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Abstract

This paper addresses the control of the Archimedes

Wave Swing, a fully-submerged Wave Energy Converter

(WEC), of which a prototype has already been built and

tested. Simulation results are presented in which Internal

Model Control (IMC) is used, both with linear models

and with non-linear neural network (NN) models. To

the best of our knowledge this is the first time NN-based

control is being applied to design a controller for a

WEC. NNs are a mathematical tool suitable to model

the behaviour of dynamic systems, both linear and

non-linear (as in our case). Significant absorbed wave

energy increases were found, both using linear models

and NNs. Results were better when IMC with NNs

was employed (with a nearly sixfold increase against

a fivefold increase), except for the May—September

period, when IMC with linear models performs better.

Keywords: Neural Networks, Wave Energy, Internal Model

Control, Archimedes Wave Swing, Control.

Nomenclature

Latin characters

A, B = Pierson-Moskowitz’s spectrum parameters

b, bwj , bvi = neuron bias

C = controller
c = context unit

d = disturbance

e = error

F = filter

c© Proceedings of the 7th European Wave and Tidal

Energy Conference, Porto, Portugal, 2007

f = activation function

fexc = wave excitation force

flg = force exerted by the ELG

fu = control force
G = plant

G∗ = inverse of model G′

G′ = model of plant G
Hs = significant wave height

i =
√
−1

M = number of NN outputs

m = mass
n = number of NN inputs

p = number of points

R = resistance

S = stiffness
Sw = wave energy spectrum

s = Laplace transform variable

t = time

Te = wave energy period

vij , wi, wjk = weight
Wu = absorbed wave energy

X = reactance

x = NN input

y = NN output
y = vector of expected outputs y
z−1 = delay operator

Greek characters

α = optimum condition coefficient

ζ = neuron output
ξ = floater’s vertical position

σ2 = variance
ω = frequency

Acronyms

AWS = Archimedes Wave Swing



ELG = Electrical Linear Generator

IMC = Internal Model Control

LRN = Layered-Recurrent (neural) Network
NN = Neural Network

NNARX = NN Auto-Regressive eXogenous (model)

RMS = Root Mean Square

TDM = AWS Time Domain Model simulator (for Matlab)
VAF = Variance Accounted For

WEC = Wave Energy Converter

Superscripts

x̃ = NN estimate of variable x
x̂ = phasor of variable x
x∗ = complex conjugate of variable x

Introduction

Several different sources of energy related to the sea can be

distinguished, such as tidal energy, offshore wind energy, or
wave energy [1–4]. In this last case, it is aimed to convert the

energy present in sea waves into electricity. Sea waves are in

fact a concentrated form of wind energy, which in turn is a con-

centrated form of solar energy, since it is the sun that causes the

variations of atmospherical temperature that originate the wind.

Figure 1: The AWS before submersion

Figure 2: AWS working principle

Harnessing this energy, however, requires solving several en-

gineering problems. The power of sea waves changes with time,

and this means three things. Firstly, the energy extracted will
have seasonal variations. Secondly, since short-term variations

of wave energy are important, there must be some means of en-

suring that electricity produced will be synchronous and phase-

locked. Thirdly, peak values of wave energy may be so high as

to pose a danger to the device. Because of this, and because

the sea is by its very nature an aggressive environment, devices

for producing electricity from sea waves (known as wave energy
converters, WECs) must have a very resistent design.

There are many possible configurations for WECs. Some are

installed at the shoreline, some are deployed near the shore, oth-

ers are deployed offshore; they may float or be submerged; and
there are several possible working principles. To this day, sev-

eral promising prototypes have been built. Control engineering

plays an important role in on-going research, to maximise the

energy extracted and hence the rentability of the WEC.
In this paper we concentrate upon a particular WEC, the

Archimedes Wave Swing (AWS). Our purpose is to present sim-

ulation results when Internal Model Control (IMC) is used, both

with a linear model and with a non-linear neural network (NN)

model. The paper is structured as follows: section 1 gives infor-
mation about the AWS; section 2 briefly describes the principles

of IMC; section 3 introduces neural networks; AWS modelling

with neural networks is the subject of section 4; the implemen-

tation of control algorithms is given in section 5; then section 6
presents simulation results; finally, conclusions are drawn in

section 7.

1 The AWS

The AWS is one of the several WECs currently under de-

velopment (see Fig. 1). It is an offshore, underwater (43 m)

device. It is a point absorber, that is to say, its size is neglectable
compared to a typical wave length. It consists mainly in a cylin-

drical, bottom-fixed chamber (the silo), covered by a movable,

cylindrical lid (the floater). Air is enclosed between the silo and

the floater. As the wave crests and troughs pass, the height of the
water column above the floater varies, and so does the resulting

pressure. Thus, and since the air enclosed within is compress-

ible, the floater will heave (see Fig. 2 for an illustration of this

vertical movement). An electrical linear generator (ELG) con-
verts this reciprocating movement into electricity [5].

From this description, it may be supposed that a mass–

spring–damper system will provide a simple but reasonable dy-

namic model for the AWS. In reality, things are not so sim-

ple, since there are many non-linearities. A very complete and
detailed non-linear simulator, the AWS Time Domain Model

(AWS TDM), has been developed for Matlab [6–8]. But it is

convenient, for control design purposes, at least in an initial

stage, to have a linear model, even if less accurate. Fig. 3 shows
that the non-linearities, though not neglectable, are not so impor-

tant as to make such a linear model useless. This linear model

has been obtained from data provided by the AWS TDM, used as

an emulator of the AWS protoptype. This option was taken be-
cause, due to operational problems, very few experimental data

is available from the 2 MW AWS prototype, which was tested at

the Portuguese northern coast during 2004 (and then decommis-

sioned). Additionally, due to industrial secrecy reasons, several

parameters of the AWS TDM have been modified to provide the
data upon which the linear model given below is based, as well

as in all simulations in this paper.

To obtain the data, the AWS TDM was fed with several si-

nusoidal waves with an amplitude of 1.0 m. Since the AWS
is a non-linear dynamic system, changing the amplitude of the

waves will change (even if only slightly) the result obtained.

This particular wave amplitude was chosen since it is the most

frequent one in the location where the AWS prototype was de-
ployed; data on wave climate was obtained from the ONDAT-

LAS software [9]1. The periods of the waves range from 4 s to

1The AWS was tested 5 km offshore Leixões. The location for
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Figure 3: Output of the AWS TDM for regular waves with 10 s

of period and amplitudes of 0.5 m, 1.0 m, 1.5 m and 2.0 m

14 s. These are the wave periods expected to occur at the AWS

test site. The input of the desired linear model is the sum of

the wave excitation force fexc (that is to say, the force that the

waves would exert in the AWS if it were stopped) and of the
force exerted by the ELG flg . The output is the vertical position

of the floater ξ.

Levy’s identification method was applied to this data [5].

The identified linear model is

Ξ(s)

Fexc(s) + Flg(s)
=

2.259 × 10−6

0.6324s2 + 0.1733s + 1
(1)

(Notice that lower-case letters are used for variables in the time

domain, and capital letters for their Laplace transforms. Hence

Fexc(s) = L [fexc(t)], and so on.) For more details on this
subject, see [10].

2 Internal model control

The IMC methodology [11] makes use of the control scheme

of Fig. 4. In that control loop, G is the plant to control, G′ is a
model of G, G∗ is an inverse of G′ (or at least a plant as close as

possible to the inverse of G′), and F is some judiciously chosen

filter. If G′ were exact, the error e would be equal to disturbance

d. If, additionally, G∗ were the exact inverse of G′ (and hence
also of G ) and F were unity, control would be perfect. Since no

models are perfect, the error will not be exactly the disturbance.

That is also exactly why F exists and is usually a low-pass filter:

to reduce the influence of high-frequency modelling errors. It

also helps ensuring that product FG∗ is realisable.

The interconnections of Fig. 4 are equivalent to those of

Fig. 5 if the controller C is given by

C =
FG∗

1 − FG∗G′
(2)

In sections 4 to 6, IMC will be applied to the AWS, both

using the linear model (1) and using neural network models [12].

3 Neural networks

In the 1940s and 50s attempts were made to find effective

mathematical models of how the human nervous system works.

This led to the development of (artificial) NNs. In the end these

which ONDATLAS supplies wave climate data is called Leixões-buoy
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Figure 4: Block diagram for Internal Model Control
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Figure 5: Block diagram equivalent to that of Fig. 4

proved to be too simple to model the human brain, since they

embed too many simplifying assumptions to accurately mirror

what actually happens in our brain cells. But NNs proved to be
an efficient means of modelling a system, and models obtained

can be both linear or non-linear, static or dynamic. They can

be better thought of as a biologically inspired means of building

an approximation to some desired function. Their major use-
fulness comes from algorithms that optimise their parameters to

mimic as accurately as possible any input-output data we may

want. Hence the type of model we end up with is a black-box

model: a model that (hopefully) does what we want, without any

analytical tuning of the function parameters involved [13–15].
The main unit of a NN is (because of the biological anal-

ogy) called neuron. A neuron is in reality a real single-valued

function depending of several inputs. Several functions, termed

activation functions, are used in practice in the neurons; the most
usual are a linear function, the Heaviside function (or a variation

thereof), and the hyperbolic tangent function (or some other S-

shaped function). Refer to the inset of Fig. 6 for the architecture

of a neuron. In that figure, the two inputs are variables x1 and
x2 (in the general case there might be any number of inputs), the

activation function is f , ζ is the output, the wi are weights, and

b is a bias term. For the three activation functions mentioned

above, and for n inputs, the output will be given by

Linear: ζ = b +
n
∑

k=1

wkxk (3)

Heaviside function: ζ =



















1, if b +
n
∑

k=1

wkxk ≥ 0

0, if b +
n
∑

k=1

wkxk < 0

(4)

Hyperbolic tangent: ζ = tanh

(

b +
n
∑

k=1

wkxk

)

(5)

and similarly for other activation functions.
NNs consist of several neurons interconnected. In the most

widespread architecture of NNs, neurons are disposed in several

layers, each one feeding the next; the layers of neurons make

up the NN. (Other network architectures are possible but unfre-

quent.) The inputs of the first layer and the outputs of the last
layer are the inputs and outputs of the NN. Neuron layers before

the last are called hidden layers. The several interconnections

between neurons are called synapses, because of the biological

analogy.



A possible layered NN is shown in Fig. 6 (where there hap-

pen to be two inputs and two outputs), or in some similar pattern.

This is a feedforward layered NN, because layer outputs are
never fed back in the network. The output y of such a NN, with

only one hidden layer, is a vector with M components (M = 2
in the particular case of Fig. 6) that are determined in terms of

the n components of the input vector x by the formula:

yi = f2

{

Nh
∑

j=1

[

bvi + vijf1

(

bwj +
n
∑

k=1

wjkxk

)]}

,

i = 1, . . . , M (6)

where Nh is the number of hidden layer neurons (Nh = 4 in

Fig. 6), wjk are the first-layer interconnection weights (the first

subscript index referring to the neuron, and the second to the in-

put), vij are the second-layer interconnection weights, bwj and
bvi are the threshold offsets (biases), and f1 and f2 are the ac-

tivation functions of the two neuron layers. (It is supposed that

all neurons in a layer use the same activation function.)

Figure 6: Scheme of a neural network

It is possible to include delays in the interconnections, thus
obtaining dynamic models [16]. These will be discrete in time,

with a constant sampling frequency. One of the possible archi-

tectures with delays is depicted in Fig. 7 (where there happen

to be only one input and one output, with one delay in each).
In this architecture, the network outputs are fed back as inputs.

Models thus obtained are called neural network auto-regressive

exogenous models (NNARX). Again, several variations are pos-

sible.

Figure 7: Scheme of a NNARX dynamic neural network

Another possible architecture for modelling dynamic sys-

tems, depicted in Fig. 8, feeds layer outputs back as inputs to

that layer (save for the last layer, the outputs of which are not fed

back). The delayed feedbacks are known as context units and are

denoted by c in Fig. 8. Such NNs are called Elman neural net-

works if they have only two layers, the first using tanh activa-

tion functions and the last using linear activation functions [17].
Similar networks with different functions and/or more layers are

called layered-recurrent (neural) networks (LRN). Clearly, El-

man NNs are particular cases of LRN NNs.

Figure 8: Scheme of an Elman dynamic neural network

There are some particular architectures known to provide

good results for specific cases, and several rules of thumb for

deciding before-hand how many layers, neurons and delays to

use. These are given in the references (see for instance [14, 18]).

Finally, what is needed is an algorithm to find the parameters

(weights and biases) that will make our NN have the behaviour

we want. There are several possibilities; backpropagation is one
of them. In few words, this algorithm is given some input-

output data showing how the system behaves, and then varies

the network’s parameters trying to minimise the difference be-

tween its outputs for those inputs and the outputs is should be

giving. The derivative (often numerically computed) of a suit-
able performance function is employed. We will not enter into

further (mathematical) details, which may once more be easily

found in the references. Let it suffice to say that this method

heavily relies on the data the algorithm is fed with (the training
data). Too few data may be less than enough to train the network

properly, while too much data may overtrain it so that it will just

reproduce the training set while being unable to give meaning-

ful outputs for new situations. The data should also reflect all
possible working conditions of the system. Additionally, there

are several possible variations of backpropagation. In what fol-

lows, backpropagation together with the Levenberg-Marquardt

algorithm was used [19].

The above is of course a very simplified depiction of NNs.

For more details, see the references given.

4 Neural network models of the AWS

From the description above it is seen that NNs may provide

a suitable tool for modelling the AWS, especially because of the

ability of modelling non-linearities (both hard non-linearities, as

is the case of all saturations in general, and in particular of the

effect of the mechanical end-stops that limit the heaving of the
floater; and soft non-linearities, as is the case of several contin-

uous, differentiable non-linear relations between variables). To

model the AWS using NNs, the wave excitation force fexc and

the force exerted by the ELG flg were selected as inputs, and the

floater’s vertical velocity ξ̇ as output. For the inverse model, the

inputs were fexc and ξ̇, and the output flg . fexc is always con-

sidered an input since it is not created by the AWS; it is better
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Figure 11: Wave energy absorption (figurative data)
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Figure 12: Wave excitation force and floater’s vertical velocity
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Figure 10: Performance of the inverse NN model

viewed as a perturbation. In each case two separate inputs had

to be considered; models relating solely the floater’s vertical ve-

locity (or position) with only one force (similarly to the linear
model (1)) were built, but were unable to provide any accurate

results. On the other hand, two input variables sufficed to obtain

good results, and hence it was not necessary to include further

inputs, such as other forces applied in the floater.

To serve as input, 600 s long irregular (non-sinusoidal) waves

were generated. All irregular waves mentioned in this paper

follow Pierson-Moskowitz’s spectrum, that accurately models

the behaviour of real sea waves [20]. This spectrum is given by

Sw(ω) =
A

ω5
exp

(

− B

ω4

)

(7)

where ω is the frequency and Sw is the wave energy spectrum,

that is, a function such that

∫ +∞

0

Sw(ω)dω (8)

is the mean-square value of the wave elevation). Table 1 gives
values for the significant wave height Hs (from trough to crest)

and for the limits of the frequency range (corresponding to the

maximum and minimum values of the wave energy period Te)

provided by ONDATLAS for the twelve months of the year and
for the whole year. In (7), the numerical values A = 0.780 (SI)

and B = 3.11/H2
s were used.

The AWS TDM uses a sampling time of 0.02 s. Hence a

variable recorded for 600 s corresponds to a 30000 long vector.

This proved to be too much data for training a network; hence,

only data from 150 s to 400 s was used in training. This piece

was found to be manageable, and yet to include sufficient data
for the training. The whole 600 s long series were used for vali-

dating the identification.

The option that proved to be the best was to train the NN

with an irregular wave corresponding to the wave parameters

(Hs, Te) for the whole year. (These are given in the last column

of Table 1.) Since it is during winter months that more wave
energy is available, it could have been convenient (to maximise

wave energy absorption) to use models very well fitted for win-

ter months, even if their performance would be poorer during

the rest of the year. But in the end simulations proved that bet-
ter results would be obtained with NNs trained with the wave

parameters for the whole year.

NNARX, Elman and LRN architectures were used. Elman

NNs proved to perform better than NNARX NNs; LRN NNs

provided no additional benefit, and, since they are more compli-

cated than Elman NNs, were not chosen. The number of neu-

rons in the hidden layer was found to be an important factor.
Elman NNs could usually model the AWS train data accurately,

irrespective of the number of neurons. But NNs with too few

or with too many neurons were less able to generalise the mod-

elling to other data. (What too few or too many neurons were
had to be found out by trial and error.) Closely related to this

was the extent to which training was performed, since, as men-

tioned above, performing the train algorithm for too long might

lead to overtraining, and hence to poor performance for inputs
other than those used when training; while at the same time stop-

ping the train algorithm too soon leads to NNs that are still not

a good model.

After some trial and error (sometimes necessary in similar

cases), two NNs were chosen, with the characteristics given in

Table 2. In that table, VAF (variance accounted for) is a perfor-

mance parameter computed as

V AF = 1 − σ2(ỹ − y)

σ2(ỹ)
(9)

where y is the vector of expected outputs (collecting succes-

sive time-varying values of y) and ỹ the vector of NN’s outputs;

and RMS (root mean square) is another performance parameter
computed as

RMS =

√

√

√

√

√

√

p
∑

k=1

(ỹk − yk)2

p
(10)

where p is the number of points (30000, since, as mentioned

above, the whole 600 s long series was used for computing these
indexes). The Table also gives those indexes for model (1).

Fig. 9 shows how the direct NN model performs and com-
pares its output to that of linear model (1). Fig. 10 shows how

the inverse NN model performs; no comparison can be pre-

sented with the output of the inverse of the linear model, since

that inverse is not causal. In both cases, the data used is a 50 s
slice of the test wave with which VAF and RMS were reckoned;

after 250 s, the transient response at the beginning of the simu-

lation has long passed away. It can be seen that models are fairly

accurate, and that the NN direct model is able to follow the out-

put reference more accurately than the linear model can. The
NN inverse model sometimes originates chattering in its output.

This deficiency, however, will prove to be unimportant for re-

sults (probably because the filter F chosen to implement IMC is

a low-pass filter, as shall be seen below in the next section).



Table 1: Characteristics of several irregular waves according to ONDATLAS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Whole year

Hs / m 3.2 3.0 2.6 2.5 1.8 1.7 1.5 1.6 1.9 2.3 2.8 3.1 2.3

Te,min / s 5.8 5.8 5.2 5.5 5.0 4.7 4.6 5.0 5.2 5.3 5.5 5.3 4.6

Te,max / s 16.1 14.5 13.7 14.8 12.2 9.7 11.1 10.5 12.0 12.6 13.3 14.2 16.1

Table 2: Neural network models of the AWS

Linear direct model (1) NN direct model NN inverse model

Inputs fexc + flg fexc, flg fexc, ξ̇

Outputs ξ̇ ξ̇ flg

Type Transfer function Elman Elman

Hidden layer — 8 neurons 10 neurons

VAF 83.9778 % 90.9624 % 91.9242 %

RMS 0.0994 0.0645 0.0798

Training — 7 epochs 5 epochs

5 Control implementation

5.1 Phase and amplitude control

If the dynamics of the AWS were given exactly by (1), max-

imising the power absorbed from the waves would require the

floater’s vertical velocity to be in phase with the wave excitation
force acting thereupon. The remainder of this subsection con-

sists in an outline of the proof, closely following [20]. Readers

therein uninterested can skip directly to 5.2.

A general mass-spring-damper system corresponds to a dy-
namic behaviour given by

mξ̈(t) + Rξ̇(t) + Sξ(t) = fexc(t) (11)

Parameters m (mass), R (resistance) and S (stiffness) are pos-

itive. Assuming that fexc and ξ̇ are sinusoidal with time, and

defining complex-valued phasors f̂exc and
ˆ̇
ξ,

fexc(t) =
f̂exc

2
eiωt +

f̂∗

exc

2
e−iωt

(12)

ξ̇(t) =
ˆ̇
ξ

2
eiωt +

ˆ̇
ξ∗

2
e−iωt

(13)

equation (11) becomes

eiωt

[

f̂exc −
(

R + iωm +
S

iω

)

ˆ̇
ξ

]

+ e−iωt

[

f̂∗

exc −
(

R − iωm − S

iω

)

ˆ̇
ξ∗
]

= 0 (14)

Defining an impedance Z = R + i
(

ωm − S
ω

)

, expression (14)

can be rewritten as

eiωt
(

f̂exc − Z
ˆ̇
ξ
)

+ e−iωt
(

f̂∗

exc − Z∗ ˆ̇
ξ∗
)

= 0 (15)

For (15) to be satisfied for all values of time t, condition

ˆ̇
ξ =

f̂exc

Z
⇒
∣

∣

∣

ˆ̇
ξ
∣

∣

∣
=

∣

∣

∣
f̂exc

∣

∣

∣

|Z| (16)

must be verified.

The impedance can be rewritten as Z = R + iX . The

real part R = Re[Z] is called resistance and the imaginary part

X = Im[Z] = ωm − S
ω

is called reactance. Suppose now that
a control force fu is applied to the AWS. This will be needed

to ensure that the conditions leading to maximum wave energy

absorption (or at least conditions as close as possible to those)

are met. Then

Z(ω)Ξ̇(ω) = Fexc(ω) + Fu(ω) (17)

The absorbed wave energy Wu can be given by

Wu = −
∫ +∞

0

fu(t)ξ̇(t)dt (18)

Considering that fu and ξ̇ are real functions, i.e.,

F ∗

u (ω) = Fu(−ω) and Ξ∗(ω) = Ξ(−ω), by applying
Parseval’s theorem, Wu can be given by

Wu = − 1

2π

∫ +∞

−∞

[

Fu(ω)Ξ̇∗(ω)
]

dω (19)

Knowing that Wu is real,

Fu(ω)Ξ̇∗(ω) = Re
[

Fu(ω)Ξ̇∗(ω)
]

=

=
1

2

[

Fu(ω)Ξ̇∗(ω) + F ∗

u (ω)Ξ̇(ω)
]

(20)

expression (19) can be rewritten as

Wu =
1

2π

∫ +∞

0

[

−Fu(ω)Ξ̇∗(ω) − F ∗

u (ω)Ξ̇(ω)
]

dω (21)

It will be convenient to add and subtract the term
Fexc(ω)F∗

exc
(ω)

2R

to the integrand of (21), and finally Wu is now given by (omit-

ting the frequency argument)

Wu =
1

2π

∫ +∞

0

[

|Fexc|2
2R

−|Fexc|2
2R

− FuΞ̇∗ − F ∗

u Ξ̇

]

dω =

=
1

2π

∫ +∞

0

[

|Fexc|2
2R

− α

2R

]

dω (22)



where α(ω), called optimum condition coefficient, is given by

α(ω) = Fexc(ω)F ∗

exc(ω)

+ 2R
[

Fu(ω)Ξ̇∗(ω) + F ∗

u (ω)Ξ̇(ω)
]

(23)

After some tedious manipulations, it turns out that

α =
∣

∣

∣
Fexc(ω) − 2RΞ̇(ω)

∣

∣

∣

2

≥ 0. So, it is when α(ω) = 0 that

Wu is maximal, and an optimum condition can be written as

Fexc(ω) = 2RΞ̇(ω) (24)

Since 2R is constant, ξ̇ must be in phase with fexc.

5.2 IMC with linear models

The application of IMC with linear models to the AWS was

already documented in [21]. The configuration of Fig. 4 was

used together with a reference given by

ξ̇setpoint =
2.2

max |fexc|
fexc (25)

In other words, the floater’s vertical velocity will be in phase
with the wave excitation force. Constant 2.2 appears because

the nominal value for the floater’s vertical velocity that the AWS

should work with is 2.2 m/s [22]. Foreknowledge of the incom-

ing wave (and thus of fexc) was assumed in all simulations, and
thus the denominator of the fraction is a constant.

It should be noticed that this is not the constant in (24). Sim-

ulations with the AWS TDM have shown that (25) leads to a

higher energy production. Since (24) is an optimum condition,
it may seem odd that changing the constant can lead to better re-

sults. This is because (24) was derived for a linear model, such

as (1). With a non-linear model, such as the AWS TDM, this

condition is merely an approximation; it is no longer optimum,

but the closer the linear model is from the non-linear one, the
better will be the results obtained when the condition is satis-

fied. This is why it is possible that changes to condition (24)

may improve the results.

Model G′ was given by (1) multiplied by s (this additional
zero at the origin serving to have the floater’s vertical velocity—

and not its position—as the output):

Ξ̇(s)

Fexc(s) + Flg(s)
=

2.259 × 10−6s

0.6324s2 + 0.1733s + 1
(26)

The inverse model was G∗ = 1
G′ . Since G∗ is not causal, filter

F had to have more poles than zeros. It was found by trial and

error that a second order filter without zeros was the best op-

tion. The position of the poles was adjusted so as to maximise
the absorbed wave energy for the simulation that uses an irregu-

lar wave with parameters corresponding to the month of March

(deemed to be a significant month). The values found were

F =
600

(s + 23)(s + 20)
(27)

This is reasonable since it corresponds to a low-pass filter that
preserves the frequencies where waves are expected to appear,

while cutting off higher ones.

Because of this, the product FG∗ has an integral action.

Since the signal it acts upon (labelled e in Fig. 4) has a resid-

ual non-null average, this lead to an ever-increasing (or ever-
decreasing) control action, something that was not intended. To

prevent this, the control action had to be corrected, by subtract-

ing its average, computed from the beginning of the simulation

and actualised on-line.

5.3 IMC with neural networks

Similar simulations were performed, replacing G′ and G∗ by

the neural networks from section 4. The correction of the con-

trol signal was no longer required because the inverse model no

longer has an integral action. Filter F was kept equal to (27) for
two reasons: first, to make comparison easier (a different filter

might be blamed for the differences in absorbed wave power);

second, because it was found out that a different filter would not

significantly improve results.

6 Simulation results

Table 3 gives data for the absorbed wave energy obtained

when simulations are run with twelve irregular waves for the
twelve months of the year. Fig. 11 shows how absorbed wave

energy evolves with time for two significant months. Simula-

tions with a duration of 600 s (10 min) were carried out, employ-

ing several incident waves, as mentioned above. In all cases, the
absorbed wave energy is given by

Wu =

∫ 600

0

−flg(t)ξ̇(t)dt (28)

Notice that flg is identified with fu in (18). These Tables also

include values for the situation when no control strategy is ap-

plied to the AWS, and the floater heaves freely. In this situation,

flg has a residual value, and that is the source of the energy
given. In the Tables, no comparison with the theoretical max-

imum obtainable by an ideal heaving WEC is given, since (as

said above) the AWS model was modified, and so such a com-

parison is rendered pointless.

The first comment these results deserve is that absorbed wave

energy increases are very significant. IMC with linear models

performs best during the May—September period (a sort of ex-

tended summer); IMC with NNs performs best during the rest of
the year. Actually, during summer IMC with NNs performs so

poorly that in July absorbed wave energy values are lower than

those obtained without any control at all. Nevertheless, con-

sidering the whole year, IMC with NNs is the most advisable
control method.

Figures 12 and 13 give an insight into the reason why some-

times one control strategy works better than the other. They
show 40 s of the data on wave excitation force and floater’s

velocity for all months of the year. It can be seen that, when

no control strategy is used, the velocity is not in phase with

the excitation force. On the other hand, IMC successfully puts

these two variables in phase. This is why wave energy absorp-
tion increases. IMC with NNs is more efficient in putting the

variables in phase than IMC with linear models. This accounts

for the higher energy absorption, in most months, when the for-

mer control strategy is used. But there is another important pa-
rameter: the amplitude of the oscillations. It can be seen that,

during those months in which IMC with NNs performs worst,

the floater’s velocity is always small (and hence the oscillations

never have a large amplitude). That is why less energy can then
be absorbed.

Results even better than these might be obtained switching

between those two control strategies: IMC with linear models

should be turned on during those months in which simulations
show it will perform better. More refined switching strategies,

based upon the frequency spectrum of incoming waves, could be

conceived, but in this paper no attempt was made to implement

them.



Table 3: Power in kW obtained under several irregular waves (figurative data)

Controller Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

None 14.3 11.4 9.1 7.7 4.5 4.5 3.5 3.4 4.5 6.7 9.9 13.6

IMC with linear model 87.5 68.1 50.6 48.3 18.1 12.5 9.6 10.2 21.0 33.5 57.4 78.3

% increase from no control 512 497 456 527 302 178 174 200 367 400 480 476

IMC with NN 115.7 92.6 63.0 55.4 6.9 4.7 3.2 3.9 8.7 42.5 76.2 103.1

% increase from no control 709 712 592 619 53 4 −9 15 93 534 670 658
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Figure 13: Fig. 12 continued



7 Conclusions

In this paper IMC was successfully applied to control the

AWS in simulation. Significant absorbed wave energy increases

were found, both using linear models and NNs. Results were

better when IMC with NNs was employed (with a nearly six-
fold increase of absorbed wave energy along the whole year,

against a fivefold increase for IMC with linear models), save

for the May—September period, when IMC with linear models

performs better.

There is plenty of future work in this area. The identification

of NN models for the AWS can still be improved. These control
strategies must be compared with others, such as latching con-

trol. And some switching strategy, to commute between differ-

ent controllers with different performances for waves with dif-

ferent characteristics, can be implemented. Finally, these con-
trol strategies should be implemented in the second-generation

prototype of the AWS currently under development. These top-

ics will be the subject of future research.
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