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Abstract. Shimmy vibration is a common phenomenon in landing gear systems during either the take-off 
or landing of aircrafts. The shimmy vibration is undesirable since it can damage the landing gear and 
discomforts the pilots and passengers. In this work, tensor product model transformation (TPMT) and 
twisting sliding mode algorithm (TSMA) are utilized to design a robust controller for suppression of the 
shimmy vibration. The design has two steps. First, the TPMT is applied to determine the first part of the 
controller to suppress the vibration of the undisturbed system. After that, the TSMA is adopted to obtain 
another part of the controller to eliminate the remaining vibration caused by disturbances. By integrating 
these two parts, the proposed controller is obtained. Simulation studies are provided to demonstrate the 
effectiveness of the controller. 

1 Introduction  
Shimmy vibration is a common phenomenon in landing gear 
systems during either the take-off or landing of aircrafts. It is 
the state of self-excite oscillations in lateral and torsional 
directions caused by the interaction between the tires and the 
runway. The energy input is provided by the kinetic energy 
of the forward motion of the aircraft [1, 2]. 

The shimmy vibration is undesirable since it can 
damage the landing gear and discomforts the pilots and 
passengers. The damage of the landing gear can also lead 
to accidents. Thus, suppression of the shimmy vibration 
is needed. Passive dampers are normally used to suppress 
the shimmy vibration due to their simplicity [3]. 
However, damping requirements often conflict with good 
high-speed direction control [4]. Thus, active shimmy 
vibration control strategies have drawn attention recently 
[5-7]. In [5], an active control strategy based on model 
predictive control and tensor product model 
transformation is proposed. It was shown that the 
proposed active control method can effectively suppress 
shimmy vibration. In [6], robust and nonlinear optimal 
control of shimmy vibration is developed. The controller 
is designed by integrating sliding mode control together 
with State-Dependent Riccati Equation. In [7], an active 
shimmy vibration controller based on a filtered PID 
scheme is proposed. The parameters of the controller are 
tuned by means of a population decline particle swarm 
optimizer. Results under different scenarios were 
investigated and stochastic robustness verification was 
addressed to verify the controller effectiveness. 

Tensor product model transformation (TPMT) is an 
effective numerical technique based on the recently 

developed high order singularity value 
decomposition (HOSVD) [8–10]. It transforms a linear 
parameter varying (LPV) system into a tensor product (TP) 
model form, which is described by a convex combination of 
linear time invariant (LTI) systems. Various types of convex 
hulls also can be derived. The TPMT has been successfully 
applied in many challenging problems [5, 11–14]. In [11], 
the TPMT was adopted for designing a controller to stabilize 
shared impedance/admittance-based bilateral 
telemanipulation under varying time delay. The controller 
fulfilled the stability requirement within the time delay 
domain considered in the design. A TPMT-based control 
and synchronization scheme for fractional-order chaotic 
systems was proposed in [12]. Numerical results of the 
fractional-order Lorenz and Liu chaotic systems illustrated 
the effectiveness of the scheme. In [13], a TPMT-based 
modelling and control design approach for morphing aircraft 
in transition process was investigated. Its effectiveness was 
shown by simulations of a variable-sweep morphing aircraft. 
In [14], a TPMT approach for level control of a three tanks 
system was presented. Simulation results were obtained to 
validate the controller design. A generalization of the TPMT 
for control design can be found in [15]. 

High order sliding mode (HOSM) control was first 
introduced by Levant [16, 17]. Twisting sliding model 
algorithm (TSMA) is one of the best choices among other 
HOSMs for the stabilization of nonlinear systems under 
external disturbances or uncertainties. Examples 
demonstrating applications of the TSMA can be found 
in [18–22]. 

This paper presents a method based the TPMT and the 
TSMA to design a robust controller to supress shimmy 
vibration in aircraft landing gears. The rest of the paper is 
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organized as follows. In the next section, some 
preliminaries are provided, including the mathematical 
model of the shimmy vibration, the TPMT and the 
TSMA. The proposed robust control design is presented 
in Section 3, followed by simulation results in Section 4. 
The conclusion is drawn in Section 5. 

2 Preliminaries  

2.1 Mathematical model  

Consider an aircraft landing gear system as shown in 
Figure 1. The mathematical model describing shimmy 
vibration in the landing gear can be written as [5]: 
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ψ is the yaw angle (rad), 
y is the lateral deflection (m), 
u is the control command (volt), 
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V is the taxiing velocity (m/s), 
e is the wheel caster length (m),  
T = keu  is the input torque (N⋅m) and 

Td ]0,,0[=D is the bounded disturbance torque (N⋅m). 
Here, V and e are considered as variable parameters. 

Thus, the system (1) is a linear parameter varying (LPV) 
system in which V and e are the time-varying parameters. 

 
Fig. 1. Aircraft landing gear system. 

The values of the system parameters used in this 
paper are summarized in Table 1. Examples of 

uncontrolled system (i.e., u = 0) are shown in Figures 2 
and 3. Note that the system is stable in velocity 25 m/sec 
while it is unstable in velocity 75 m/sec. 

Table 1. System parameters [5]. 

Symbol Parameter Value 

V  Taxiing velocity 20–80 m/s 

e  Wheel caster length 0.1–0.5 m 

a  Haft contact length 0.1 m 

zI  Moment of inertia 1 kg⋅m2 

zF  Vertical force 9 kN 

K  Torsional spring constant 20 N⋅m/(rad⋅s) 

c  Torsional damping 
constant 20 N⋅m/(rad⋅s) 

αFC  Side force derivative 20 rad-1 

αMC  Moment derivative -2 m/rad 

κ  Tread width moment 
constant -270 N⋅m2/rad 

σ  Relaxation length a3  = 0.3 m 

ek  Input torque constant 10 kN⋅m/volt 
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Fig. 2. Shimmy vibration at V = 25 m/sec and e = 0.3 m. 
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Fig. 3. Shimmy vibration at V = 75 m/sec and e = 0.3 m. 

2.2 Tensor product model transformation 

Tensor product model transformation (TPMT) is an 
effective numerical methodology to transform linear 
parameter varying (LPV) systems into convex tensor 
product (TP) model representations [8, 9]. In this paper, 
the LPV system is written as: 
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where  
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is the system matrix, x is the state vector, u is the input 
vector and p(t) is a time varying vector in a bounded 
space. The system is called quasi LPV (qLPV) if p(t) 
includes some elements of x. 

The TPMT converts the system matrix (3) into a 
convex combination of R constant linear time invariant 
(LTI) system matrices 

[ ] Rrrrr ...,,2,1, == BAS             (4) 

as 


=

=
R

r
rr tt

1
,))(())(( SppS ω                    (5) 

where ))(( tr pω is the weighting function. Thus, the 
system (2) can be written as 
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Based on a parallel distributed compensation (PDC) 
controller design framework, the control law can be 
expressed as 
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where the matrix gains rK can be obtained by solving the 
following LMIs [8, 9] 
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for all r < s ≤  R, where 1−= XMK rr . The control law 
(7) renders the closed loop system of the system (2) 
asymptotically stable. The reader refers to [8, 9] for more 
details. Note that the TPMT and the control law (7) can 
be determined by using the TP tool [10]. 

2.3 Twisting sliding model algorithm 

Twisting sliding model algorithm (TSMA) is one of the 
popular high order sliding mode (HOSM) control. The 
TSMA was first introduced in [16, 17]. 

Consider the second order system described by 
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where x, y are the state variables, u is the control input 
and δ(t,x,y) is the bounded disturbance. The TSMA 
control law can be written as [16] 
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where M1 = M and M2 = 0.5M. The control law 
renders the closed loop system a finite time stable 
equilibrium, provided that M > 2D. 

Note that if the bound D is unknown, the fixed gain M 
can be replaced by an adaptive gain M(t) [23]. 

3 Control design  

The control command u  is expressed as 

.TSMATPMT uuu +=                    (12) 

The control design has two steps. In the first step, TPMTu  
is determined by assuming that the system (1) is undisturbed 
(i.e., d = 0). Thus, the system (1) can be expressed as 

,),( TPMTueV BxAx +=                    (13) 

which is the same form as the system (2). Then, by applying 
the TPMT and solving the LMIs (8) and (9), it yields 

xKp 






−= 
=

R

r
rrTPMT tu

1
))((ω .              (14) 

3

MATEC Web of Conferences 161, 02001 (2018)	 https://doi.org/10.1051/matecconf/201816102001
13th International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2018



 

Thus, the closed loop system containing the 
system (13) and the control law (14) is asymptotically 
stable. By substituting (12) into (1), it results in 
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In the second step, since TPMTueV BxAx += ),( is 
asymptotically stable, x1, x2 and x3 are bounded since d is 
bounded. Then, we simplify the system (15) as 
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where δ(t) includes d and any unmodelled parts of the 
system. Note that δ(t) is bounded since x1, x2, x3 and d are 
bounded. From (11), we obtain 
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Therefore, the control command (12) can be written as 
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4 Simulation results 
The Runge–Kutta method with the time step of 0.0001 sec 
was used in all simulations. The initial condition was set as 
ψ (0) = 0.1 rad, dψ (0)/dt = 0 rad/sec and y(0) = 0.05 m. 

The time varying vector p(t) contains V and e. From 
Table 1, the space of p(t) is selected as [20, 80] × [0.1, 
0.5]. By executing the TPMT of the system (13), using 
the TP Tool [10] with 100 × 100 sampling grid points, the 
ranks of the sampled tensors were found to be 3 and 2 on 
V and e, respectively. Thus, six vertex systems can 
exactly represent the system. The weighting functions are 
shown in Figure 4. 
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Fig. 4. Weighting functions on V and e. 

By solving the LMIs (8) and (9), the following six 
linear feedback gains were obtained: 
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The closed loop control result of the system (1) using 
only TPMTu  for V = 75 m/sec, e = 0.3 m and d = 0 kN⋅m is 
shown in Figure 5. It shows that the shimmy vibration 
was suppressed within 0.07 sec. 
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Fig. 5. Control responses of the undisturbed system using only 
the TPMT controller. 

Next, the following disturbance torque was imposed 
into the system: 

d(t) = 5sin(1000t) kN⋅m.                  (19) 

The result is shown in Figure 6. It is observable that 
additional vibration due to the disturbance was occurred 
although the controller had continuously responded to 
suppress the vibration. 

To eliminate the effect of the disturbance, TSMAu  was 
integrated into the control law. Here, M = 1 was selected. 
In summary, the control law becomes: 
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where the weighting functions are given in Figure 4 and 
the linear feedback gains in Eq.(19). 
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The closed loop control result is shown in Figure 7. 
The controller was able to suppress the vibration as 
desired. However, due to the discontinuity nature of the 
TSMA, chattering was observed.  
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Fig. 6. Control responses of the disturbed system using only the 
TPMT controller. 
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Fig. 7. Control responses of the disturbed system using both 
TPMT and TSMA controllers. 

Finally, by replacing the discontinuous function 
sign(x) with the function tanh(5x) to solve the chattering 
problem, smoother control responses were achieved, as 
shown in Figure 8. 

Similar results were also obtained for different values 
of V and e. 
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Fig. 8. Control responses of the disturbed system using both 
TPMT and TSMA controllers (replacing sign(x) with tanh(5x)). 

5 Conclusions 
The tensor product model transformation (TPMT) and 
twisting sliding mode algorithm (TSMA) are utilized to 
design a robust controller for suppression of the shimmy 
vibration in aircraft landing gears. The shimmy vibration 
is undesirable and it can lead to accidents. Simulation 
results illustrated that the proposed controller effectively 
suppressed the vibration even though the system was 
subjected to an external disturbance torque. 
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