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Abstract— Partly motivated by nanopositioning applications in
scanning probe microscopy systems, we consider the problem
of tracking periodic signals for a class of systems consisting
of linear dynamics preceded by a hysteresis operator, where
uncertainties exist in both the dynamics and the hysteresis.
A robustified servocompensator is proposed, in combination
with an approximate hysteresis inverse, to achieve high-precision
tracking. The servocompensator accommodates the internal
model of the reference signal and a finite number of harmonic
terms. Using a Prandtl–Ishlinskii (PI) operator for modeling
hysteresis, we show that the closed-loop system admits a unique
and asymptotically stable periodic solution, which justifies treat-
ing the inversion error as an exogenous periodic disturbance.
Consequently, the asymptotic tracking error can be made arbi-
trarily small as the servocompensator accommodates a sufficient
number of harmonic terms. The analysis is further extended
to the case where the hysteresis is modeled by a modified PI
operator. Experiments on a commercial nanopositioner show that,
with the proposed method, tracking can be achieved for a 200-Hz
reference signal with 0.52% mean error and 1.5% peak error, for
a travel range of 40 µm. The performance of the proposed method
in tracking both sinusoidal and sawtooth signals does not fall off
with increasing frequency as fast as the proportional-integral
controller and the iterative learning controller, both adopted
in this paper for comparison purposes. Further, the proposed
controller shows excellent robustness to loading conditions.

Index Terms— Hysteresis, nanopositioning control,
piezoelectrics, servocompensator, tracking.

I. INTRODUCTION

NANOPOSITIONING plays a key role in advanced tech-

nologies, such as scanning probe microscopy (SPM),

ultra-high density data storage, and micro/nanofabrication [1].

In SPM, a sample to be measured or manipulated is moved

beneath a sharp tip with nanometer precision, commonly

through piezoelectric actuators. Consequently, the imaging

or manipulation speed of an SPM system is closely tied to

the performance of the piezo-based nanopositioner. Precision

control of piezo-actuated systems is complicated by the strong

coupling between the hysteresis nonlinearity and the vibration
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dynamics [1]. In addition, both the hysteresis and the dynam-

ics can vary with the environmental or loading conditions.

However, the high actuation speed and fine resolution of

piezoelectric materials have made them the preferred actuator

for nanopositioning, and have motivated significant interest in

control design to combat their shortcomings [1].

Modeling and control of hysteretic systems have received

much attention in the literature [2]. Hysteresis models can

be roughly classified as physics-based or phenomenology-

based. A notable example of a physics-based model is the

ferromagnetic hysteresis model proposed by Jiles and Atherton

[3]. Formulated in terms of switching differential equations,

the latter model belongs to the class of Duhem hysteresis

models [4], [5]. Starting in early 1970s, systematic studies on

hysteresis were conducted by Krasnoselskii, Pokrovskii, and

others, who examined rate-independent hysteresis operators

constructed out of elementary hysteresis units called hys-

terons [6]. Examples of such operators, include the Preisach

operator [7], the Prandtl–Ishlinskii (PI) operator, and the

Krasnoselskii–Porkovskii (KP) operator among others. Gen-

erally independent from specific physical systems, these oper-

ators can serve as phenomenological models for a large class

of hysteretic systems. Further developments by Mayergoyz

[8], Visintin [4], Brokate and Sprekels [9], and Krejci [10]

in the 1980s led to an understanding of general hystere-

sis operators, and ordinary differential equations (ODEs)

and partial differential equations coupled with hysteresis

operators.

Hysteresis modeling continued to receive great interest in

the 1990s and beyond, which, to a large extent, was due to the

advances made in various smart materials (piezoelectrics, mag-

netostrictives, shape memory alloys, and etc.) and devices and

systems driven by these materials [11]. These materials typi-

cally possess multiple stable equilibria for a given input and

thus exhibit hysteresis behavior. The interest in smart material-

actuated systems also spurred the development of control

methods for hysteretic systems. In modeling piezo-actuated

nanopositioners and many other smart material-actuated sys-

tems, a reasonable model structure is a linear dynamical

system preceded by a hysteresis module [1], [12]–[15].

While qualitative properties of hysteresis models, such as the

passivity (defined properly) of the Preisach operator, can be

used for control analysis and synthesis [16], a predominant

class of control approaches involve approximate cancellation

of the hysteresis effect through inversion [12], [17], which is

illustrated in Fig. 1.

1063-6536/$31.00 © 2012 IEEE
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(a) (b)

Fig. 1. (a) Illustration of the feed-forward hysteresis inversion process. (b) Proposed controller structure: a servocompensator/stabilizing controller followed
by an approximate inverse compensator for hysteresis.

Hysteresis inversion has been studied for a number of

operators. For example, the inverse of a Preisach operator,

which does not admit an analytical form, has been constructed

approximately through data-intensive table-lookup based on

the so called Everett function [8], [18], using a Preisach-based

pseudo-compensator identified with reversed input–output data

[13], [19], [20], and through an iterative procedure that is

based on the piecewise monotonicity of the Preisach operator

[21]–[23]. On the other hand, analytical formulas exist for

the inverse of finite-dimensional classical [24], modified [25],

and generalized [26] PI operators. Inversion has also been

investigated for other hysteresis operators, such as a KP

operator [27] and a homogenized energy model [28].

Feedback control is often used in combination with hys-

teresis inverse to mitigate the effect of inversion error and

to deal with the remaining dynamics of the system [21], [22],

[29]. One important source of inversion error is the uncertainty

in hysteresis parameters, for which adaptive control offers a

potentially effective solution. Adaptive inverse control was

studied for a PI operator by Kuhnen and Janocha [30], and for

a Preisach operator by Tan and Baras [31]. In [17] and [32],

uncertainties in both the plant dynamics and hysteresis model

are addressed with model-reference adaptive inverse control.

Adaptive control has also been proposed for uncertain discrete-

time systems with hysteresis [14].

In the piezo-based micro/nanopositioning literature, the

effect of hysteresis or inversion error is often considered to

be an unknown disturbance, and various control techniques

are used to reduce the effect of this disturbance on

system performance. The industry standard in control of

nanopositioning systems has been proportional-integral (P+I)

control. However, a P+I controller is not capable of tracking at

high frequency without possibly destabilizing the system [33].

Recently, several robust control methods have also been

proposed that do not make use of an explicit hysteresis models

[34], [35]. High-gain feedback together with a notch-filter was

proposed to linearize hysteresis by Zou et al. [36]. In [37], the

hysteresis is approximated by a straight line, and an adaptive

robust controller is then used to handle the uncertainties,

including the hysteresis effect. Sliding mode control has

been used to achieve robustness to system uncertainties [33].

Disturbance observers are also gaining popularity for use in

estimating disturbances caused by hysteresis [38].

In this paper, we consider the problem of tracking periodic

signals for a class of systems consisting of linear dynamics

preceded by a hysteresis operator, where uncertainties exist

in both the dynamics and the hysteresis. This problem is

partly motivated by the nanopositioning applications in SPM

systems, where the sample being scanned is typically moved

periodically by a piezo actuator. As illustrated in Fig. 1,

we propose the use of a servocompensator [39], [40] in

combination with an approximate hysteresis inverse based

on the PI operator to achieve high-precision tracking. This

operator and its generalized versions have proven effective

in modeling piezoelectric hysteresis [14], [25], [41], [42]. It

also possesses a contraction property [32], which is vital to

our work. In addition, the inverse of a PI operator with a

finite number of hysterons can be constructed explicitly [25];

therefore, it is well suited for online implementation. For the

ease of presentation, we will focus the discussion on the case

involving the classical PI operator. But we will also extend

the results to the case involving a modified PI operator [25],

which is adopted in the nanopositioning experiments reported

later in this paper.

To motivate the use of servocompensators for control of

such systems, we present Fig. 2, which shows the spectrum

of the inversion error resulting from approximate inversion

of a modified PI operator [25], when a sinusoid of 5 Hz is

applied to the input of the inverse operator. Here, the imperfect

inversion is due to the mismatch between the weight parame-

ters of the hysteresis operator based upon which the inverse

is constructed and those of the forward hysteresis operator.

From Fig. 2, it can be seen that the inversion error consists of

harmonics of the input signal applied to the inverse operator,

where the first few harmonics dominate the spectrum. It is

shown in this paper that, under appropriate conditions, with

a classical or modified PI operator modeling the hysteresis,

the closed-loop system admits a unique, asymptotically stable,

periodic solution. The latter implies that, with a periodic

reference signal, the input to the inverse hysteresis operator

is indeed asymptotically periodic, which justifies treating the

inversion error as an exogenous, periodic disturbance that

consists of harmonics of the reference input. The properties

of servocompensators guarantee that any periodic disturbance

whose generating model is contained in the internal model

of the controller will be canceled out at the steady state.

Consequently, the asymptotic tracking error can be made

arbitrarily small when the servocompensator accommodates

a sufficient number of harmonic terms. We will refer to this

design as a multiharmonic servocompensator (MHSC).
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Fig. 2. Spectrum of typical inversion error ud −u for a modified PI operator,
generated by a sinusoidal input. The first harmonic is much larger than shown
on this figure.

The proposed method only requires an approximate model

of the hysteresis. Robustness with respect to uncertainties

in the dynamics is also established using results from [43].

Therefore, our design approach addresses the uncertainties

in both hysteresis and dynamics. Comparing to the adaptive

approaches [17], [32], our method requires much less online

computation. It also differs from many others in the literature

in that we exploit the specific effect hysteresis has on our

system at the steady-state, rather than simply treating it as an

unknown disturbance.

We compare the proposed method with iterative learning

control (ILC) [15] and proportional–integral (P+I) control

combined with hysteresis inversion. ILC is considered a com-

petitive approach in nanopositioning, and it has shown great

promise in tracking periodic signals, with high tracking band-

width and performance. Experiments on a nanopositioner have

confirmed the effectiveness of our proposed control scheme.

In particular, we have demonstrated tracking of a 200-Hz

reference signal with 0.52% mean error and 1.57% peak error

for a travel range of 40 µm, compared with 1.31% mean and

3.2% peak errors, respectively, for ILC. Investigations into the

robustness of the proposed method against different loading

conditions have shown that the mean tracking error increases

only 1.4% relative to the unloaded case, for a load of 40%

of the maximum mass recommended by the manufacturer, as

compared to an 18.5% increase for ILC. Experimental results

have also shown that the performance of the proposed method

drops much slower with increasing frequency than those of

the ILC and P+I methods.

The remainder of this paper is organized as follows.

Linear servocompensator theory is first reviewed in Section II,

where we also present our design of the stabilizing con-

troller. Hysteresis modeling and inversion are then discussed

in Section III, where we further establish the existence and

asymptotic stability of periodic solutions of the closed-loop

system, when a classical PI operator is involved and state

feedback control is used. In Section IV, we extend the results

to consider a modified PI operator and output feedback control

where a Luenberger observer is adopted to estimate the state.

Experimental results are presented and discussed in Section V.

Finally, concluding remarks are provided in Section VI. Some

preliminary results in this paper were presented in [44].

II. LINEAR SERVOCOMPENSATOR THEORY AND

CONTROLLER DESIGN

Recall Fig. 1(a) and (b). As we will show in Section III-B,

under suitable conditions, the combined effect of the approx-

imate inverse hysteresis model and the hysteresis model can

be treated as an exogenous disturbance to the linear dynamics.

Note that, for a reasonably large range of inputs, the dynamics

of a piezo-actuated SPM system (excluding the hysteresis part)

can be treated as linear [13], [34]. In this section, we review

the servocompensator theory and design a robustly stabilizing

controller for a linear system.

Servocompensators, based on the internal model principle,

were developed in the 1970s by Davison [39] and Francis [40].

The underlying principle used by servocompensators is that

they are dynamic oscillators, which allows them to generate

a control signal without being driven by an input. In partic-

ular, Davison and Francis proved that for linear systems, a

servocompensator can regulate a tracking error to zero, if the

internal model of the signal to be tracked is contained within

the servocompensator. Consider a linear system given by

ẋ(t) = Ax(t) + Bu(t) + Ew(t)

e(t) = yr (t) − Cx(t) − Du(t) (1)

where x ∈ R
n is the plant state, u ∈ R is the plant input,

y = Cx + Du is the plant output, e ∈ R is the tracking

error, w = Hσ ∈ R
p×1 is an exogenous disturbance, and

yr = Gσ ∈ R is the reference trajectory to be tracked. Here

H and G are real matrices, which map the vector σ ∈ R
p to

R
p and R, respectively. The vector σ is generated by a linear

exosystem

σ̇ (t) = Sσ(t) (2)

where S ∈ R
p×p . E ∈ R

n×p translates the disturbance w from

the exosystem to the plant. Denote by eig(S), the set of distinct

eigenvalues of the matrix S. It is assumed that (A, B, C, D)

is a minimal realization of a SISO plant transfer function, and

thus is controllable and observable. The following assumptions

are made on the system.

Assumption 1: eig(S) ⊂ clos(C+) � {λ ∈ C, Re[λ] ≥ 0}.

Assumption 2: The system (A, B, C, D) has no zeros in

eig(S).

Remark 1: In order to simplify the presentation, we will

assume for the remainder of our work that the matrix D = 0.

This assumption is satisfied, in particular, for the nanoposi-

tioning plant used in our experimental work.

The controller is designed as

η̇(t) = C∗η(t) + B∗e(t) (3)

u(t) = −K1x(t) − K2η(t) (4)

where C∗ ∈ R
p×p has the same eigenvalues as those of S.

B∗ is chosen such that the pair (C∗, B∗) is controllable. By

[45, Th. 1] if the gain matrices (K1, K2) can be chosen such

that the resulting closed-loop matrix is Hurwitz, then e(t) → 0

as t → ∞. It is shown in [46] that a necessary and sufficient



728 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 21, NO. 3, MAY 2013

condition for solvability of this problem is that there exist

matrices � ∈ R
n×p and Ŵ ∈ R

1×p , which solve the linear

matrix equations

�S = A� + BŴ + E C� = 0. (5)

Adding the servocompensator (3) to the linear plant (1), the

system becomes
[

ẋ(t)

η̇(t)

]

=

[

A 0

−B∗C C∗

] [

x(t)

η(t)

]

+

[

Bu(t) + Ew(t)

B∗yr (t)

]

. (6)

Following the servocompensator theory, we next design u(t)

to stabilize the system. We will set w, yr = 0 in the design of

the stabilizing controller. Since the dynamics of piezo-actuated

systems have been known to vary greatly with environmental

and load conditions [1], it is desirable for the control to

be robustly stabilizing over a range of plant perturbations.

We consider a norm-bounded uncertainty [43], where the

uncertainty in the plant (1) can be represented by

ẋ(t) = [A + B∗
1�∗C∗

1 ]x(t) + [B + B∗
1�∗D∗

1 ]u(t) (7)

for appropriately defined matrices B∗
1 , C∗

1 , D∗
1 . The matrices

B∗
1 , C∗

1 , D∗
1 are known, and represent knowledge of the range

of the uncertainties in the matrix/transfer function parameters.

The matrix �∗ is unknown and satisfies the bounds

�∗ ≤ I, �∗′
�∗ ≤ I

where ′ denotes the transpose, and I is an identity matrix.

With this uncertainty, the system (6) becomes
[

ẋ(t)

η̇(t)

]

=

[

A + B∗
1 �∗C∗

1 0

−B∗C C∗

] [

x(t)

η(t)

]

(8)

+

[

(B + B∗
1 �∗D∗

1)u(t)

0

]

.

Define a cost functional

J =

∫ ∞

0
[γ ′Qγ + Ru2]dt

γ = [x ′, η′]′, Q = Q′ ≥ 0, R > 0. (9)

We define new matrices

Ā =

[

A 0

−B∗C C∗

]

, B̄ =

[

B

0

]

, B1 =

[

B∗
1 0

0 0

]

C1 =

[

C∗
1 0

0 0

]

, D1 =

[

D∗
1

0

]

where each 0 represents an appropriately defined zero matrix.

The following lemma is adapted from [43, Th. 1].

Lemma 1: If for some ε = ε∗
1 > 0, R = R∗ > 0, there

exists a unique positive definite solution P = P∗ to the Riccati

equation

[ Ā −B̄(εR + D′
1 D1)

−1 D′
1C1]

′ P

+P[ Ā − B̄(εR + D′
1 D1)

−1 D′
1C1]

+εP B1 B ′
1 P − εP B̄(εR + D′

1 D1)
−1 B̄ ′ P

+1/εC ′
1(I −D1(εR+D′

1 D1)
−1 D′

1)C1+ Q = 0 (10)

then for any fixed ε ∈ (0, ε∗
1) and any fixed R ∈ (0, R∗), (10)

has a unique positive definite stabilizing solution P , and the

control law u(t) = −[K1, K2]γ (t) defined via

u(t) = −(εR + D′
1 D1)

−1(εB ′
1 P + D′

1C1)γ (t) (11)

Fig. 3. Illustration of a play operator.

guarantees exponential stability of the closed-loop system (8),

when yr = 0.

It should be noted that there are many other ways of design-

ing the stabilizing control u. As illustrated in Fig. 1(b), the

stabilizing controller D(s) is, in general, a dynamic controller

that can be designed using a variety of techniques, such as

LQG control and H∞ control. In addition, while state feedback

is used in (11), one can realize output feedback by adopting

a state observer, as will be discussed in Section IV-B.

III. ANALYSIS OF THE CLOSED-LOOP SYSTEM

Having designed the stabilizing control u(t) in the absence

of hysteresis, we are now prepared to handle the case with

hysteresis. In this section, we analyze the tracking performance

of the proposed composite controller that combines a servo-

compensator with an approximate hysteresis inverse. We first

introduce the hysteresis model and its inversion focused in

this paper, and then establish the asymptotic stability of the

closed-loop system for the tracking error analysis.

A. Hysteresis Modeling and Inversion

In this section, we will focus on the (classical) PI operator

for modeling the plant hysteresis. The PI operator consists

of a weighted superposition of basic hysteretic units called

play operators, shown in Fig. 3. Each play operator Pr is

parameterized by a parameter r , which represents the play

radius or threshold. The output ur (t) of a play operator Pr for

a continuous, monotone input v(t) over t ∈ [0, T ], is given by

ur (t) = Pr [v; ur (0)](t) = max{min{v(t)+r, ur (0)}, v(t)−r}.

(12)

The output ur (t) also represents the current state of the

operator Pr . For general inputs, the input signal is broken into

monotone segments. The output is then calculated from the

successive segments, where the last output of one monotone

segment becomes the initial condition for the next. In general,

the PI operator is an infinite-dimensional operator, made up

of a continuum of play operators integrated over the play

radii. In the interest of practical implementation, we consider

only a finite-dimensional PI operator where the operator can

be represented as a weighted sum of a finite number of

play operators. In Section VI, we will briefly discuss the

justification of approximating the hysteresis in a real plant like

a piezo-actuated system with a finite-dimensional PI operator,

and point out a potential approach for analyzing the effect of

modeling errors introduced by such approximations.

Assumption 3: The hysteresis nonlinearity is represented by

a PI operator Ŵh containing m + 1 play operators, where the
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radius parameters are assumed to be known and satisfy 0 =

r0 < r1 < · · · < rm < ∞.

The output of Ŵh under an input v is then given by

u(t) = Ŵh [v; W (0)](t) =

m
∑

i=0

θi Pri [v; Wi (0)](t) (13)

where Wi (t) represents the state of the play operator Pri at

time t , and

W (t) � (W0(t), W1(t), . . . , Wm(t))′

and W (0) represents the initial condition of the operator

Ŵh . The vector θ = (θ0, θ1, . . . , θm)′ ≥ 0 represents the

weights of individual play elements of the operator and is

assumed to be finite. We will use r to denote the vector

of radii, r = (r0, r1, . . . , rm)′. We also define the operator

P � (Pr0 , Pr1 , . . . , Prm )′, which captures the evolution of the

state W (t) of Ŵh under input v

W (t) = P[v; W (0)](t). (14)

The inverse Ŵ−1
h of a finite-dimensional PI operator Ŵh can

be analytically constructed, which turns out to be another PI

operator. The radii, weights, and initial conditions of the play

operators realizing Ŵ−1
h can be calculated explicitly in terms

of those for Ŵh , see [25, Eqs. (12)–(14)].

To accommodate uncertainties in our knowledge about the

actual hysteresis model Ŵh , we assume that we do not know

the exact value of the weight vector θ ; instead, we only have an

estimate, denoted as θ̂ , for θ . On the other hand, as mentioned

in Assumption 3, we assume that the exact values of the

play radii r are known. The latter is a common assumption

when modeling hysteresis with the PI operator [25], [30], [42].

Through proper initialization, for example, by sweeping the

input from −rm to rm , we can set the initial state W (0) for Ŵh .

We use Ŵ̂h to denote the PI operator with radii r and weights

θ̂ . Recall again Fig. 1. Given an initial condition W (0) and a

desired trajectory ud for the forward hysteresis model Ŵh , its

input v is generated by inverting the approximate hysteresis

model Ŵ̂h

v(t) = Ŵ̂−1
h [ud; W (0)](t) =

m
∑

i=0

ϑi Pϕi [ud; Z i(0)](t). (15)

Here the operator Ŵ̂−1
h represents the inverse of Ŵ̂h . In imple-

mentation, Ŵ̂−1
h is realized as another PI operator taking ud

as input, and the radii ϕi , weights ϑi , and initial conditions

Z i (0), i = 0, . . . , m, of the play elements for the latter PI

operator are computed based on r, θ̂ , and W (0) following the

formula in [25]. With (15), we can rewrite ud (t) as

ud (t) = Ŵ̂h [v; W (0)](t) =

m
∑

i=0

θ̂i Pri [v; Wi (0)](t). (16)

Subtracting (13) from (16), we obtain

ud(t) − u(t) = θ̃ ′W (t) (17)

where θ̃ � θ̂ − θ .

B. Asymptotic Stability of the Closed-Loop System

Recall Fig. 1. Note that the controller is a composite of

a servocompensator/stabilizing controller and an approximate

inverse compensator of hysteresis. We will assume that the

exosystem (2) contains a finite number of harmonics of the

reference trajectory. To apply the linear servocompensator

theory as outlined in Section II, however, we need to establish

that the inversion error ud −u, which is in the loop, can indeed

be treated equivalently as an exogenous periodic disturbance.

We assume that the uncertainty in the plant takes the form

of (7). We define B � (B + B∗
1�∗D∗

1 ) for ease of notation.

We let ud act as our desired stabilizing input (11). Under state

feedback (11) (with u replaced by ud ), we have

ud(t) = −[K1, K2]γ (t). (18)

With (8) and (17) (for a non-zero reference yr ) becomes

γ̇ (t) =

[

A + B∗
1�∗C∗

1 − BK1 −BK2

−B∗C C∗

]

γ (t)

+

[

B(−θ̃ ′W (t))

B∗yr (t)

]

. (19)

Note that the vector W (t) is governed by the following

hysteresis operators:

W (t) = W[ud; W (0)](t) � P ◦ Ŵ̂ −1
h [ud; W (0)](t) (20)

where “◦” denotes the composition of operators.

Equations (18)–(20), form a complete description of the

closed-loop system, which clearly shows the coupling of an

ODE with a hysteresis operator. The system can be analyzed

with a perturbation technique introduced in [47], where the

nominal (non-hysteretic) system is obtained by letting θ̃ = 0

in (19). From the linear systems theory, for a T−periodic

reference trajectory yr , the solution γ (t) of the nominal system

converges exponentially to a (unique) periodic function γT .

Define udT = −[K1, K2]γT and vT = Ŵ̂ −1
h [udT ; W (0)].

Note that udT is T −periodic, and vT is also T −periodic (after

a duration of T seconds, to be precise). For any continuous

function f , define the oscillation function osc by

osc[t1, t2][ f ] = sup
t1≤τ≤σ≤t2

| f (τ ) − f (σ )|. (21)

In order to show the asymptotic stability of a periodic solution,

we will require that the hysteresis operator W obey a con-

traction property. This can be guaranteed with the following

assumptions.

Assumption 4: osc[0,T ][udT ] > 2ϕm , and osc[T ,2T ][vT ] >

2rm , where we recall that ϕm and rm are the largest play radii

for the PI operators Ŵ̂−1
h and Ŵh , respectively.

Theorem 1: Let the reference trajectory yr be T−periodic.

Let Assumptions 1–4 hold. Then there exists ε∗
2 > 0, such

that, if the Euclidean norm of θ̃ , denoted as ‖θ̃‖, satisfies

‖θ̃‖ ≤ ε∗
2 , then the solution of the closed-loop system (18),

(19), and (20) under any initial condition (γ (0), W (0)) will

converge asymptotically to a unique periodic solution.

Proof: Assumption 4 implies that the composite hysteretic

operator W has a contraction property, in particular, for two

different initial conditions Wa(0) and Wb(0)

|W[ud; Wa(0)](t) − W[ud; Wb(0)](t)| = 0 (22)
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Fig. 4. Equivalent system block diagram for steady-state analysis.

for t ≥ 2T , as shown in [32]. Indeed, for a play operator with

radius r , its state will be independent of the initial condition

once its input varies (over time) by at least 2r . This can be

proven through elementary analysis on the play operator. The

operator W is a composition of P (a stack of play operators

with the largest radius being rm ) and Ŵ̂−1 (a superposition of

play operators with the largest radius being ϕm ), therefore the

contraction property in (22) is easily established.

Write θ̃ = εθ̃0, where θ̃0 is a unit vector in the direction of θ̃ .

We also note that the PI operator satisfies a Lipschitz condition

[32], as well as the Volterra and semi-group properties [9].

Finally, we know from the definition of the PI operator that

there exist constants ag and bg such that the growth condition

‖W (t)‖ ≤ ag|ud(t)| + bg ∀t (23)

is satisfied, which, together with (18), implies

‖W (t)‖ ≤ āg‖γ (t)‖ + b̄g (24)

for some constants āg, b̄g > 0. Since the nominal system with

θ̃ = 0 is globally T−convergent about γT [47], (18)–(20)

fits into the class of systems considered [47, Th. 2.1]. This

establishes the existence of a unique, asymptotically stable

periodic solution when ε, or equivalently, θ̃ , is sufficiently

small.

C. Tracking Error Analysis

From Theorem 1, given the composite controller (servo-

compensator and inverse hysteresis compensator), the closed-

loop signals, including the inversion error θ̃ ′W (t), converge

to T−periodic signals that depend only on the reference

signal yr . Therefore, in analysis, one can essentially treat the

inversion error at the steady state as a matched, exogenous

disturbance, as illustrated in Fig. 4. We can now make use of

the periodicity of W (t) in the tracking error analysis. From

the T−periodicity of W (t), we can write

α(t) = θ̃ ′W (t) = c0 +

∞
∑

k=1

ck sin

(

2πkt

T
+ φk

)

(25)

which can be broken into compensated and uncompensated

parts. Define Ac as the set of all k’s such that the internal

model of sin(2πkt/T ) is accommodated in C∗, and then

define

αc = c0 +
∑

k∈Ac

ck sin

(

2πkt

T
+ φk

)

αd =
∑

n /∈Ac

ck sin

(

2πkt

T
+ φk

)

. (26)

Remark 2: It is assumed in the definition of αc that an offset

term is included in the reference trajectory yr (t), which is

typical in practical applications.

Since we have established that the hysteresis inversion error

at the steady state is effectively an exogenous disturbance

to an exponentially stable linear system, we can use the

superposition principle to analyze the steady state tracking

error. We will treat yr , αc, and αd as three different inputs

to the system. Write

e(t) = yr (t) − Cx = yr (t) − (y1(t) + y2(t) + y3(t)) (27)

where yi , i = 1, . . . , 3, will be defined shortly. First, consider

the signal y1(t), which arises when αc, αd = 0. By Theorem

1 of [45] and Lemma 1, this part of the response will

approach yr as t → ∞. Next, we consider the output response

when yr , αd = 0, which we will define as y2(t). Since

αc is comprised entirely of signals whose internal models

are contained in C∗, [45, Th. 1] states that the response of

this system will asymptotically track the reference trajectory,

which in this case is zero. Finally, we consider the output when

yr , αc = 0, which is denoted as y3(t). In this case, αd will not

be accommodated in the servocompensator design. Since the

closed-loop system is a stable linear system and αd is bounded,

the output response from this portion is bounded and on the

order of αd . From these discussions, the tracking error under

the proposed control scheme will be of the order of αd , which

can be made arbitrarily small by accommodating a sufficient

number of harmonics in the servocompensator design.

IV. EXTENSIONS OF THEOREM 1

In this section, we present two extensions to Theorem 1,

which will allow the proposed method to be applied to more

general systems. In the first extension, we consider a modified

PI operator, which is more versatile than the classical PI

operator in capturing physical hysteresis phenomena. The

second extension deals with using output feedback in the

stabilizing controller.

A. Extension to the Case Involving a Modified PI Operator

A shortfall of the classical PI operator is that it cannot cap-

ture asymmetric hysteresis, due to the odd symmetry of play

operators. In [25], a weighted superposition of (memory-free)

one-sided dead-zone operators is proposed to be combined

with a classical PI operator to create a modified PI operator,

capable of modeling non-symmetric hysteresis phenomena.

For a one-sided dead-zone operator dzi with input v(t) and

threshold zi , its output obeys the equation

dzi (v(t)) =

⎧

⎪

⎨

⎪

⎩

max(v(t) − zi , 0), zi > 0

v(t), zi = 0

min(v(t) − zi , 0), zi < 0.

(28)

Now denote the vector z = [z−l, . . . , z−1, z0, z1, . . . , zl ]
′,

where

−∞ < z−l < · · · < z−1 < z0 = 0 < z1 < · · · < zl < ∞

and consider a vector of weights θd =

[θd−l , . . . , θd−1, θd0, θd1, . . . , θdl ]
′ that is nonnegative and
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Fig. 5. Nanopositioning stage used in experimentation, Nano-OP65 nanopo-
sitioning stage coupled with a nano-drive controller from Mad City Labs Inc.
Position feedback is provided by a built-in capacitive sensor.

finite. We define a vector of dead-zone operators Dz(v(t))

with thresholds z and input v(t) as

Dz(v(t)) = [dz−l (v(t)), . . . , dz−1(v(t)), dz0 (v(t)),

dz1(v(t)), . . . , dzl (v(t))]′.

The modified PI operator is then defined as a composition of

the weighted superposition of operators Dz and a PI operator

Ŵh , in particular, the output u(t) of a modified PI operator

under an input v and with the initial condition W (0) for Ŵh

can be written as

u(t) = Ŵhd[v; W (0)](t)�

l
∑

j=−l

θd j dz j

(

m
∑

i=0

θi Pri [v; Wi (0)](t)

)

= θ ′
d Dz(θ

′W (t)) � Ŵhd[v, W (0)](t) (29)

where we recall θ denotes the weights of the play operators for

Ŵh . As with the PI operator, the modified PI operator possesses

a closed-form inversion, see [25, Eqs. (23), (25), and (27)].

Similar to the case of a classical PI operator, we make the

following assumption.

Assumption 5: It is assumed that the play radii r and the

dead-zone thresholds z for the modified PI operator are known.

The weights θ for the play operators, and θd for the

deadzone operators are not known, but we have their estimates,

denoted as θ̂ and θ̂d , respectively. We will denote the modified

PI operator with weight vectors θ̂ and θ̂d as Ŵ̂hd. Given an

initial condition W (0) and a desired trajectory ud for the

forward hysteresis model Ŵhd, its input v is generated by

inverting the approximate hysteresis model Ŵ̂hd

v(t)= Ŵ̂−1
hd [ud; Z(0)](t)�

m
∑

i=0

ϑi Pϕi

⎡

⎣

l
∑

j=−l

ξi dζi (ud );Z i(0)

⎤

⎦(t)

(30)

Here, the operator Ŵ̂−1
hd represents the inverse of Ŵ̂hd.

In implementation, Ŵ̂−1
hd is realized as a composition of a

new PI operator and the weighted superposition of (2l + 1)

new dead-zone operators taking ud as input. The radii ϕi ,

weights ϑi , and initial conditions Z i (0), i = 0, . . . , m, of the

play elements for the latter PI operator are computed based

on r, θ̂ , and W (0), while the thresholds ζi and weights ξi ,

i = −l, . . . , l, of the latter dead-zone operators are computed

based on z and θ̂d [25]. Note that the order of the play

operators and dead-zones is reversed in the inverse operator.

Following (30), we have

ud(t) = Ŵ̂hd[v; W (0)](t) = θ̂ ′
d Dz(θ̂

′W (t)). (31)
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Fig. 6. Measured hysteresis loops for the nanopositioner.

Having presented the fundamentals about the modified PI

operator and its inverse, we are now prepared to discuss the

extension of Theorem 1 to a system with such an operator.

In order to utilize the framework presented in [47] to show

that the system possesses an asymptotically stable periodic

solution, we need to show that, under proper assumptions, the

hysteretic perturbation (i.e., the inversion error ud − u) to the

nominal system can be made arbitrarily small. Subtracting (31)

from (29), we have

ud − u = θ̂ ′
d Dz(θ̂

′W (t)) − θ ′
d Dz(θ

′W (t))

= θ̂ ′
d Dz(θ̂

′W (t)) − θ ′
d Dz(θ

′W (t)) + θ̂ ′
d Dz(θ

′W (t))

−θ̂ ′
d Dz(θ

′W (t)) (32)

= (θ̂ ′
d − θ ′

d)Dz(θ
′W (t)) + θ̂ ′

d [Dz(θ̂
′W (t))

−Dz(θ
′W (t))]. (33)

It can be easily seen that the dead-zone operator obeys the

Lipschitz condition

|dzi (a) − dzi (b)| ≤ |a − b| (34)

for any threshold zi . Using this property, we derive from (33)

|ud − u| ≤ ‖θ̃d‖‖Dz(θ
′W (t))‖ + ‖θ̂d‖∞[(2l + 1)|θ̃ ′W (t)|]

≤ ‖θ̃d‖‖Dz(θ
′W (t))‖ + ‖θ̂d‖∞[(2l + 1)‖θ̃‖‖W (t)‖]

≤ ε(‖Dz(θ
′W (t))‖ + (2l + 1)‖θ̂d‖∞‖W (t)‖) (35)

where ε = max(‖θ̃‖, ‖θ̃d‖), and ‖ · ‖ and ‖ · ‖∞ denote the

Euclidean norm and the infinity-norm of a vector, respectively.

From (35), we see that the amount of the hysteretic perturba-

tion to the nominal system is directly dependent on parameter

errors θ̃ and θ̃d , and can be made arbitrarily small when the

weight parameters are sufficiently accurate.

Finally, we must show that the modified PI operator obeys

a contraction property similar to that in (22). Since the added

dead-zone operators do not have memory (or states), the

contraction property holds for them automatically. Therefore,

the contraction property for the composite hysteresis operator

rests on that for the play elements in both the modified PI

operator and its inverse, the condition of which can be for-

mulated similarly as in Assumption 4. The primary difference

is that the input to the play elements in the inverse operator
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Fig. 7. (a) Plant output used in the identification of the modified PI operator and the resulting model output, under a quasi-static, oscillatory input with
decreasing amplitude. (b) Validation of the identified hysteresis model using a quasi-static input different from that used in the model identification.
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Fig. 8. (a) Experimental results at 200 Hz for the proposed methods (SHSC and MHSC), ILC and P+I. (b) Comparison between MHSC and ILC.

is now
∑l

i=−l ξi dζi (ud) instead of ud . Based on the above

discussions, we can formally state the following theorems.

Theorem 2: Consider Fig. 1, where the hysteresis is mod-

eled with a modified PI operator. Let the reference trajectory

yr be T −periodic, and let Assumptions 1, 2, and 5 hold. The

closed-loop system is described by

γ̇ (t) =

[

A + B∗
1 �∗C∗

1 − BK1 −BK2

−B∗C C∗

]

γ (t)

+

[

−B[θ̂ ′
d Dz(θ̂

′W (t)) − θ ′
d Dz(θ

′W (t))]

B∗yr (t)

]

(36)

W (t) = W̄[ud; W (0)](t) � P ◦ Ŵ̂−1
hd [ud; W (0)](t) (37)

ud(t) = −[K1, K2]γ (t) (38)

With suitably chosen gain matrices K1 and K2, when θ̃ = 0,

θ̃d = 0, the solution γ (t) converges exponentially to a

unique periodic function γT . Furthermore, define udT =

−[K1, K2]γT , and vdT = Ŵ̂−1
hd [udT ; W (0)]. Assume

osc[0,T ]

[

l
∑

i=−l

ξi dζi (ud)

]

> 2ϕm (39)

osc[T ,2T ][vT ] > 2rm . (40)

Then there exists ε∗
3 > 0, such that, if max(‖θ̃‖, ‖θ̃d‖) ≤

ε∗
3 , the solution of (36)–(38) under any initial condition

(γ (0), W (0)) will converge asymptotically to a unique peri-

odic function.

With Theorem 2, tracking error analysis can be conducted

similarly as in Section III-C.

B. Extension to the Case of Output Feedback

In (18) and (38), state feedback is used for the stabilizing

controller. When the state x is not accessible, output feedback
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TABLE I

TRACKING ERROR RESULTS FOR VARIOUS CONTROLLERS. ALL RESULTS ARE PRESENTED AS A PERCENTAGE OF THE

REFERENCE AMPLITUDE (20 µm)

Reference MHSC (%) SHSC (%) ILC (%) P+I (%)

avg(|e(t)|) max(|e(t)|) avg(|e(t)|) max(|e(t)|) avg(|e(t)|) max(|e(t)|) avg(|e(t)|) max(|e(t)|)

Sine, 5 Hz 0.271 0.899 0.649 1.72 0.135 0.250 1.06 1.93

Sine, 25 Hz 0.268 0.881 0.707 1.85 0.163 0.565 5.40 8.96

Sine, 50 Hz 0.284 1.01 0.770 1.93 0.262 0.711 10.86 17.63

Sine, 100 Hz 0.352 1.03 0.815 2.38 0.528 1.42 21.21 33.65

Sine, 200 Hz 0.519 1.57 0.863 2.50 1.31 3.20 37.61 59.6
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Fig. 9. Frequency spectra of the tracking error signal for references at 5
and 200 Hz. An SHSC was used in each case. Graphs are aligned so that the
peaks on each graph correspond to the same harmonic of the reference. Note
the prominence of the harmonics near 3000 Hz in the 200-Hz plot.

will be required. One such approach is to estimate the state

with an observer and then plug the estimate into the state

feedback control law. Here we perform the analysis of the

closed-loop system when a Luenberger observer is used for

state estimation, which is what we adopted in experimental

implementation of the proposed control approach. For this

analysis, we will assume no uncertainty in the linear dynamics

(i.e., �∗ = 0) and consider the modified PI operator. The

observer equation and the output feedback control law are as

follows:

˙̂x(t) = Ax̂(t) + Bud(t) + L(y(t) − Cx̂(t)) (41)

ud (t) = −[K1, K2]

[

x̂(t)

η(t)

]

. (42)

The closed-loop system is then, for γ = [x ′, η′, x̂ ′]′

γ̇ (t) =

⎡

⎣

A −B K2 −B K1

−B∗C C∗ 0

LC −B K2 A − B K1 − LC

⎤

⎦ γ (t)

+

⎡

⎣

−B[θ̂ ′
d Dz(θ̂

′W (t)) − θ ′
d Dz(θ

′W (t))]

B∗yr (t)

0

⎤

⎦ (43)
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Fig. 10. Experimental results at 50 Hz for sawtooth reference signal. Two
periods are shown.

where W (t) evolves according to (37). When θ̃ = 0, θ̃d = 0,

we obtain the nominal system from (43) that has no hysteretic

perturbation. We can choose the observer gain vector L, so

that the resulting nominal system is exponentially stable when

yr ≡ 0, and admits a unique exponentially stable T−periodic

solution for T −periodic yr . From here on, the analysis will

follow the developments in Theorem 2, and we can conclude

that, with proper “oscillation conditions” for udT and vT

[similar to (39) and (40)], for sufficiently small θ̃ and θ̃d , the

closed-loop system with output feedback, (37), (41)–(43) will

have a unique, asymptotically stable periodic solution. Note

that the estimation error x̃ � x̂ − x will obey the differential

equation

˜̇x(t) = (A − LC)x̃(t) − B[θ̂ ′
d Dz(θ̂

′W (t)) − θ ′
d Dz(θ

′W (t))]

which implies that x̃ will be at the order of ud − u and not

vanish at the steady state. On the other hand, since all signals

at the steady state are T −periodic, we can follow the same

argument as in Section III-C for the tracking error analysis,

and conclude that the tracking error can be made arbitrarily

small when the servocompensator accommodates the internal

models of a sufficient number of harmonic components.

While the above analysis on the output feedback case

assumes perfectly known linear dynamics, our experimental
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Fig. 11. (a) Experimental results for a reference trajectory of yr = 5 sin(2π5t − π/2) + 5 sin(2π15t + π/2) + 10 sin(2π25t − π/2). (b) Hysteresis loops of
nanopositioning stage in tracking a reference trajectory of yr = 5 sin(2π5t − π/2) + 5 sin(2π15t + π/2) + 10 sin(2π25t − π/2).

results (to be presented in the next section) indicate that the

proposed method enjoys robustness to changes in the system

dynamics.

V. EXPERIMENTAL RESULTS

A. Setup and Modeling

Experiments were conducted on a piezo-actuated nanoposi-

tioner (Fig. 5) to examine the performance of the proposed

control scheme. The first step of these experiments is to

identify the model of the piezo-actuated system as shown

in Fig. 1(b). The hysteretic behavior was experimentally

characterized with a quasi-static input. As shown in Fig. 6, the

hysteresis loop is not odd-symmetric. Following [25], we used

a modified PI operator, consisting of a superposition operator

with nine dead-zone elements in conjunction with a PI operator

with eight play elements to model the asymmetric hysteresis.

This model was identified offline using the quadratic optimiza-

tion routine outlined in [25], The radii r and thresholds z were

chosen based on the input and output ranges of the plant

r = [0, 0.33, 0.66, 1.00, 1.33, 1.66, 2.00, 2.33]′

z = [−2.68,−1.97,−1.22,−0.42, 0, 0.32, 1.02, 1.76, 2.57]′

and the resulting model weights were

θ̂ = [0.719, 0.183, 0.035, 0.055, 0.034, 0.033, 0.023, 0.061]′

θ̂d = [1.062, 0.473, 0.641, 0.311, 8.426,−0.636,−0.501,

−0.614,−0.415]′

which were used to calculate the output of the inverse operator,

Ŵ̂−1
hd [ud; W (0)](t). Fig. 7(a) shows the system output under

a quasi-static, oscillatory input with decreasing amplitude,

and the input/output data were used for identification of the

weights. Also shown in the figure was the output prediction

by the resulting model, with largest discrepancy with the

measurement being around 1 µm. To further validate the

model, a different quasi-static input comprising a summation

of sinusoids was applied to the piezo-actuated nanopositioner.

Within each period, the input has multiple distinct maxima and

minima, and is thus expected to excite multiple memory states

of the hysteresis. Fig. 7(b) shows the model output and the

measured output, where we can see that the modeling error is

around 1 µm for a travel range of 45 µm. The comparisons in

Fig. 7(a) and (b) indicate that, while the identified model was

not perfect, it provided a good approximation to the hysteresis

behavior of the nanopositioner.

The plant dynamics was identified based on the frequency

response obtained with small-amplitude sinusoidal inputs.

The MATLAB function invfreqs was used to identify the linear

dynamics model. In the absence of any load, we found that

a fourth-order plant model matched the measured frequency

response reasonably well, up to 3.5 kHz. This model has the

transfer function

G(s)=
8.8×1016

s4+1.6×104s3+6.6×108s2+5.3×1012s+8.8×1016
.

(44)

In order to improve the computation accuracy, we used a

balanced state-space realization [48, Eq. 44]. This results in

the model

ẋ(t) = 1.0 × 104

⎡

⎢

⎢

⎣

−0.014 1.700 0.095 −0.050

−1.700 −0.241 −0.672 0.170

0.095 0.672 −1.066 1.617

0.050 0.170 −1.617 −0.305

⎤

⎥

⎥

⎦

x(t)

+

⎡

⎢

⎢

⎣

27.8

111.3

−116.5

−44.1

⎤

⎥

⎥

⎦

u(t)

y(t) =
[

27.8 −111.3 −116.5 44.1
]

x(t). (45)

We next designed our robust stabilizing control (11). First,

we tested how the model parameters varied with loads. Based

on this, we found that with a maximum load the first resonant

frequency of the plant changes by around 5%, with similar

changes in the damping ratio and other resonant frequencies.

Therefore, we designed our controller to be robust to changes
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TABLE II

TRACKING ERRORS RESULTS FOR SAWTOOTH REFERENCES.

ALL RESULTS ARE PRESENTED AS A PERCENTAGE OF THE

REFERENCE AMPLITUDE (20 µm)

5 Hz (%) 50 Hz (%)

avg(|e(t)|) max(|e(t)|) avg(|e(t)|) max(|e(t)|)

MHSC 0.562 4.15 1.08 4.26

ILC 0.114 0.775 0.808 5.70

P+I 1.08 1.30 10.3 12.1

of ±10% in the parameters in our state space model. We used

this guideline to formulate the matrices B1, C1, and D1 in (7).

We then translated this constraint into balanced coordinates via

the same coordinate transformation used to generate (45). The

resulting matrices become the B1, C1, and D1 matrices used in

(10), and along with the balanced coordinate system matrices

from (45) were used to calculate the stabilizing control (11).

Finally, we implemented a Luenberger observer to esti-

mate the states, as explored in Section IV-B. Designed and

implemented in the standard manner with the nominal state

space model of the plant (i.e., �∗ = 0), the output feedback

controller is given as

˙̂x = Ax̂ + Bud + L(y − Cx̂) (46)

ud = −[K1, K2]

[

x̂(t)

η(t)

]

(47)

where L is chosen so that A − LC is Hurwitz. In our

work, L was chosen using an LQR method, and was

[0.3,−3.5,−1.7,−0.23].

B. Results

In the tracking experiments, sinusoids of 5, 25, 50, 100,

and 200 Hz were utilized for reference signals, with the travel

range of 40 µm and a 30-µm offset. Note that the used

frequencies are well within the working frequency range of

typical SPM systems. For example, the SPM system described

in [49] could produce a single scan line in 5 ms, which trans-

lates to a 100-Hz reference signal. Control and measurement

in our experiments were facilitated by a dSPACE platform.

For comparison, we implemented an ILC algorithm [15].

We also used a custom-designed proportional-integral (P+I)

controller followed by hysteresis inversion. Two different

types of servocompensators were used in experiments. First,

a single-harmonic servocompensator (SHSC) was designed,

including the internal model of only the reference signal.

Second, we designed a MHSC, including the internal model of

the reference signal as well as its second and third harmonics.

Two metrics are used to quantify the tracking error. The

mean tracking error is computed by taking the average of

|e(t)| over one period of the reference input, and the peak

tracking error is the maximum tracking error. Table I contains

the results on tracking error for each controller at different

frequencies. The P+I controller performs very poorly at high

frequencies, a problem that has been well documented [1]. The

ILC algorithm performs very well in general, but cannot match

the MHSC at 200 Hz, which can also be seen in Fig. 8(a).

TABLE III

LOADING PERFORMANCE FOR MHSC AND ILC. ALL RESULTS ARE

PRESENTED AS A PERCENTAGE OF THE REFERENCE AMPLITUDE (20 µm)

avg(|e(t)|) max(|e(t)|) % Change from unloaded

MHSC 0.288 0.940 1.41 −6

ILC 0.308 0.775 18.5 10.7

A detailed comparison between the two methods is shown

in Fig. 8(b). At low frequencies, the ILC algorithm performs

better than the MHSC. At 50 Hz, the errors are very close,

with ILC still ahead. However, at 100 and 200 Hz, the MHSC

is significantly better, with only 40% the mean tracking error

of ILC at 200 Hz.

We can also compare the performance of the MHSC with

that of the SHSC. From our theory, we would expect the

MHSC to perform significantly and consistently better than

the SHSC. The results of Table I confirm this expectation, as

the MHSC outperforms the SHSC by significant margins at

each frequency for both error metrics. However, the differences

get closer together as the reference frequency increases. At

5 Hz, the MHSC has around 40% of the tracking error of

the SHSC, whereas at 200 Hz the MHSC has 60%. This

is due to the effect of the resonant peak of the vibrational

dynamics on the harmonics generated by the hysteresis. In

particular, with increasing frequencies, the harmonics higher

than the second and third become more significant. We can see

this clearly by comparing the tracking error frequency spectra

under SHSC and MHSC, respectively. Fig. 9 shows the spectra

under SHSC for reference signals at 5 and 200 Hz. In both

cases, the second and third harmonics of the reference signal

are the most significant in the error signal. However, the other

harmonics of the system at 200 Hz are significantly larger in

comparison to the dominant harmonics than they are at 5 Hz.

It is, therefore, reasonable to expect that canceling the second

and third harmonics in the 200-Hz case would result in reduced

benefit as compared to that in the 5-Hz case.

We also demonstrated the ability for the MHSC to track

sawtooth reference signals. Sawtooth signals are commonly

used in SPM applications, and represent a challenge for

servocompensaton since they do not have a finite-dimensional

internal model. However, by using the first few harmonics

of the signal, we can arrive at a reasonable approximation.

Fig. 10 and Table II shows tracking error results for the three

control methods used, where the MHSC incorporated the first

six odd harmonics of the reference. The ILC controller is well

suited to tracking signals like a sawtooth, and this is shown in

the tracking results. While the P+I controller has reasonable

performance at 5 Hz, its performance falls off dramatically

at 50 Hz. The MHSC does a significantly better job than

the P+I controller at tracking this signal, with an average

error that was only 20% of what was achieved by the latter

controller at 50 Hz. While the tracking error under the MHSC

is almost five times of that under ILC, it becomes comparable

to that of ILC with smaller maximum error at 50 Hz, indi-

cating that the MHSC can facilitate tracking of such sawtooth

signals.
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Fig. 12. Tracking errors for a 50-Hz sinusoidal reference signal, for loaded
and unloaded nanopositioner. A MHSC was used in both cases.

We also tested the performance of the proposed controller

for references with more complex waveforms. Fig. 11(a) shows

the experimental results for the proposed MHSC and ILC with

a reference signal of

yr = 5 sin
(

2π5t −
π

2

)

+ 5 sin
(

2π15t +
π

2

)

+10 sin
(

2π25t −
π

2

)

. (48)

Such an input excites more complex memory states for hys-

teresis, and is a useful test of the proposed controller’s ability

to compensate for hysteresis. The output–input hysteresis map

in tracking this reference with MHSC is shown in Fig. 11(b),

where we can clearly see multiple minor loops. The MHSC

was designed to compensate for the reference signal alone,

yielding a sixth-order servocompensator. The resulting mean

tracking errors were 0.52% for the MHSC and 0.66% for ILC.

Even though the reference is relatively slow, the advantage

that ILC possesses over the MHSC at low frequencies for

pure sinusoidal references has been reversed in this test by

the MHSC. This evidences the effectiveness of the proposed

controller at compensating hysteresis.

Finally, we investigated the robustness of the system’s

performance to loading conditions. To prevent damage to the

nanopositioner, we limited our experiments to 40% (200 g)

of the maximum load recommended by the manufacturer. ILC

and MHSC (accommodating first three harmonics) were used

for this paper. Table III shows the results for tracking a 50-Hz

sinusoidal signal with a loaded nanopositioning stage, as well

as the percent-change from the nominal results presented in

Table I. The performance of the MHSC is nearly unchanged

from the unloaded case, a point also readily visible in Fig. 12.

Note that in Section IV-B, we were required to assume that the

plant was perfectly known (i.e., �∗ = 0) to prove stability of

the closed-loop system with hysteresis. However, the proposed

controller with output feedback clearly enjoys robustness to

changes in the system dynamics. The ILC controller, however,

has suffered a notable drop in performance, with double-digit

percentage drops in accuracy in the loaded case. However,

due to ILC’s better performance in the unloaded case, both

methods are very close in the raw performance. This result

indicates that the MHSC’s performance is significantly less

tied to modeling accuracy than ILCs, since the net effect of a

load is to deviate the plant from its nominal dynamics.

VI. CONCLUSION

In this paper, we have explored the potential of servo-

compensators in tracking periodic signals for systems with

hysteresis. The control scheme combines a servocompensator

with hysteresis inversion, and its performance in the presence

of uncertainties in both hysteresis and dynamics was justified

through rigorous analysis of the closed-loop system. We have

experimentally demonstrated the high-frequency performance

of this controller, and its robustness to loading conditions at

frequencies compatible with existing SPM systems [49].

There are a few noteworthy trends seen in our experimental

results. The most interesting trend, we observe is that the

performance of the proposed method does not fall off with

frequency as fast as the other control methods presented.

For example, in the case of tracking sinusoids, the mean

error increased only two-fold for the MHSC as the fre-

quency increased from 5 to 200 Hz, as compared to 10- and

50-fold for ILC and P+I control, respectively. A very similar

trend was seen in the sawtooth results shown in Table II.

This shows the promise of MHSCs to facilitate high-frequency

tracking in nanopositioners. We also note the high robustness

of performance shown by the MHSC to loading conditions.

There are several potential directions for extending this

paper. First, as mentioned in Section II, a few alternative

stabilizing controllers can be used in conjunction with the

servocompensator. For example, H∞ loop-shaping techniques

[48] can be used to reduce the effect of high-frequency

harmonics like those seen in Fig. 9, and increase the tracking

performance. For systems represented in observable canonical

forms, high-gain observers [50] can readily facilitate the output

feedback control.

Second, the design of the servocompensator requires the

knowledge of the reference signal and the control parameters

vary with the frequency of the reference. Adaptive servocom-

pensators have already been proposed in [51] and others, and a

worthwhile extension of our work would be to design a MHSC

that can adapt to the frequency of the reference.

Finally, we note that in this paper we have used a finite-

dimensional, classical or modified PI operator to model the

hysteresis, where we have considered model uncertainties

entering through the weight parameters. Conceivably, there

will be a mismatch between the hysteresis nonlinearity in

a physical system and what can be modeled with a classi-

cal/modified PI operator. While this type of modeling error can

be reduced by increasing the numbers of play (and deadzone)

elements in the PI model along with using sound practices

in parameter identification, it is of interest to understand the

impact of such modeling error on the tracking performance of

our proposed control method. In particular, one could consider

a small, unknown, hysteresis operator δ[v] that represents the

difference between the actual hysteresis and the identified PI

operator. Since the operator δ[·] and the rest of the closed-loop
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system form feedback connections, one interesting approach

to potentially analyzing such systems would be to generalize

the small gain theorem [50] to the hysteretic setting. Exploring

these ideas will be a major undertaking, and it is beyond the

scope of this paper.
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