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Abstract—We present an efficient method for addressing online
the inversion of differential task kinematics for redundant manip-
ulators, in the presence of hard limits on joint space motion that
can never be violated. The proposed Saturation in the Null Space
(SNS) algorithm proceeds by successively discarding the use of
joints that would exceed their motion bounds when using the mini-
mum norm solution. When processing multiple tasks with priority,
the SNS method realizes a preemptive strategy by preserving the
correct order of priority in spite of the presence of saturations.
In the single- and multitask case, the algorithm automatically in-
tegrates a least possible task-scaling procedure, when an original
task is found to be unfeasible. The optimality properties of the SNS
algorithm are analyzed by considering an associated quadratic
programming problem. Its solution leads to a variant of the al-
gorithm, which guarantees optimality even when the basic SNS
algorithm does not. Numerically efficient versions of these algo-
rithms are proposed. Their performance allows real-time control
of robots executing many prioritized tasks with a large number of
hard bounds. Experimental results are reported.

Index Terms—Hard joint constraints, inverse differential kine-
matics, motion control, optimal joint velocity, redundant robots,
saturation of commands.

I. INTRODUCTION

I
NVERSION of the differential task kinematics is the stan-

dard way to command the joint motion of redundant robots

[1]. Kinematic control methods use typically a generalized in-

verse (most often, the pseudoinverse) of the task Jacobian in or-

der to convert velocity or acceleration commands from the task

(e.g., Cartesian) space to the joint space, where actuation takes

place. Redundancy is exploited locally for collision avoidance,

for joint motion optimization, or for augmenting the primary

task with multiple additional ones, possibly with priority [2].

All these approaches can be casted as the selection of suitable

joint commands in the null space of the task Jacobian.

In this framework, hard limits imposed on joint space

motion, such as limited joint range and bounds on velocity,

acceleration, or even torque, are barely taken into account,
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at least in an explicit way. The underlying assumption is that

either the joint motion and/or the actuator capabilities can be

considered unlimited in practice, or that the robot task has

been smoothly tailored in space and scaled in time so as to

fit to the robot limitations in a conservative fashion. However,

for sensor-driven robotic tasks in dynamic environments, in

particular during physical human–robot interaction, it is not

unlikely that large instantaneous task velocities or accelerations

are suddenly requested in response to an unexpected situation.

These tasks may lead to nominal commands in the joint space

exceeding some bounds, with an associated saturation that

makes the resulting robot motion unpredictable.

Uncompensated saturations of the velocity commands may

perturb the geometry of the task under execution in a dangerous

way, e.g., when the robot is working close to a human operator.

This problem is critical also for robots with many degrees of

freedom (DOFs). In fact, when trying to exploit DOFs for the

simultaneous execution of a large multiplicity of tasks, each

of which not highly demanding but jointly exceeding the robot

capabilities, saturation of some joint commands may lead to

an uncontrolled relaxation of crucial high-priority tasks and,

thus, e.g., to physical collisions with the environment or loss of

balance for a humanoid robot.

A. Previous Works

Hard limits in the joint space have often been converted into

soft ones, resolving redundancy via task-constrained optimiza-

tion of suitable objective functions, e.g., keeping the joints closer

to their range center [3], [4], using the joint ranges in a weighted

pseudoinversion [5], or defining an infinity norm to be mini-

mized at the velocity level [6]. However, the commanded joint

motion may still violate some of the bounds, and its saturation

produces then a wrong instantaneous behavior in the task space.

A simple way to recover feasibility with respect to the given

joint bounds is by scaling the task in time,1 i.e., reducing the

speed/acceleration of the (single or multiple) task commands.

Relaxation by task scaling has been used for satisfying joint

velocity [7] and/or acceleration [8] bounds. In [9], the velocity

term in a 1-D null space of a 7-DOF robot is scaled so as

to satisfy joint velocity bounds, if at all possible. For multiple

tasks, prioritization may still be preserved (see, e.g., [10]), using

again the mechanism of projection in the null space of the task

Jacobians. Before resorting to task scaling, one should verify

1In view of the linearity of the forward differential map at the velocity level,
scaling motion time by c (i.e., t → ct) and task or joint scaling by a factor
s = 1/c are equivalent when only one single task is of concern. However, when
multiple tasks are considered, as in this paper, the term task scaling is preferred
because it implies the possibility of scaling each task differently.
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whether alternative joint motions can be generated that still

execute the original task while satisfying the hard joint limits

(and preserving also prioritization, in case of multiple tasks).

This obviously requires a smart exploitation of the null space of

the task Jacobian(s).

The idea of partitioning saturated and nonsaturated com-

mands was used in [11] for a single task under velocity and

acceleration constraints, and in [12], within a visual servoing

problem with joint range limits. An implicit task scaling was

used in [12], modifying when needed the control gain on the

position task error. Instead, a joint velocity scaling procedure

followed by a time warping was proposed in [11], leading to an

approximate solution as soon as two or more accelerations are

saturated. Another method that explicitly handles joint velocity

or acceleration bounds in a redundant robot performing a single

task has been introduced in [13]. All joint commands exceed-

ing their bounds are pushed back at their saturation levels. This

effect is then compensated by the selection of a null-space con-

tribution for satisfying the task. Besides their restricted scope

(single task, no optimality), these techniques share a common

drawback, namely the simultaneous treatment of all overdriven

joints at the same time. This may lead to a premature ending

of the algorithm (whereas a feasible solution exists) or to the

introduction of unnecessary task scaling.

A similar approach has been proposed for the case of multiple

tasks in the animation of avatars [14], assuming the presence of

joint range limits alone. Feasibility with respect to these limits

is verified only after adding the contributions of all tasks, which

is not computationally efficient. Moreover, when the whole set

of tasks cannot be realized within the given limits, the deformed

execution is spanned over all tasks and does not remain confined

just to the low priority ones.

The considered problem can also be tackled as the con-

strained minimization of a quadratic objective function under

linear equality/inequality constraints. If the desired task can be

accomplished without saturation of the inequality constraints,

the optimal solution in terms of minimum joint velocity norm is

obtained by pseudoinversion of the task Jacobian [1]. Equality

constraints are usually taken into account by task augmentation

[15], while inequality constraints are embedded in an objec-

tive function that is optimized by the projected gradient method

[16]. However, this combination does not always guarantee sat-

isfaction of the inequality constraints, nor the optimality of joint

velocity solution.

Constrained optimization problems with inequalities can be

solved using an active-set method [17], where the active set is

composed of those constraints that are satisfied as equalities

(e.g., saturated joint position variables in our robotic applica-

tion). The optimization algorithm will find the optimal active

set that leads to the constrained optimal solution. Unfortunately,

due to their high computational costs, such general-purpose al-

gorithms cannot be used as such for real-time applications, and

extra strategies should be implemented for the problem at hand.

For instance, the constrained redundancy resolution was formu-

lated as a quadratic programming (QP) problem in [18], and

a Gram–Schmidt orthogonalization procedure was applied for

its solution. A compact QP method using Gaussian elimination

with partial pivoting was developed in [19]. The computational

complexity of these methods is reduced, but it is still too high

when the number of DOFs increases. Moreover, the cases of

unfeasible tasks or multiple prioritized tasks are not addressed.

In [20], constrained kinematic inversion of tasks was mod-

eled and addressed in a general way as an extended QP problem,

covering linear equalities and inequalities and also a possible

hierarchy of prioritized tasks. When resorting to state-of-the-

art QP solvers, the computational cost of the solution remained

prohibitive for robots with a large number of DOFs. Based on

a similar stack of QP problems, the solver was improved in

[21] by using a complete orthogonal decomposition to obtain

the null spaces of tasks with a prioritized hierarchy. This im-

provement allowed a satisfactory real-time implementation of

the method [22]. A common benefit of [20]–[22], as well as of

other generic QP solvers, is the possibility of considering all

constraints in a unified framework. Nonetheless, in the case of

hard joint inequality constraints, no advantage is taken from the

particular structure of the problem, resulting in computationally

less efficient algorithms than those presented here.

B. Paper Contribution and Organization

In this paper, we present the Saturation in the Null Space

(SNS) method, consolidating and expanding the results of our

more recent works [23]–[26].

In our method, all existing limits in the joint space are first

combined into hard constraints on the joint velocity commands

at the current robot configuration. The initial pseudoinverse so-

lution is iteratively modified by bringing back to its saturated

value one overdriven joint velocity command at a time (actually,

the most violating one) and projecting this into the null space of

the task Jacobian of the enabled (nonsaturated) joints.

The basic SNS algorithm automatically takes care of tasks that

are unfeasible for the given motion capabilities of the robot. In

fact, a task-scaling procedure is integrated, which allows the

robot to execute at least the directional part of the task in the

desired way (e.g., if the task is an end-effector trajectory, the

traced geometric path will remain the same). Moreover, in the

case of a stack of prioritized tasks, each expressed locally by

linear equality constraints, the SNS algorithm enforces a pre-

emptive strategy: higher priority tasks are preserved (up to a

scaling, if needed) by using all the available robot capabilities

they need, while lower priority tasks are accommodated (and

scaled, if needed) with the residual robot capabilities and with-

out ever interfering with the execution of higher priority tasks.2

By reformulating the SNS method in the context of QP with

linear task equalities and linear inequality constraints (of the

box type), we can modify the basic method so as to guarantee

optimality of the solution found (the optimal SNS (Opt-SNS) al-

gorithm). Essentially, this involves tuning the order in which the

single overdriven commands are being saturated, based on the

analysis of the multipliers. Finally, the numerical performance

2This is the usual principle of the task priority (TP) method. We assume that
the reader is familiar with the fact that the correct order of task priorities can
be destroyed by command saturations when using a standard TP algorithm. See
the illustrative example in [24].
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Fig. 1. Two sample robots that have been controlled in real time with the SNS
algorithm for executing multiple prioritized tasks under hard joint limits. (Top)
Seven-DOF KUKA LWR 4 in the DIAG Robotics Lab, used for the numerical
results of Section VIII and the experiments of Section IX. (Bottom) Fifty-DOF
planar snake robot, used for the performance evaluation of Section X.

of SNS algorithms can be improved by using similar machinery

as in [21] and [22]. For this, the problem is reformulated based on

task augmentation [27], and information on saturated commands

is inserted in the form of additional equality constraints (this is

quite similar to the active set idea). A QR factorization of the rel-

evant matrices involved is used to speed up computations, lead-

ing, respectively, to the Fast-SNS and FastOpt-SNS algorithms.

This paper is organized as follows. The redundancy for-

malisms used for single and multiple tasks throughout the paper

are summarized in Section II. In Section III, the basic SNS

algorithm is introduced for a single task at the velocity con-

trol level. Section IV deals with the optimal version of the

SNS algorithm, while a numerical problem of discontinuity in

the optimal joint velocity solution is addressed and solved in

Section V. The extension to the multiple task case is presented

in Section VI. Section VII considers the reformulation of the

SNS method so as to obtain a faster implementation, exploiting

the special structure of the problem. Simulation and experimen-

tal results for a KUKA LWR 4 robot (see Fig. 1) are reported

in Sections VIII and IX, respectively. Section X is devoted to a

numerical comparison conducted on the high-DOF snake robot

shown in Fig. 1, in order to evaluate the real-time performance

of the proposed algorithms.

With respect to our conference papers [23]–[26], many new

contributions have been included here. A common formalism

has been used for all SNS versions, with a more intuitive

presentation of the basic algorithm. Further properties of the

method and computational issues are described in Section III-C.

Section VI-B shows how to modify the SNS algorithm for deal-

ing with singularities. With respect to [23], the simulation results

in Section VIII refer now to smoother trajectories. Last but not

least, the experimental results of Section IX are new.

II. REDUNDANCY RESOLUTION

Let q ∈ R
n be the joint coordinates of an n-DOF robot,

x ∈ R
m the variables describing a generic m-dimensional task

x = f(q), with m ≤ n, and J(q) = ∂f(q)/∂q the associated

m × n task Jacobian matrix. At a given robot configuration q,

J(q) = J , and the task differential kinematics is

ẋ = Jq̇. (1)

Inversion of the differential map (1) provides in general an

infinity of solutions, all of which can be generated as

q̇ = J# ẋ + P q̇N (2)

where J# is the (unique) Moore–Penrose pseudoinverse [28]

of the task Jacobian, P = I − J#J is the n × n orthogonal

projector in the Jacobian null space, and q̇N ∈ R
n is a generic

joint velocity. Equation (2) gives the joint velocity q̇ that sat-

isfies (1) (or minimizes the norm of the error ẋ − Jq̇, if ẋ

is not in the range of J ), while minimizing in norm the dis-

tance to q̇N . The solution with minimum norm is obtained for

q̇N = 0.

Use of redundancy can be extended to the execution of l tasks

in the form (1), ẋk = Jk q̇, each of dimension mk , k = 1, . . . , l
(usually, with

∑l
k=1 mk ≤ n), that are ordered by their priority,

i.e., task i has higher priority than task j if i < j. Execution of

a task of lower priority should not interfere with the execution

of tasks having higher priority, and this hierarchy is guaranteed

by projecting the solution to the kth task of the stack in the null

space of all higher priority tasks. This is obtained by using the

recursive formula [29]

q̇k = q̇k−1 + (JkP A,k−1)
# (ẋk − Jk q̇k−1) (3)

initialized with q̇0 = 0 and P A,0 = I , and where P A,k is the

projector in the null space of the augmented Jacobian of the first

k tasks

JA,k =
(

JT
1 JT

2 . . . JT
k

)T
. (4)

Matrix P A,k can also be expressed recursively as [30]

P A,k = P A,k−1 − (JkP A,k−1)
#

JkP A,k−1 . (5)

Different numerical methods can be used to compute the so-

lution (2) or (3). The most common is to resort to a singular

value decomposition (SVD) of the matrix to be pseudoinverted.

The SVD provides the singular values of the matrix and, thus,

its rank and condition number. It is then possible to check if a

task is (kinematically or algorithmically) singular or close to a

singularity and, in that case, to switch to a damped pseudoin-

verse as approximate solution (also, selectively damping along

directions based on the singular values [31]).

However, performing SVD is a computationally expensive

step, and the use of a QR decomposition is certainly faster [32].

Consider the QR decomposition of the transpose of a generic

task Jacobian

JT = Q

(

R

0

)

, Q =
(

Y Z
)

(6)

being Q an n × n orthogonal matrix, decomposed in an n × m
matrix Y and an n × (n − m) matrix Z, and R an m × m
upper triangular matrix. Assuming for the moment a full rank

Jacobian, the solution (2) for a single task is obtained as

q̇ = Y R−T ẋ + ZzN . (7)



640 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

The columns of Z provide, thus, a (minimal) basis for the

Jacobian null space, and the usual null-space projector can

be obtained as P = ZZT . Finally, zN ∈ R
n−m is a generic

vector in the reduced space of redundant DOFs. The relation

zN = ZT q̇N holds.

For the multitask case, it is possible to derive a recursive

formula based on (3). Using the QR decomposition

(JkZA,k−1)
T = (Y A,k Zk )

(

RA,k

0

)

(8)

one obtains

q̇k = q̇k−1 + ZA,k−1Y A,kR−T
A,k (ẋk − Jk q̇k−1) (9)

initialized with q̇0 = 0 and ZA,0 = I . Moreover, a basis for

the null space of the augmented Jacobian JA,k is computed

recursively as

ZA,k = ZA,k−1Zk . (10)

Note that the dimension of JkZA,k−1 is mk × (n −
∑k−1

i=1 mi)—the number of columns shrinks with k. Therefore,

adding the contribution of lower priority tasks will become faster

as we go down the stack [33].

Equations (7) and (9) have been written assuming that a

generic task is nonsingular (and that no algorithmic singulari-

ties [2] occur in the stack up to task k), so that matrices R or

RA,k are invertible. When the determinant, e.g., of matrix R

(the product of its diagonal elements) is smaller than a given

threshold, the task is considered singular, and a solution is ob-

tained through damped pseudoinversion of R, achieved using its

SVD. This operation is computationally fast, being R a square

matrix of dimension m.

The above redundancy resolution schemes implicitly assume

that the tasks can always be executed with the given robot capa-

bilities. In other words, joint limits or maximum velocity bounds

are not taken into account. When a joint velocity obtained this

way is used to control a robot, command saturation will actually

deform the execution of tasks and their priority order may also

be compromised. Some illustrative examples of these behaviors

have been presented in [23] for the single task case and, in [24],

for the multiple task case.

III. SATURATION IN THE NULL SPACE METHOD

We present here the SNS method in its basic form, as-

suming that the robot is controlled at the velocity level. In

Section III-A, constraints on joint velocities are locally shaped

taking into account the joint range limits and the velocity and

acceleration bounds. The SNS algorithm, including task scaling,

is then presented in Section III-B.

A. Shaping the Joint Velocity Constraints

The robot motion capabilities are defined by the following

limits imposed on joint space quantities:

Qmin ≤ q ≤ Qmax (joint range) (11a)

V min ≤ q̇ ≤ V max (velocity range) (11b)

Amin ≤ q̈ ≤ Amax (acceleration range). (11c)

In the following, velocity and acceleration bounds will be

taken symmetric,3 V min = −V max and Amin = −Amax. Indeed,

these limits should not be violated. However, since the robot is

commanded at the joint velocity level, only the first two sets of

4n inequalities in (11) can be strictly enforced. In order to han-

dle directly also acceleration (as well as torque) bounds, robot

commands should be defined at the second-order differential

level—see [23] and [24].

At the current configuration q, we can derive from (11) the

hard (box) constraints on q̇:

Q̇min(q) ≤ q̇ ≤ Q̇max(q) (12)

which specify that, for each joint i = 1, . . . , n, the velocity com-

mand q̇i must guarantee that 1) the joint range limits will not be

exceeded in the next step; 2) |q̇i | is smaller than the maximum

velocity; and 3) the joint will be able to stop its motion before

reaching its closest joint limit, taking into account the bounds

on maximum acceleration. These three requirements shape the

constraints in (12) as follows.

In the control implementation, the joint velocity command q̇

is kept constant at the computed value q̇h = q̇(th) for a sampling

time of duration T , where th = hT . Suppose that at t = th ,

the current joint position q = qh is feasible. The next position

qh+1 ≃ qh + q̇hT still needs to be within the joint range limits,

and thus

Qmin − qh

T
≤ q̇h ≤ Qmax − qh

T
. (13)

Furthermore, suppose that we need to stop robot motion in

the fastest possible way, namely by maximally decelerating a

joint i, which is moving at q̇h,i > 0 so as to remain within the

available joint range (the following reasoning is specular for the

case of maximum acceleration from a negative velocity). For

the ith joint subject to −Amax,i , the position and velocity at a

generic t ≥ tk are

qi(t) = qh,i + q̇h,i(t − th) − Amax,i

2
(t − th)2

q̇i(t) = q̇h,i − Amax,i(t − th).

The extreme situation to consider is when the joint reaches its

upper limit Qmax,i at some t = t∗ > th with a joint velocity

q̇i(t
∗) = 0—the joint stops right at the boundary of its range. It

is easy to check that the largest positive velocity of joint i that

can be accepted at t = th is then upper bounded by

q̇h,i ≤
√

2Amax,i (Qmax,i − qh,i). (14)

Similarly, the largest negative velocity is lower bounded by

−
√

2Amax,i (qh,i − Qmin,i) ≤ q̇h,i . (15)

Considering together inequalities (11b) and (13), as well as

those given by (14)–(15) for i = 1, . . . , n, we, finally, obtain the

3This hypothesis is very mild and, in fact, not strictly necessary. However,
we assume that admissible intervals on differential quantities contain the zero
values.
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Fig. 2. Shaping a joint velocity constraint: Qmin = −1.5, Qmax = 2 [rad],
Vmax = 1.5 [rad/s], and Amax = 3 [rad/s2 ].

box constraints (12) for the command q̇ at time t = th , where

Q̇min,i

= max

{

Qmin,i − qh,i

T
,−Vmax,i ,−

√

2Amax,i (qh,i − Qmin,i)

}

is negative and

Q̇max,i

= min

{

Qmax,i − qh,i

T
, Vmax,i ,

√

2Amax,i (Qmax,i − qh,i)

}

is positive. This implies that q̇ = 0 is an admissible command

(which is a useful property, e.g., when downscaling the task ve-

locity). Fig. 2 shows an example of the admissible area obtained

for a joint velocity command, for some velocity and accelera-

tion bounds, as a function of the joint position within the given

range limits.

B. Basic Saturation in the Null Space Algorithm

With reference to the scheme in Fig. 3, given a desired task

specified by the pair (J , ẋ) in (1) and the constraints (12), the

basic SNS algorithm starts by using the minimum velocity norm

solution (2). If this solution is admissible for the constraints

(12), it is used for controlling the robot. If it exceeds instead

some of the hard constraints, then the SNS algorithm is used to

find a solution, eventually scaling the task if this is necessary.

Within the algorithm cycle, step a (see Fig. 3) considers a new

scaled task sẋ, for a positive scalar s. Note that, due to the shape

of the hard constraints (12), there always exists a scaling factor

s ∈ [0, 1] such that the joint velocity solution is admissible. The

task-scaling factor is computed for two reasons: 1) to check if

the current solution allows a larger scaling factor than previous

solutions, and in such case the current solution is saved as the

best so far; and 2) to evaluate the most critical joint, i.e., the

joint whose velocity needs the largest scaling (i.e., the smallest

scaling factor s) to stay within the bounds.

The most critical joint is eligible for entering in the saturation

set, which specifies the joint commands that are forced to their

saturation values by the algorithm. This set is coded by the

n × n matrix W = diag{Wii} with 0/1 elements: If Wii =
0, the velocity of joint i is set at its saturation level and the

joint is disabled; otherwise, this joint is still enabled (for norm

minimization purposes). If joint j is the most critical joint, it is

inserted in the saturation set with Wjj = 0.

Step b in the cycle checks whether it is still possible to execute

the task using only the enabled joints, being the velocity of the

disabled joints in saturation. From an algebraic point of view,

one needs to check if rank(JW ) ≥ m, being m the dimension

of the task. If this check fails, the original task is unfeasible for

the given robot capabilities, and the solution with largest task-

scaling factor (i.e., the s value closest to 1) found so far will be

the joint velocity command provided as output. Otherwise, step c

saturates the most critical joint velocity by setting Wjj = 0, and

the associated saturation value is inserted in the jth component

of the null-space vector q̇N (this step gives the name to the

algorithm). We note that Wq̇N = 0.

Step d is the core of the algorithm and is given by the follow-

ing SNS projection equation:

q̇ = q̇N + (JW )# (ẋ − Jq̇N ) = (JW )#
ẋ + P̃ q̇N (16)

where

P̃ = I − (JW )#
J (17)

is a (nonorthogonal) projection matrix (i.e., P̃ P̃ = P̃ ) in the

null space of the modified task Jacobian, as obtained when

using only the enabled joints. The velocity command (16) is

the current solution that tries to execute (at best) the desired

task, by forcing the velocity of some set of overdriven joints to

saturation. The algorithm checks the velocity constraints for the

new solution, and the loop is repeated.

The complete procedure is presented in pseudocode form as

Algorithm 1. The algorithm is initialized with W = I (all joints

enabled), a null-space vector q̇N = 0, the nominal scaling factor

s = 1, and the current best scaling factor s∗ = 0. With this ini-

tialization, (16) collapses to the usual pseudoinverse (minimum

norm) solution J# ẋ.

An important aspect in the proposed method is the integrated

use of a task-scaling procedure, presented in pseudocode form

as Algorithm 2. As a matter of fact, the projection of q̇N in a

suitable null space allows the use of a larger task-scaling factor

(possibly equal to 1) with respect to classical task scaling —see

examples in [23, Sec. II]. Moreover, the robot capabilities will

be used at best since saturated joint velocities are not affected

by the task scaling, as opposed to the joint velocity scaling

proposed in [11].

C. Properties and Computational Issues

A first property of the basic SNS algorithm is that the pro-

vided solution minimizes the norm of the velocity of the enabled

joints (those not in saturation). From the definition of W , it fol-

lows that the ith column of matrix JW is zero so that the ith
row of (JW )#

will be zero as well. Thus, (16) will not up-

date the joint velocity q̇i once the Algorithm 1 has saturated its

value. At a generic iteration, let ns be the number of velocity

commands that are in saturation (disabled), while the remaining

ne = n − ns ≥ m are enabled (and yet to be defined). After

relabeling/reordering the joints, we can partition q̇ and, accord-

ingly, the task Jacobian J and the matrix W , as

q̇ =

(

q̇e

q̇s

)

, J =
(

J e J s

)

, W =

(

In e

On s

)
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Fig. 3. Schematic representation of the SNS algorithm.

with blocks of suitable dimensions. Vector q̇s ∈ R
n s contains

the saturated joint velocities. Thus, we have

JW =
(

J e O
)

, q̇N =

(

0

q̇s

)

and (16) (with a generic value of the scaling factor s) can be

rewritten as

q̇SN S =

(

0

q̇s

)

+

(

J#
e

O

)

(sẋ − J s q̇s) . (18)

Algorithm 2: Task-scaling factor

function getTaskScalingFactor(a, b)

for i = 1 → n do

Smin,i =
(

Q̇min,i − bi

)

/ai

Smax,i =
(

Q̇max,i − bi

)

/ai

if Smin,i > Smax,i then

{switch Smin,i and Smax,i}
end if

end for

smax = mini {Smax,i}
smin = maxi {Smin,i}
the most critical joint = argmini {Smax,i}
if smin > smax .OR. smax < 0 .OR. smin > 1 then

task-scaling factor = 0
else

task-scaling factor = smax

end if

It is easy to see that q̇e obtained from (18) is the minimum norm

solution of the optimization problem

min
1

2
q̇T Wq̇ s.t. Jq̇ = sẋ

which is in fact equivalent to

min
1

2
q̇T

e q̇e s.t. J e q̇e = sẋ − J s q̇s (19)

for a given set of saturated joints q̇s and associated values.

Indeed, we can also express (18) in a form containing explicitly

the projection matrix (17) that results from the partition into

enabled/disabled joints as

q̇SNS = (JW )# sẋ + P̃ q̇N =

(

J#
e

O

)

sẋ +

(

−J#
e J s

In s

)

q̇s .

(20)

Another unique feature of the SNS algorithm is the inclusion

of a task-scaling procedure, which is automatically activated

as soon as robot motion capabilities are found insufficient to

achieve the original task. When a task is unfeasible, state-of-

the art methods like those in [20], [21] look for relaxed solu-

tions that minimize the norm of the task error vector. However,
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the resulting task will be uniformly deformed.4 The outcome

is that the instantaneous robot motion will be unpredictable

and may lead to unfeasible or dangerous motions. An exam-

ple of this behavior can be seen in the numerical results of

Section VIII (see Fig. 7). On the other hand, task-scaling guar-

antees at least the geometric directionality of the executed task:

the desired task trajectory will be slowed down, but the path

will be preserved. This characteristic is essential in many ap-

plications, e.g., welding or cutting tasks, and even more when

the robot has to coexist with human operators or move in the

vicinity of obstacles.

One possible computational drawback of the presented

method is the need to recompute (JW )# (actually J#
e , as just

shown) each time a new joint is saturated and W is modified

during the iterations. However, since only one element at a time

is changed in the diagonal of W , and thus, only one column

is modified in the next JW , its pseudoinverse can be obtained

as a rank-one update of the previous solution. Simple formulas

can be found in [34] to compute such update, without the need

of any SVD or QR operation. This characteristic will be one of

the key ingredients used in Section VII for obtaining a faster

version of the algorithm.

IV. OPTIMAL SATURATION IN THE NULL SPACE METHOD

We present a variant of the basic SNS algorithm, able to

guarantee optimality in terms of velocity norm minimization

over all joints.

A. Optimality of the Saturation in the Null Space Solution

Algorithm 1 finds a solution that minimizes the norm of the

velocity subvector associated with the current set of enabled

joints [see (19)]. In addition, Algorithm 2 finds by construction

an associated suboptimal task-scaling factor. However, nothing

is said about the optimality of the current set of saturated joint

commands. Thus, it may be possible that the same task-scaling

factor can be obtained with a different joint velocity vector

having a smaller norm. To check if the solution provided by the

basic SNS method is optimal in some useful sense, we introduce

the optimization problem

min
q̇∈Rn , s∈[0,1]

1

2
‖q̇‖2 +

1

2
M(1 − s)2

s.t. Jq̇ = sẋ, Q̇min ≤ q̇ ≤ Q̇max (21)

where the parameter M ≫ 1 works as a penalty factor and is

used to weight more the maximization of the task-scaling factor

than the minimization of the joint velocity norm.

Problem (21) can be rewritten as a positive-definite QP prob-

lem with linear equality and inequality constraints

min
ξ

1

2
ξT Hξ

s.t. Aξ = b, Cξ ≤ d (22)

4A similar comment applies to the case of multiple tasks that is considered
in Section VI.

by defining

ξ =

(

q̇

1 − s

)

, H =

(

I 0

0
T M

)

� blockdiag{I,M},
A =

(

J ẋ
)

, b = ẋ,

C =

(

−I 0

I 0

)

, d =

(

−Q̇min

Q̇max

)

(23)

where 0 represents the zero vector of dimension n.

Being the QP problem (22) convex, necessary and sufficient

optimality conditions are given by the Karush–Kuhn–Tucker

(KKT) criteria [35]. A task scale factor s and a joint velocity

q̇ are optimal for problem (21) if and only if the following

conditions are satisfied:

Hξ + AT
λ + CT µ = 0 (24a)

µT (Cξ − d) = 0 (24b)

Aξ = b (24c)

Cξ ≤ d (24d)

µ ≥ 0 (24e)

where λ ∈ R
m and µ ∈ R

2n are the Lagrange multipliers asso-

ciated with the equality and inequality constraints, respectively.

Condition (24c) requires preserving the (possibly scaled) task,

i.e., Jq̇ = sẋ. This condition, together with the satisfaction of

the hard constraints (24d), is automatically imposed at every

SNS step. Equation (24b) is the so-called complementarity con-

dition. When the generic constraint j is saturated (active), it

is cjξ − dj = 0, where cj is the jth row of C and dj the jth

element of d, and this condition is satisfied irrespective of the

value of the component μj of the multiplier µ ≥ 0. In order

to satisfy (24b) also for a nonsaturated constraint (i.e., when

cjξ < dj ), the associated component μj needs to be equal to

zero. This allows extracting from (24a) an expression related

only to the nonsaturated joint velocities, where no component

of µ will appear. Multiplying on the left the first n equations in

(24a) by the n × n diagonal selection matrix W T = W of the

SNS method yields

H̄ξ +
(

JW ẋ
)T

λ = 0 (25)

where H̄ = blockdiag{W ,M}. The vanishing of the term (C ·
blockdiag{W , 1})T µ = 0 is due to the fact that the components

of µ associated to nonsaturated constraints should be zero at the

optimum.

Since the possibility that JW is rank deficient is already

checked inside the SNS algorithm, (25) has always a solution λ

that can be obtained by pseudoinversion as

λ = −
(

(JW )T

ẋT

)#

H̄ξ. (26)



644 IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 3, JUNE 2015

Accordingly, there exists a Lagrange multiplier µ, with zeros

elements associated with nonactive constraints, which satisfies

the KKT condition (24b).

At this stage, µ can be computed by imposing the satisfaction

of the KKT condition (24a). Using λ from (26) yields

µ̄ = −

⎛

⎝H − AT

(

(JW )T

ẋT

)#

H̄

⎞

⎠ ξ (27)

and taking into account the fulfillment of condition (24b), it

follows that

μi = μi+n = 0, if Wi,i = 1

μi = −μ̄i , μi+n = 0, if Wi,i = 0 AND q̇i = Q̇min,i

μi = 0, μi+n = μ̄i , if Wi,i = 0 AND q̇i = Q̇max,i

for i = 1, . . . , n. (28)

Summarizing, conditions (24b), (24c), and (24d) are satis-

fied directly within the SNS algorithm, while condition (24a)

is imposed using (27). Thus, only condition (24e) remains to

be evaluated in order to check the optimality of the SNS so-

lution. Note that (27) does not require expensive computation

since the pseudoinversion therein can be obtained by appending

a row (rank-one update) to (JW )#
, which is already computed

inside the SNS algorithm.

The optimality check can be further simplified by observing

that the SNS algorithm is already able to output a task-scaling

factor close to 1 (its maximum). Therefore, we can remove the

optimality request (and check) for the task-scaling factor and

consider the simplified QP problem

min
q̇∈Rn

1

2
‖q̇‖2

s.t. Jq̇ = sẋ, Q̇min ≤ q̇ ≤ Q̇max (29)

where s is the scale factor obtained inside the SNS algorithm.

Problem (29) is written in the form (22) by setting ξ = q̇,

H = I , A = J , b = sẋ, and C =
(

−I I
)T

. The KKT cri-

teria (24) applied to the QP problem (29) lead to the same

analysis of the previous case. Namely, conditions (24b), (24c),

and (24d) are satisfied directly within the SNS algorithm, while

condition (24a) can be imposed by choosing λ as in (26). As a

result, one needs only to check the nonnegativity of the compo-

nents of the multiplier µ, which can be computed using again

relation (28), now with

µ̄ = −P̃
T
q̇ (30)

in place of (27). The evaluation of (30) is very fast, being P̃

already computed inside each SNS step—see (17).

We will see in Section V that the simplified optimization prob-

lem does not worsen the algorithm performance in a noticeable

way.

B. Optimal Saturation in the Null Space Algorithm

The information given by the KKT conditions allows detect-

ing whether a joint command in saturation should or should not

belong to the optimal saturation set. Namely, if μi < 0 the ith
joint will not be in the optimal saturation set. Therefore, if the

ith joint velocity is currently in saturation, it will be removed

from the saturation set by choosing Wii = 1, q̇N,i = 0.

The Opt-SNS algorithm is derived from the basic one, as

presented in pseudocode form in Algorithm 3. A joint enters the

active set (its velocity will be saturated) if it is the most critical

one at the current step, i.e., it requires the largest task scaling.

A joint can now also be removed from the active set if the

associated multiplier μi is negative. Note that only µ̄ needs to

be computed for this test, because the conversion in µ [see (28)]

is already embedded in the innermost if statement. Algorithm 3

stops when the optimal solution has been reached.5

Another difference between the basic SNS and the Opt-SNS

algorithm is in the initialization of the selection matrix W that

represents the current saturation set. While this is initialized

with an empty set in Algorithm 1, the initialization in Opt-SNS

uses W−, the optimal saturation set obtained at the previous

execution of the algorithm. Indeed, Opt-SNS can both add and

remove a joint from the saturation set, while the basic SNS was

only able to add a saturated joint. Such feasible initialization

typically reduces the number of internal steps of the algorithm:

If the desired task is smooth, the optimal solutions associated

to two consecutive samples of the task trajectory will be close

in the joint velocity space. Therefore, they will have a simi-

lar saturation set. These considerations will be used again and

expanded in Section VII-D to obtain a so-called warm start.

5For this reason, a more appropriate name for the variable limit_exceeded

inherited from the basic SNS algorithm would be non_optimal_solution.
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Fig. 4. Examples of joint saturation based on the hard constraints (12) for the
joint velocity (in blue). There are no jumps on the realizable joint velocity, both
when reaching the maximum joint velocity (solid, red) or when reaching the
joint limit (dashed, green).

V. JOINT VELOCITY DISCONTINUITIES

An intrinsic drawback of the considered optimization prob-

lem (22) is that it may lead to optimal joint velocities that

are discontinuous over time, even if the desired task trajec-

tory is smooth. Such possible discontinuities are due to the

enable/disable switching mechanism of joints when consider-

ing the presence of task scaling. Thus, they are not a result of

the chosen Opt-SNS algorithm, but affect equally all solution

methods. The phenomenon was first noticed in [23], where we

proposed the transposition of the algorithm to the acceleration

level in order to recover continuous velocities, and then found

also in [25], where state-of-the-art QP solvers were used for

comparison.

Two main sources of potential discontinuities of joint veloc-

ity commands have been identified. The first is observed when

a robot joint reaches its limit with a nonzero velocity; thus, a

sudden velocity jump occurs due to the desire of preserving a

feasible motion. This effect is eliminated in our method through

the shaping of the velocity constraints in (12), which dynam-

ically combines all hard limits (11) on position, velocity, and

acceleration. The effect of this constraint shaping is sketched

in Fig. 4, with the joint velocity constraint being smoothly acti-

vated both when |q̇i | → Vmax,i or when qi → Qmin/max,i .

The second source of discontinuity is due to the need of task

scaling. In fact, in all our case studies, we observed that the

joint velocity solution is never discontinuous when the task is

feasible, even when multiple saturations occur. A possible ex-

planation of this fact follows from the structure of the objective

function in the formulated QP problem (21). In fact, any QP

solver would guarantee that the optimal value of the objective is

continuous for continuous tasks. However, since a large M ≫ 1
is required, this continuity is reflected almost completely on the

task-scaling factor alone, while discontinuities of numerical na-

ture cannot be excluded for q̇.

To recover continuity, we introduce a slightly conservative

margin sm > 0 with respect to the optimal task-scaling factor.

The following relaxation procedure is used:

1) Execute the Opt-SNS with maximum admissible task scal-

ing equal to 1 + sm (rather than 1), to find a modified

optimal task-scaling factor s∗.

2) Relax the desired task as ẋm = (s∗ − sm )ẋ.

3) Apply the Opt-SNS for the relaxed task ẋm .

Note that the relaxed task velocity ẋm is certainly feasible.

This minimal increase in motion time pays off, since joint ve-

locity discontinuities are completely removed—see Fig. 6 in

Section VIII.

The actual chosen value of the scaling margin sm is related

to the kinematics of the manipulator and to the desired task.

For its properties, the larger the scale margin is, the smaller

is the probability to encounter discontinuities; thus, it is always

possible to find a suitable (small) value for a specific application.

In our experience, values of the scale margin between 0.05 and

0.15 are sufficient to guarantee absence of discontinuities. In

any event, as anticipated in Section IV-A, such a modification

in the task scaling ensuring continuity of velocity commands

supports also the use of the simplified optimal problem (29) in

place of the original (21).

VI. EXTENSION TO MULTIPLE TASKS

Consider now l tasks ẋk = Jk q̇, each of dimension mk

(k = 1, . . . , l) and organized with priority, as introduced in

Section II. The SNS method can be extended to this case, by im-

posing a correct preemptive prioritization strategy in spite of the

presence of hard constraints. As a matter of fact, higher priority

tasks will use in the best way all robot capabilities they need,

while lower priority tasks are accommodated with the residual

capability so as not to interfere with the execution of tasks of

higher priority. Algorithm 4 presents in pseudocode form the

solution method for the multitask case.

In the algorithm, we denote by q̇k the joint velocity that

satisfies at best the first k − 1 tasks (which is thus feasible w.r.t.

the hard constraints) and includes the current guess of the joint

velocity that addresses task k. For each task (looping over all

tasks, k = 1, . . . , l), the initializations of matrix W k , of the null-

space vector q̇N,k , and of the two scaling factors sk and s∗k are

the same as in Algorithm 1. In addition, we define the auxiliary

projection matrix P̄ k , which has the same functionality of W

in the single task case, but takes into account also the null space

of previous tasks.

The joint velocity q̇1 that satisfies the first (highest priority)

task is the same obtained with Algorithms 1 and 2, being P̄ 1 =
P A,0 = I . When attacking the generic task k, the joint velocity

is computed with the SNS projection equation

q̇k = q̇k−1 +
(

Jk P̄ k

)#
(sk ẋk − Jk q̇k−1) + P̃ k q̇N,k (31)

where

P̃ k =
(

I −
(

Jk P̄ k

)#
Jk

)

((I − W k ) P A,k−1)
#

(32)

is a special projector that accommodates a joint velocity satura-

tion, without deforming the task nor the hierarchy of priorities.

Similarly to the single task case, we check first if the task can

be executed within the joint velocity constraints (12). If not, the

task-scaling factor and the most critical joint are computed us-

ing again Algorithm 2. With the scaling factor being the largest

computed so far, the current solution dataset (sk , W k , q̇N,k ,

P̄ k ) is saved. Next, the most critical joint j is disabled in the

execution of the current task (Wk,jj = 0), and the velocity con-

tribution of this saturated joint is assigned as null-space vector
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component q̇N,k,j . The auxiliary null-space projector is

P̄ k =
(

I − ((I − W k ) P A,k−1)
#

)

P A,k−1 (33)

which is obtained by considering the addition of q̇N,k as an

auxiliary task (at the configuration space (CS) level), thus with

an associated Jacobian (I − W k ).
If the rank of Jk P̄ k is strictly less than mk , the kth loop

of the algorithm terminates with the best parameters saved so

far, and the velocity command is provided as output by (31).

Otherwise, the joint velocity is recomputed with the current

parameters and the process is repeated. Note that when (31) is

used with saturated commands, the auxiliary null-space vector

q̇N,k forces the disabled joints to their saturated values without

modifying the previous k − 1 tasks. Once task k is satisfied

(with scaling, if needed), the algorithm moves to the next task

k + 1. The final output q̇SN S = q̇l of the algorithm is obtained

after processing the (last) task l.
Remark 1: Equation (31) collapses into the kth step of the

prioritized multi-task motion control scheme (3), as long as there

are no saturations (W k = I) and no scaling (sk = 1) involved

in the execution of the additional task k. In particular, if all tasks

can be realized without command saturation, then Algorithm 4

is equivalent to (3)–(5).

Remark 2: Matrix W k is rebuilt independently of the ob-

tained matrices W i at steps i < k. As a result, even if the ve-

locity of a joint has been saturated for the execution of a higher

priority task, the joint is still enabled in principle and could be

reused by a lower priority task, which might then push this joint

velocity away from its saturation level.

Remark 3: Some tasks may request a desired robot behavior

directly in the CS. This is of interest when addressing as a task

the optimization of auxiliary criteria (e.g., robot manipulabil-

ity by the Projected Gradient method), or when the redundant

robot is commanded at the acceleration or torque level, in order

to damp otherwise uncontrolled self-motion velocities. Within

the framework of multiple tasks with priority, the SNS method

provides a computationally simple and effective solution exe-

cuting only that part of a CS task which preserves higher priority

tasks, without violating the constraints on the joint velocity com-

mands. When a generic task k in the hierarchy is a CS task, a

simplified scheme can replace the kth loop in Algorithm 4 [24].

In particular, Algorithm 2 needs to be called just once, scaling

the whole CS task by a common factor in order to fulfill the

constraints (12).

A. Optimal Version

To extend similarly the Opt-SNS algorithm to the case of

multiple tasks with priority, the kth priority task is reformulated

as the QP problem

min
q̇∈Rn

1

2
‖q̇‖2

s.t. Jk q̇ = sk ẋk , JA,k−1 q̇ = JA,k−1 q̇k−1

Q̇min ≤ q̇ ≤ Q̇max, (34)

where the task-scaling factor sk is the largest found with the

SNS algorithm. As in Section IV-A, the evaluation of the KKT

conditions is reduced to the evaluation of the Lagrangian multi-

plier µk , being all other conditions are guaranteed by the SNS

algorithm. Following the same approach as in the single task

case, it is not surprising that we obtain a similar result with

µ̄k = −P̃
T

k q̇k , for any k ∈ {1, . . . , l}. (35)

The cost of evaluating (35) for checking optimality and for

updating the saturation set is negligible, since P̃ k is already

computed within the SNS algorithm for multiple tasks.
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B. Dealing With Singularities

In the multitask case, the SNS method has to deal with three

different types of singularities, namely: 1) when a task Jacobian

loses rank by itself (kinematic singularity); 2) when a lower

priority task is linearly dependent from a higher priority task,

resulting in a rank deficient JkP A,k−1 matrix (algorithmic sin-

gularity); and 3) when too many joints are saturated and the task

is unfeasible, i.e., rank(Jk P̄ k ) < mk .

The Opt-SNS algorithm discards any solution that is associ-

ated with the third kind of singularity, since such a case will

anyway not be optimal. When the kth task Jacobian Jk or the

projected task Jacobian JkP A,k−1 is rank deficient, no joint can

be saturated further to find a different solution. In these cases,

damped pseudoinversion is used within the algorithm to find the

next candidate solution, and the task is then scaled to bring the

joint velocity within the bounds.

When used with Opt-SNS, this strategy provides a better ex-

ecution of the task and reduces the problems related to algorith-

mic singularities. In fact, the usual way to deal with singularities

is to use relatively large damping to prevent high joint velocities,

resulting in a task deformation for type 1 singularities, and on

a deformation of the whole chain of tasks up to the current one

for type 2 singularities. Instead, the solution with task scaling

used in the SNS method leads in general to the need of a smaller

damping. Therefore, tasks are deformed less and the influence

of linearly dependent lower priority tasks on the execution of

higher priority tasks is negligible.

VII. FAST SATURATION IN THE NULL SPACE METHODS

In this section, we address the issue of real-time performance

improvements of the SNS algorithms introduced so far, in their

basic or optimal version. For generality, we consider directly

the case of multiple tasks with priority.

A. Reformulation of the Saturation in the Null Space Method

It can be shown that the same SNS projection equation (31)

can be obtained using a suitable formulation based on task aug-

mentation [27], which will allow in turn a faster QR decompo-

sition. To this end, let6

q̇k = q̇k−1 + J
#
T q̇T

= q̇k−1 +

(

JkP A,k

JW

)# (

sk ẋk − Jk q̇k−1

q̇W

)

(36)

where JT is the augmentation of JkP A,k with an ns × n ma-

trix JW , with ns being the number of saturated commands.

If the velocity of joint i is saturated, the associated row JW,i

of the auxiliary Jacobian JW contains all zeros, except a 1
as ith element. The velocity vector q̇W = JW q̇N,k , related to

the SNS vector q̇N,k , is then composed by the saturation val-

ues associated to JW . The joint velocity obtained with (36)

coincides with that of (31) if there exists at least one feasible

6In this section, in order to reduce notational burden, some intermediate
quantities used only within the kth task loop will carry no k index.

solution. Otherwise, (36) provides the smallest violation (in a

least squares sense) of the constraints. However, this will pro-

duce also a relaxation of the hard inequality constraints, which

is strictly forbidden in our framework. In fact, this situation is

related to the exit condition of the SNS and Opt-SNS algorithms,

namely rank
(

Jk P̄ k

)

< mk . Some further manipulation is thus

needed.

By simple inspection, the pseudoinverse of JT can be written

in partitioned form as

J
#
T =

(

(

Jk P̄ k

)#
B

)

(37)

where B is an n × ns matrix containing the columns of P̃ k

associated with the saturated joints, i.e., B = P̃ kJT
W . Taking

into account that at each step of the SNS algorithm only one

joint is added to (or removed from, in the Opt-SNS version) the

saturation set, (36) can be obtained from the previous step as a

rank one update [34] of the pseudoinverse of the augmented Ja-

cobian. Moreover, due to the simple structure of the row that has

been appended to JT , namely JW,i if the ith joint is saturated,

the update reduces to very simple formulas.

The operations associated with a new joint velocity com-

ponent (the (ns + 1)th) reaching saturation are detailed next.

Removal from saturation is done following similar steps. Intro-

duce the n × n orthogonal projector P̂ A,k , whose columns are

denoted as p̂k,i (i = 1, . . . , n), and which is initialized at P A,k .

The update vector bi is obtained as

bi =
p̂k,i

p̂k,ii
(38)

where p̂k,ii is the ith element of vector p̂k,i . Matrix B is updated

and augmented by one column as

B =
(

(I − biJW,i) B bi

)

(39)

and the SNS solution becomes

q̇k = q̇k−1 + BJW q̇N,k

+ (I − BJW ) (JkP A,k−1)
# (sk ẋk − Jk q̇k−1) . (40)

Finally, the introduced projection matrix P̂ k is updated as

P̂ k = P̂ k + BJW

(

I − P̂ k

)

. (41)

Note that the columns of P̂ k associated to saturated joints coin-

cide with the columns of P̃ k in (31) and with the corresponding

columns of B in (37) [or, equivalently, in (39)].

B. Fast Saturation in the Null Space Algorithm

Based on the formulas of Section VII-A, the solution update

in the SNS algorithm can be achieved with a minimum amount

of operations. If joint i saturates, the update vector bi is obtained

directly from the QR decomposition in (8) and (10). As recalled

in Section II, it is P̂ A,k = ZA,kZT
A,k . Thus, in (38) we have

p̂k,i = ZA,kzT
i and p̂k,ii = ziz

T
i , where zi represents the ith

row of ZA,k . Then, it easily follows that

bi = ZA,k
zT

i

ziz
T
i

= ZA,k z
#
i . (42)
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For the Fast-SNS algorithm update, it is useful to split the

SNS solution in four terms

q̇k = q̇k−1 + sk ˙̄q′ + ˙̄q′′ + ˙̄qW (43)

initialized as ˙̄q′ = q̇′, ˙̄q′′ = q̇′′, and ˙̄qW = q̇W , with

q̇′ = ZA,k−1Y kR−T
k ẋk

q̇′′ = −ZA,k−1Y kR−T
k Jk q̇k−1

q̇W = 0 (44)

coming from the solution (9), which is obtained without con-

sidering the hard inequalities (12). Therefore, in the following,

we call (44) the unconstrained solution. At each new saturation,

these terms will be updated as

˙̄q′ = ˙̄q′ − bi ˙̄q′i

˙̄q′′ = ˙̄q′′ − bi ˙̄q′′i

˙̄qW = ˙̄qW + bi

(

Q̇i − q̇k−1,i − ˙̄qW,i

)

(45)

where Q̇i is the saturation value. The scaling factor sk is given

by Algorithm 2, called with a = ˙̄q′ and b = q̇k − a [this is the

reason for splitting the second and third terms in (43)]. The

null-space projector is finally updated as

ZA,k = ZA,k − bizi . (46)

C. The Fast Optimal Saturation in the Null Space Algorithm

The fast algorithm described in Section VII-B yields in gen-

eral only a suboptimal solution in terms of the QP problem

(34). However, following the results of Section IV, we can im-

prove also the Opt-SNS algorithm in a similar way by 1) com-

puting and updating more efficiently the multipliers (35), and

2) updating accordingly the solution when a joint command is

removed from its saturation state. These are the core steps of

the FastOpt-SNS algorithm presented next.

The multiplier associated to a new saturated joint velocity

component of index i (the (ns + 1)th going in saturation) is

given by

μ̄k,i = − bT
i q̇k . (47)

All other ns multipliers associated to the previously saturated

joints have to be updated as

μ̄k,j = μ̄k,j − bj,i μ̄k,i , j = 1, . . . , ns (48)

where bj,i is the ith element of the update vector bj for the jth

saturated joint. Equation (48) shows that these vectors need to

be stored and updated at each new saturation. This can be done

with

bj = bj − bibj,i , j = 1, . . . , ns . (49)

Since the ns vectors bj compose the matrix B, (49) executes

the same update as (39).

Using the multipliers, it is possible to identify a saturated

joint command, say of index o, that should no longer saturate in

the optimal solution. In this case, joint o has to be removed from

the list of ns saturated commands and the solution downgraded.

The first step is to downgrade the update vectors associated with

the ns − 1 joints that will remain in saturation:

bj = bj − bo

(

bT
o bj

bT
o bo

)

, j = 1, . . . , ns . (50)

Indeed, bo becomes zero and will then be discarded. Next, the

solution is downgraded as

˙̄q′ = ˙̄q′ + bo

⎛

⎝q̇′o −
n s
∑

j=1

bj,o q̇′j

⎞

⎠

˙̄q′′ = ˙̄q′′ + bo

⎛

⎝q̇′′o −
n s
∑

j=1

bj,o q̇′′j

⎞

⎠

˙̄qW = ˙̄qW − bo

⎛

⎝Q̇o −
n s
∑

j=1

bj,o

(

Q̇j − q̇k−1,j

)

⎞

⎠ (51)

where q̇′ and q̇′′ compose the unconstrained solution in (44),

and the Q̇j s are the saturation values. The null-space projector

has to restore the additional direction given by the joint of index

o leaving the saturation set. Thus, ZA,k is downgraded as

ZA,k = ZA,k − b0

⎛

⎝z̃o −
n s
∑

j=1

bj,o z̃j

⎞

⎠ (52)

where z̃i is the ith row of ZA,k−1Zk . Finally, the ns − 1 mul-

tipliers associated to joints that will remain in saturation are

downgraded by

μ̄k,j = μ̄k,j + bj,o μ̄k,o , j = 1, . . . , ns , j �= o. (53)

After the downgrade, μ̄k,o will be set to zero.

D. Warm Start

With the robot in motion, the stack of tasks needs to be

executed at every control sampling time. If the variation of a

desired task is small between one sample and the next, the new

problem will be close to the previously solved one, and so its

solution. Therefore, almost the same set of saturated commands

can be expected. In a warm start, we assume to know which

joints were in saturation for the kth task at the previous time

sample, e.g., matrix JW is known. Following similar ideas as

in [21], the new solution can be computed efficiently starting

from the same previous set of saturated joints and proceeding

as follows.

We first obtain the update vectors associated to all saturated

joints, organized as a matrix

B = ZA,k (JW ZA,k )# . (54)

These update vectors allow us to obtain the SNS solution from

the unconstrained solution in (44)

˙̄q′ = q̇′ − BJW q̇′

˙̄q′′ = q̇′′ − BJW q̇′′

˙̄qW = q̇W + BJW q̇N,k . (55)
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The directions associated with the saturated joints are removed

from the null-space projector by

ZA,k = ZA,k − BJW ZA,k (56)

and the multipliers associated with the saturated joints are ob-

tained as

µ̄k = −BT q̇k . (57)

Note finally that multiplication by JW represents in the actual

implementation only an extraction/reordering of a submatrix or

a subvector from the multiplied quantity.

VIII. NUMERICAL RESULTS

The SNS method and each of the various proposed algorithms

have been extensively tested in simulations using a kinematic

model of the KUKA LWR IV robot (n = 7). From the data

sheet, the joint range limits and the bounds on joint velocities

are all symmetric and equal to

Qmax = −Qmin

= (170, 120, 170, 120, 170, 120, 170) [degrees]

V max = −V min

= (100, 110, 100, 130, 130, 180, 180) [degrees/s].

Acceleration bounds Amax = −Amin = 300 · I [degrees/s2]

have been chosen, equal and symmetric for all joints. A sam-

pling time T = 1 [ms] is used, also for shaping the joint velocity

constraints (12).

In the numerical results reported here, a single task of di-

mension m1 = 3 has been specified (the degree of redundancy

for this task is then n − m1 = 4). The robot end-effector po-

sition x1 = pEE = f 1(q) should cycle three times through a

series of six Cartesian points X i , i = 1, . . . , 6, connected by

linear segments, with the KUKA LWR starting from q(0) =
(0, 45, 45, 45, 0, 0, 0) [degrees] (i.e., off path, with an initial

error). The Cartesian points are vertices of an hexagon in-

scribed in a circle lying in the (Y,Z) vertical plane, with center

C =
(

0.1 0.35 0.6235
)T

[m] and radius r = 0.2 [m]. Between

two generic successive Cartesian points XA → XB in the se-

quence, a rest-to-rest trajectory starts at time tA , lasts TAB

seconds, and is given by

X(t) = XA + (XB − XA ) γ(τ)

τ =
t − tA
TAB

∈ [0, 1]

γ(τ) = 6τ 5 − 15τ 4 + 10τ 3

v(t) = Ẋ(t) =
XB − XA

TAB

(

30τ 4 − 60τ 3 + 30τ 2
)

. (58)

The nominal time for one cycle is thus 6TAB , while for the com-

plete motion T̂tot = 18TAB . Because we need feedback control

to recover the initial error or any following transient errors for

staying as close as possible to the desired trajectory, the desired

task velocity is specified as

ẋ1 = v(t) + KP (X(t) − x1) (59)

where KP > 0 is a control gain. When the norm of the position

error with respect to the end point of a segment is below a small

positive threshold, ‖XB − x1‖ < ǫ, the task planner switches

to the next desired point in the sequence.

As a measure of the directional error in executing the task,

we use the absolute value ed of the angle δ between the desired

and the actual Cartesian velocity, both normalized:

δ = arccos

(

XB − x1

‖XB − x1‖
· J1(q)q̇

‖J1(q)q̇‖

)

, ed = |δ|. (60)

Fig. 5 shows the comparative results obtained with four differ-

ent redundancy resolution methods for four increasing average

desired velocities to complete the cyclic task (specified through

decreasing times TAB for moving though a single path segment).

The control gain in (59) was set to KP = 100 and the threshold

for switching path points to ǫ = 10−6 [m]. The first row refers to

the ideal case, used for reference, with joint velocities obtained

by pseudoinversion of the task Jacobian J1(q) and without as-

suming any limit in the joint space (unconstrained case). In the

second row, the same pseudoinversion control method is applied

but without considering the joint constraints that are now present

(standard case). The third row presents again the pseudoinverse

solution, followed by a classical task scaling to recover feasibil-

ity (scale case). Finally, the last row shows the results obtained

with the FastOpt-SNS algorithm, using a margin sm = 0.1 (see

Section V). Each plot displays also the values of the actual task

completion time Ttot and of the mean directional error E(ed)
over the complete robot motion.

At slow execution speed, the SNS method performs as well

as the reference unconstrained case. On the other hand, both

the standard solution and pseudoinversion followed by classical

scaling show already some trajectory errors and an associated

increase in execution time. Note that all schemes are local in na-

ture and follow, in general, different joint trajectories. Moreover,

neither the Standard nor the Scale method take into account joint

range limits. The reaching of joint position limits during task

execution explains the relative performance in slow motion (up

to TAB = 0.5 [s]) between the Scale method and the Standard

method, where the latter happens to behave slightly better in

terms of task accuracy, contrary to what expected. For faster

motions, the situation is reversed.

The typical behaviors of each method become more evident

and are enhanced dramatically when the task is more demand-

ing. Note, in particular, that at high task speeds, in order to re-

cover feasibility, the classical task scaling slows down consider-

ably the execution time (Ttot = 7.712 s in the fourth column), as

opposed to the use of the SNS method (Ttot = 4.59 s). Nonethe-

less, some deformation of the desired path is still present with

the classical method since a hard joint limit is reached (see the

path error on the right lower part of the hexagon). On the other

hand, the SNS solution is practically error free while still un-

dergoing saturation of the joint velocity constraints (12). We

can conclude that the SNS method, here in its fast and optimal

implementation, is able to exploit at best the available motion

capabilities of the robot. More numerical results of similar na-

ture can be found in [23] and [25], as well as in [24] for the

multiple task case.
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Fig. 5. Execution of a multipoint cyclic task trajectory with a KUKA LWR 4 for different timings TA B = 1, 0.5, 0.2, and 0.05 s on each elementary path segment.
(First row) Ideal case with pseudoinverse solution q̇ = J# (q)ẋ and without any constraints. (Second row) Standard pseudoinverse solution when including the
presence of constraints. (Third row) Pseudoinverse solution followed by classical task scaling. (Fourth row) Solution with the FastOpt-SNS algorithm.

Fig. 6. Joint velocities obtained with the FastOpt-SNS algorithm for the task
in Fig. 5 with TA B = 0.5 s, without (top) and with (bottom) the introduction
of a scale margin sm = 0.1. Only the initial first second of motion is plotted to
focus on the problem of discontinuities and their removal.

Fig. 6 shows the velocities of the seven robot joints obtained

when executing the desired task for TAB = 0.5 s using the

FastOpt-SNS algorithm, with and without a scale margin. The

multiple discontinuities that occur when using the algorithm as

such disappear altogether thanks to the scale margin workaround

(practically, with no extra motion time needed). Finally, Fig. 7

refers to the execution of the task with TAB = 0.05 s, as obtained

when using a competing QP solver that minimizes the norm of

Fig. 7. Execution of the task in Fig. 5 with TA B = 0.05 s, with a QP solver
that minimizes the task error norm when the task is unfeasible.

the task error when the task is unfeasible7 instead of resorting to

the task scaling embedded in the SNS method (see also Section

V). The task deformation is quite evident, and the total motion

time is longer than the one obtained with the FastOpt-SNS

algorithm (compare with the last row/column of Fig. 5).

IX. EXPERIMENTAL RESULTS

The effectiveness of the proposed SNS method has been tested

also in experiments with the KUKA LWR 4 robot shown in

Fig. 1.

First experiment: The single Cartesian task is specified again

by (58) and (59). We consider the same hexagonal trajectory for

7This result is obtained using the MATLAB implementation of the HQP
method [21], as released in [22].
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Fig. 8. Execution of a single task using a generic redundancy resolution
algorithm. (Left) Cartesian 3-D view of the executed end-effector (blue) and
elbow (red) paths. (Right, top) Directional task error ed , with task completion
time and mean directional error. (Right, bottom) Components x (dot-dashed,
green) and y (solid, blue) of the robot elbow trajectory.

Fig. 9. Execution of the three tasks using pseudoinversion and classical task
scaling. (Left) Cartesian 3-D view of the executed end-effector (blue) and elbow
(red) paths. (Right, top) Directional task error ed , with task completion time
and mean directional error. (Right, bottom) Evolution of the desired (dashed,
green) and actual (solid, blue) second task and of the third task, both related
to the robot elbow trajectory. The mean values of error norms for two lower
priority tasks are also shown.

the end-effector position pEE and the same control parameters

as in the simulations. However, the center of the hexagon is

now placed at C =
(

−0.3 0.35 0.8
)T

[m] so that the task

error in the initial robot configuration is zero. When TAB = 1 s,

the task performed with the Jacobian pseudoinverse is feasible,

and no constraints become active. Therefore, any QP solver

that minimizes the joint velocity norm gives exactly the same

solution. The results of such an experiment are reported in Fig. 8,

where we show also the evolution of auxiliary tasks that are

not considered here but only in the second set of experiments.

Second experiment: We introduce an additional second and third

task, with priority order. The second (scalar) task x2 is specified

by a point-to-point trajectory for the y-coordinate of the position

pEL of the center of the KUKA LWR 4 elbow (on the fourth

joint axis), moving from 0 to 0.2 m and using again the time

profile (58) with TAB = 6 s. The desired task velocity ẋ2 is

given by (59), with an error feedback gain KP = 100. The third

(scalar) task prescribes no displacement of the elbow center

along the x direction, thus ẋ3 = ṗEL,x = 0.

Figs. 9 and 10 show the experimental results obtained with

pseudoinversion followed by classical task scaling and with the

FastOpt-SNS algorithm, respectively. It can be seen that the third

task is not consistent with the other two of higher priority, and

therefore, its error cannot be kept to zero. When using the scaling

Fig. 10. Execution of the three tasks using the FastOpt-SNS algorithm. (Left)
Cartesian 3-D view of the executed end-effector (blue) and elbow (red) paths.
(Right, top) Directional task error ed , with task completion time and mean
directional error. (Right, bottom) Evolution of the desired (dashed, green) and
actual (solid, blue) second task and of the third task, both related to the robot
elbow trajectory. The mean values of error norms for two lower priority tasks
are also shown.

method, the secondary task displays some errors and, even more

critically, also the primary task is deformed geometrically, de-

spite of the large increase in total motion time (Ttot = 21.15 s).

On the contrary, the FastOpt-SNS algorithm executes correctly

the second priority task. Moreover, the primary task is com-

pletely unaffected by the presence of the second and third tasks.

As a matter of fact, the task completion time (Ttot = 18.032 s)

is practically the same obtained when considering the first task

alone (see Fig. 8). These conclusions are supported by the mean

values of the error indices used for each task: E(ed) for the first

task, E(‖e2‖) for the second, and E(|ẋ3 |) for the velocity of

the third task.

We remark that, in this multiple tasks case, the cyclic end-

effector motion specified as primary task could not be completed

when using standard pseudoinversion alone, although the sec-

ondary task is still executed. The same behavior was observed

when including the classical task scaling for a larger control

gain KP . Instead, the FastOpt-SNS algorithm allows us to set

arbitrarily large values for the gains. Thanks to the preemptive

strategy and the embedded task scaling, joint velocity com-

mands will saturate but remain always within the prescribed

hard constraints.

In the accompanying video, other comparative experiments

are presented. The first experiment above is shown for TAB = 1,

0.5, and 0.2 s. In the faster case, the FastOpt-SNS algorithm

succeeds, whereas the Scale method is blocked by the KUKA

controller protection. Another cyclic experiment involves a sec-

ondary task with a desired sinusoidal motion of the robot elbow.

The FastOpt-SNS algorithm is always superior in performance.

More experiments for single or multiple tasks, including also a

CS task, are reported in [24], while an application of the SNS

method to a Cartesian collision avoidance task has been shown

in [23]. The videos of the related experiments are available at

http://ieeexplore.ieee.org.

X. PERFORMANCE EVALUATION

In order to evaluate the real-time performance of the Opt-SNS,

Fast-SNS, and FastOpt-SNS algorithms, we have considered a

high-dimensional planar snake robot with a parametric number
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Fig. 11. Worst-case execution times to accomplish with different algorithms
a single two-dimensional task for the n-DOF snake robot of Fig. 1, when
varying n from 20 to 200. The problem consists of m1 = 2 task equalities
and an equivalent of 4n box inequalities. Semilog scale is used in view of the
differences by one or more order of magnitude.

n of revolute joints and links of unitary lengths, as shown in

Fig. 1. From a computational point of view, the planar case

shares similar properties of a 3-D situation. It is used here only

to simplify the generation of a parametric form for the robot

kinematics. All SNS versions have been developed in C++, us-

ing the Eigen library [36] for algebraic computations. Numerical

simulations were performed using the ROS environment [37] on

a Intel Core i7-2600 CPU 3.4 GHz, with 8 GB of RAM.

First test: The single task considered for the n-DOF snake

robot is a planar positioning of its end-effector (m1 = 2). Sym-

metric joint limits (11) have been chosen as

Qmax,i = −Qmin,i = 90 [degrees]

Vmax,i = 1 [degrees/s], Amax,i = 3 [degrees/s2], (61)

for i = 1, . . . , n. The (nontime based) task velocity is defined

by

ẋ = VC sin

((

1 − ‖x − xd‖
‖x0 − xd‖

)

π + ε

)

x − xd

‖x0 − xd‖
(62)

where x, xd , and x0 are the current, desired, and initial

Cartesian positions of the end effector, and ε = 10−4 is a small

parameter that allows motion ignition. The robot starts from the

stretched configuration q0 = 0, corresponding to x0 =
(

n 0
)T

.

The desired Cartesian position of the tip of a generic link

r ∈ {1, . . . , n} is specified by

xd(r) =

(√
2

2
r

√
2

2
r

)T

(63)

being r = n the case of the robot end-effector. The task velocity

contains a scalar that was set to VC = 2n [m/s], a relatively

large value. Note that the joint limits are rather restrictive, and

the desired task velocity has been designed so as to induce

a maximal number (i.e., n − m1) of joint velocity saturations

during the execution of the task.

Fig. 11 shows in semilogarithmic scale the execution times

needed in the worst case by different algorithms proposed in

this paper, when increasing the number n of robot DOFs. We

compared these also with qpOASES [38], a state-of-the-art QP

active-set solver with warm start. Both the QP solver and the

Fig. 12. Worst-case execution times to accomplish with different algorithms l
prioritized two-dimensional tasks with the snake robot of Fig. 1 having n = 50
DOFs, when varying l from 2 to 10. The problem consists of a total of 2l task
equalities and an equivalent of 200 box inequalities.

Opt-SNS algorithm become too slow when n increases. Assum-

ing 10 ms as the upper limit on execution time for online uses,

Opt-SNS and qpOASES are thus not adequate for a hyperredun-

dant robot with more than 40 DOFs, while the Fast-SNS and the

FastOpt-SNS algorithms can handle up to 100 DOFs.

Second test: The number of DOFs of the robot has been fixed

to n = 50, and the number l of prioritized 2-D position tasks

is varied from 2 to 10. Each task is characterized by a final

desired position for the tip of a link r in the kinematic chain,

as given by (63). The considered links were extracted from the

following list, ordered according to the priorities of the tasks:

{50, 30, 40, 10, 20, 45, 5, 35, 15, 25}. The same joint limits (61)

of the first test have been used, with the same type of desired

velocity law (62) for each task.

The execution times needed in the worst case by the different

algorithms are shown in Fig. 12. Execution time grows linearly

with the number of tasks for the state-of-the-art QP solver, while

it increases only slightly for all versions of the SNS method. In

particular, the two Fast versions run in the worst case in 2 ms

even when ten tasks are considered, thus being eligible for real-

time control applications.8

XI. CONCLUSION

We have presented a local possibly sensor-based approach

for solving the inverse differential task kinematics of a redun-

dant robot under hard joint constraints, i.e., the SNS method. In

the SNS framework, different algorithms of slightly increasing

complexity have been introduced in an incremental way, leading

to optimal joint velocity solutions with guaranteed performance

and numerically efficient implementations. In case of multiple

tasks ordered by priority, the SNS realizes a correct preemp-

tive strategy, i.e., tasks of higher priority use in the best way

the feasible robot capabilities they need, while lower priority

tasks are accommodated with the residual capability and do not

interfere with the execution of higher priority tasks. A main

feature of all the presented algorithms is the automatic integra-

tion of a (multitask) least possible scaling strategy, when some

of the original tasks are found to be unfeasible for the robot

8A video showing animations of the 50-DOF snake robot for l = 1, l = 3,
and l = 5 tasks with priority when using the FastOpt-SNS algorithm is available
at http://ieeexplore.ieee.org, associated with [26].



FLACCO et al.: CONTROL OF REDUNDANT ROBOTS UNDER HARD JOINT CONSTRAINTS: SATURATION IN THE NULL SPACE 653

capabilities. Except for physically impossible tasks (because of

spatial/geometric or temporal discontinuity), task directional-

ity will always be preserved, which is extremely important in

several robotic applications, e.g., in sensor-based human–robot

collision avoidance.

The effectiveness and performance of the algorithms have

been assessed through several numerical simulations and ex-

periments, showing that the method allows real-time control of

robots with high-dimensional CS executing a large number of

prioritized tasks, and with a large number of hard joint con-

straints that may saturate during motion. The method has been

presented here using joint velocity commands, but its extension

to acceleration (see [23]) or even torque commands is rather

straightforward.

The performance improvements obtained with the fast opti-

mal version of the SNS algorithm with respect to the use of

state-of-the-art general (and possibly hierarchical) QP solvers

addressing the same constrained optimization problem deserves

a final comment. The SNS method treats the hard joint con-

straints separately from the hierarchy of (equality) tasks. This

way, the operations involved in saturating and desaturating com-

mands are largely simplified. On the other hand, in order to

guarantee the same behavior with [20]–[22], the hard inequality

constraints on joint motion have to be assigned the highest pri-

ority in the stack of tasks. Therefore, any change in the active

set of inequality constraints will be reflected in a recomputa-

tion through the whole stack. Moreover, the case of unfeasible

tasks is directly and clearly addressed with the SNS method,

while it requires forcing some modifications in QP methods.

On the other hand, QP methods allow more general formu-

lations including also unilateral task space constraints, out of

which the joint level constraints are only a particular case. In

this framework, the SNS approach has to resort to less elegant

approximations in order to handle general unilateral constraints

(see, e.g., [39]).

Finally, in presenting our results, we took advantage of the

extensive experience gained in the last two years or so. The SNS

method was, in fact, implemented seamlessly on three different

robotic systems in Stanford, in Rome, and at CNRS-LAAS

in Toulouse (within the SAPHARI European project), proving

further the robustness of the proposed solution.
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