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Control of Retinal Sensitivity

II. Lateral Interactions at the

Outer Plexiform Layer

FRANK S. WERBLIN

From the Department of Electrical Engineering and Computer Sciences and the Electronics
Research Laboratory, University of California, Berkeley, California 94720

ABSTRACT Test stimuli, presented at the center of the bipolar cell receptive

field, spanning less than 2 log units of intensity, elicit the full range of graded
response. The intensity range of test stimuli that elicits the graded response

depends upon the background conditions. A higher range of log test intensities
is required to elicit the graded bipolar response in the presence of surround

backgrounds. But surround backgrounds can also serve to unsaturate the

bipolar response and thereby increase sensitivity under certain conditions.

The results suggest that a second stage of sensitivity-control is mediated by the

horizontal cell system at the outer plexiform layer, concatenated with the

effects of adaptation in the photoreceptors.

INTRODUCTION

In an accompanying paper (Normann and Werblin, 1974) we showed that

steady background illumination affected the intensity-response relation for

both rods and cones and controlled their sensitivity so that the rods became

saturated, but the response range for the cones, although limited to about 3

log units, always encompassed the background intensities. The receptor ac-

tivity is carried by antagonistic pathways that are concentrically organized at

the outer plexiform layer to form the bipolar cell receptive field. These an-

tagonistic interactions mediate a second stage of sensitivity control.

The bipolar cell response can apparently be modified by either surround or

full field backgrounds. Werblin and Dowling (1969, Fig. 8) showed that sur-

round backgrounds could alter the range of intensities over which the bipolar

cell center response was graded. Werblin (1971) showed that full field back-

grounds could serve to realign the intensity range over which the response of

horizontal and bipolar cells generated a graded response to diffuse stimuli, but

he failed to distinguish between the effects of center and surround. This is an

important distinction because alterations in the bipolar response could reflect
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changes in receptor activity, or result from lateral interactions at the outer
plexiform layer, or both.

Lateral interactions forming the surround of the bipolar cell receptive field

are presumably mediated by the horizontal cell system with processes that
extend from the surround to the center of the bipolar receptive field. Maksi-

mova (1969) and Naka and Witkovsky (1972) have shown that the effects of an

antagonistic surround at the ganglion cell level can be duplicated in fish when
horizontal cells are artificially hyperpolarized by currents passed through an

intracellular electrode. Baylor et al. (1971) artificially hyperpolarized hori-

zontal cells in turtle and showed a depolarizing effect in photoreceptors. These
results support the hypothesis that horizontal cells mediate at least one form of

lateral antagonism (Werblin and Dowling, 1969) and suggest further that

lateral antagonism is carried through a feedback (recurrent) pathway.

Psychophysical experiments suggest a sensitizing role for surround back-

grounds. Crawford (1940) and Ratoosh and Graham (1951) showed that

threshold for a test flash centered upon a background disk was reduced as the

disk expanded to encompass more of the surround. Westheimer (1965) used a

separate annular background and showed that he could sensitize the center of

a test field where threshold had been elevated by a background disk.
These results suggest that surround backgrounds can sensitize or desensitize

the visual system. Since bipolar activity is modified by surround backgrounds,

the outer plexiform layer is a potential site mediating these sensitivity changes.

By recording intracellularly from the bipolar cells in Necturus I have studied

the effect of surround backgrounds on the response characteristics of the bi-

polar center. The results show how the relationship between receptor and bi-

polar activity is modified by the antagonistic surround, and suggest a role for

the surround in either sensitizing or desensitizing the center of the bipolar

receptive field.

METHODS

Preparation

As in previous experiments (Werblin and Dowling, 1969; Werblin, 1971) mudpuppies
were stored at about 10°C in a tank. They were decapitated and the anterior of one
eye was carefully dissected away using a lab-built infrared dissection microscope. The
vitreous in mudpuppies is fairly liquid; it is drawn out of the eyecup with a capillary
tube 0.5-mm inside diameter. The entire head was mounted in a special chamber and
positioned so that the eye could be stimulated optically and a micropipette could be
inserted into the retina. This preparation was useful, judging from the constancy of
the electroretinogram, for about 4 h.

Electrodes

Pyrex capillary tubing, Corning no. 7740, 1 mm OD, 0.5-mm ID (Corning Glass
Works. Corning, N. Y.) was drawn down to a fine (less than 0.1-pm) tip with a Liv-
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ingston-type microelectrode puller (Otto Hebel, Rutledge, Pa.). The pipettes, having

been previously filled with strands of fiberglass, were filled with a no. 30 pediatric

lumbar puncture needle. 3-5 M potassium acetate gave less noisy recordings than

filling with 3 M potassium chloride or other alternatives. The pipettes were lowered

into the retina using a homemade hydraulic system consisting of hypodermic syringes

mounted back-to-back through Teflon tubing. The hydraulic system is necessary to

isolate the experimenter mechanically from the electrode and the preparation, as the

slightest vibration tends to dislodge the electrode from the cell being studied.

Stimulator

Two Tektronix 604 display oscilloscopes with special P11 phosphors were used as the

stimulators (Tektronix, Inc., Beaverton, Ore.). Special patterns, consisting of spots,

rings, disks, and windmills can be generated electronically and displayed on these

oscilloscopes. The advantage of this stimulus system is that a variety of patterns can

be flashed or varied continuously in intensity, position, or size. The disadvantage of

the system lies in the limited intensity range available for stimulation and in the fact

that the images tend to "bloom" when the intensity is increased by more than about

4 log units above threshold. For the present experiments, the limited intensity range,

covering about 4 log units above threshold for most retinal cells, was quite adequate.

The intensity of each oscilloscope was monitored by a photomultiplier, then fed to a

logarithmic amplifier, and finally displayed along with the recordings on a storage

oscilloscope. The two images, one from each scope were combined with a half-silvered

mirror, then optically reduced and focussed upon the retina.

For some of the bipolar cell experiments a signal proportional to the log stimulus

intensity at the center of the bipolar field was fed directly to the x-axis of the oscillo-

scope. The y axis was driven by a signal proportional to the cell response, so an in-

tensity-response curve was generated directly on the face of the oscilloscope. This

facilitated rapid evaluation of the characteristics of the bipolar cell operating curve

for a variety of stimulus conditions.

In other experiments the stimulus consisted of an average intensity level, presented

to the center of the bipolar receptive field, and modulated with a square wave. This

stimulus was accomplished by driving the z axis of the display oscilloscope with a

function generator that produced a square wave superimposed upon a steady DC

level. The intensity of the stimulus was monitored as described above.

The experiments shown in Figs. 1 and 2 were performed with diffuse stimuli cover-

ing a broader range of background and flash intensities than was possible with the

CRT displays. The stimulator used in these experiments was similar to that described

in the accompanying paper by Normann and Werblin (1974). Briefly, it consisted of

a pair of light sources with intensities modified by neutral density filters converging

through light pipes upon the retina. The source used as background was presented for

8 s; the "test flash" from the other source was substituted for background for 1 s during

each stimulus cycle. Intensities are calibrated with those of the previous paper.

Taping and Photographing

The data from the recording electrode, two photomultipliers, and voice were recorded

on a Vetter, model A, (A. R. Vetter, Rebersberg, Pa.) eight-channel FM tape system
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with bandwidth limited to 1,000 Hz. Later, the signals were played back onto a
Tektronix model 5000 series storage oscilloscope and photographed with Polaroid
film (Polaroid Corp., Cambridge, Mass.) from the stored image. In order to form a
black line-on-white background reproduction, the Polaroid pictures were photo-
graphed using Kodak type 2575 high contrast direct positive film (Eastman Kodak
Co., Rochester, N. Y.) which has a negative "gamma" and therefore produces a
direct positive transparency. This transparency was then used as the "negative"
to make prints that were reversed from the original Polaroid photographs.

RESULTS

Identification of Cells and Background Conditions

Other studies (Werblin and Dowling, 1969; Werblin, 1970 and 1971; Kaneko,
1970; Matsumoto and Naka, 1972) have shown that the depolarizing and

hyperpolarizing bipolar cells have many common properties in a variety of
vertebrates. The receptive fields are concentrically organized with centers

ranging from 300 to 500 #um in diameter in mudpuppy, but the antagonistic

surround extends over broader retinal regions. Turtle cones also appear to
have concentric antagonistic receptive fields (Baylor et al., 1971; Cervetto and
MacNichol, 1972), but in mudpuppy the antagonistic effect of the surround

measured in cones is minimal (Normann and Werblin, 1974 and unpublished

observations). Therefore, in mudpuppy the bipolars can be distinguished

from the cones by three criteria: (a) longer latency of response (Normann

and Werblin, 1974), (b) dramatic antagonistic (versus minimal) surround

effect, and (c) broader receptive field centers (Werblin, 1970). I have used
results from studies of the depolarizing and hyperpolarizing bipolars inter-

changeably, presenting the best data from experiments on either type. Each
experiment here is meant to represent the behavior of both types of bipolar.

These experiments are primarily concerned with the effects of surround

antagonism, and no attempt was made to measure spectral sensitivity. How-
ever, all of the effects described here have been observed in different cells
under both scotopic and photopic conditions, so the phenomena are not

clearly associated with either rod or cone activity. In this paper I have taken
the background level of 3.5 log units as the transition point from scotopic to
photopic conditions (Normann and Werblin, 1974). The backgrounds used in

these experiments cover a range extending from absolute threshold to about
2.5 log units into the photopic range as measured in the rods and cones
(Normann and Werblin, 1974), and the curves in these figures are similarly
calibrated in intensity.

Response to Diffuse Flashes at Different Full Field Backgrounds

Figs. 1 and 2 show the intensity-response curves for a horizontal and bipolar

cell under stimulus and background conditions similar to those used in the
previous paper. Similar experiments in horizontal cells have been reported by
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FIGURE 1. Intensity-response curves for the horizontal cell elicited by full field test

flashes substituted for background. The curves become negative to the right because the

horizontal cells hyperpolarize with increasing intensity. Responses to test intensities

above background are plotted below the zero line; responses to test intensities above back-

ground are plotted above. The background intensity for each curve is given by the inter-

section of the curve with the zero line. This is the intensity of the substituted test flash

that elicited no response. The left-most curve is the response curve in the presence of low-

est background. The intensity scale is the same as that used in the previous paper. Peak

level was measured with respect to membrane potential just prior to the response. Curves

are drawn by eye through the experimentally derived points.

FIGURE 2. Intensity-response curves for a depolarizing bipolar cell elicited by full field

flashes. These curves are plotted from the peaks of bipolar response to substituted test

flashes, above and below background. The background intensity for all curves is given by

the intersection of the curves with the zero line; this is the intensity of the substituted

flash that elicited no response. Peak responses are plotted, measured from membrane po-

tential just prior to response. Curves are drawn by eye.

Byzov and Kusnezova, (1971). -s test flashes were substituted for background

every 8 s. The test flashes were presented in 0.5-log unit steps and in ordered

sequence. The intracellular responses from the cells, at a few representative

background levels are shown in Figs. 3 and 4; the peak magnitudes of these

responses measured from the base line just preceding the response, were

plotted in Figs. 1 and 2. At background levels near absolute threshold the

intensity-response curves for both horizontal cells and bipolars are relatively

shallow and most of the response range lies at intensities above the background

level, as shown previously for the rods. As background is raised, the slope of

the curves increases gradually and the response range becomes equally divided

between test flash intensities above and below the background level, as shown

previously for the cones (Normann and Werblin, 1974).

A measure of the slope and range of the curves is obtained by aligning them
with the relation
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FIGURE 3. Time-course of response in horizontal cell to test flashes substituted for back-

ground. Left: in the presence of 1.0 background all responses are hyperpolarizing. Right:

in the presence of a 4.0 background, test flashes lower than 4.0 elicited a depolarizing re-
sponse. The 4.0 test flash elicited a slight hyperpolarization because it was not precisely

calibrated with the 4.0 background channel.
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FIouRE 4. Time-course of response in a depolarizing bipolar cell. Test flashes were sub-

stituted at different backgrounds as in previous figure. The sustained phase of the re-

sponse became smaller at higher backgrounds. The peaks of the response at on measured

from the potential just prior to response were used to plot the intensity-response curves

shown in Fig. 2.

V/ra,, = P/(P + k"),

where V is the response magnitude, V,, is the magnitude of maximum re-
sponse used for normalization, I is the stimulus intensity, k is the value of I for
which the expression has the value of one-half, and n is varied to fit the curves
(Naka and Rushton, 1967, Naka, 1969). For flashes of comparable duration
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(seconds), n has the value of 0.7 for the photoreceptors in the previous paper.

For horizontal cells, n varies from about 0.7 at low backgrounds, where re-

sponses are evoked by increments, to 1.0 at the higher background levels, where

responses to both increments and decrements are plotted. However, the value

of n in the bipolars varies from about 1.0 at low backgrounds to 1.3 at higher

background levels.

The variation in the value of n for cells postsynaptic to the photoreceptors,

as a function of background level, could result from the separate inputs from

rods and cones in the mesopic range as shown by Steinberg (1969) in the cat

horizontal cells. The response curves for the two receptor populations are not

aligned at low backgrounds so the combined output might span a wider range

of intensities than spanned by either class of receptor alone. This appears to be

the case for the mesopic PIII shown previously (Normann and Werblin,

1974). However, the curves might also be extended as a result of the stimulus

procedure. Test flashes were presented every 8 s in order of increasing in-

tensity, so each test flash could have reduced sensitivity for the subsequent

flash. Even if this were the case, it is still striking that the value of n for the bi-

polars, when the peak value of the response is measured, is greater than that

for either the horizontal cells or receptors.

Variation of DC Level with Background

Bipolar cell recordings were often stable enough that DC level was main-

tained to within 1 mV (about 10%) throughout the duration of a recording

sequence. When the DC level was stable, the absolute maximum and mini-

mum values of bipolar response potential remained fixed for all values of

background illumination. From this it is possible to infer the DC level at back-

ground even in the less stable recordings. The magnitude of the maximum re-

sponse to substituted test stimuli below background intensity is a measure of

the difference between the DC level at that background, and the initial dark

potential level.

Using the method of evaluating the DC level from the decremental re-

sponse, the DC behavior at the bipolar cell shown in Figs. 2 and 4 as a func-

tion of background was plotted in Fig. 5, along with the peak response to test

flashes at the 3.75-log background level. The DC level in the horizontal cell
is also plotted by comparison as the dashed curve in the figure. Both curves
seem to reflect the DC properties of the receptors. In the scotopic range, the

DC level increases as background is increased, as shown for the rods and the

initial portions of the cone curves. However, the DC level remains constant

throughout the photopic range, as shown for the cone system (Normann and
Werblin, 1974).

These results suggest that most of the adaptation that reduces the DC level

as background increases is mediated at the receptor level as shown pre-
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FIGURE 5. Intensity response curves for peak and plateau of bipolar response to diffuse

flashes. The peak response curve was taken for the bipolar at a background of 3.75 log

units. The solid background curve shows the steady bipolar potential at each background

illuminance. The dashed curve shows the steady horizontal cell potential at each back-

ground level.

viously. An additional component is introduced at the receptor terminal

through horizontal cell feedback. For example, compare the aspartate with the

normal receptor responses in Normann and Werblin (1973). This horizontal

cell effect is more clearly observed at the bipolar level, probably because bi-

polars are "downstream" from the interaction. The role of the horizontal

cells in reducing the peak responses of the bipolars is evaluated below.

Extent of the Antagonistic Surround

There is good correlation between the magnitude of response in the horizontal

cells and the diminution in response after the initial peak in the bipolars. In
these experiments a test disk of constant intensity was expanded in diameter to

cover more of the surround of the bipolar and horizontal cell receptive fields.
By using a fixed intensity, a nearly constant stimulus was always presented at

the center of the bipolar cell receptive field as the test disk was expanded.

Therefore, the magnitude of the subsequent decrement in bipolar response,

after the initial peak, due to the surround antagonism, was always measured

against a constant center response. Fig. 6 shows the results of one such experi-

ment. As the test disk was increased in diameter from M to 2 mm the hori-

zontal cell response, and the decrement in bipolar cell response, following the

initial peak both increased monotonically. However, the initial peak response

in the bipolar recordings was relatively unaffected by the diameter of the test

disk.

The magnitude of the antagonistic effect varied from cell to cell, but be-

came consistently greater as background level was increased. For example, the
bipolar in Fig. 6 A was antagonized by about 50% of its peak response magni-

tude by the surround. In Fig. 4, the bipolar was similarly antagonized by

about 50% at the 1.0 background level, but by nearly 100% at the 5.0 back-
ground level.
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FIGURE 6. (A) Change in magnitude of response for different size test disks in horizontal
cells and bipolars. For each cell the test disk of constant intensity but variable diameter,
as indicated was centered on the receptive field of the cell. Larger disks elicited larger
responses in the horizontal cell and larger antagonism of center response in the bipolar
cell. (B) Plot of percent of maximum response in a typical horizontal cell and percent of
maximum decrement of response in a typical hyperpolarizing bipolar cell (large circles),
along with the predicted values of response weighted by the function W(x) = Ae- 4 where
x is distance from the center of the field in millimeters and A is an arbitrary constant
(small circles).

To correlate the magnitudes of the decrement in bipolar response with the

magnitude of the horizontal cell response at various test disk diameters, I

used a test intensity that was not saturating for either cell, and then calcu-

lated the ratio of response at each disk diameter to the value at maximum di-

ameter. Using these precautions, the level of activity in horizontal cells is well

correlated with the magnitude of decrement in the bipolars for all test disk

diameters over about 2 mm, as shown in Fig. 6 B. Beyond 2 mm the test disk

often fell outside the retina of the mudpuppy.

The magnitude of the initial peak is not affected by the size of the test disk;
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only the subsequent steady phase of response, which appears about 250 ms;

after the peak is diminished for larger disks. This indicates that the magnitude

of the initial peak elicited by a test flash of any diameter is a good measure of
the central response. Therefore, the intensity-response curve shown in Fig. 2,

where the magnitude of the initial peak in bipolar response to a diffuse flash

was taken as a measure of activity, could be interpreted as the intensity-re-

sponse curve for test stimuli presented at the bipolar cell center alone. To fur-

ther confirm this, the center of the bipolar cell receptive field alone has been

stimulated in the following experiments, and the intensity-response curves

under these conditions are similar to those in Fig. 2.

It has been previously determined, both in tench (Naka and Rushton,

1967) and in mudpuppy (Werblin, 1970) that a spot stimulus, as it is moved

further from the center of the receptive field for the horizontal cell, elicits a

response that decreases according to the function

W(x) = Ae- ,

where A is an arbitrary constant and x is measured in millimeters. It is prob-

ably fortuitous that the weighting function is similar in both these preparations

since fish have quite different horizontal cell structures from mudpuppy

(Dowling and Werblin, 1969; Stell, 1967). I have used the weighting function

above to predict the magnitude of the horizontal cell response to flashing disks

of increasing diameter, and the result is plotted along with the experimental

curves in Fig. 6 B, showing a fairly good agreement. This suggests that the

weighting of the bipolar cell surround, and the weighting of the horizontal cell
response may both decrease with distance by a similar function, providing fur-

ther evidence for the notion that the bipolar cells are embedded in a system of

horizontal cells whose level of activity determines the level of lateral antagonis-

tic input to the bipolars.

Effect of Lateral Antagonism on the Bipolar Intensity-Response Curves

Fig. 7 A illustrates a simple way to demonstrate lateral antagonism in the bi-

polar cell. The bipolar studied here was of the hyperpolarizing variety;

steady illumination with a 300-um spot at the center of its receptive field

elicited a sustained hyperpolarizing response, (a). In the presence of this sus-

tained center illumination, an annulus having an inside diameter of 500 pm

and an outside diameter of 1 mm was flashed in the surround. (The results

above indicate that an outside diameter of more than 1 mm would have been

even more effective.) In the presence of the annulus, the centrally elicited

hyperpolarization was reduced from level (a) to level (b).

Similar bipolar experiments have been performed by Kaneko (1970) in

goldfish, and Matsumoto and Naka (1972) in frog. This approach generates
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FIGURE 7. (A) Time-course of response of a hyperpolarizing bipolar cell to center flash

reaching level a followed by the addition of a surround flash. The surround acts to

antagonize the central response, so the initial hyperpolarization (a) is reduced and the

membrane is driven back toward its initial dark level (b). (B) Intensity-response curves

for the center of the bipolar cell receptive field with no background (a), then in the

presence of a fixed intensity annulus (b) that shifted the response 1 log unit to the right.

In this and following experiments, the annulus was 500 /m in inside diameter, 250 Mm

wide, and centered on the field. Central test spot was 300 'um in diameter. Its intensity,

plotted along the abscissa, was varied gradually over a 3-log unit range in 6 s.

two potential levels for one pair of center and surround intensities, but there

exist numerous combinations of center-surround intensities that generate the

same or different potential levels (Werblin and Dowling, 1969, Fig. 9). In

order to catalog a greater variety of center and surround intensities, the ex-

periment shown in Fig. 7 B was performed. The intensity of the 3 00-Jm central

spot was continuously varied over a 3-log unit range at the rate of 0.5 log

units/s, and its value was recorded along the abscissa of the graph. The re-

sponse of the bipolar cell was recorded with values along the ordinate. In this

way an intensity-response curve for the center of the bipolar receptive field

could be plotted in just a few seconds. This procedure generated the curve

marked a in the Fig. 7 B. The experiment was then repeated, but this time the

center response was recorded in the presence of a surround background. The

curve marked b was generated in this way; it is shifted to the right along the

log intensity axis by about 1 log unit.

The response forms in Fig. 7A can be interpreted in terms of the curves in

Fig. 7 B. With no surround present the central flash with intensity indicated

by the dashed, vertical line, elicited a hyperpolarizing response indicated as a

in both figures. Response b of less hyperpolarization was elicited in the pres-

ence of the surround and represents one point on the entire response curve

that was shifted to the right.

The slope and range of each of the intensity-response curves shown in Fig.

7 B elicited by gradually increasing intensity at the center of the bipolar re-

ceptive field, in the presence of two levels of surround illumination, resemble

the curves shown in Fig. 2 for full field illumination where the peaks of the
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responses were taken for the points on the curves. The close relationship be-

tween the forms of the two curves, elicited under quite different conditions of

stimulation, can be explained by the results shown in Fig. 6. There, the magni-

tude of the peak response to a test flash of any diameter is approximately the

same as the magnitude of the sustained response to a small, centered flash of

the same intensity. Therefore, the initial peak response to a diffuse flash is a

good measure of the central response; the steady response decrement occurring

after the initial peak appears to result from delayed surround antagonism.
The parallel shift in the bipolar curves in the presence of the surround, re-

sembles the shift in receptor curves in the presence of background, (Normann

and Werblin, 1974) but the shifting mechanism is quite different in this case.
In the experiment of Fig. 7 the receptors at the center of the bipolar receptive

field were not illuminated by the background surround that acted to shift

these bipolar curves, so the receptor curves were probably fixed in position

throughout the experiment. The signal that acted to shift the bipolar curve

was probably carried by horizontal cell processes extending from the surround

to the center of the field. If the surround background were to scatter into the

center, a similar shifting of the bipolar curves, initiated at the receptor level

might occur. The following experiment was designed to distinguish between the

effects of center and surround backgrounds on the bipolar response curves, and

helps to rule out scatter as a mechanism.

Different Effects of Center and Surround Backgrounds on the Bipolar Response

Curves

In the following experiment I measured the bipolar cell response to the gradu-

ally increasing intensity of a central spot, in the presence of three different
backgrounds: (a) an annulus, (b) a center background spot, (c) a broad back-

ground disk which represents the combined background spot and annulus.

Fig. 8 A shows the effect of the background annulus upon the bipolar

operating curve. As in the preceding experiment, the curve was shifted

roughly parallel to itself from left to right along the log-intensity axis when the

background annulus was present. There was no significant change in the dark

potential level of the cell in the presence of the annular background. Fig. 8 B

shows the effect of the central spot background alone on the bipolar response

curve. The bipolar cell was initially hyperpolarized by the central back-
ground spot to the level represented by the arrow (b), but the position of the

remainder of the curve elicited by test intensities above that background was

not greatly affected by the spot background; all activity still fell roughly along

the original response curve. These two experiments serve to isolate the sepa-

rate effects of center and surround backgrounds upon the operating charac-

teristics of the bipolar cell: the central background like a small center test

flash, simply hyperpolarizes the bipolar along the initial response curve; the
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A B C
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FIGURE 8. Combined effects of center and surround background on the form of the bi-
polar cell operating curves. (A) In the presence of a surround background the operating
curve is shifted to the right, parallel to itself, as indicated by arrow a. (B) In the presence of

a center background spot the bipolar cell is hyperpolarized along its original operating
curve as represented by the arrow (b). (C) When the background spot is expanded to
cover both the center and surround, the effect of the center background is antagonized

(c), and the operating curve is shifted to the right (d). Solid circles represent the test
stimulus at the center of the field, cross hatched regions represent the background condi-

tions drawn approximately to scale, where the central spot is about 300 um in diameter
and the disk is about 500 m in diameter. The total response range is about 10 mV.

surround background however, shifts the position of the operating curve with-

out hyperpolarizing the cell.

The effects of both center and surround backgrounds, presented together in

the form of a broad background disk are illustrated in Fig. 8 C. The central

portion of the disk covered the center of the bipolar receptive field and served

as a center background spot; the surrounding regions served as a surround

background. The resulting response curve can be interpreted as follows. The

bipolar cell was initially hyperpolarized by the center background (as in B),

but this hyperpolarization was reduced by the presence of the surround (as in

A). Therefore, the unit was less hyperpolarized initially by the broad disk than

by the center spot (as in Fig. 6 A). In addition, the surrounding regions of the

background disk acted to shift the response curve to the right along the in-

tensity axis (as in A).

These results rule against scatter into the center of the field as a cause of the

curve shifting, because even a spot of the same intensity as the annulur sur-
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round (curves b) has less of a shifting effect than the surround itself (curves a)

The experiment was performed under scotopic conditions, where the response

curves for the rods at the center of the bipolar receptive field, illuminated by

the background spot, would not be greatly shifted by the background. How-

ever, similar results were obtained under photopic conditions in other bi-

polars.

Effects of Annular Surround Backgrounds on Bipolar Sensitivity

The preceding three expreriments provide a framework in which to view the

behavior of the bipolar cell center response under a variety of background condi-

tions. Surround backgrounds appear to affect the entire intensity-response

function for the bipolar center. The following experiments are designed to

verify an interpretation of these data through which bipolar sensitivity can

be evaluated as a function of background illumination. The interpretation is

based on the assumption, formalized in the discussion, that sensitivity at any

fixed test intensity region, is related to the slope of the intensity-response curve

at that intensity.

If sensitivity is related to the slope of the bipolar response curves, then it

should be highest for incremental test stimuli with intensities that intersect the

steep midportion of the log-intensity response curves. To test this, I have pre-

sented a flickering stimulus to the center of the bipolar cell receptive field, and

then moved the log-intensity response curves to different relative positions

along the intensity axis with respect to the flicker by varying the level of sur-

round background. The surround background was, in all cases, an annulus

with 0.5-mm inside diameter, and l-mm outside diameter. In a sense, the

flicker stimulus is a probe of the slope of the response function, but the flicker

also represents a form of incremental stimulus with which to evaluate the

center sensitivity.

Representative experiments, demonstrating a form of sensitization and de-

sensitization by surround backgrounds are shown in Figs. 9 C and 9 A, re-

spectively. These curves show the time-course of the response to the flicker stim-

ulus before, during, and after the presentation of the surround background.

Figs. 9 B and 9 D are taken from Fig. 7 to suggest the concomitant effect of the

surround background in the intensity domain. In 9 B the flicker was initially

aligned with the steepest part of response curve a), eliciting a flicker response

(a) in 9 A. The surround background then shifted the response curve to posi-

tion b in 9 B; in misalignment with the flicker. As a result, the flicker response

in 9 A was reduced (b) in the presence of the surround background. This experi-

ment simply shows that the surround background shifted the log-intensity re-

sponse curve to the right, and reduced the incremental response which is a

measure of the sensitivity of the bipolar center.
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FIGURE 9. Sensitization and desensitization by annular surround backgrounds. A and C

show time-course of flicker response when surround background is added for 1 s. B and D

show the effects of the background on flicker, interpreted in the intensity domain. In ex-

periment A-B, the flicker is initially aligned with curve a, so when the surround shifts the

curve to b the response to flicker is reduced. In experiment C-D, the flicker is initially

aligned with curve b, so when the surround shifts the bipolar operating curve to b the re-

sponse to flicker is enhanced.

In the experiment represented by Figs. 9 C and 9 D, the conditions between

flicker and response curves were reversed and the surround served to sensitize

the center. Initially, the flicker stimulus was aligned with response curve b in

9 D, but in the absence of the surround, the bipolar was still operating with

curve a. Since the flicker stimulus intensities were misaligned with operating

curve a, the flicker response was relatively small and strongly hyperpolarized

as shown by a in 9 C. The surround background served to shift the operating

curve from a to b in 9 D, thereby aligning it with the flicker stimulus intensi-

ties so the magnitude of response in the presence of the surround background

was increased and the cell depolarized as shown by b in 9 C.

The pair of experiments suggests that the surround background can either

sensitize or desensitize the center of the bipolar cell receptive field, depending

upon the relative alignment of the center response function with the center in-

cremental intensities. The experiment rules against scatter from the surround

as a mechanism for the surround effect since the bipolar center can be sensi-

tized with background as shown in Fig. 9 C. However, this experiment does

not establish the site of the sensitization-desensitization mechanism. The

lateral antagonistic interactions that realign the bipolar cell response curves
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could either be fed back to receptors, fed forward to bipolars, or mediated by

some other synaptic pathway.

The experiments give some indication as to the time-course of the curve

shifting phenomenon. The flicker rate was about 3.5/s, and the change in

magnitude of response to flicker seems to be complete within one cycle of

flicker. Therefore, the change in magnitude probably accompanies the change

in response level mediated by the antagonistic surround, and is comparable

to the time-course of horizontal cell response of 200-300 ms.

Fixed Response Limits for the Bipolar Cell

The bipolar response curves in Fig. 2, 7, and 8 are of constant overall magni-

tude, regardless of their position along the log-intensity axis. These limits may

represent saturation levels that can also serve to reduce sensitivity. This ex-

periment explores the saturated bounds related to sensitivity measurements.

Fig. 10 illustrates an experiment similar to that shown in Fig. 9, but where the

modulation depth of the stimulus was much greater (about 1 log unit) and the

surround intensity was gradually varied over a wider range. Initially, with no

background surround, the bipolar was presumably operating on curve a in

Fig. 10 B, and the response to flicker is shown by the initial portions of the

upper curve in 10 A. The surround background was gradually increased,

slowly shifting the response curve from position a to position b thereby mis-

aligning the operating curve with the flicker. As a result, the bipolar response

was compressed against a fixed upper bound as shown in 10 A. In a second ex-

CENTER [ I CENTER

A DARK [ LIGHT

-IGHI

°0--------- P-b -. I log -

2 log unit
log Isurround

FIGURE 10. Saturation and unsaturation of flicker response. The protocol is the same as

in Fig. 9, except that the intensity of the annular surround was increased gradually instead

of being flashed, shifting the operating curve for the hyperpolarizing bipolar from a to b.

The "center dark" flicker was initially aligned with curve a; "center light" flicker was

aligned with curve b. The response increased and "unsaturated" in magnitude when the

operating curve for the hyperpolarizing bipolar was brought in alignment with the flick-

ering stimulus.
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periment, given by the lower curve in Fig. 10 A, the bipolar center was il-

luminated with a brighter stimulus, thereby hyperpolarizing the cell to its limit.

As the surround background was increased the bipolar was brought out of

saturation and the response magnitude to flicker increased.

This experiment is an extension, in the saturating limit, of the results

shown in Fig. 9. Here, the flicker response is reduced by a change in the

slope of the response curve, because the bipolar cell seems to saturate. Again,

the upper curve in Fig. 10 A shows that the surround desensitizes the center.

The lower curve, in which magnitude of response increased with increasing

surround, is an example of a sensitizing effect.

Surround Antagonism: A Subtractive Form of Interaction

Some of the previous experiments show that the log-intensity response curve

for the bipolar cell is displaced parallel to its original position along the log-

intensity axis in the presence of surround illumination. This suggests either

that the surround acts to attenuate the signal reaching the bipolar cell by a con-

stant multiplicative factor, or that the surround subtracts a constant quantity

from this signal. An attenuation of the signal would result in a parallel displace-

ment of the curves if, as in the case of the cones (Normann and Werblin,

1974) it occurred at an initial stage of transduction, but a subtractive effect

could displace the curves if it acted, say, at the receptor terminal. These al-

ternatives will be considered more formally in the Discussion; the following

experiment supports the hypothesis that surround antagonism in the bipolars

is a subtractive phenomenon.

Fig. 11 A illustrates an experiment in which the receptive field center of a

depolarizing bipolar cell was stimulated with a spot of 1. l-log units intensity,

modulated to a depth of 0.1 log units. The time-course of the response is

shown, where at second 1 the center stimulus was presented, depolarizing the

cell (a). At second 2 the surround annulus was introduced, thereby reducing

the depolarization (b). At second 3 the surround was terminated, once again

depolarizing the cell (c), and at second 4 the center stimulus was terminated

(d). The important point here is that although the surround reduced the level

of polarization by more than 50%, the modulated response to flicker was not,

noticeably altered, suggesting the surround subtracts a constant quantity.

Fig. 11 B illustrates the relationship between the flicker stimulus and the bi-

polar response curves in the intensity domain. The response curve for the bi-

polar was shifted to the right by the annulus, but the flicker stimulus always fell

along the steeper portions of the curves. This experiment can be considered as a

test, in the time domain, of the degree to which the displaced response curves

are parallel. The relatively constant response to flicker, at different polariza-

tion levels in 11 A is a confirmation of constant slope of the curves in 11 B.
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FIuRE 11. Subtractive nature of the annular surround. The protocol is the same here

as in Figs. 9 and 10 except that the modulation depth of the flicker is low, at 0.1 log units.

(A) Time-course of response to flicker; (B) interpretation of the time-course in the in-

tensity domain. In A, the flicker stimulus is presented at a, then the surround is intro-

duced at b, then removed at c. Finally, the flicker stimulus is removed at d. The surround

reduces the magnitude of the bipolar response by about 50%, but does not affect the

magnitude of the flicker response. In B, the flicker intensities are always aligned with the

linear portions of the log intensity-response curves.

DISCUSSION

Lateral Interactions: Contrast Detection or Adaptation?

Earlier reports (Werblin and Dowling, 1969; Werblin, 1970 and 1971) sug-

gested that the lateral interactions at the outer plexiform layer served a con-

trast-detecting function. Since annular illumination, presented at the surround

of the bipolar cell receptive field tended to antagonize the response elicited by

illumination at the center, the change in maintained polarization in the bi-

polar cell was smaller when the field was uniformly illuminated than when a

contrasting boundary illuminated the receptive field. Lateral interaction

mediating this contrast function may be a general property of visual systems;

similar results have been reported for the first level of neural processing in an

invertebrate retina (Ratliff, 1965).

However, this view of bipolar function should probably be modified to in-

clude the effects of the surround on the full range of bipolar response. Although

the steady level of polarization in the bipolar is an antagonistic function of il-

lumination at center and surround of its receptive field, the incremental

change from that level, elicited by a change in the configuration of stimulus

pattern, is probably a more important property of the response as shown in the

following paper (Werblin and Copenhagen, 1974). The present experiments

suggest that the antagonistic surround serves to optimize the magnitude of in-

cremental response to change of stimulus in the bipolars and thereby enhance

sensitivity. When the surround is illuminated, the entire intensity response
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curve for the center of the bipolar receptive field is repositioned in the log-in-

tensity domain. The steepest and therefore the most sensitive portion of this

center-response curve can be aligned with different center intensities de-

termined by the level of surround illumination. Under special experimental

conditions the surround can serve to either sensitize or desensitize the center

of the bipolar receptive field depending upon the relative alignment of the

response range with center intensities (Fig. 9).

By this argument, the lateral antagonism that forms the surround of the bi-

polar cell receptive field serves as a second stage of adaptation, concatenated

with the adaptation in the photoreceptors. In the following I try to infer the

nature of the input-output function from photoreceptors to bipolars, as modi-

fied by the horizontal cell system, and derive a measure of sensitization.

Input-Output Function for the Outer Plexiform Layer

A schematic representation for the general connections between the neural

elements associated with the outer plexiform layer is given in Fig. 12 A. It is

possible to derive a graph of the relationship between receptor and bipolar cell

activity, and to show how that relationship is affected by different levels of

horizontal cell activity, because the separate influences of horizontal cells and

receptors upon bipolar cell activity can be isolated in both space and time.

The experiment illustrated in Fig. 6 shows that the bipolar cell is excited over a

narrow region of the retina; probably not more than 300 Am in diameter, but

the horizontal cells exert their antagonistic effect on bipolar activity over a

broad retinal region covering up to 2 mm. The experiment also shows that

the antagonistic effect from the surround is delayed by about 250 ms. There-

fore, bipolar activity, elicited by the receptors, but unaffected by horizontal

cell antagonism can be measured either with a small spot centered upon the bi-

polar cell receptive field as in Fig. 7, or derived at a time before the onset of

surround antagonism as in Fig. 2. The bipolar cell intensity-response curves,

derived by either of these methods are quite similar and differ from those of the

receptor (Normann and Werblin, 1974) and horizontal cells (Fig. 1) in that

the graded bipolar response spans a narrower range of log intensity, and can be

aligned with different absolute ranges of log intensity as a function of sur-
round illumination.

Fig. 12 B, C, and D illustrates a technique for evaluating the relationship

between receptor and bipolar activity, and shows how this relationship is

affected by horizontal cell activity. In terms of the diagram in Fig. 12 A, Fig
12 C is a graph of b versus a for two values of c with log I as the implicit

parameter. I used the pair of bipolar curves shown in Fig. 11 here, and since

these were derived under scotopic conditions, I compared the activity of this

bipolar (graph B) with a rod curve (graph D) taken from the previous paper

(Normann and Werblin, 1974, Fig. 2). For each test intensity I plotted the
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FIcURE 12. (A) Schematic of the system of connections at the outer plexiform layer,

(OPL). Both receptor and horizontal activity enters the OPL and the resultant inter-

actions are "read out" by the bipolar cell. The pipettes indicate the signals to which we

have access. (B) The intensity-response curves for the bipolar taken at two surround back-

grounds from Fig. 11. (D) The intensity response curves for a rod, under similar condi-

tions taken from the previous paper. (C) Plot of the bipolar response versus receptor ac-

tivity for two surround backgrounds in the scotopic range. Curves C were derived by

selecting a stimulus intensity, shown as 2.5 log units in the figure and plotting the bipo-

lar response (ordinate) against the receptor response (abscissa) elicited at the same inten-

sity. The curves were completed by plotting bipolar activity against receptor activity at

many different values of log I for two different surround intensities.

magnitudes of response at two surround backgrounds for the bipolar (B)

against that of the receptor (D). This procedure generated a pair of curves (C)

relating peak bipolar activity to peak receptor activity for two different levels

background illumination. I cannot be sure that the test intensities of each cor-

responding pair of points on graph C were identical in the experiments, but the

form of the curves is not critically dependent on this alignment.

Each of the bipolar curves in Fig. 12 C spans less than the full range of re-

sponse for the receptors, but the bipolar response can be aligned with different

subregions of the receptor response range by varying the surround illuminance.

This suggests that the bipolar response magnitude is limited at a site proximal
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to that of the receptor, probably at the bipolar membrane itself, and that the

surround effect is introduced before the receptor signal reaches the bipolar

membrane, perhaps at the receptor terminal. This is consistent with Baylor et

al. (1971) who show a presynaptic effect (with respect to bipolars) for the

horizontal cells in turtle, and with Nelson (1973) who suggests, from measure-

ments of the electrical properties of the bipolar membrane, that the surround

effect is not postsynaptic.

The curves in Fig. 12 express the cumulative effects of a series of transforma-

tions that lead to the bipolar response, and they suggest a mechanism for the

lateral antagonism at the surround of the bipolar receptive field that displaces

the response curves. The graphs in 12 C show, on linear coordinates, the rela-

tionship between peak receptor activity and bipolar activity at two different

surround levels. Surround illumination alters this relationship such that over

most of the bipolar response range, the receptors must polarize by an additional

3 mV to elicit the same bipolar response. If the lateral antagonism acts at the

outer plexiform layer near the receptor terminal, then it seems to subtract a

constant quantity, corresponding to 3 mV in the receptors, from the receptor-

to-bipolar signal. An attenuation of this signal at the outer plexiform layer would

tend to alter the slope of the input-output curves in graph 12 C. The subtrac-

tive nature of these interactions is supported by the experiment in Fig. 11

where surround illumination altered the level but not the magnitude of the

flicker response.

Sensitization and Desensitization by Surround Backgrounds

As in the previous paper, sensitivity can be defined as the change in response

versus stimulus increment,

dV
Sa -

where S is sensitivity, dV is the change in response, and dI is the stimulus in-

crement. This expression can be rewritten to correspond more closely with the

log-intensity response curves used in these experiments as

Sa dlogl dV K
d log I dI dlog I'

where K is a constant. Each factor in this expression is related to a specific

property of the bipolar intensity-response curves as illustrated in Fig. 13. For a

family of bipolar response curves that shift parallel to each other, the slope of

all the curves at any criterion response level will be constant as shown in Fig.

13 A. With constant slope, the above expression becomes
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FIGURE 13. Components of sensitivity in the log intensity-response curves. (A) If curves
shift parallel to each other along the log intensity axis, and threshold is measured as a
fixed criterion level from a fixed base line, then sensitivity is proportional only to the re-
ciprocal of the criterion intensity because the slope of the curves is constant. Sensitivity

decreases monotonically from k/I to k/I 2 to k/Is as the curves shift to the right. (B) Sensi-
tivity measured at a fixed intensity level, Io, is proportional to the slope of the curves at

Ia. Sensitivity decreases from I to 2 to 3, but this is not the order in which the curves
shift. If background shifts the curve from left to center in B, the slope at Io is increased,

and the unit is sensitized by the background.

K dV _
SaI d log I constant,

where I is the projection to the intensity axis for each criterion measurement.

Curves such as these were generated by simply increasing the surround back-

ground level in Figs. 7 and 8. However, it is possible to fix the second term and

vary only the first in the expression above as illustrated in Fig. 13 B. Here the

value of I is constant, but the slope of the curves at I varies as the curves are

shifted by the annular surround background. Under these conditions the

above expression becomes

dV K
Sad ogI; = constant.

This was the protocol for the experiments illustrated in Figs. 9, 10, and 11,

where the flicker stimulus was used to measure the slope of the response curves

at a fixed intensity along the log I axis.

Under the conditions specified by Fig. 13 A, the decrease in sensitivity is a

monotonic function of surround illumination because the curves are con-

tinuously shifted to the right by background. However, under the conditions

of Fig. 13 B, the sensitivity is not monotonic with surround illumination be-

cause the slope of the individual response curves is low at either end and high

in the center. Therefore, it is theoretically possible, to either increase or de-
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crease sensitivity at the center of the bipolar cell receptive field by increasing

the surround background in the presence of a fixed center intensity.

Crawford (1940) and Ratoosh and Graham (1951) showed psychophysically

that as the diameter of a background disk was increased, threshold at the center

of the disk first rose and then decreased, suggesting that the outer regions of

the disk served to sensitize the center. Westheimer (1965) studied the sensitiz-

ing effect of separate annulus upon a center test area where threshold had been

elevated by a background spot. More recently Ikeda and Wright (1972) have

shown that an annulus can serve to enhance the response to a central test

flash in cat ganglion cells, and Copenhagen (1972) has demonstrated similar

effects in the ganglion cells of mudpuppy.

These observations raise the possibility that the sensitizing annulus serves a

"disinhibiting" function, as suggested by Ikeda and Wright (1972). A sur-

round can disinhibit within a single stage of lateral interaction only if it oper-

ates in the recurrent, or feedback mode as demonstrated in Limulus (Ratliff,

1965). Therefore the sensitization experiments could be used to test for disin-

hibition, and the finding of disinhibition would suggest that the pathway for

lateral interactions was recurrent. Recently, Copenhagen (1972) and Burk-

hardt (1974) have shown that the response of horizontal cells in mudpuppy can

be augmented by a surround, thus implicating feedback connections with

receptors, and confirming this, Witkovsky et al. (1973) have shown that the

PIII component of the electroretinogram in fish which is probably of receptor

origin, can be augmented by an annular surround.

The results shown in Figs. 9 C and 10 A suggest that sensitization results

not from disinhibition, but from direct surround antagonism. The bipolar

cells were sensitized because the nearly saturating response due to center il-
lumination alone was reduced by the surround background. This aligned a

steeper region of the log intensity-response curve with the center stimulus

intensities thereby allowing a greater response magnitude for a given incre-

mental stimulus at the center.

Since the lateral antagonistic signal is probably fed back, at least in part,

to the photoreceptors ,the possibility for disinhibition exists at the outer plexi-

form layer. However, it has been difficult to demonstrate a true disinhibitory

phenomenon at the bipolar cell level.

Intensity-Response Functions

We showed earlier (Normann and Werblin, 1974) that the intensity-response

function for the photoreceptors in mudpuppy can be approximated by the

relation, originally suggested by Naka and Rushton (1967) of the form

V1 In

V, In+ kn '

84



FRANK S. WERBLIN Lateral Interactions at Outer Plexiform Layer

where Vr is the receptor response, V, is the maximum response (for normali-

zation), I is the stimulus intensity, and k is the intensity at which V = 
V , ,. The value of n is a function of the stimulus duration, being about 0.7 for
long test flashes (seconds) and 1.0 for short test flashes (10 ms). These func-
tions have been used to approximate the responses for receptors in turtle,
(Baylor and Fuortes, 1970), primate (Boynton and Whitten, 1970), skate
(Dowling and Ripps, 1972), and mudpuppy (Normann and Werblin, 1974)
as well as horizontal cells or S potentials in tench (Naka and Rushton, 1967),
and cat (Steinberg, 1969), and skate (Dowling and Ripps, 1971).

The intensity-response function for the bipolar cell, when only the center of
its receptive field is illuminated, is best fit with the above expression but when
the exponent is about 1.2, a higher value than that given for any of the more
distal cells. On the other hand, if the plateau of the response after 250 ms
during a difluse flask is plotted versus intensity, the curve is best fit with the
above expression having an exponent less than 0.5 at scotopic levels, and
zero in the photopic range (Fig. 5).

The differential input, tending to limit the steady state response was pre-
dicted by Barlow and Levick (1969) in their study of cat ganglion cells. They
showed that the spontaneous activity did not increase in a simple way as
background level was increased. They suggested that a differential mechanism
is useful in the cat for limiting the rate of spike discharge while maintaining
sensitivity. It is similarly useful in the mudpuppy for limiting the level of bi-
polar potential while maintaining the steep constant slope of the log-intensity
function, as illustrated in Figs. 7 and 8. Some of the adjustment in DC level
seems to take place in the photoreceptors themselves as shown in the accom-
panying paper.

Where do Horizontal Cells Exert their Antagonistic Effect?

The derivation above makes no assumptions about the site of antagonistic
interactions from horizontal cells, but is consistent with the observations of
Baylor et al. (1971) and Nelson (1973) suggesting that horizontal cells feed

back to the receptors. However, a comparison of the time-courses of response

for the horizontal cells and bipolars, as shown in Figs. 3 and 4, suggest that
something more is happening. The waveforms of response to diffuse flashes at
similar background levels show that after about 250 ms the bipolar response is

greatly reduced in magnitude, whereas the horizontal cell response remains
relatively sustained. The experiment in Fig. 6 shows that the bipolar response
is reduced as a function of horizontal cell activity. If horizontal cells fed back
to the receptors to mediate the antagonistic effect, then the receptor signal
should also be reduced with a time-course resembling that of the bipolars. A
reduction in receptor signal ought to be reflected in the activity of the hori-
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zontal cells presumably driven by receptors. That the horizontal cells do not

"turn off" after 250 ms like the bipolars, in response to a diffuse flash, suggests

that much of the antagonistic effect measured in the bipolars is either not fed

back to the receptors, or does not influence the receptor signal that specifically

drives the horizontal cell.

SUMMARY

(a) Background illumination, presented to the surround of the bipolar cell

receptive field, initiates lateral interactions that modify the bipolar response

to test stimuli presented at the center of the field. (b) The effect of the surround

can be isolated from the center response because it is slower by about 250 ms,

extends over a broad retinal area almost 2 mm in diameter, and antagonizes

the response to center illumination. (c) Although most evidence is consistent

with a feedback pathway for the antagonistic surround, an important com-

ponent of the lateral antagonistic effect may not be fed back to the receptors,

but may still be presynaptic to the bipolars. (d) A fixed illuminance in the

antagonistic surround reduces the magnitude of the center response by a con-

stant quantity regardless of the level of center response. This suggests that the

surround subtracts from the center. As a result, the entire log intensity-re-

sponse curve for the bipolar appears to be shifted without change of slope along

the log intensity axis by surround illumination. (e) The antagonistic surround

aligns the graded response range of the center of the bipolar cell receptive

field with different levels of center test intensities. Therefore, the bipolar cell

is sensitized by the surround when the steepest portion of its intensity-response

function is aligned with the center test intensity level.
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