C0

me
kxk = a,

x≥ 0,

(EC.61)

Following the discussion in solving (9) (using the KKT conditions), we can define a new function,

in analogy to ∆̂K(·) from (EC.59) (but now with subscript C0), and under {π̃r∗∗}, this function

plays the role of a lifting mapping in state-space collapse results.

EC.12. Incomplete information

We consider a two phase problem as outlined in §7. Assume that each patient in the ED will

need at most two phases of treatment. After the first phase, some of patients will leave the ED

directly, while others will go to phase 2. Assume that the means service times at both phases

are 1, and the fraction of patients continuing to the second phase is p.

The physician in the ED does not have the complete information. That is, when a new patient

arrives at the ED, the physician does not know how many phases will this patient go through

in the ED. While arriving at the second phase, the physician naturally knows that this is the

second visit. Assume that the cost function of a patient is ax2, when the sojourn time is x. (As

a is not important in the following analysis, we fix it to be 1.)

The physician seeks a routing policy which asymptotically minimizes the following cost:

S̃r(t) =

∫ t

0

(τ̂ r11(s))
2
d ¯̄Er

1(s) +

∫ t

0

(τ̂ r12(s) + τ̂ r2 (s))
2
d ¯̄Er

2(s), (EC.62)

in which τ r11(s) represents the waiting time of a patient arriving at time epoch s and will go

through only phase 1, τ r12(s) represents the waiting time in phase 1 of a patient arriving at time

epoch s and going through both phases, and τ r2 represents the waiting time in phase 2 of that

patient; Er
1 is the arrival process for patients with 1 visit only, and Er

2 is the arrival process for

patients with 2 phases.
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Following the discussion in the previous section, one can prove that

lim
r→∞
S̃r(t)≥(1− p)

∫ t

0

(
∆̃1

(
Q̃w(s)− ω̂

)+
)2

ds

+ p

∫ t

0

(
∆̃1

(
Q̃w(s)− ω̂

)+

+ ∆̃2

(
Q̃w(s)− ω̂

)+

/p

)2

ds,

(EC.63)

where (∆̃1(a), ∆̃2(a)) is the solution to the following optimization problem:

min
x

(1− p)x2
1 + p(x1 +x2/p)

2

s.t. (1 + p)x1 +x2 = a,

x1, x2 ≥ 0.

(EC.64)

It is easy to see that the optimal solution to this problem is x1 = a
1+p

and x2 = 0. As a result,

in this two phase problem, an asymptotically optimal policy is to give priority to the second

phase.

(Note that, there is some secretly trick in getting the lower bound above. Following the

discussion in van Mieghem (1995), one can only prove that

1
¯̄Er

1(b) + ¯̄Er
2(b)− ¯̄Er

1(a)− ¯̄Er
2(a)

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s) +

∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)−

∫ b

a

Q̃r
1(s)ds

)
⇒ 0.

(EC.65)

Here Q̃1(t) is the queue length of those patients in the first phase at time t. But this is not

enough for proving (EC.63). Indeed, the service discipline in the first phase is FCFS. One can

thus expect that

1
¯̄Er

1(b)− ¯̄Er
1(a)

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s)

)
=

1
¯̄Er

2(b)− ¯̄Er
2(a)

(∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)

)
=

1
¯̄Er

1(b) + ¯̄Er
2(b)− ¯̄Er

1(a)− ¯̄Er
2(a)

(∫ b

a

τ̂ r11(s)d ¯̄Er
1(s) +

∫ b

a

τ̂ r12(s)d ¯̄Er
2(s)

)
.

(EC.66)

By using (EC.66), together with (EC.65), then following the discussion in van Mieghem (1995),

we deduce (EC.63).)

EC.13. Discussion for the conjecture in §8.1: Adding delays after service

From Lemma 3.4 of Atar and Solomon (2011), we know that, for any given sequence of xn ∈D,

there are yn ∈D satisfying the following equation:

yn(t) = xn(t)−µn
∫ t

0

yn(s)ds; (EC.67)

furthermore, if µn→∞ and the sequence of {xn} is tight with xn(0)→ 0, then yn→ 0. We shall

use this result in the following discussion.

We use Qr
jk(t) to denote the number of patients in the delayed system between j-triage and

k-IP patients at time t, and Qr
kl(t) the number of patients in the delayed system between the

k-IP and l-IP patients at time t.
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The number of k-IP patients at time t is

Qr
k(t) = Qr

k(0) +
∑
j∈J

(
Φjk

(
Sj
(
T rj (t)

))
+Qr

jk(0)−Qr
jk(t)

)
+
∑
l∈K

(Φlk (Sl (T
r
l (t))) +Qr

lk(0)−Qr
lk(t))−Sk (T rk (t))

= Qr
k(0) +

∑
j∈J

Φr
jk

(
Sj
(
T rj (t)

))
+
∑
l∈K

Φr
lk (Sl (T

r
l (t)))−Sk (T rk (t))

−
∑
j∈J

(
Qr
jk(t)−Qr

jk(0)
)
−
∑
l∈K

(Qr
lk(t)−Qr

lk(0)) , k ∈K.

(EC.68)

If we ignore the changes of T rj , j ∈ J and T rk , k ∈ K, then the difference between (EC.68) and

(EC.11) is
∑

j∈J

(
Qr
jk(t)−Qr

jk(0)
)

+
∑

l∈K (Qr
lk(t)−Qr

lk(0)), which is the total change in the

numbers of patients within the infinite-server queues that would delays between services. As a

result, we first describe an analysis for infinite-server queues.

Consider a sequence of infinite-server queueing systems G/M/∞. In the rth system, the

arrival process is Er(·), with individual service rate µr = µrα, in which α >−2. Assume that

the fluid scaled arrival processes ¯̄Er are tight. Here

¯̄Er(t) = r−2Er(r2t).

Denote by S a unit rate Poisson process, with its fluid scaling ¯̄Sr(t) = r−2(S(r2t)− r2t). Then

the fluid scaled queue length process ¯̄Xr = r−2Xr(r2t) can be represented as

¯̄Xr(t) = ¯̄Xr(0) + ¯̄Er(t)− ¯̄Sr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
−µr2+α

∫ t

0

¯̄Xr(s)ds.

Fix a T > 0 and assume that there is M > 0 such that limsupr→∞
¯̄Er(T ) < M/2. Define a

sequence of stopping times (indexed by r) via

σr = inf

{
t > 0, µr2+α

∫ t

0

¯̄Xr(s)ds >M

}
∧T.

Using (EC.67), if ¯̄Xr(0)⇒ 0, then one can show that ¯̄Xr(σr ∧ ·)⇒ 0. And following the dis-

cussion in proving (39) in Atar and Solomon (2011), we can also prove σr ⇒ T . As a result,

¯̄Xr⇒ 0 on [0, T ]. As this T is arbitrary, we have ¯̄Xr⇒ 0 on [0,∞).

Now return to our queueing systems with delays. Note that the arrival processes for the

infinite-server queueing systems are parts of the departure processes from the physician. We

can then easily verify that the requirements for the analysis of the above G/M/∞ hold, in

particular the sequence of the fluid scaled arrival processes is tight. As a result, the G/M/∞

system will not change in fluid scaling, meaning that the delays will have no impact on the

fluid limit of the ED model. (For a rigorous discussion, we can first argue that the fluid limit

of
∑

j∈J m
e
j

¯̄Qr
j +
∑

k∈Km
e
k

¯̄Qr
k will not change, and then follow the steps in §EC.2 to prove that

the fluid limit for the busy time processes do not change, namely they are λjmjt for j ∈J and

λkmkt for k ∈K.)
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Finally we discuss the diffusion scaled processes. From the differences between (EC.68) and

(EC.11), to prove that
∑

j∈J m
e
jQ̂

r
j +
∑

k∈Km
e
kQ̂

r
k is invariant to all work-conserving policies,

it is enough to argue that the following is true for each k ∈K:

1

r

[∑
j∈J

(
Qr
jk(r

2t)−Qr
jk(0)

)
+
∑
l∈K

(
Qr
lk(r

2t)−Qr
lk(0)

)]
⇒ 0.

This again brings us to the analysis ofG/M/∞ systems. Now for a sequence ofG/M/∞ systems,

fix a sequence of {λr}, and denote X̂r(t) = r−1(Xr(r2t)−λr/µr) as well as

Êr(t) = r−1(Er(r2t)−λrr2t), and Ŝr(t) = r−1(S(r2t)− r2t).

We then have

X̂r(t) = X̂r(0) + Êr(t)− Ŝr
(
µr2+α

∫ t

0

¯̄Xr(s)ds

)
−µr2+α

∫ t

0

X̂r(s)ds.

Suppose that there is a sequence of {λr} with (i) λr → λ for some λ > 0, (ii) X̂r(0) ⇒

0, and (iii) making {Êr} tight. Then from the fluid limit argument, we can prove that

Ŝr
(
µr2+α

∫ t
0

¯̄Xr(s)ds
)

converge to a driftless Brownian motion with variance λ; using (EC.67),

we can now deduce that X̂r(·)⇒ 0.

Finally, return to the queueing systems with delays. From the above discussion, it is enough

to prove that the diffusion scaled arrival processes to the delayed queues are tight. This is a

gap that we are leaving for our future research.
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