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Abstract
Petri nets are‘considered where the firings are controlled
by finite automata. The control may be distributed to
diffefent'automata working over disjoint sets of transitions.
To avoid deadlocks and conflicts for the whole system the
distribution of control must be organized in an appropriate
manner. The existence of deadlocks and conflicts is shown
to be undecidable in general, but conflict resolving and

deadlock free controls can be constructed for given nets.

Key words: Petri nets, automata, control of concurrent

systems, conflict, deadlock.



Introduct ion

The paper considers control for concurrent 'processes,
studied within the Petri net model. Control may be needed
with.respect to synchronization and conflict resolution. For
Petri nets, control means control of transition firings and
it is in some sense a restriction of the usual firing rule
or a special firing stragegy like firing in priority nets
/5/, firing under occurrences of external events /7/, firing

by maximum strategy /1/, /8/ or using queue regimes /1/.

In this paper a model of Petri nets under the control of
finite deterministic automata is studied, where the automata
determine the firing regime by giving permissions to the
transitions. The control may be distributed to different
control automata independently working over differant parts
of the net. Each automaton performs conflict resolution
over its control area, but nevertheless there may be con-
flicts in the system resulting from the concurrent work for
different parts of the system.

The behaviour of such systems is studied, especially the
problems of conflicts and deadlocks. Conflicfs are consid-
ered as conflicts with respect to concurrency. Deadlocks de-
note situations where no continuation of work is possible.
The existence of deadlocks and conflicts‘ in a system is
shown to be undecidable, even for special classes of control
But, on the other hand, individua! controls are construct-
able for the nets such that the resulting systems are con-

flict-free and deadlock-free, respectively.
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The paper is divided into four sections:

1. Systems of controlled Petri nets and their behaviour,
2. Conflicts and deadliocks,
3. Undecidability results,
4, Construction of controls.

Throughout the paper IN denotes the set of natural num-
bers, AY is the set of finite sequences over a set A,

whereby e denotes the empty word, P(A) is the power set of
A and PT(A) :=P(A)N {0} .

1. Systems of controlled Petri nets and their behaviour

In this section we define the system of Petri nets un-
der the control of finite deterministic automata. The beha-
viour of such systems is defined in a way that allows the

comparison with uncontrolled Petri nets.
A Petri net is given by
- - . »
(1) N—(P,T,ft,/téT},{t/tGT},mo)

with finite disjoint sets P and T of places and transitions,

respectively, and with the initial marking My € !NP. The
vectors t~  and t+ from INP determine the change of
markings by firings of transitions : A transition teT

is firable at the marking m € *Np iff t € m, after its
firing the new marking is given by m + At with
At o:= T Operations -and relations over vectors are

understood componentwise.
Alternatively a Petri net can be denoted by
(2) No= (P, T, F, @ , m )

with the flow relation F £ (P x T) 4 (T x P) and the

o



188

multiplicity function & F-> I[N , whereby
F= {o,t) /t () >0}ui{lt,e) /7t ) >0},
alet) = t7(e) , wltp) = t7(p)

As usual, a firing sequence is a sequence of subsequently
firable transitions. LN is the set of all sequences firable
in N starting from mo . The reachability set is the set of all

markings reachable from m,

(3) RN 1= {mo + aAu /ug LN } whereby n
Aty :=ZAti )

i=1

Let U be a subset of T and let m be a marking. Then U is

concurrently firable at m iff U™ := > t %nm , after the
teu
firing of U we have the new marking m + A U with
AU = :E:; At. We denote by
teu
(4) um) == Lt /tegu t”Fm}

the set of transitions from U firable at m and by
AN - - P PO
(5) CUm) = Lv/vEu L v Tm N [d}

the set of all nonempty subsets of U that are concurrently

firable at m.

We denote a control by C. It receives information from
the net about the actually firable transitions and decides
which transitions have to fire and which do not have to. To ailow
concurrent firings it must have information about concurrent-
ly firable transition sets, and hence it needs inputs |ike
?(m) (cf. (5)), while T{m) would not be sufficient in gener-
al.

The control should be able to regard some history of
firings (to realize alternating firings, for instance), hence

we use the concept of automata.

e v‘%



1tly
\ble
"all

is
the

'ty

rom
des
| low
nti-
| ike

er -

/ of

2nce

189

The contro!l may be distributed to distinguished units in-
dependently working over different parts of the net (local
control). Hence we consider partitions 7.= { U1,...,Unj
of the transition set T, such that an individual control au-

tomaton Ai is working over each "control area" Ui'

(6) Definition

Let N = (P, T, F, wu mo) be a Petri net.

A control for N (by finite deterministic automata) is

given by
C = (4 U1,...,Un.], A1""’An) ,

where - fU1,...,Un} is a partition of T and each
Ap = (PTRIUY, P, 2, L A, 2,0, is, .,
is a finite deterministic automaton with the input set
PHPY(U.)) (to receive information ai(m) ), the out-
put set P+(Ui) (to allow several transitions to fire)
the finfte state set Z, with the initial state ‘zi°,

the next state function Jﬂ : Zi x P+(P+(Ui)) —> Z.
and the output function ﬁi : Zi X P+(P+(Ui))-——9 P+(Ui)

satisfying the condition

(+) Ai(z,i&)‘QZA for all z £ Z. and “4€ P+(Ui)

~ i
We call C a global control if n = 1 and a local con-
trol if n> 1,

Now a system of a Petri net under control by finite de-
terministic automata is denoted by v:- (N, C), where C is
a control for N as in definition (6). It works as an interac-
tive system where an automaton Ai receives the information
Ui(m) about the possibilities for (concurreni) firings in
its control area. Then it decides by 'Ai(z, Ui(m)) which
transitions have to fire. Some time later, when these tran-
sitions have fired, the new information Gi(ﬁ) is given to
the automaton, which makes a new decision. Thereby the new

marking & depends on the actions in other parts of the net,
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too. )

We suppose that the computations of an automaton Ai and
the firings in its control area Ui exclude each other, but
the actions for different parts of the system may be concur-
rent. Nevertheless we can use firing sequences to express
several aspects of the behaviour, as in the case of usual

Petri nets they are useful as a simple description tool.

The following notafion of a situation of a system per-
mits us to define the behaviour by concatenations of simple
actions (computations and firings). A situation s of a sys-
tem “¥'= (N, C) is given by ;

(7) s := {(m, ZyyeeaZys VooV, )

with- m ¢ NP, z, & Zi’ vV, £uU. (i=1,...,n).

It describes a snapshot in a moment of rest where m is the

actual marking of the net N, the z, are the actual states of

the automata Ai’ and the sets Vi denote those transitions
which still have to fire according to the last decisions of
the automata Ai' The initial situation is given by
s := (m z.° z°, ¢ )
o 0! 1 2t hp ]
S := INP X Ly X...x z, 6 x P(U1) X ... X P(UnJ denotes the
set of all situations.

Now we use an automata;like formalism (like for nets in

/9/) to define changes of situations. We suppose that the

sets T, Z1,...,Zn are pairwise disjoint and define
X =Ty Z1v RN ijn . Then we consider a partially defined
function & : S x X—>» S, where we have for n
= = !
s (m,z1,...,zn, V1,...,Vn) S, teT, z = };1 Zi
¢

lod U | . " .

(8) G(s,t) : (m+ at, z1,.”,zn,v1,..”vi_1,vi\ P,
ViepeoeeVy), if teV, and tT = om,

not defined, otherwise

(change by firing)

R PR e R
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’ A
G(s,z) := (m,z1 v Zi g ,J;(zi,ui(m)),zi”, ceeaZ

VsV,

itz =2z, Vi=ﬂ and l’]i(m)}é [/

"Vn)

PRI

Rtz 0t v,

not defined ,otherwise .

(change by computation in Ai)'

Thus, a change by firing may occur, if the transition has got

permission by the last decision of its control device (and it has

not fired after this time point) and if it is firable at the actual
marking. For the moment we simply ignore not firable transitions.
But in fact, therémust have been a conflict if a transition from a
set V. is not firable (by (+) in definition (6)). A well-formed
system should not cause such conflicts by generating accurate
conflict. resolutions (cf. definition (19)). - A change by compu-
tation may occur if all transitions from the last decision for this
area have fired and if there 'are firable transitions in this
area at the actual marking.

As defined above. the set X denotes the actions (firings and
computations) of a system. Now we can describe the result of
actiorl sequences starting in the initja,l situation Sq by a function
ol X —=> S as follows:

(9) A{fe) = s

o
O®(rx) := G (ofr),x) for reX” |, xeX
it o (r), G (ollr).x) are defined,

! not defined. otherwise.

s

With the help of this function X we have:
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(10) Decfinition

(n LAT = dem X is thé language of action secquences
(over the alphabet X} of T

h(Lf'\.lS)‘ where h: X=—>T u { el is a homo-
morphism with h(t) := t for t€T and
h(z) = e for zé€ L?:Zi, is the lan-

(2) Loy

§
0] |
guage of firing sequences (over the |
?u alphabet T) of U . ,

i ’ (3) RSy = codeot is the set of reachable situation of }' . }
(4) RT = n}(Rs ), where ;'_L-1 denotes the projections to
the first coordinates (the marking) of |
the situations . i is tne set of
i reaciable markings of F .

{(11) Conclusions

For a system 'Y = (N,C) we have:

(1) R}-={>m0+,ﬁu /u_éLT\.

(2) L¢z Ly Ry& RN
(since control is a restriction of firing in N) .

(3) If the partition ?o = {Ltf}‘/ te‘T} is used in C. then
it holds:
L= Ly« Re= Ry

N

It is known for Petri nets that the languge LN of firing
sequences do not faithfully represent parallel work: Addition of a
run place, for instance, suppresses all paralielism but does not

change the language LN' Special structures including partial

orderings have been de veloped to describe concurrent firings,
while certain aspects of parallelism can be represented by se-
quences over the alphabet P+(T), Hence it might be reasonable to

consider the behaviour of systems under parallel work in such a

way . too. while the use of process-like structures with partial
orderings would too much extend the formalizm without a real

]
need for this paper as we think. This is founded in some sense :

by oroposition (16).

R AR
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Parallelism of actions in our systems is reflected by the
foliowing definitions, which are developed in an analogous way as
for firing sequences before. Now we consider instead of X the
alphabet X = P(T) x (Z, 0 408) x...x (Z o0 {B.0. ... 00}
(0 @‘ ‘.JZ) of paraliel actions. .

The partually defined function 3 S x )2-—-* S is given for

s = (m,z1,...:zn,v1,...,Vn), x = (V,Z1,...5Zn) by
Fa . i ; J i
(12) S(s.x) = (m *av, zi,.. ..z}, V1,...,Vn)

A n A
with  zf == A’i(zi,ui(m)), if 7=z, V, = 0. Ulm) # 0

V. \ V , otherwise
it veElL JV., V_é m, Ei e{.O;zi}, otherwise (s .x) is not
: .

defined.

Furthermore we define {(cf. (9), (10)):

A A *
Girx) =4 Gla(r),x) for reX , xé&X,

if &ir), G(&(r),%x) are defined,

not defined. otherwise.

A
(14) (1) LAy = dom &
A

A N A + .
2) L = h(LAT), where h: X —>P (T)u { e}

is a homomorphism with

h(V.zy,...oz)) = 1 v o, if VED

n
e , otherwise

(3) RSy == cod &




194

A ._T A
(4) Ry = 1(Rs?y)
(15) Conclusions
/(\\ A
(1) RSy = RSy Ryp = Rp
(2) {t1}.[t2},.,itk}.e‘tr it tee Ly

The following proposition shows that the mentioned
differences with respect to parallelism are caused by the nets and

not by control:

(16) Proposition

Let N be a Petri net and let C, C' be controls for N. Then

we have
~ A
= L

v,y = bven T bve) T Loy

Proof: The if-part follows by (15.2). The only-if-part is shown by
induction for words from (P*(T))*‘ For the induction step we

suppose W‘I .. .Wkwk+1 c C(N c) Then there exists a sequence
u € L(N_C) where u is a "sequentialization® of W1 .. 'Wk (i.e. '
U s odg g and each u; is a word built up from the transitions

P

from Wi)‘ Furthermore for all t & Wk+1 we have ute I-(N:C) and
hence uteL(N cY) by L(N c) ~ L(N cY-

Now W1 "'Wk is in t(N,C‘) by induction, and in both systems

we reach the marking m,* AU after the firing of W1 .. 'Wk‘ Then

all transitions t & Wk+1 may be allowed to fire by control in the

system (N,C") since all ut are in L(N,C‘)' We have W;:+1§"‘o+ AU,

since Wk+1 is firable at m,t Aau in (N C) .  and hence it is also
A

firable in (N.C') and thus we get W1 .. 'Wk+1£ L(N,C‘)‘

The results (15) and (16) justify the use of firing sequences
also with respect to concurrent firings in this paper. Thus the

equivalence of controls is defined as follows:

(17)  Definition

Let N be a Petri net and let C, C' be controls for N.
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C and C' are equivalent with respect to N (C ",\T C') iff

vy T biven-
(18) Conclusion

If C N C'. then we have R(N,C) = R(N}C‘)' By (11.1))

2. Conflicts and deadlocks

By (+) in definition (6) we have ensured that only firable
transitions are chosen by the control. But such chosen transitions
may become not firable by firings of. other transitions not be-

longing to the same control area, as in the following example:

Example 1

AR

If we use the partition {ia‘b'} ,{c‘\»} and A1 decides for b while
A2 decides for c¢. then the order of A2 can not be satisfied after
the firing of b. The reason is a conflict between the transitions b
and ¢ for which that control has given no resolution.

As in usual Petri nets, it os possible that no transition is
firable at a certain marking , i.e T(m) = "@. But it may also
happén that there are firable transitions which can not be directed
for firing since the control is blocked by other not firable tran-

sitions, as in the following example:
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Example 2

We use the partition {’{(a,c}; ibt & and suppose that decisions
are made for a by A1 and for b by AZ‘ After the firing of b,
transition a is not firable any more; but transition ¢ becomes
firable . Nevertheless. c¢ is not allowed to fire under the control
because we still have V, = {a}] # 8 and thus A, is not in the
position for a new computation in favour of c. Such effects are

reflected by the following definitions .

(19)  Definition

z ., V,,...,V ) be a situation of a
n 1 n

Let s = (m;z.l,...;
= (P.T.Fam), QU U Y Ape A

system T

G

(1) T has a confiict in s iff { m .

-t
L]

) V)T g
n
(2) ’Zr has a deadlock in s iff T{m) N xy v = p

and T(m) & H¢ us .
)

(3) T is called conflict-free (deadlock-free) iff there are no

conflicts (deadlocks) in the situations seRS,r.
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Note that this definition of conflict-free systems is related to

concurrency *{again (~n1 Vi)— € m is stronger than t° £ m for
A = -
all t ¢ (Y V).
=1 ! .
(20) Propos.ition
Let 7[‘ be a conflict-free system and let s = (m (Zqseee 2o,
V.',...\Vn)'c' RSW'

Then ¥ has a deadlock in s iff T(m) = .

Proof: If ‘there is a deadlock in s, where we have T(m) # §, then

we have a nonempty set Vi by T(m)g‘ V&*J¢ u,‘ ° Now . by
n . By

) Vv, n T(m) = D it follows that ( ::4‘ V.) ¢ m and thus we have
et . 4

a' conflict in s, which contradicts our presumption.

-The other part of the proof is triviél.

(21) Proposition

Systems of Petri nets under global control are conflict-free.
L
Proof: Global control means n = 1_/thus we have only the control
automaton A1 and UT coincides with the whole transition set T. For
the decisions of A1 we have by (5) and (+) in (6):

W=z Oy e Oym ={v/veuav

N

m}\{ﬂ},

hence W~ < m. Up to the next decision of A,, subsequent firings

—

of transitions have to concern subsets ‘W' g W. Since it follows
from W~ £ m and W' € W that W ~ w9~ £ m + AW . conflicts are
impossible . ‘

Proposition (21) shows that conflicts‘are caused by unsuita-
ble distributions of control.We shall study the possibilities of

suitably distributed controls in section 4.
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3. Undecidability results

The automata Ai given in defintion (6) ‘may have useless
states, inputs and outputs. For instance, the necessary states
are those states which occur in the action sequences of LA
For simplicity we shall sometimes use simplified automata in the
following.

By control we can realize priority firings in Petri nets using
automata with A, (z U m)) ={t} where t has highest priority in
’(rn) As it was shown by HACK /5/, priority nets can simulate
deterministic counter machines. Following his ideas. we can s$imu-
late such machines by controlled Petri nets , too.

The states d of a deterministic counter machine M are simu-
lated by places Py: where Py is marked by one tok\en iff 4’2
in the state d. The counters ¢ of M are simulated by places P
where the contents of ¢ are given by the number of tokens in Pe

An addition aSS|gnment "d: c:= c+1; go to d'" is simulated by

O——>l—*© Py

P

and a simple control automaton A with only one state z and
Az, {{t}D = {1},
A testassignment "d: if ¢ = 0 then goto d0 ;
else c:= c-1; goto d1;"
is simulated by

ﬂO\/j”tJ (O Pao
PCO..J——*;_A"O Pt




199

and a control automaton Ai with one state z and

;\“i(z.{{to}}) = {t. b A b o i - {t,}.
Note that the control tasks can be performed by differen‘t auto-

mata for each simulation of an assignment (local control) and

also by only one common automaton with the state z (global
-control) .

ft is not decidable whether a deterministic counter machine

can reach the stop state dhalt from its start state d rt (where-

by the counter contents are zero in the beginning)sj(aHence; by
th’e given simulation it is undecidable whether a'token may reach
the place P dhalt in our system from the initial marking my with
I""o(':’dstart) = 1 and mo(p) = 0 for all p # Pdstart "

Since dhalt is the stop state of M , no transition takes a
token from pdhaI‘E in the net of our constructed system. We can
propose that there are no other stop states in M, and thus we

have ‘a deadlock in our system iff the machine J/( halts. We get:

(22) Proposition

It is undecidable whether a system ’K’ is deadlock-free.

Now we can add two new transition to the constructed net at

the place Pahalt’

| p lt'
o

Fanatt | 4

If we use different control automata for t' and t", then we may
reach a conflict in the new system iff the deterministic counter

machine A halts. Thus we have
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(23) Proposition
It is undecidable whether a system 'I?r is conflict-free.

Using appropriate additional constructions at the place Pdhalt it

can also be shown:

(24) Corollary

The following problems are undecidable:

(1) ¢ ',\\J’ c'?
(2) se RSF ?
(3) meRg? (Reachability problem)

(4) R'7f finite ? (Boundedness problem)

Several other problems which can be formulated for systems
following the definitions for Petri nets like the boundedness
problem for special places or the liveness problem for transitions,
are undecidable. too. The proofs are carried out by additional net

constructions, again.

Since, for instance, the boundedness problem is decidable for
uncontrolled nets, we have a more complicated behaviour of the
systems by their restrictions of firings By the same methods as
in /1/ one can prove that there are systems T such that LT # LN

for all Petri nets N. Thus we have:

(25) Corollary

The behaviour of systems can in general not faithfully be

simulated = by unconkbolled Petri nets .

As mentioned above the simulation of deterministic counter
machines can even be performed with the help of only global
controls . Therefore as long as the additional constructions are
valid under global control, we have the undecidability results even
for only globally controlled systems . This is the case with respect
to (22) and (24). but not for (23) (cf. (21)).

The undecidability results for systems are not surprising since
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by control we can easily simulate priority-firings as well as
several other firings strategies for which it is known that they
permit simulation of deterministic counter machines by Petri‘nets.
(cf. /1/, /5/, /8/).

Hence we have to ask for special firing strategies and
special classes of controls. respectively, which do not allow such
simulations . Thereby , é class of controls has to permit the con-
trol of arbitrary Petri nets, i.e., for each Petri net we need at
least one control in this class corresponding to the transition set
of the net.

A first -but trivial- answer is given'by (11.3.). The next pro-
position shows that all reasonable (i.e. conflict-free) control
strategies extend the computational power of Petri nets in the
sense of a simulation of deterministic counter machines. Thereby
the notion of simulation is not so strong as before. but it is
faithful enougbh to use the undecidability of the halting prqblem
again. It will become clear during the corresponding construction.

By a Petri net structure we denote a Petri net without the

multiplicity function A« . The definition (6) of a control C does not
depend on s+ , hence we can say that C is a control for a Petri
net strucure N = (P,T,F,.,mo) if it is a control for the net

N = (P}T_F;&,mo) with an arbitrary multiplicity function &

(26) Proposition

For each deterministic counter machine M

there exists a Petri net structure N = (P,T‘F,.,mo)
such that for each conirol C for N

there exists a multiplicity function s

such that the following holds for N = (P,T;FAé*rmo)i

1 (N.C) is conflict-free, then (N.C) simulates M

Proof: The difficult part of simulation is the simulation of the test

assignment. The idea is to use the fact that automata output be-
comes cyclic if the inputs are equal over a long time. The

. . a b
counters are now simulated by two. places P and P for each
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counter ¢, and the contents x in ¢ are simulated by ke«x tokens

in both places. where k is a number to be specified depending on

the control. Therefore the addition assigment is simultated by

In the center of test simulation we have the following net (stumc-
ture):
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k, m (k>m) are to be specified depending on the control. The
place P40 will be marked iff transition a fires exactly k-m times
and d fires exactly m times (the sum of their firings during one
test run is always k). This has to be the case if pi and pg were
clean (i. e., the contents of ¢ were zero) before starting the
test run by firing t. ‘

We have to ensure -that P4qg cannot be marked otherwise, i.e |,
if the contents of ¢ were greater than zero. In this case we have
at least k tokens in each of the two places pi and pg. Since
we propose the constructed system to be conflict-free the transi-
tions a and b have to be controlled by a common automaten Ai
which in each computation may allow only one of the two transi-
tions to fire. By the construction, the automaton Ai receives the
input {Ja_} {b_}} for 'k times thereby producing an output
li(z, Hal ,1bj }k) = W1.A.Wk whereby z(':'Zi (ho assumption can be
made about z) and WL e{{a},[b” for L = 1,... k.

Now  if k is large enough, the sequnece W1"'Wk becomes peri-

’

odical (since the state changes have to become cyclic because Ai
is finite). Hence. for m = car'd(Zi) and k = m2s 2m we have two
possibilities:

1. b} occurs more than m times in W1"'Wk {if it occurs in the
period which can not be longer than m).

2. {b} occurs less than m times in Wi.o..W,  (if it does not occur
in the period but perhaps in the initially not periodical sequence
W1 . uWI of W.1 .. 'Wk , where we have to have | <€ m).
Regarding that the sum of firings of a and b is k, we obtain: In
the first case the place pbbis marked at the end, and in the
second case paa is marked at the end, while it is impossible to
mark P - X
Thus we have ‘an accurate distinction for testing.

It is necessary now to initialize the test construction for further
tests and to realize that the markings on the places pi and pkc)
are both decreased by exactly k- takens with respect to their
marking before the test was started. For this correction our con-
struction is completed as follows (note that no correction is nee-

ded if the counter contents were zero):
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The verification is left to the reader.
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By the given constructions we can now simulate a deterministic
counter machine Jlin such a way that.lu reaches its state dhalt

from its state d (with counter contents initially zero) if and

only if a token ztaanrtr‘each the place P ghalt in our ;ystem where
the initial marking is given by mo(pdstart) = 1 and mo(p) = 0 for
all places p # Pdstart” Thereby the net structure depends only on
A, while the multiplicity function of the net depends on the
numbers of states in the controlling automata. The only presump-
tions about the control concern the ability to control the net
(It is a demand about the inputs and outputs of the automata)
and the avoidance of conflicts {which i$ only needed to ensure
that for each test-construction the transitions a and b are con-
trolled by common automata) .

By the given simulation we can now tr'.ansfer the undecidability

of the halting problem to the 'undecidability of r‘eaéhing a token

‘at the place p for conflict free systems built up from arbi-
dhalt

trary Petri nets and controls from only special classes. The
consequences for the undecidability of system properties follow as
discussed for the general case. For instance. if we have such
a class of controls which permits to build conflict-free and not
conflict~free systems we can prove the undecidability whether
systems are conflict-free or not in the following way: We construct
conflict-free systems simulating deterministic counter machines as
described above and add the construction given to prove propo-
sition (23). The further details are left to the reader.

The result (26) ‘shows that the firing rule of Petri nets is
very sensitive with respect to (regular) restrictions. They may
immediately increase the computational power of the nets and lead
to undecidability results. This shodld be taken into account for
solutions of the reachability problem. where a stop criterion might
sometimes be interpreted as a restriction of the firing rule. It must )
not lead to the simulation of deterministic counter machines and :

therewith make a solution 'imp-ossible.
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4. €onstruction of controls
\

By the results (22) - (26) it is not possible to decide whether
systems are conflict-free aﬁd deadlock-free, respectively This
may be the case even if we restrict ourselves to special classes
of controls (special firing strategies) as it was shown by (26):

But, as we shall see, it is possible to construct individual
controls for single nets such that the resulting systems are con-
flict-free and deadlock-free, respectively. Thereby the controls to
be constructed will lead to a deadiock-free (conflict-free) system
together with the considered net, while they may permit simulation
of deterministic counter machines together with other nets. Hence
it will not contradict the result (26).

{27) Proposition

Let N be a Petri net with an infinite firing language LN
(otherwise a deadlock-free system with N doe; not exist)
Then it is possible to construct a global control C such
that (N,C) is deadlock-free

Proof: We use the puinping lemma for firing languages /2/:
There.are numbers k, .l for each language LN such that the
following holds: If the length of a sequence uéLN is
greater than k. then there exists -a decomposition

U = UgusUg such that 1 £ length of Uy £ | and

u1ur21+1u3 ¢ LN for aill n€N.
Hence it is possible to fire Uy and then to iterate the firings Uy
Such sequences ujg U, can be found (that follows from the proof
in /2/). Now the global control has to realize at first the firing
of Uy and than the iterated firing of Uy An automaton for such

a control can easily be constructed.




2017

By (21) we know that global controls are conflict-free by
definition. The question arises if such solutions can be applied
to local controls. The answer has be a negative one for the
genefval case. Exampie 1 has shown that local control may give
rise ' to conflicts, while global control does not. In the same
sense a globally controlled system iterating the firing of bc
in example 2 woulé ne deadlock-free while a _locally controlled
system as described theré is not deadlock-free. The reason is in
some sense the extension of nondeterminism by refinements of the

partitions of T into control areas We have:

(28) Proposition

Let N be a Petri net and let C = ({u1,...;un}, Apseeo A
- ” ‘ Y .

and C (LU1JU2, 3"'*_"_;Un}"' 111/2'A3,..HA%) be controls

for N, whereby A = (PT(PT(U)).PT(U).Z,. &, N . 2))

i=1,...,n, and
Arjp = PTRTULU U PTULLUU,), ZixZ,) b 50k /02T 23))
with & 7oz 2) W = (&g AaP"(U D), &z, Un PTU, D)

and A /pllz;,2) W = Rz, UnP U DUR (2, War (U,

>
Then we have L(N1C) = L(N,,C‘) and R(N,C):-D' R(N,C‘)'

The idea of the proof is to show that all situations
s = (m;(z1 ,22):7.3, e Z, V1/2;V3; C. ,Vn)G RS(N;C’) and their
changes according to G can be simulated by a situation

s = (m;z1.22;z3,.4.,zn[ V1/2n U1.V1/2n UZ’V3""'Vn)€RS(N:C)

and related changes whereby the  fiings are the same. The loss
of possibilities in (N,C') is caused by the synchronization of the
actions over U1 and U2. This may lead to the avoidance of con-
flicts and deadlocks . Furthermore by the simulation of situations

as above. it can be shown:
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(29)  Corollary

(1) 1f (N,C) is conflict-free, then (N,C') is conflict-free.
(2) If both systems are conflict-free and (N,C) is deadlock~
) free, then (N,C') is deadlock-free.

If the systems are not conflict-free, then (N,C) might be dead-
lock-free 'while (N,C') is not deadlock-free as in the following
example:

Example 3:

O =420

With U1 = {a,b}l L,I2 = { b,d} we have deadlock-free systems'k
(N,C) (but not conflict-free), while for systems (N,C*) constructed
from (N,C) as in proposition (28) with U1/2 = {a,b)c;d} we
have to have deadlocks: The first decision has to be -fa,c}
(according to the decisions in (N,C)) , and than we have a
blocki(ag of new decisions by waiting for c¢ after firing of a.

By defintion (6) the control automata Ai have to perform con-
flict  resolutions over their areas U, since (+) ensures
(/\i(ziai(m)))_ = m, while we might have (Ui(m))— $ m.

Nevertheless conflicts in locally controlled systems may
arise from decisions of different control devices As it was

pointed out for propositon (21), we need an appropriate distri-
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bution of controls to have conflict~-free systems. Therefore we
Use the concept of conflict-partitions developed in /4/ for pur-
poses of control with local conflict resolutions and global syn-

chronization under limitations of parallelity .

(30) Definition

Let N = (F’,T,Flp,mo) be a Petri net, melNP and ‘7 a parti-
tion of T.
(1) The set of basic conflicts at m is given by
=fUUETM AU F maPvguvismni.
(2) The set of conflict-free transition sets at m is given by
={U/U‘.—§T(m)AU—§ m}. '
(3) The set of local conflict resolution functions for § at m
is glven by -
LCR(F m)= 1§/ §: F—>P(T(m) A
N fVue? (3WEUA gWeCFm) ]} .
(4) The set of conflict partitions at m is given by
T (m)e= {7/ T a partltlon of T A
AYQe LCR(F Uy € CF(m

Thereby a conflict resolution function ? represents ‘the possibili-

ties for firings in a situation s = (m,z1 PR ,zn,V1 PR 'Vn)
(cf. (7)) of a system where for each control area Ui we have a
conflict free transition set ‘Vi = S( Y€ CF{m). Now a conﬂuct par-
tition 7 ='{U'1,,,.,Un}f=‘ﬂ_(m ensures by L_)? L_/’V € CF{m)

=4
that we have no confiict at s.

For ﬂ1 ,'uz gP+(-T) we define that /u2 is a covering of U1

usual:

We shall use the following notations:

(32) For ’Mg'P+(T) we denote by Vo € T x T the binary relation




210

with (t,8') € v, iff t=t'v JUelU: t,t'eU.

By vq:‘ we denote the transitive closure of v

1 and by

[F = T/ * the partition of T by the equivalence relation v

The following lemma is well-known:

(33) For U §P+(T) and partitons 7 of T we have:

Naw we can characterize the conflict partitons in T (m):

(34) Proposition

P

(1) Qe U (m) it §28C(m).
(20 Thtm) ={F/ F2 T gy

Proof: We have @& 1L (m) iff there exists a function L& LCR(F m)
with u%j7 3(U)¢CF(m)A. This is the case iff we? have V g uLej?(?(m)
with Ve BC(m) V ¢ §(U) and VEU for all UeF | i.e., iff

¥ 3 BC(m). - (34.2) follows from (34.1) and lemma (33).

Thus, ?BC(m) is the minimum in J{(m) and each enlargement
of ‘}BC(m) is a conflict partition. Note that vBC(m) is in general
not transitive (cf. example 1).

Since conflicts must be avoided for all reachable situations of
a system we need partitions of T which are conflict partitions for

different markings .

(35} Defintion

Let ¥ be a partition of T and Mgi®

The set of conflict partitons for M is given by

TU(M):= {7/ Ymem: Fe T(m) }
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(36) Conclusion
If MEM' , then TT(M) g JT(M).

Using (34.1) we find that F e TUM) iff (?_5 { BC(m) and then we
have by (33) and BC(M):= (BC(m): me
meM .

(37) Proposition
Tl.(M) = { ¥/ 73‘78(:0\4)} :

Now the problem is to determine the set M to be used. To obtain
finer partitions, M should be as small as possible (36). Starting
with a conflict-free system T one could think of the set R'f’ to
get a finer partition than in ’f . But in a new system T over a
partion from }T(RT) we may have a larger set R,{; (by allowing
more nondeterminism, cf. (28)), and thus {' might not be conflict-

free as in example 4:

o 0,
T T,
TJ P

ﬁ? /§5

Example 4

A
d
e
f we use a global control realizing the firing of acbd we get a
set RT with% = {{a},ib) dc}‘}d},}_e}}e'f‘l(Rr). But a locally

controlled system %' over ?o is not conflict-free since we have

RT, = RN by (11.3). - What we can show is the following:




|
|
!
,
5

|
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(38) Proposition
Let M= (N,C) be a system where 7 is the partition used in

C. Then it holds:
I ?6 IT(RT)' then T is conflict-free.

L4l
Prof: We have to show ( ,L{ Vi)— < m for all situations
PR -
s = (m,z1 e aZy ,V1 s 'Vn) € RSy . The proof is by induction
on the sequencesin LAT . whereby the basic step is trivial. For

the induction step we have to consider changes by firings and by

computations | respectively .

We suppose ( _4Vi)~5 m for s = (m.z1,..,,z ’V1”"'vn)€RS7j'

3

After the firing of t & \/i we have

n -
(.LJ,‘V; ~{t})” & m +4t, i.e.. no conflict appears after change
i =

EN

-

by firing.

A change by computation leads from a to a new situtation

i - * v
s (m,z, SRR L LR bz VgV ,vJ. E VJ-+1 R ivn).
We have V~i £ m (i=1 ....n) by ( W Vi) < m and
X -
- A -
V7T = (A Um)T g m by (1) in definition (6) i.e.
V1, . ,vn,vj' € CF(m) and thus by definition (30) we have

L]

(iy‘ Vi\vj)u \/j'E CF(m) since fieﬂP?)gTr(m). Hence we have no
conflict at s'.

Note that ?(:. 'T(RT) is sufficient but not necessary to have
a conflict-free system since the conflicting transitions may be

ignored by control as in the. following example:

Example 5
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For U1 = {a,c} and U2 = ',?-_b,d"} we use the automata A“ A2
giving permission for firing only to ¢ and d, respectively . Then
the system ¥ is conflict-free but {U1 ,UZ} ¢ | Rr)

Now, T{ (Ry) depends on Y= (N,C) and especially on, the
partition 7 used in C. Thus,to verify ¥ we had to construct and
to anaklize ¥ before. Moreover, the set R;)n may be not recursive
by (24). But by (37) all partitions ¥ = 7BC(R3-) are suitable
and by (36) all partions “Fe JT(M) for M 2 Ry. Thus, for instance,
it is possible to use TT(RN)_. but then we are in the neighbour-
hood of the reachability problem and it can be proved that the
problem to decide VBC(P

"N

) is equivalent to the reachability problem.
The partitions from ‘iT(NP) always have to be useful. They

are in general not the finest useful partitioné but they can easily_

be constructed from the net structure since it holds:

(39) Proposition

Let N = (P,T,F,c‘ ;mo) be a Petri net and let v; cT xT

be the transitive closure of the retation vp < T x T with
(t,t"e Vo Ifft =tV FtaFt'g P, Then it holds:

{;BC(NP) = T/v;

The proof is by showing Ve € VBC('Np) and VBC(in) < v

= p> p
whereby only transitions t?’tZ with t F t2 have to be regarded.
- c
For (t, ty) € Vo we have (t1 t2) C VBC(m) S VaepP) for the
markings m  with m{p) = Max { t R tz(p) } , p &€ P.

For the case (t1,t2) € VBCHP) there have to exist mEINp_
UET such that t1 t, € U € BC(m). If there existed transitions

t,t e U with (t,t) ev p we would have U = Ujwv u2 , U“U2 FD
FU1f\ FU2 = p Then 1‘U2 ¢ BC(m) would hold by definition (30)
and hence U; Uz_é m. This would imply U~ = U; + U; £ m (since
FU s FU? #) in contradiction to Ueg BC(m). Thus, for all t,t'e U

(and especially for t1‘t2) we have (t,t')€v
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The partition T/v* is always useful for the construction of
conflict-free systems Bnd thus we have justified the intuitevely

given proposals in /3/, /10/ by the following corollary:

(40) Corollary

i
I -’Z; T/v* then a system /f= (N.C), where 7 is used
p

in C, is conflict-free.

Conclusions

There are different starting points to define systems of Petri
nets under the control of automata. In this paper we have tried
to find an approach with not too may technical difficulties . and it
is the author:'s believe that related specifications of systems would
lead to related results. For instance , the undecidability results
could be applied to such systems by (26). In the consequence
(cf. (25)). uncontrolled Petri nets are not sufficient‘ to replace
such systems (as far as the sets Rg‘ are unbounded). The concept
of conflict partitions is valid for other forms of distributed control
too. Related solutions for the deadlock avoidance problem in our

systems constitude an open problem.
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