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Abstract

Electromagnetic, i.e. Lorentz forces, may be used to influence the flow of electrically
conducting fluids. The present paper investigates the application of time periodic
Lorentz forces to the control of the suction side flow on a NACA 0015 hydrofoil.
Experimental results, consisting of flow visualizations and force measurements, char-
acterizing the control effect in the low Reynolds number range of 104 . Re . 105,
are presented. A comparison of the forcing effect with stationary Lorentz forces on
one hand and conventional oscillatory blowing on the other hand is given as well.
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1 Introduction

Control of flow separation is a persistent topic of fluid dynamic research be-
cause of its relevance to practical applications. Usually, flow separation implies
a loss of lift, an increase of drag, diminished pressure recovery, etc. Extensive
reviews of the earlier research on separation control can be found in [1] and
[2]. More recent results are discussed, e.g., in [3]. Aside from passive means,
like shaping and deployment of vortex generators, active methods reviewed in
the references cited above are mostly limited to the steady supply of momen-
tum to the near wall flow. This could, e.g., be achieved by blowing, suction,
or wall motion. Only in the last two decades periodic addition of momentum,
mostly realized through oscillatory blowing and suction, has become a sub-
ject of intensive research. Meanwhile, periodic excitation has proven to be a
valuable tool to control flow separation. A thorough review can be found in
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[4]. Experimental and numerical results on this type of separation control give
strong evidence that key features are related to the dynamics of perturbed
shear layers. Most appealing with respect to practical applications is the re-
duction of the control effort by about two orders of magnitude compared to
steady actuation (see e.g. [5]).

If the fluid is electrically conducting, an electromagnetic body force can be
generated by the application of magnetic and/or electric fields. Flows of such
kind are the topic of Magnetohydrodynamics (MHD). In the case of liquid met-
als or semiconductor melts, this control method is already in productive use
on an industrial scale. The inherent nature of the electromagnetic or Lorentz
force allows for a completely contactless influence, which is especially useful
in the case of metal casting and, generally, the handling of hot and chemically
aggressive melts. To quote Shercliff [6]: “MHD has a peculiar attraction for
aerodynamicists and mechanical engineers; instead of being confined to push-
ing at the edges of fluid streams, they are enabled by MHD to grab the fluid
in midstream!”. However, experimental results on the use of Lorentz forces
in fluids of low conductivity, and even more in aerodynamic applications, are
somewhat scarce, though first musings date back to the 1950’s, e.g. [7,8]. Ex-
perimental evidence of successful separation postponement on a half cylinder
in an electrolyte flow has been given in 1962 [9]. A few investigations on re-
lated topics have been published in the 1960’s e.g. [10–12], but the activities
declined afterwards. A renewed interest in the use of Lorentz forces to control
the flow of electrolytes arose in the 1990’s. The main body of the corresponding
research, among several others [13–15], were aimed at drag reduction in tur-
bulent boundary layers. Successful electromagnetic control of the flow around
a circular cylinder at low Reynolds numbers has been experimentally demon-
strated by [16] and [17]. Numerical treatment of this generic problem can be
found, e.g., in [18].

The present paper aims to extend the experimental work on separation control
at hydrofoils described in [19] to the application of time periodic Lorentz
forces. In [19] the effect of a steady wall parallel Lorentz force on the suction
side of symmetric hydrofoils has been investigated. Main flow features as well
as governing parameters and scaling relations are discussed. Possible practical
applications are, e.g., improved steering rudders and stabilizer fins for marine
vessels. Obviously, power consumption is of major concern for such devices,
what renders the advertised efficiency increase for periodic excitation [5] highly
attractive. This is especially true for the intrinsically low efficiency of direct
electromagnetic actuation with weak magnetic fields in low conducting fluids,
see e.g. [20], [21] and [22]. On the other hand, the Lorentz force is a direct and
easily controllable source of momentum, what makes it an interesting tool for
basic research on oscillatory forcing of separated flows.
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2 Principle and Parameters

An electromagnetic body force F results from the vector product of the current
density j and the magnetic induction B

F = j× B. (1)

The current density is given by Ohm’s law

j = σ(E + u ×B), (2)

where E denotes the electric field, u the velocity, and σ the electrical conduc-
tivity, respectively. If the fluid is a liquid metal or semiconductor melt of high
electrical conductivity, a fully contactless control of the melt is possible solely
by application of a magnetic field. Unlike liquid metals, electrolytes, such as
seawater, exhibit only a low electrical conductivity in the order of 10 S/m.
As a result, the currents originating from the (u × B)–term in equation (2)
are generally very low, even for magnetic fields of several Tesla. Consequently,
the Lorentz force (1) due to these currents is negligible. In order to obtain
current densities large enough for flow control purposes it is therefore neces-
sary to apply an electric field of magnitude E0 with E0/(U∞B0) ≫ 1, where
U∞ denotes the freestream velocity. This implies that the force density distri-
bution can be determined independently of the flow field. Note that for the
purpose of a energetically efficient drag reduction this statement is not true
as has been shown in [20]. Any energetically attractive electromagnetic drag
reduction requires to work in a regime where the externally applied currents
are of the same order as those originating from the (u × B)–term. As such a
regime requires magnetic fields of several Tesla, however, both from a practi-
cal as well as a methodical point of view it is worth to consider at first the
decoupled case of a dominating externally applied electric current.

In principle, almost any Lorentz force distribution may be obtained by a suit-
able combination of electric and magnetic fields. Indeed, if one is able to
determine an optimal force distribution for a given flow control problem, it
should be possible to solve the inverse problem for the electric and magnetic
field configurations. However, in practice certain limitations do exist, e.g. inte-
grating the electrodes and magnets into the given shape of a body. Especially
this constraint enforces a decay of the Lorentz force density with the wall
distance. Several force configurations have already been investigated with re-
spect to drag reduction of turbulent boundary layers: wall normal Lorentz
forces [13], wall parallel forces in spanwise direction [21] and wall parallel
forces in streamwise direction [14,19]. The latter configuration is considered
in the present paper. The sketch in the left part of figure 1 shows a stripwise
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arrangement of flush mounted electrodes and permanent magnets capable of
generating a wall parallel Lorentz force. Such configuration has been proposed
by [10] in order to prevent boundary layer transition. Similar configurations
are proposed in [12] and [23], with the patent [12] claiming among other things
the use for separation suppression and lift increase. Apart from end effects,
both electric and magnetic fields possess only components in wall normal (y)
and spanwise (z) direction. Consequently (see equation (1)), the Lorentz force
has only a streamwise (x) component. Near the plate surface, strong spanwise
variations of the force density appear [19], which are caused by singularities of
the equations for both magnetic and electric fields at the corners of the per-
manent magnets and electrodes, respectively. However, these inhomogeneities
rapidly decrease with increasing wall distance. Averaged over z, the mean force
density shows an exponential decay with increasing wall distance and can be
written [24] as

F =
π

8
j0M0e

−
π

a
y, (3)

with M0 denoting the magnetization of the permanent magnets and j0 the ap-
plied current density σE0, respectively. The magnetic induction in wall normal
direction at the surface of the magnetic poles B0 can be calculated from the
geometry of the magnets and their magnetization M0. For magnets infinitely
extended in (−y)-direction, B0 = M0/2 applies [24]. Electrodes and magnets
have the same width a, a condition maximizing the attainable force density
[25].

As can be seen from the Navier–Stokes equations for incompressible flow

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u +

F

ρ
, (4)

the electromagnetic force density acts as a momentum source for the flow. In
equation (4), t denotes time, p the pressure, ρ the density and ν the kinematic
viscosity of the fluid, respectively. Experimental confirmation of the accelerat-
ing effect of a wall parallel Lorentz force on a flat plate boundary layer can be
found in [14] and [26]. Depending on the force strength, even a distinct wall jet
can be established. It may be concluded that stationary Lorentz forces of this
kind will have a similar effect on the separated flow over an airfoil, as blow-
ing on the suction side. Indeed, it has been shown in [19] that both methods
are comparable even in a quantitative sense. It turned out that a momentum
coefficient defined in analogy to that used to describe the effect of a jet [27]

cµ =
1

2
· aj0B0

ρU2
∞

· xe − xs

c
, (5)
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correlates the data fairly well and makes them comparable to those obtained
by alternative control methods. cµ links the total momentum injected into the
flow by the Lorentz force to the dynamic pressure. The actuator extends over
the length xe–xs of the chord c and the full spanwidth.

In order to apply time-dependent forces, the same setup as sketched in the
left part of figure 1 can be used, with the only difference of using alternating
currents to feed the electrodes. The corresponding arrangement of the actuator
on a symmetric foil is shown in the right part of figure 1. Since periodic
excitation has proven to be most effective directly at the leading edge [28],
actuation should be concentrated there. With the excitation frequency fe a
forcing Strouhal number can be defined as follows

Ste =
fec

U∞

. (6)

The majority of current papers on flow control by oscillatory injection of
momentum uses the effective momentum coefficient to describe the forcing
level. Its appropriate definition for the case considered here is

c′µ =
1

2
· aB0

ρU2
∞

· xe − xs

c
·

√

√

√

√

√

1

T

T
∫

0

j(t)2 dt, (7)

where j(t) denotes the time-dependent applied current density and T is the
period of oscillation.

There are several distinct features of the Lorentz force actuator: it does not
require calibration since by its nature as a body force momentum is directly
generated in the fluid; its frequency response is practically unlimited, virtually
any excitation wave form might be realized by feeding the electrodes with an
appropriate current. On the other hand, the efficiency of momentum genera-
tion by weak magnetic and strong electric fields is generally small, since Joule
losses dominate in electrically low conducting fluids.

3 Experimental Setup

The experiments were carried out in the electrolyte tunnel shown in figure

2. This tunnel is made from stainless steel, impeller and pump housing con-
sist of plastic. These materials have been chosen in order to avoid possible
corrosion problems due to the electrolyte filling. The test section is a 1.2 m
long rectangular duct with 0.3 m × 0.4 m cross section. It is preceded by
a nozzle with a contraction ratio of 4.2:1. In the nozzle, the cross section is
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transformed from a circular to a rectangular shape. Upstream of the nozzle
two polyethylene honeycombs are followed by four stainless steel screens of
decreasing mesh width. In front of the honeycombs, a filter pad is mounted
in order to absorb impurities from the electrolyte solution. All four elbows of
the channel are equipped with turning vanes. The axial pump is driven by a
frequency controlled asynchronous motor of 15 kW electrical power allowing
for a maximum velocity of 5 m/s inside the test section. In the velocity range
U∞ . 1.2 m/s used in the experiments described here, the turbulence level is
Tu . 0.7%. A 0.25 molar NaOH solution has been used as electrolyte.

Forces on the hydrofoil have been measured by a 5 component strain gage
balance. This balance has been designed by the Dresden Technical University
for maximum lift and drag values of 1 kN each. Due to the electronically noisy
environment generated by the frequency converter of the pump, special care
had to be taken in aquiring and transferring the force balance signals. The
Wheatstone bridges of the balance are powered by accumulators. 16 bit Ana-
log/Digital converters, powered as well by accumulators, digitize the bridge
readouts and transfer them for storage to a PC by optical fibres.

A NACA 0015 foil with chord length c = 160 mm and a span width of 240 mm
has been chosen for the experiments since its characteristics have been thor-
oughly investigated by a number of researchers and data for leading edge
excitation by oscillatory blowing and suction are available [4]. The actuator
extends from the leading edge (xs = 0) to xe = 15 mm, i.e. to approxi-
mately 9% of the chord. Magnets as well as electrodes have been machined
by an Electrical Discharge Machine (EDM) in such a way that their outer
shape is exactly that of the foil. Both magnets and electrodes have a width of
a = 5 mm. While the magnets are made from NdFeB, the electrodes consist of
titanium with the active surface covered by a 10 µm thick layer of platinium.
To prevent the corrosion of the magnets, they where coated by a 14 µm Pary-
lene C film. After fabrication and assembling of the system of electrodes and
magnets, the NACA 0015 was cast in an epoxy–based polymer in a two-piece
mold. This mold has been machined from aluminium using the EDM. Finally,
the foil has been painted by a two component epoxy finish. Due to slight off-
sets between magnets and electrodes, a maximum roughness of 100µm occurs
in the actuator region. Unlike the stainless steel electrodes used in [19], the
platinium covered titanium electrodes did not suffer from surface degradation
due to corrosion. Reference measuremets of the lift–drag polar without forcing
before and after the experiments show an excellent reproducability.

End plates were mounted on the NACA 0015 to minimize end effects. They
were made from 3 mm thick PMMA. Their edges are parallel to the chord and
form half circles of 45 mm radius at the leading and trailing edge of the foil.
A photograph of the NACA 0015 equipped with end plates and mounted on
the force balance is shown in the left part of figure 3. The right part of this
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figure gives measured values of magnetic induction in wall normal direction
(B0) along the magnet surface. The mean value evaluates to B0 = 0.33 T.

A high power amplifier FM 1295 from FM Elektronik Berlin has been used
to feed the electrodes. It was driven by a frequency generator 33120A from
Agilent. The frequency generator operated controlled by a PC, the electrode
current was monitored by means of a shunt and recorded in parallel to the
force balance values.

4 Flow visualization

To provide a visual impression of the Lorentz force action on a separated flow,
an inclined flat plate equipped with magnets and electrodes has been installed
in a smaller electrolyte channel. This channel is driven by a centrifugal pump.
The test section with a free surface is 1 m long and has a 0.2 m × 0.2 m cross
section, for more details we refer to [29]. As the larger tunnel, the channel was
filled with a 0.25 molar NaOH solution.

Figure 4 shows hydrogen bubble visualizations of the flow around an 15◦inclined
flat plate. Directly behind the leading edge of the 130 mm long plate the ac-
tuator is mounted. It consists of xe = 10 mm long and a = 10 mm wide
magnets and electrodes. Endplates are fixed on both sides of the plate. The
unforced flow (figure 4a) at a chord length Reynolds number Re = 1.4 × 104

is completely separated, the shear layer originating at the leading edge of the
plate shows the typical Kelvin–Helmholtz vortices. A sinusoidal forcing with
Ste = 1.4 and c′µ = 4.4% (figure 4b) reattaches the flow to the plate in an
averaged sense. Two vortices move along the plate contour, quite similar to
those detectable in figure 1.3 of [30]. The gas bubbles leaving the plate at the
trailing edge are a consequence of electrolysis due to the electric current at
the electrodes. Note that the relatively large bubbles seen in figure 4 are a
peculiarity of the top down arrangement of the plate, chosen in order to min-
imize distortion of the flow visualization. Originally small electrolytic bubbles
agglomerate below the plate and form the larger ones seen in the photographs.
During the force measurements, the electrolytic bubbles were allowed to enter
the free stream directly and acted merely as flow tracers. Keeping the excita-
tion frequency constant, but increasing the effective momentum coefficient to
c′µ = 8.9% (figure 4c) results in smaller vortices with the same distance as be-
fore. The region of obviously attached flow between them widens. An increase
of the forcing frequency to Ste = 3.0 under constant momentum coefficient
(c′µ = 8.9%, figure 4d) changes the number of vortices moving along the plate
to three. Still the flow is attached in an averaged sense. This picture changes
under further increase of the forcing frequency to Ste = 5.9 (figure 4e). Now
discrete vortices are no longer detectable, instead beyond the plate a region of

7



separated flow is visible. However, its extent is smaller than in the case of the
unforced flow. With even further increased excitation frequency (Ste = 11.8,
figure 4f ) the region of separated flow grows. The picture is now similar to
the unforced flow, except that the shear layer does not exhibit any regular
structures under these forcing conditions. Note that the forcing amplitude is
still the same with c′µ = 8.9%, i.e. it is clearly to be seen that the forcing effect
depends strongly on the excitation frequency.

Compared to the experiments reported in the next section, the forcing ampli-
tude here is quite large. On one hand, this is an expected result. Greenblatt
and Wygnanski [31] report on experiments to enhance airfoil performance by
periodic excitation at low Reynolds numbers. They found that in order to
achieve the same lift gain at Re = 3 × 104 a four times larger momentum
coefficient had to be applied compared to Re = 5 × 104. However, looking at
the numerical values reveals that they are still by four (c′µ = 4.4%) to eight
(c′µ = 8.9%) times smaller than those applied here. With a stationary force in
streamwise direction and a momentum coefficient of cµ = 8.9%, the flow can
be reattached as well, but this is not the case for cµ = 4.4%.

Although the frequency dependence of the flow evolution is consistent with
that expected from an excited mixing layer (see e.g. [4]), under the above con-
siderations it seems not appropriate to interpret figure 4 only in this sense.
Instead, a quasi stationary approach might be as well taken into account,
regarding the fact that a stationary force of comparable strength is able to
reattach the flow. A characteristic time scale of the global flow is given by
c/U∞. If the forcing is strong enough to reattach the flow under steady con-
ditions, it will do so as well if the period of forcing f−1

e is in the order of
c/U∞. When the force points upstream, a vortex is formed. For higher fe,
corresponding e.g. to Ste = 11.8, the global flow is no longer able to react to
the forcing.

5 Force measurements

In the following, direct force measurements will be presented for different
excitation conditions and Reynolds numbers. Lift and drag are given in un-
corrected values of the section lift

CL =
FL

ρ

2
U2
∞

cs
(8)
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and drag

CD =
FD

ρ

2
U2
∞

cs
(9)

coefficients. As usual, the force values are non-dimensionalized by the dy-
namic pressure and the foils surface. Every data point represents an average
of 16384 samples recorded with a 1 kHz sampling frequency. Care has been
taken to exclude transient phenomena from the sampling interval. Following
the convention used by Wygnanski and co–workers (see e.g. [4]), momentum
coefficients are quoted in percentage terms for convenience.

5.1 Lift and drag at constant angle of attack

Figure 5 gives an overview of the forcing effect at various frequencies, momen-
tum coefficients and different angles of attack. At the low Reynolds number
of Re = 5.2 × 104, the hydrofoil stalls already at the low angle of attack
α = 13◦. At α = 14◦ the lift coefficient has only half the value of the attached
case, indicating abrupt leading edge stall typical for this low Reynolds number
range. Baseline values of CL and CD are plotted at Ste = 0. Excitation with
a relatively small amplitude of c′µ = 0.14% is able to restore the lift of the
attached flow. It seems as an obvious assumption to interpret this effect as
the result of a boundary layer transition triggered by the forcing. This belief is
corroborated by the fact that the effect is nearly independent of the excitation
frequency. Under excitation, lift and drag coefficient are nearly constant up
to Ste = 50 (not shown), i.e. in the full range of frequencies investigated. An
increase of the momentum coefficient raises the lift coefficient only slightly,
but the drag more pronounced. The latter might be caused by an intensified
momentum transfer in the boundary layer due to the excitation. If the flow
was already attached to the major part of the hydrofoil, the further increase
of excitation amplitude would not cause a distinct change in the lift.

At an inclination angle of α = 17◦ and Re = 8.0 × 104, the flow behaviour
changes. For momentum coefficients c′µ ≤ 0.23%, a strong influence of the exci-
tation frequency on lift as well as on drag is detectable. Both reach maximum
values at Ste = 0.75. The forcing effect decreases relatively rapidly towards
higher as well as lower frequencies. The shape of the CL versus Ste curve is
very similar to those observed for oscillatory leading edge blowing on a NACA
633–018 [28] and a NACA 0015 [30]. It is a generally accepted conception that
this frequency dependency can be explained by the behaviour of the excited
shear layer between the freestream and the separated flow, see [4,28]. The
shear layer will amplify the imposed disturbances in such a way that mixing
and momentum transport between mean flow and separated region are en-
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hanced. If the entrainment caused by this process is large enough, the shear
layer will reattach to the boundary in a manner similar to the Coanda effect.
According to this theory, the most effective forcing occur at a Ste in the order
of 1. For momentum coefficients c′µ ≥ 0.23%, the lift maximum at Ste = 0.75
is still present, but much less pronounced. Instead, forcing in the investigated
frequency range of 0.25 ≤ Ste ≤ 50 is nearly equally effective (frequencies
Ste > 8 are not plotted). At c′µ = 0.23% itself, the flow regime seems very
sensitive to initial conditions, different runs with this parameter exhibit ei-
ther a strong or a weak dependence of the force coefficients on the excitation
frequency. The maximum lift coefficient in the case of a weak frequency in-
fluence is larger (CL = 1.04) than in the case where the flow shows a strong
dependence on the excitation frequency (CL = 0.93). It may be an admissible
hypothesis to attribute the change in the CL versus Ste curve to a transi-
tion between two different flow regimes. At small momentum coefficients, the
excitation of the mixing layer seems to dominate the flow, while a stronger
forcing seems to be able to completely reattach the boundary layer. In the
time resolved force measurements, the forcing frequency is very dominant for
Ste ≤ 0.75 and c′µ ≤ 0.23%. Though it is still discernible for c′µ ≥ 0.23%,
the rms value relative to the mean lift is about four times smaller than at
lower momentum coefficients. While the mean drag is slightly increased for
low Ste and low c′µ compared to the unforced case, it drops by about 30%
for c′µ ≥ 0.23%. The assumption of two different flow regimes is supported by
flow visualizations on a Sikorsky SSC–A09 airfoil section at Re = 2.5 × 105

reported by McCormick [32]. That author found at post–stall angles of attack
for c′µ = 0.5% a flow dominated by large coherent structures, but reattached in
an averaged sense. The situation changes for c′µ = 1.5%. At that momentum
coefficient the smoke visualization shows a fully attached flow without visible
coherent structures.

The bottom part of figure 5 gives lift and drag coefficients for Re = 5.2× 104

and α = 20◦. At these parameters the hydrofoil is in deep stall. Excitation
with momentum coefficients up to c′µ = 1.11% results in an increase of CL

at Ste = O(1). Higher momentum coefficients were not attainable with the
present setup. The CL versus Ste curves exhibit the typical shape found for
shear layer excitation. Forcing with Ste & 6 has practically no effect on the lift.
Corresponding to the lift increase, the drag rises at low excitation frequencies
(Ste . 3) compared to the unforced case. Such a drag increase has been
observed experimentally before by Hsiao [33] and in numerical investigations of
Wu et al. [34]. As well, numerical results on separation control by time periodic
Lorentz forces by Mutschke and Gerbeth [35] show this effect. According to
Hsiao [33] the reason for the drag rise is an increase of the separation bubble
size due to the forcing which results in a larger lift, but due to a broadened
wake in an increased drag as well. The momentum coefficients given in figure

5 indicate that the drag reaches a maximum value for a specific c′µ. For larger
momentum coefficients, the drag decreases. The next subsections present a
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closer look at this phenomenon.

5.2 Lift and drag versus momentum coefficient including wave form effects

All results presented so far have been achieved with a sinusoidal forcing, i.e.,
the alternating current used to feed the electrodes had a sinusoidal wave form.
One of the main advantages of using Lorentz forces as momentum source
consists in an easy access to modify the wave form of the excitation. For this
purpose only the feed current has to be modulated accordingly. To achieve
the same goal by traditional means requires a considerable effort as described
in [36] and [37]. The differences in applying an excitation with a sinusoidal,
triangular or rectangular wave form, which are readily available from standard
frequency generators, have been examined.

Figure 6 shows CL and CD versus the effective momentum coefficient c′µ defined
by equation (7) for Re = 5.2 × 104, α = 20◦ and Ste = 0.5 (left) respectively
Ste = 1.5 (right). As well known, the square root term in equation (7) evaluates
to ĵ/

√
3 for triangular, ĵ/

√
2 for sinusoidal and ĵ for rectangular wave forms,

where ĵ is the peak current density. Under the conditions utilized in figure

6, the difference in the wave form apparently does not influence the forcing
effect, all measured points arrange to one curve.

As could be inferred from figure 5, the forcing with Ste = 0.5 is more effective
in terms of lift gain than that with Ste = 1.5, though the former leads to
a larger drag increase. The CL versus c′µ plot in figure 6 shows a kink for
both excitation frequencies. This suggests to fit straight lines to the regions
with obviously different slopes. These lines have been included into the figure.
Their intersection coincides quite well with the maximum in the corresponding
CD versus c′µ curves. The initial steeper lift increase is therefore coupled to
a drag rise, whereas the following weaker enlargement is accompanied by a
decreasing drag. Under forcing with lower frequency (Ste = 0.5), the drag
maximum occurs with CD ≈ 0.49 for c′µ ≈ 0.61%. The corresponding lift
coefficient is CL ≈ 1.08. At the higher forcing frequency (Ste = 1.5), the
drag maximum is lower CD ≈ 0.41 and occurs earlier at c′µ ≈ 0.41%. The lift
coefficient at this c′µ amounts to CL ≈ 0.84.

Following the reasoning of Hsiao [33] and the explanation and streamlines
given by Wu et al. [34] (esp. figs. 23-25 of this reference), size and position of
the lifting vortex in the time averaged flow field is influenced by the excitation
and can be used to explain the different behaviour. The integral force values
given here suggest that at low excitation levels the lifting vortex is moved
towards the foil, thereby increasing lift and drag. For larger excitation levels,
the size of the mean separated region is more and more reduced, resulting in a
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drag decrease and further lift increase. However, without a detailed knowledge
of the flow field, the scenario sketched above remains obviously speculative.

In figure 7 lift and drag coefficient versus the effective momentum coefficient
are given for Ste = 0.5 (left) and Ste = 1.5 (right) like in figure 6, but for
the larger Reynolds number Re = 1.06 × 105. A technical consequence of the
increased Reynolds number is the lower maximum momentum coefficient of
c′µ ≈ 0.34% achievable with the available power supply. In terms of lift gain,
excitation at Ste = 0.5 is more effective than at Ste = 1.5. However, drag
increase as well is more pronounced for the smaller excitation frequency. For
Ste = 1.5, a drag maximum at c′µ ≈ 0.12% is still identifiable, though the data
are considerably scattered. The lift data are similarly scattered, especially in
the region around the supposed kink. Therefore, the intersection of the two
fitted lines at c′µ ≈ 0.09% and the drag maximum coincide not as well as
in figure 6. However, clearly both phenomena, drag maximum and lift curve
kink, occur at lower c′µ than at Re = 5.2 × 104. The data for Ste = 0.5
given in the left column of figure 7 show a completely different picture. Lift as
well as drag increase versus c′µ differs evidently for excitations with different
wave forms. Forcing with triangular waves results in the steepest lift and drag
rise with c′µ, sinus waves have a less pronounced effect, and excitation with a
rectangular wave form shows the smallest increase. There is neither a distinct
drag maximum nor a discernible kink in the lift versus c′µ curve visible. This
implies not necessarily that such features do not exist at all, possibly the
maximum attainable c′µ is below the critical value.

Figure 8 displays drag and lift coefficient versus excitation frequency for Re =
1.06 × 105, α = 20◦ and a fixed c′µ = 0.2%. Generally, the curve shape is
similar to that shown in figure 5 for Re = 5.2× 105 and α = 20◦. For Ste ≥ 2,
no systematic influence of the excitation wave form on lift and drag appears.
Unlike that, around the most efficient frequency of Ste = 0.75, the wave
form has a very pronounced effect. Consistent with the data from figure 7 for
Ste = 0.5, maximum values of lift and drag are obtained applying triangular
waves, the maximum values are smaller for sinusoidal forcing and rectangular
waves have the least effect.

The lift increment for excitation with the most effective frequency (Ste = 0.75)
at α = 20◦ and Re = 1.06 × 105 is shown in figure 9 versus the effective
momentum coefficient c′µ (left) and the peak momentum coefficient ĉµ (right).
ĉµ is the momentum coefficient defined with the peak value of the current
density, i.e.

ĉµ =
1

2
· aB0ĵ

ρU2
∞

· xe − xs

c
. (10)

While the data follow distinct lines when ∆CL is plotted versus the effective
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momentum coefficient, all data collapse fairly well in the ∆CL versus ĉµ plot.
That means, around the most effective excitation frequency not the effective,
but the peak momentum input determines the attainable lift increase. Even
if the validity of this statement will cease for Dirac pulses, it certainly offers
attractive prospects for an efficiency increase of periodic excitation arrange-
ments. As can be inferred from figure 9 the lift increment for c′µ = 0.26% and
excitation with a triangular wave form is approximately 70% larger than that
reachable using a rectangular wave form.

5.3 Comparison with oscillatory blowing and suction

In the previous sections, electromagnetic excitation has been shown to repro-
duce the characteristic frequency dependence of separation control by periodic
blowing and suction. A comparison of the lift polar for electromagnetic forcing
and that measured for oscillatory blowing from the leading edge of a NACA
0015 (figure 22a of [4]) gives figure 10. While Reynolds numbers and excitation
frequencies differ, Re = 5.2×104 and Ste = 0.5 for electromagnetic excitation
and Re = 1.5 × 105 and Ste = 1.1 for oscillatory blowing, respectively, the
attained lift gain is comparable for similar momentum coefficients. The dif-
ferences in the curves may be caused mainly by the different Re, aspect ratio
and blockage. For electromagnetic forcing, already for the small momentum
coefficient of c′µ = 0.06%, stall is delayed from 13◦ to 15◦ due to a boundary
layer transition triggered by the excitation. Lift values in the stalled region
are only marginally increased as compared to the unforced flow. The picture
changes for larger momentum coefficients, for which the abrupt stall tends to
become more gentle. CL is considerably increased in the post stall region, but
the maximum lift increases mainly due to higher critical angles of attack. In
the pre–stall region, no data have been acquired for the forced flow, but judg-
ing from figure 5, only a very modest increase would be expected. Somewhat
in contrast to this, for oscillatory blowing a lift increase may be found for
almost all angles of attack. This effect might be related to the leading–edge
discontinuity present at this airfoil, which has a slightly different geometry in
the nose region than a real NACA 0015 and was therefore named TAU 0015
by Joslin et al. [38]. The lift polar for a NACA 0012 at Re = 2.4 × 105 and
Ste = 1.5 given in figure 22b of [4] shows no distinct lift increase for angles of
attack α < 8◦.

For shipbuilding applications like rudders and stabilizer fins the lift gain rel-
ative to the separated flow is less important, the increase of the maximum
attainable lift

∆CLmax = CLmax(c
′

µ) − CLmax(c
′

µ = 0) (11)
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in the full range of inclination angles is of primary interest. Figure 11 shows
this quantity versus the momentum coefficient in the Reynolds number range
5.2×104 ≤ Re ≤ 1.48×105. For comparison, corresponding data for oscillatoty
blowing from figure 23b of [4] obtained on a NACA 0012 foil for Re = 2.4×105

and Ste = 1.5 and from figure 14 of [32] on a Sikorsky SSC–A09 foil for
Re = 5×105 and Ste = 1.3 have been included. The relatively large scatter of
the data obtained for electromagnetic excitation is mainly a Reynolds number
effect since in this range of Re laminar separation bubbles are expected to
have a pronounced effect on the overall behavior of the flow. Despite these
uncertainties, the data for oscillatory blowing show the same trend and fit in
quite well regardless the differences in foil shape and Reynolds number.

5.4 Comparison with stationary forcing

The application of periodic momentum to control separated flows is usually
expected to result in a comparable gain for a considerably lower expenditure
than in case of steady momentum input (see e.g. [5]). In the case of electro-
magnetic forcing, this expectation is fulfilled if the lift gain for a fixed angle of
attack is considered. Although no direct comparison in the frame of the data
presented here is possible since steady Lorentz forces have not been applied
to the described NACA 0015, data from experiments with a PTL IV hydrofoil
are available. They indicate a decrease of the momentum input necessary to
recover the lift of a stalled hydrofoil by a factor of 7 . . . 17 compared to steady
forcing. Figure 12 shows the maximum attainable lift gain according to Equa-
tion (11) for both steady as well as time periodic Lorentz forces versus the
momentum coefficient. Data for steady forcing are taken from [19] and belong
to experiments with PTL IV and NACA 0015 hydrofoils in the Reynolds num-
ber range 2.9 × 104 ≤ Re ≤ 3.7 × 105. Again the considerable scatter might
be attributed to the Reynolds number range, different foil shapes, blockage
and aspect ratios. However, there is certainly no efficiency gain of an order
of magnitude for oscillatory excitation. In the case of steady forcing, lift is
increased by two mechanisms: 1) reattaching the separated flow and therefore
increasing the critical angle, and 2) introducing circulation due to acceleration
of the attached suction side flow. Unlike that, no additional circulation in an
already attached flow is generated in the case of periodic excitation. A fit of
the ∆CLmax versus cµ data for steady Lorentz forces given in [19] indicates
that the added circulation contributes substantially to ∆CLmax in the case
of the single element hydrofoils considered here. The case might be different
for the high lift configurations with blowing over the flaps, and flap shoulder
excitation, respectively. Additionally, unlike steady blowing a steady Lorentz
force has no detrimental effect for low momentum coefficients.
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6 Conclusions

Experimental results on the use of time periodic Lorentz forces to control
the suction side flow of a NACA 0015 hydrofoil have been presented for the
Reynolds number range 5.2 × 104 ≤ Re ≤ 1.5 × 105. Essential features like
characteristic efficient excitation frequencies, effective momentum coefficients
and resulting lift gain compare well to that found with alternative methods
for periodic addition of momentum.

A specific lift increase with respect to the value for the separated flow can be
obtained by oscillatory forcing with fractions of the momentum input neces-
sary for steady Lorentz forces. In contrast, an equal increase of the maximum
lift gain requires a similar expenditure of momentum for both control methods.

The Lorentz force allows for a great flexibility in providing the time depen-
dency of the forcing. The application of wave forms different from sinusoidal
ones has been found to increase the efficiency under certain conditions by up
to 70% compared to a sinusoidal forcing. Around the most efficient excitation
frequency, not the effective, but the peak value of the applied momentum coef-
ficient seem to determine the attainable lift gain. That offers a potential for a
further energetic optimization of the flow control by unsteady Lorentz forces.
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Fig. 4. Excitation of the separated flow at an 15◦ inclined flat plate at Re = 1.4·104.
Forcing at the first 8% chord with a) basic flow; b) c′µ = 4.4%, Ste = 1.4; c)
c′µ = 8.9%, Ste = 1.4; d) c′µ = 8.9%, Ste = 3.0; e) c′µ = 8.9%, Ste = 5.9; f)
c′µ = 8.9%, Ste = 11.8.

24



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  1  2  3  4  5  6  7  8

C
L

Ste

c’µ=0.14%

c’µ=0.28%
 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0  1  2  3  4  5  6  7  8

C
D

Ste

Re=5.2×104

α=14o

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  1  2  3  4  5  6  7  8

C
L

Ste

c’µ

0.11%

0.17%

0.23%

0.29%

0.35%

0.46%

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  1  2  3  4  5  6  7  8

C
D

Ste

Re=8.0×104

α=17o

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0  1  2  3  4  5  6  7  8

C
L

Ste

c’µ

0.28%

0.56%

0.83%

1.11%

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0  1  2  3  4  5  6  7  8

C
D

Ste

Re=5.2×104

α=20o

Fig. 5. Influence of the excitation frequency on CL and CD at different angles of
attack. Top: α = 14◦, Re = 5.2 × 104; middle: α = 17◦, Re = 8.0 × 104; bottom:
α = 20◦, Re = 5.2 × 104.

25



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
L

c’µ / %

sine

triangle

square

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
D

c’µ / %

sine

triangle

square

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
L

c’µ / %

sine

triangle

square

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

C
D

c’µ / %

sine

triangle

square

Fig. 6. CL and CD versus momentum coefficient for Re = 5.2 × 104 and α = 20◦.
Exitation with different waveforms at Ste = 0.5 (left) and Ste = 1.5 (right).

26



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

C
L

c’µ / %

sine

triangle

square

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0.45

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

C
D

c’µ / %

sine

triangle

square

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

C
L

c’µ / %

sine

triangle

square

 0.335

 0.34

 0.345

 0.35

 0.355

 0.36

 0.365

 0.37

 0.375

 0.38

 0.385

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

C
D

c’µ / %

sine

triangle

square

Fig. 7. CL and CD versus momentum coefficient for Re = 1.06 × 105 and α = 20◦.
Excitation with different waveforms at Ste = 0.5 (left) and Ste = 1.5 (right).

27



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  1  2  3  4  5  6  7  8

C
L

Ste

sine

triangle

square

 0.33

 0.34

 0.35

 0.36

 0.37

 0.38

 0.39

 0.4

 0.41

 0.42

 0.43

 0.44

 0  1  2  3  4  5  6  7  8

C
D

Ste

sine

triangle

square

Fig. 8. CL and CD versus excitation frequency for different wave forms
Re = 1.06 × 105, α = 20◦, c′µ = 0.2%.

28



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.05  0.1  0.15  0.2  0.25  0.3

∆C
L(

α=
20

o , S
t e

=
0.

75
)

c’µ / %

triangle

sine

square

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5

∆C
L(

α=
20

o , S
t e

=
0.

75
)

^cµ / %

triangle

sine

square

Fig. 9. CL increase at Re = 1.06 × 105, Ste = 0.75 and α = 20◦ versus the efficient
(left) and the peak (right) momentum coefficient.

29



−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

−5  0  5  10  15  20  25

C
L

α / o

c’µ
0

0.06%
0.28%
0.56%
0.84%
1.11%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14  16  18

C
L

α / o

c’µ

0

0.1%

1.3%

Fig. 10. Electromagnetic excitation at Re = 5.2 × 104, Ste = 0.5 (left) compared
to oscillatory blowing from the leading edge of a NACA 0015 at Re = 1.5 × 105,
Ste = 1.1 (right). With permission from [4].

30



−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1  1.2

∆C
Lm

ax

c’µ/%

Fig. 11. Maximum lift gain by electromagnetic excitation at
Re = 5.2 × 104 . . . 1.48 × 105, Ste = 0.5 (filled symbols) compared to oscilla-
tory blowing from the leading edge of a NACA 0012 at Re = 2.4 × 105, Ste = 1.5
(open circles) and a Sikorsky SSC–A09 at Re = 5× 105, Ste = 1.3 (open triangles).
With permission from [4] and [32].

31



−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  0.2  0.4  0.6  0.8  1  1.2

∆C
Lm

ax

cµ/%

oscillating
stationary

Fig. 12. Maximum lift gain by electromagnetic forces: oscillatory excitation and
stationary action compared.

32


