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Abstract 

In many practical situations the outputs of a plant are not 
measured exactly, but are corrupted by quantization errors. 
Often the effect of the quantization error is neglected in the 
control design phase, which can lead to undesirable effects 
like limit cycles and even chaotic behavior once the con- 
troller has been implemented. In this paper we present a 
method based on 11 optimal control that minimizes the am- 
plitude of the oscillations in the to-be-controlled variables. 
Analytical and numerical examples illustrate the elegance 
of the Il-theory in this setting. 

1 Introduction 

In practice the output of a plant is never measured precisely 
as the sensors always introduce certain types of inaccura- 
cies. One source of measurement errors is related to the 
fact that only quantized information is available of the out- 
puts, i.e. they can only be accessed at a finite number of 
(quantization) levels. In almost all digital control imple- 
mentations such a quantization is present, but also several 
physical sensors have a characteristic of this type: level 
sensors for measuring the height of a fluid in a vessel [12], 
encoders for determining the angular position of induction 
motors or (magnetic/optic) disc drives [ 10, 131, transporta- 
tion systems, where the position of a vehicle is only known 
when certain markers have passed [ 5 ] ,  form only a few ex- 
amples. Moreover, the quantization effect can also occur as 
a consequence of the limited bandwidth of the communica- 
tion link between controller and sensor in the sense that only 
a restricted number of information can be sent between the 
control update times (so only finite “word length” is possi- 
ble). 

The effect of finite precision is often neglected and the con- 
troller design is based on the assumption that measured vari- 
ables are exactly known. Most of the time the sensitivity of 
the sensor - defined as the (maximal) difference between 
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the quantization levels - is small enough with respect to the 
required accuracy of controlling the output variables, so that 
no (major) problems occur. However, if the ratio between 
sensitivity and required accuracy becomes too large, un- 
desirable and unexpected phenomena like limit cycles and 
even chaotic behaviour [6] might show up that grow beyond 
acceptable limits (see for instance the example in section 3). 
In these cases additional measures have to be taken. 

An early work on the effects of quantization in digital con- 
trol systems is [ 2 ] .  In this work it is observed that the error 
which is introduced because of the quantization is magni- 
tude limited, and a simple way to estimate the worst case 
effects of this error on the system states is proposed. Es- 
sentially, the derived bound is the 11 gain of the closed loop 
transfer function from the disturbance (quantization error) 
input to the system output. More recently, several other re- 
search approaches emerged. 

In [3] it is proposed to adapt the quantizer on-line based on 
the whereabouts of the state variable by “zooming out” (in- 
creasing the sensitivity of the sensor) and “zooming in” (de- 
creasing the sensitivity). Instead of keeping the quantization 
levels fixed, one only keeps the number of levels fixed. This 
actually makes it possible to guarantee asymptotic stability 
of the closed-loop system. 

Several lines of research work with a j x e d  quantizer. In 
[l 1, 12, 141 the authors model the plant together with the 
quantizer as a discrete-event system and design a discrete- 
event controller. This might be a quite effective approach 
in case only a limited number of quantization levels exists 
and the control values are restricted to lie in a finite set. 
Also other approaches are available using stochastics (see 
e.g. [7] for scalar discrete-time linear system), while [6] de- 
signs -controllers by treating quantization as partial obser- 
vations rather than approximations of system quantities and 
a detailed analysis is made for the scalar case (single state 
variable). 

In this paper we consider the case where the quantizer is 
fixed and given and the state variable is of arbitrary dimen- 
sion. Quantization is not neglected, but is directly incorpo- 
rated in the controller design. The aim is to design a stabi- 
lizing controller that minimizes the effect of the quantiza- 
tion error on the variables of interest. As the quantization 
error is bounded [2], the problem is reformulated in terms 
of an induced operator norm (peak-to-peak norm) for the 
system from the 1 1  (/,-norm on the quantization error to 
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the ( 1  . \(,-norm on the variables of interest, which leads to 
an ll-optimal control problem. Once transformed into an 11 

model matching problem, the theory will rely on the results 
in e.g. [4] to solve the problem. Although we only give a full 
exposition on the single-input-single-output (SISO) case in 
the current paper, the approach is similar for the multiple- 
input-multiple-output (MIMO) case following the 11 theory 
as in [4]. 

2 Notation 

An infinite sequence h = ( h l ,  hz,  . . .) with hi E R lies in 
the space Z,, if there exists a constant M > 0 such that 
/ h i [  I M for all i. We define for h E 1, the co-norm 
as \lhllm = supi Ihil. An infinite sequence h lies in the 
space Z1, if xi lhil is finite. In this case we define llhlll := xi Ihil. Note that 1, and 11 become Banach spaces in this 
way. 

For a sequence h E 11 we define its A-transform as 

00 

H ( A )  := hiA'. 
2=0 

The A-transform is related to the well-known z-transform 
via the relation X =- 2-l. Note that the discrete linear sys- 
tem (for a minimal realization ( A ,  B, C, 0)) with impulse 
response h is asymptotically stable if and only if H ( A )  is 
analytic on the open unit disc (i.e., does not have poles with 
magnitude smaller than one). We will use the convention 
that lower case letters (f,  g, h, 4 .  . .) refer to impulse re- 
sponses or sequences of real numbers, and capital letters 
(F ,  G, H ,  @, . . .) to their corresponding A-transforms. 

The output of the system is measured via a coarse quan- 
tizer with a sensitivity of 6 = 0.5 as given in Figure 3, 
case 1. The controller K is acting on the basis of these 
quantized measurements d l  (y). K is designed by neglect- 
ing the quantization effect and just synthesizing a dynamic 
compensator as a standard observer-stabilizing state feed- 
back combination that asymptotically stabilizes the system 
(if quantization would be absent). Starting from a con- 
trol canonical form of G, the observer gain was chosen as 
L = [-8.16 -2.421 T, and the static state feedback gain 
was K = [-2.86 -1.241. However, in case this con- 
troller is implemented, the output y of the closed loop sys- 
tem (with some initial condition) might be far from what 
one expects, as is shown in figure 2. 
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Figure 2: Response of the closed loop system, with a coarse out- 
put quantizer (6 = 0.5) with an observer-state feed- 
back controller. 

Due to the form of the quantizer and the instability of the 
open-loop plant the closed-loop cannot be stable. This ex- 
ample indicates that neglecting the quantization can lead to 
severe oscillations in the output variables. 3 Motivating example 

4 Quantized systems 

Figure 1: Closed-loop interconnection of plant G with controller 
K via a quantizer. 

Consider the closed-loop system as in Figure 1, where the 
SISO discrete-time system G is given by the transfer func- 
tion ' 

(1) 
0.26552 - 0.2166 

z2 - 2.3942 + 1.492 ' 
G(z) = 

~~ ~~ 

'which has been obtained by discretizing with a sampling 
time of Ts = 0.2s 

Consider a discrete time, linear SISO system of the form 

~ ( k  + 1) = Aa(k )  + Bu(k)  ( 2 4  
Y(k) = C 4 k )  (2b) 

Throughout the paper we assume that ( A ,  B, C) is a mini- 
mal representation. 

The output y(k) is measured through a quantizer with sensi- 
tivity S. A quantizer is a function from R to a countable set 
that reflects the levels of the sensor. Four possible situations 
are depicted in Figure 3. 

In the first case the quantizer is given by d l  : R H 62 with 
dl(y) the rounded value of y to the nearest multiple of 6 
($6 is rounded to 6, -46 to -6). In the second case, the 
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Figure 3: Different quantizer characteristics case 1: upper left; 

case 2: upper right; case 3: lower left; case 4: lower 
right 

function d2 : R H 6 2  is defined for y E R by taking &(y) 
the smallest multiple of b that is larger than or equal to the 
output y. Similarly, cases 3 and 4 can be specified. 

To reduce the quantization effect as we saw in the example 
of Section 3, we start by investigating the properties of the 
quantizationerrorei(k) := y(k) - di(y(k)),i = 1,2,3,4.  
We have: 

As asymptotic stabilization might not be possible, the aim of 
the paper is to construct a stabilizing output feedback con- 
troller K ,  which specifies U as a function of di(y), which 
reduces the amplitude of the oscillations in the output vari- 
able y as good as possible. In combination with the ob- 
servation that in all the four cases we have information on 
the maximal peaks of the quantization error (Ilellm), we 
will aim at reducing the amplitude of the output oscillations 
(i.e. Ilyllm), so that we obtain a peak-to-peak minimization 
problem. This means that we consider the configuration as 
in Figure 4 and we aim at finding a stabilizing controller K 
that minimizes the following performance criterion for the 
closed loop system C: 

(3) l lYll00 
eEl, llelloo 
sup -. 

Note that thts means that we do not use the sign-information 
in case 2 and 3. If the infimum of the optimization problem 
is attained and has value equal to ,U, then in case 1 and 4 we 
can guarantee that lly/lm I +,US and in case 2 and 3 that 
I lY I lm  I P6. 

( K  

Figure 4: Closed-loop configuration with generalized inputs and 
outputs. 

Remark 1 Note that for the case where the plant (2) is 
asymptotically stable, K = 0 is an optimal controller as 
the effect of the quantization error ei on the output y is zero 
and the criterion in (3)  is zero. 0 

5 An Z1 -optimal control formulation 

We dropped the subscripts in ei as the following discussion 
applies to all cases, i.e. we consider 

(4) 

Now, the configuration in Figure 4 fits in the generalized 

e(k) := Y(k) - d(Y(k)). 

plant (2) as 

where 

0 0  A = A ;  B=(O,B); C =  (z); D =  (-I o) 

Here, we extended the plant with the quantized output Yd 
and the quantization error e as additional (generalized) out- 
put and input, respectively. 

Using the A-transform for (3, we obtain 

G(X) := X(1- M)-lB + D. 

The transfer function G can be correspondingly partitioned 
with respect to the generalized inputs and the generalized 
outputs (see figure 5 )  as in (5)  by 

and it follows that 

G11(X) = 0, G21(X) = - I  
G12(X) = G22(X) = XC(I - XA)-'B 

and G22 has at least one unstable zero at the origin. The 
closed loop mapping between e and y for a controller K is 
given by the lower LFT [161 

@'ye = Fz(G,K)  
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Figure 5: Generalized interconnection system 

so that y = ayee. All internally stable aye can be described 
in terms of the YJBK parametrization [SI 

age = H - UQV 

where Q is any arbitrary stable system and H ,  U,  V are sta- 
ble systems given by 

H = G i l t  G12MYG21 
U = G12M 
V = GG21 

for some stable M ,  N , M , f i , X , Y , X , ?  and G22 = 
N M - l  = fi-lfi. For each stable Q the (internally) stabi- 
lizing controller for the interconnection system is 

K = (Y-MQ)(x -NQ)-~  = ( X - ~ f i ) - l ( P - ~ j @ ) .  

For SISO systems the double coprime condition (6) can be 
simplified by taking &f = M, N = N, X = X ,  Y = Y and 
G22 = # and (6) becomes X M  - Y N  = 1. Note that 

H = - N Y ,  U = N ,  V = - M .  

As we are interested in minimizing the m-induced norm of 
aye over all possible stabilizing controllers, we look for the 
infimum of the performance criterion (3) over all internally 
stabilizing controllers, which leads to an 21 -optimal control 
problem as given by 

OPT-SISO: p = inf (lh - w * q111, 
q E l l  

where * denotes the convolution operation and w = U * 
Y = -m * n, or W(X) = V(X)V(X) = -M(X)N(X), 
according to [4] (see also [15]). Note that h, w, q are the 
impulse responses corresponding to H, W, Q. By solving 
this problem we can guarantee that the peak-to-peak gain of 

is minimal. 

Next we assume for simplicity of exposition that the system 
(A, B ,  C) has t distinct unstable zeros and s distinct unsta- 
ble poles. We denote by p1, . . . , psl the complex unstable 
poles, psl+l,.  . . , p ,  the real unstable poles, q1 l .  . . , qtl the 

complex unstable zeros and qtl +1, . . . , qt the real unstable 
zeros. Hence, lpil < 1 and lqjl < 1. With these unstable 
poles and zeros specified, we define the subspace S which 
is given by 

S = { f E 11 I f  = w * q for some q E 11)  

= { f € 1 1 ( F ( p i ) = O ,  i = l ,  ..., s a n d  
F(q j )  = 0 ,  j = 1,. . . , t } }  (7) 

Hence, OPT-SISO is equivalent to 

that can be seen as a model matching problem in Il-sense 
(see [41). 

Remark 2 Note that we have made some assumptions in 
the paper to prevent the main line of reasoning from being 
blurred by technicalities. We restricted ourselves to the case 
of SISO-systems with distinct unstable poles and zeros. The 
key ideas and the procedure for controller design as pre- 
sented in the paper remain the same if these assumptions 
are abandoned. Only the treatise of the 21-optimal control 
problem becomes more complicated. For details, see [4]. 0 

6 The 21-model matching problem for SISO System 

We now review the 11 model matching problem (8) for SISO 
systems as discussed in [4] (see also [15]). Let A i  E C be 
within the unit disc (but not on the boundary). For sim- 
plicity it is assumed that A, is simple for all i = 1, . . . , IC. 
Consider the following model matching problem 

where h E 11 and the subspace S is given by 

S = { f  E IlIF(Xi) = 0 fo r i  = 1,. . . , I C }  

In this case S can be viewed as the collection of stable sys- 
tems which have unstable zeros A 1  , . . . , Xk and we have to 
find the closest one to the system h in the 21-nom. ' 

The dual to the model matching problem is 

(9) 

where 

By exploiting the dual problem the Il-model matching prob- 
lem can be solved as formulated in the following proposi- 
tion. 
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Proposition 1 [4] Let the X i  be simple and within the open 
unit disc. Then, the set SI is given by 

s'- = span{Re(X1), . . . , R e ( X d , W X l ) ,  . . . , W X ~ ) ) ,  
(11) 

Re(&) = ( l ,Re(Xi ) ,Re(X?) ,  . . .) E I1  

Im(Xi) = (O,Im(Xi),Im(X~), . . .) E 11 

for i = 1, . . . , I C .  Moreover; the solution to the primal 
problem exists and is given by fop[ and the maximum of 
the dual problem is achieved for some rapt in S'. Dejne 

= h - fopt. The solutions satisfy the following condi- 
tions. 

I .  

2. 

3. 

4. 

5. 

The optimal values of both optimization problems are 
equal, i.e. 

I l ~ o p t l l l  = I$"Pl,jI = CL = ( b o p t ) ;  

j 

Finite impulse response condition: &,,,j = 

Sign convention: q50pt,j . ropt,j 2 0 for all j 

Interpolation constraint: @c,,,t(Xi) = H(Xi) ,  
1,. . . , I C ;  

I r o p r , j )  1; 

Ilroprlloo = 1. 

0, if 

a =  

The dual problem (9) for (8) with S given by (7) is then 
described by the following theorem. 

Theorem 1 The dual (9) to the OPT-SISO problem is given 
bY 

S 

p = max):a, 
i= 1 

0% 

subject to 

for all 1 2 0 and ai,Pj E IR for i = 1,. . . , s1 + s and 
j = 1, . . . , tl + t. 

Proof: This proof is based on [4, Thm. 10.3.11. The form 
of SI is easily obtained from the set S as in (7) via the char- 
acterization (1 1). For h and its A-transform H we have the 
following properties. As 41, . . . , qt are the unstable zeros of 
N ,  they are zeros for H .  Moreover, from the coprimeness 
condition (6) we have H = -NY = 1 - X M  which gives 

(12) 
(13) 

Re[H(pi)] = 1 f o r i  = 1,. . . , s 

Im[H(pi)] = 0 fo r i  = 1,. . . , s 

as p l  , . . . , p ,  are the unstable zeros of M .  

SI (note that the Im(p.) -a and Im(gj) are zero sequences for 
real p i  and q j )  we have 

(h ,  r )  = a1 + . . . + a,  

= Im[H(p,)I 
and (12)-(13). 
due to (h ,  Re(p_,)) = Re[H(pz)l, (h ,  

The theorem holds only for the case of distinct simple un- 
stable zeros and poles. For zero and/or pole of higher mul- 
tiplicity the subspace S I  should be modified and the details 
can be found in [4]. 

Note that we have to deal with an infinite number of linear 
constraints in the dual optimization problem. However, due 
to the form of S' all the sequences converge to zero, which 
implies that only a finite number of constraints are limiting. 
Procedures for transforming this knowledge to a standard 
finite linear program are given in [4]. 

7 Examples 

Example 1. A scalar system is given by 

A = a ,  B =  (O,b) ,  C =  (z), D= (-1 0 0  o) 

where 0 # a,  b, c E R. We consider the case of an unstable 
system, la1 > 1. Accordingly Gzz has one unstable zero at 
the origin and one unstable pole l/a. For parametrizing all 
stable aye we assign 

M ( X )  = 1 - u X ,  N(X) 1 b d  
X ( X )  = 1, Y(X) = -Q bc 

and thus H ( X )  = -N(A)Y(X) = aX. By Theorem 1 the 
dual is given by 

,u = m a x a l  

subject to Icy1 +,&I 5 1 and lal/ull 5 1 for 1 2 1. Solving 
the linear programming problem gives a1 = la1 and p1 such 
that Icy1 + ,& 5 1. Moreover, ,u = 

al la1 

a1 

Hence, 

Topt = ( P l ,  k, 7,. . . , )  

and thus by Proposition 1, 

dye,opt = (0, a ,  O , O , O , .  . .) 

or @ye,opt(X) = H(A) = aA. This means that in the 
nomenclature of Proposition 1 we obtain Fop, = 0 and thus 
Qopt = 0. Thus the optimal control is static and given by 

U Kopt(X) = Y(X)x-l(X) = -- 
bc 

In case 1 (i.e. I(e]loo 5 ad) ,  the worst peak of the output y 
is bounded by 

1 
I lYlloo I $ 4 d  
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Example 2. This example shows the application of the 
above theory to the numerical example of Section 3. For 
this case G22(X) has one unstable zero at X = 0, and two 
unstable poles at Xl ,2 = 0.8032 f 0.16312. We set 

M ( X )  = 1.49X2 - 2.39X + 1, N(X)  = -0.22X’ + 0.27X 
X ( X )  = 1.84X + 1, Y(X) = -12.69X - 2.08. 

The linear program obtained from Theorem 1 yields rapt = 
(*, 1, *, *, *, *, -1, *, . . .), where all entries denoted by * 
are irrelevant as 1 * I < 1, and p = 2.1304. Hence, 4ye,opt 

has the form 

+ye,opt(X) = $lX + $SA6. (14) 

The coefficients &, 4 6  are determined from Proposition 1. 
This yields the unique solution $1 = 1.35277,46 = 
-0.7847. We determine: 

2.43 (-0.51 + A) (2.98 + 2.11 X + X2) 
-1.23 + X Qopt (A) = 

and we finally obtain the optimal controller Kept (z) by the 
procedures as outlined in the paper: 

-5.09 (-0.90 + z )  (0.80 - 0.55 z + z’) (0.80 + 1.45 z + z’) 
(-0.82 + z )  (0.78 - 0.332 + z 2 )  (0.68 + 1.372 + z 2 ) .  

The closed loop system response of the plant is shown in 
(15) 

Figure 6 for the same initial condition as in Section 3. 

Figure 6: Response of the closed loop system, with a coarse out- 
put quantizer (case 1, S = 0.5) with I I  optimal con- 
troller. 

Note that the amplitude bound of i 6 p  M 0.53 (indicated 
by the dashed lines in the figures) on the output y is satis- 
fied eventually. If the underlying system is continuous time, 
the derived bound is valid only at sampling instants. An in- 
teresting question to pose is if and how much the derived 
bound on the output signal is violated in between the sam- 
pling instants. By using the so-called modified z-transform 
[9] we computed the L1 norm for the original continuous 
time system in closed loop, with Kopt(z)  with a sampling 
rate 0.2, which turned out to be 0.55. This type of questions 
are also treated, e.g. in [ 11. 

8 Conclusions 

In this paper, we presented a method that takes the effect of 
quantization in the controller design into account. By mak- 
ing the observation that the quantization leads to amplitude 
bounded errors and considering this measurement error as 
a generalized input, we minimized its effect on the output 
variables in 1 1  . Il,-sense. This leads to a peak-to-peak ZI- 
minimization problem. By exploiting the structure of the 
problem and utilizing the elegant theory developed in [4], 
the problem has been solved. The examples demonstrated 
the effectiveness of the method. 

One of the future research issues lies in the comparison of 
the four cases for the quantizer as mentioned in the paper. It 
is a valid question to pose, if the sign-conditions of the error 
as in case 2 and 3 can be used to reduce the oscillations in 
the output even further with respect to the quantizers of type 
1 and 4. Moreover, we are interested in the further study of 
the intersample behavior using modified z-transform, or the 
ideas in [I]. 
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