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S. Lewis*,†,‡,§ 

†
Division of Chemistry and Chemical Engineering, ‡Beckman Institute, and §Kavli Nanoscience 

Institute, California Institute of Technology, Pasadena, California 91125, United States 

ABSTRACT 

 Functionalization of semiconductor surfaces with organic moieties can change the charge 

distribution, surface dipole, and electric field at the interface. The modified electric field will 

shift the semiconductor band-edge positions relative to those of a contacting phase. Achieving 

chemical control over the energetics at semiconductor surfaces promises to provide a means of 

tuning the band-edge energetics to form optimized junctions with a desired material. Si(111) 

surfaces functionalized with 3,4,5-trifluorophenylacetylenyl (TFPA) groups were characterized 

by transmission infrared spectroscopy (TIRS), X-ray photoelectron spectroscopy (XPS), and 

surface recombination velocity (S) measurements. Mixed methyl/TFPA-terminated (MMTFPA) 

n- and p-type Si(111) surfaces were synthesized and characterized by electrochemical methods. 

Current density versus voltage and Mott-Schottky measurements of Si(111)–MMTFPA 

electrodes in contact with Hg indicated that the barrier height, Φb, was a function of the 

fractional monolayer coverage of TFPA (θTFPA) in the alkyl monolayer. Relative to Si(111)–CH3 

surfaces, Si(111)–MMTFPA samples with high θTFPA produced shifts in Φb of ≥0.6 V for n-

Si/Hg contacts and ≥0.5 V for p-Si/Hg contacts. Consistently, the open-circuit potential (Eoc) of 

Si(111)–MMTFPA samples in contact with CH3CN solutions that contained the 1-electron redox 

couples decamethylferrocenium/decamethylferrocene (Cp*
2Fe+/0) or methyl viologen (MV2+/+�) 
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 2 

shifted relative to Si(111)–CH3 samples by +0.27 V for n-Si and by up to +0.10 V for p-Si. 

Residual surface recombination limited the Eoc of p-Si samples at high θTFPA despite the 

favorable shift in the band-edge positions induced by the surface modification process. 

I. INTRODUCTION 

The photovoltage produced by a semiconductor device is defined by the energetics of the 

junction.1 Modern semiconductor devices rely heavily on p-n homojunctions to form a voltage-

producing junction that is independent of the energetics of the interfacing phase, which can 

include metals,2-3 metal oxides,4-8 catalysts,9-10 conductive polymers,11-14 and electrolytes.15-17 

Many semiconductors cannot, however, be doped to form high-quality p-n homojunctions, and 

moreover the diffusive doping processes used to fabricate emitter layers is generally not 

compatible with small-grain-size polycrystalline thin-film semiconducting base layers.18-19 In 

these cases it is often necessary to form a voltage-producing junction between the semiconductor 

and a contacting phase, e.g. a semiconductor liquid junction. Therefore, the development of 

methods to tune the semiconductor energetics relative to those of the contacting phase using thin 

or monolayer films could enable the use of new polycrystalline or thin-film materials in devices 

as well as lower the processing costs associated with device fabrication.   

In the context of this work, the term “surface dipole” is used to refer to the unequal 

distributions of positive and negative charge at the silicon surface. This surface dipole produces 

an interfacial electric field that shifts the band-edge positions of the silicon relative to those in 

the contacting phase. Thus, shifts in band-edge positions produced by the surface dipole are 

reported in V or eV. 

Control over the direction and magnitude of the surface dipole at the semiconductor 

surface, through chemical attachment of a molecular species, allows for manipulation of the 
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 3 

semiconductor’s interfacial electric field to produce effective charge separation at the interface.20 

In principle, the barrier height, Φb, can be adjusted as a function of the surface dipole moment, 

allowing the relative band-edge positions to be tuned to drive a desired process (Figure 1). 

Control of the surface dipole for use in photoelectrochemical devices requires that the surface is 

stable under operational conditions and that a small or negligible fraction of the current is lost to 

surface recombination. A positive surface dipole has been produced on GaInP2 and GaAs 

substrates by chemical functionalization.21-23 The band-edge positions of Si(111) surfaces have 

also been modified to improve the energetics of junctions with metal oxides for use in catalytic 

applications.24-25  

 

Figure 1. Effect of a surface dipole on the band-edge positions and barrier height, Φb, for a p-

type semiconductor. The partial δ+ and δ– charges show the orientation of the dipole moment at 

the interface necessary to achieve the desired band-edge shift. The relative energy positions of 

the valence band, EV, the Fermi level, EF, the conduction band, EC, the vacuum level, EVac, and 

the average electron energy of the contacting phase, E(A/A–), are indicated.  
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 4 

process26-31 has been shown to produce methyl-terminated Si(111) surfaces, Si(111)–CH3, with 

low surface recombination velocities, S, that are stable for >500 h in air.32-34 Relative to Si(111)–

H surfaces, Si(111)–CH3 surfaces are more stable against oxide formation35-37 and are readily 

interfaced with metals without the formation of metal silicides.38-39 However, methyl-termination 

of Si(111) produces a –0.4 V surface dipole,38-42 which on p-Si surfaces will lower Φb at the Si 

interface and reduce the electric field at the junction that drives the charge separation.  

Surface functionalization with groups that contain C–F bonds, such as 3,4,5-

trifluorophenylacetylene (TFPA), should in principle produce a dipole moment opposite in sign 

to the C–H bonds in –CH3 groups, and thus lead to a reversal of the negative dipole at p-type 

Si(111)–CH3 surfaces. Mixed monolayer chemistry at Si(111) surfaces allows for 

functionalization of the surface with bulky groups that contain a desired functionality while 

maintaining low S and high Si–C termination.7, 34, 43-45 A mixed methyl/TFPA (MMTFPA) 

surface could therefore provide desirable passivation of the Si surface while allowing for the 

dipole to be moved more positive as a function of fractional monolayer TFPA coverage, θTFPA. 

Additionally, the C–F bonds in the TFPA groups are chemically inert and oriented with a 

significant portion of the dipole moment normal to the surface. MMTFPA monolayers on 

Si(111) surfaces could provide a robust method for controlling the semiconductor band-edge 

positions to impart desirable interfacial energetics without requiring formation of a p-n 

homojunction. Accordingly, we describe herein the synthesis and characterization of Si(111)–

MMTFPA surfaces, the electrochemical properties of these surfaces in contact with Hg, and the 

photoelectrochemical behavior of Si(111)–MMTFPA surfaces in contact with CH3CN solutions 

that contain the 1-electron redox couples decamethylferrocenium/decamethylferrocene  

(Cp*
2Fe+/0) and methyl viologen (MV2+/+�). 
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II. EXPERIMENTAL 

 II.A. Materials and Methods. Water with a resistivity of ≥18.2 MΩ cm was obtained 

from a Barnstead E-Pure system. Ammonium fluoride (NH4F(aq), 40%, semiconductor grade, 

Transene Co., Inc., Danvers, MA) was purged with Ar(g) (99.999%, Air Liquide) for ≥1 h prior 

to use. 3,4,5-trifluorophenylacetylene (TFPA, SynQuest Laboratories, Alachua, FL) was purified 

by four freeze-pump-thaw cycles, dried over activated 3 Å molecular sieves (Sigma Aldrich), 

and stored in a N2(g)-purged glovebox (<10 ppm O2(g)) in a foil-wrapped glass Schlenk tube. All 

other chemicals were used as received. 

 Si wafers were oriented to within 0.5° of the (111) crystal plane. Float-zone-grown Si 

wafers (University Wafer, Boston, MA) that were used for transmission infrared spectroscopy 

(TIRS) were double-side polished, not intentionally doped, had a resistivity of >2 kΩ cm, and 

were 525 ± 15 µm thick. Float-zone-grown Si wafers (FZwafers.com, Ridgefield Park, NJ) used 

for S measurements were double-side polished, not intentionally doped, had with a resistivity of 

20–40 kΩ cm, and were 300 ± 25 µm thick. Czochralski-grown n-Si wafers (University Wafer, 

Boston, MA) used for electrochemical experiments were single-side polished, doped with 

phosphorus to a resistivity of 1.1–1.2 Ω cm, and were 380 µm thick. Czochralski-grown p-Si 

wafers (Silicon Quest International, San Jose, CA, or Addison Engineering, San Jose, CA) used 

for electrochemical experiments were single-side polished (Silicon Quest International) or 

double-side polished (Addison Engineering), doped with boron to a resistivity of 0.40–0.43 Ω 

cm, and were 300 ± 25 µm thick.  

 II.A.1. Preparation of lithium 3,4,5-trifluorophenylacetylide. In a 250 mL round-bottom 

flask that was connected to a Schlenk line, degassed and dried 3,4,5-trifluorophenylacetylene 

(TFPA, 1.95 g, 12.5 mmol) was dissolved in hexanes (100 mL, anhydrous, mixture of isomers, 
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 6 

≥99%, Sigma-Aldrich). The contents of the flask were cooled to –78 °C in a dry ice/acetone bath 

and were stirred vigorously while n-butyllithium (n-BuLi, 1.68 M in hexanes, 7.3 mL, 12.3 

mmol, Sigma-Aldrich) was added dropwise via a syringe. The reaction was allowed to proceed at 

–78 °C for 30 min, after which the flask was allowed to warm to room temperature while being 

stirred for an additional 60 min, yielding a white slurry. The slurry was transferred under an inert 

atmosphere to an amber bottle, which was stored at 8 °C. Immediately before use, 

tetrahydrofuran (THF, anhydrous, ≥99.9%, Sigma-Aldrich) was added to the lithium 3,4,5-

trifluorophenylacetylide (LiTFPA) slurry in 1:4 v/v THF:hexanes to solvate the product, forming 

a 0.10 M solution. 

 II.A.2. Preparation of Si(111)–H Surfaces. Wafers were cut to the desired size using a 

diamond-tipped scribe. The samples were washed sequentially with water, methanol (≥99.8%, 

BDH), acetone (≥99.5%, BDH), methanol, and water. The wafers were then immersed in a 

piranha solution (1:3 v/v of 30% H2O2(aq) (EMD): 18 M H2SO4 (EMD)) and heated to 95 ± 5 °C 

for 10–15 min. The solution was drained and the wafers were rinsed with copious amounts of 

water. The oxide was removed by immersing the wafers in aqueous buffered hydrofluoric acid 

(HF, semiconductor grade, Transene Co., Inc.) for 18 s, followed by a brief rinse with water. 

Atomically flat Si(111)–H surfaces were formed by anisotropic etching for 5.5 min in an Ar(g)-

purged solution of NH4F(aq).33. To remove bubbles that formed on the surface, the wafers were 

agitated at the start of every minute of etching, and the solution was purged throughout the 

etching process. After etching, the wafers were rinsed with water and dried under Ar(g). 

II.A.3. Preparation of Si(111)–Cl Surfaces. The Si(111)–H wafers were transferred to a 

N2(g)-purged glovebox with <10 ppm O2(g) and rinsed with chlorobenzene (anhydrous, ≥99.8%, 

Sigma-Aldrich). The wafers were placed into a saturated solution of phosphorus pentachloride 
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 7 

(PCl5, ≥99.998% metal basis, Alfa Aesar) in chlorobenzene, and were heated to 90 ± 2 °C for 45 

min.33 The addition of benzoyl peroxide, which has been used as a radical initiator,46 was found 

not to be necessary to yield high-quality Si(111)–Cl surfaces. When the reaction finished, the 

wafers were removed from the reaction solution and rinsed sequentially with chlorobenzene and 

anhydrous THF. 

II.A.4. Alkylation of Si(111)–Cl Surfaces. Si(111)–CH3 surfaces were prepared by 

immersing the Si(111)–Cl surfaces in a 3.0 M solution of methylmagnesium chloride (CH3MgCl, 

Acros Organics) and heating to 50 ± 2 °C for 12–24 h.33. Mixed methyl/TFPA (MMTFPA) 

monolayers (Scheme 1) were formed by first reacting Si(111)–Cl surfaces with LiTFPA (0.10 M 

in 1:4 v/v THF:hexanes) for 1–20 h at 23–65 °C in the absence of light. The wafers were then 

rinsed with THF and submerged in 3.0 M CH3MgCl for 12–24 h at 50 °C.7, 34, 43 Si(111)–TFPA 

surfaces were prepared by reacting Si(111)–Cl wafers with LiTFPA (0.10 M) at 65 °C for 10–20 

h.  

After completion of the reactions to yield the target surfaces, the wafers were removed 

from the reaction solution, rinsed with THF, and submerged in THF. The samples were removed 

from the glovebox and sonicated for 10 min in each of THF, methanol, and water. Following 

sonication, the wafers were rinsed with water and dried under Ar(g). For the fabrication of 

electrodes, wafers were broken into appropriately sized pieces, rinsed again with water, and dried 

under Ar(g).  
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 8 

Scheme 1. Synthesis of Si(111)–TFPA and Si(111)–MMTFPA Surfaces. 

 

II.A.5. Formation of Ohmic Contacts to the Back of n- and p-Si(111) Electrodes. After 

functionalization, ohmic contacts were formed to the back of n-Si(111) electrodes by application 

of Ga-In eutectic (78% Ga, 22% In by weight) using a diamond-tipped scribe. Prior to 

functionalization, ohmic contacts were formed to p-Si(111) samples by electron-beam 

evaporation (Denton Vacuum) of 100 nm of Al onto the backside of the wafer.47 The wafers 

were then annealed in a Carbolite tube furnace at 450 °C for 30 min under an atmosphere of 

forming gas (5% H2(g) in N2(g)) flowing at 5 L min-1. The Al layer was isolated from reaction 

solutions during the functionalization process by use of a custom Teflon reaction vessel (Figure 

S1, Supporting Information).  

II.A.6. Electrochemical Measurements in Contact with Hg. Electrochemical 

measurements in contact with Hg40 (electronic grade 99.9999% trace metal basis, Sigma-Aldrich 

or Alfa Aesar) were performed inside an Ar(g)-filled glovebox (< 0.3 ppm O2(g)) at 23 °C. The 

wafers were placed on a Cu plate (with the GaIn eutectic contacting the Cu plate), and a 

cylindrical Teflon cell was placed on top of the wafer, to produce an electrode area of 0.314 cm2. 

Hg was added to the Teflon cell to cover the exposed area of the wafer, and a Pt wire contacted 

the top of the Hg. Electrochemical measurements were collected using a two-electrode setup, 

with the Cu plate connected to the working electrode and the Pt wire connected to the counter 
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 9 

electrode. All voltages measured in a 2-electrode setup are indicated by V, while potentials 

measured in a 3-electrode setup are indicated by E. 

Current density versus voltage (J-V) measurements were performed from –0.5 to +0.5 V 

at a scan rate of 20 mV s-1.  The sampling rate was 1 mV per data point, using a Solartron 1287 

potentiostat operated by CorrWare software (v. 3.2c). Three J-V scans were collected before and 

after collection of differential capacitance versus voltage (Cdiff-V) data. Cdiff-V data were acquired 

with a 10 mV amplitude sinusoidal signal at an applied DC bias, with the DC bias varied in 

increments of 0.05 V between 0 and +0.5 V for n-Si and between 0 and –0.5 V for p-Si 

electrodes. The frequency was varied from 101 to 106 Hz at each DC bias. Cdiff-V measurements 

were collected using a Schlumberger SI 1260 frequency response analyzer operated by ZPlot 

software (v. 3.3e).  

II.A.7. Photoelectrochemical Measurements in Acetonitrile. Si working electrodes were 

fabricated by using high-purity conductive Ag paint (SPI Supplies, West Chester, PA) to affix a 

coil of tinned Cu wire to the back side of the Si electrode. The wire was threaded through a ¼” 

outer diameter Pyrex tube, and the wafer was secured to the tube using Loctite 9460 epoxy 

(cured under ambient conditions for 12–24 h) such that the wafer surface was perpendicular to 

the length of the tube. Electrodes used for current density versus potential (J-E) and differential 

capacitance versus potential (Cdiff-E) measurements were 0.14 to 0.61 cm2 in area, as determined 

by analyzing scanned images of each electrode with ImageJ software. All J-E and Cdiff-E 

measurements used a standard 3-electrode setup. 

Decamethylferrocene (Cp*
2Fe, bis(pentamethylcyclopentadienyl)iron(II), 99%) was 

purchased from Strem Chemical and was purified by sublimation.  The oxidized 

decamethylferrocenium (Cp*
2Fe+, bis(pentamethylcyclopentadienyl)iron(III) tetrafluoroborate) 
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 10 

was synthesized by chemical oxidation of decamethylferrocene and purified by recrystallization 

from diethyl ether and acetonitrile.48 Methyl viologen (MV2+, 1,1’-dimethyl-4,4’-bipyridinium 

hexafluorophosphate) was prepared according to a literature procedure.49 The reduced species 

MV+� was generated by controlled-potential electrolysis of MV2+ at –0.85 V versus AgNO3/Ag 

(Bioanalytical Systems, Inc.) with a Pt mesh working electrode in the main electrochemical cell 

compartment and a Pt mesh counter electrode located in a compartment that was separated from 

the main electrochemical cell by a Vycor frit. Subsequent in situ generation of the MV+� species 

was performed to maintain the cell potential within 25 mV of the initial measured open-circuit 

potential versus a AgNO3/Ag reference electrode. 

Photoelectrochemical measurements were performed in acetonitrile (CH3CN, EMD, dried 

over columns of activated alumina) with 1.0 M LiClO4 (battery grade, Sigma-Aldrich) inside an 

Ar(g)-filled glovebox that contained <0.5 ppm of O2(g). The concentrations of the redox-couple 

species in solution were either 1.2 mM Cp*
2Fe+ and 0.92 mM Cp*

2Fe or were 1.5 mM MV2+ and 

0.035 mM MV+� (calculated based on charge passed during electrolysis). Initial open-circuit 

measurements were collected in the dark and also were collected under 100 mW cm-2 of 

illumination provided by a 300 W ELH-type tungsten-halogen lamp. The light intensity was 

calibrated by use of a Si photodiode (Thor Laboratories). J-E data were collected from –0.5 to 

+0.5 V versus a Pt wire pseudo-reference electrode in a three-electrode setup with a Pt mesh 

counter electrode, using a Gamry Reference 600 potentiostat operated by Gamry Instruments 

Framework software (v. 5.61). A four-port, cylindrical, flat-bottomed, borosilicate glass cell was 

used for the photoelectrochemical measurements. Cdiff-E measurements were collected using a 

Gamry Reference 600 potentiostat with the same specifications used for the measurements 

performed in contact with Hg.  
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 11 

II.B. Instrumentation. II.B.1. Transmission Infrared Spectroscopy. TIRS data were 

collected using a Thermo Scientific Nicolet 6700 optical spectrometer33 equipped with a 

thermoelectrically cooled deuterated L-alanine-doped triglycine sulfate (DLaTGS) detector, an 

electronically temperature-controlled (ETC) EverGlo mid-IR source, a N2(g) purge, and a KBr 

beam splitter. A custom attachment allowed the wafers (1.3 × 3.2 cm) to be mounted with the 

incident IR beam at 74° (Brewster’s Angle for Si) or 30° with respect to the surface normal. 

Spectra collected at 74° show modes that are either perpendicular or parallel to the surface, while 

spectra collected at 30° show primarily modes parallel to the surface.50 The spectra reported 

herein are averages of 1500 scans at 4 cm-1 resolution. The baseline was flattened and the 

residual water peaks were subtracted in the reported spectra. Spectra were collected and 

processed using OMNIC software v. 9.2.41. The background SiOx and Si(111)–H spectra were 

recorded separately for each sample.  

II.B.2. X-ray Photoelectron Spectroscopy. XPS data were collected using a Kratos AXIS 

Ultra spectrometer.7, 33, 51 The instrument was equipped with a hybrid magnetic and electrostatic 

electron lens system, a delay-line detector (DLD), and a monochromatic Al Kα X-ray source 

(1486.7 eV). Data were collected at pressures <9 × 10–9 Torr and the photoelectron ejection 

vector was 90° with respect to the sample surface plane. The electron-collection lens aperture 

was set to sample a 700 × 300 µm spot, and the analyzer pass energy was 80 eV for survey 

spectra and 10 eV for high-resolution spectra. The instrument energy scale and work function 

were calibrated using clean Au, Ag, and Cu standards. The instrument was operated by Vision 

Manager software v. 2.2.10 revision 5. 

II.B.3. Surface Recombination Velocity. S measurements were performed using a 

contactless microwave conductivity apparatus.7, 33-34, 43 A 20 ns laser pulse at 905 nm provided 
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 12 

by an OSRAM laser diode and an ETX-10A-93 driver generated electron-hole pairs. The charge-

carrier lifetime was determined by monitoring the change in reflected microwave intensity using 

a PIN diode connected to an oscilloscope. The data were collected using a custom LabView 

program. All photoconductivity decay curves were averages of 64 consecutive decays. Reported 

data were collected after the S value had stabilized in the presence of air, usually 24–72 h after 

preparation of the surface. 

II.C. Data Analysis. Detailed information for the fitting and quantification of XPS data, 

calculation of S, and analysis of J-V, J-E, Cdiff-V, and Cdiff-E data is presented in the Supporting 

Information. 

II.C.1. Determination of the Effective Solution Potentials for Photoelectrochemical Cells. 

The Nernstian cell potential, E(Cp*
2Fe+/0), for Cp*

2Fe+/0 in CH3CN with 1.0 M LiClO4 was 

measured to be +0.023 V versus the formal potential of the redox couple, which is E°’(Cp*
2Fe+/0) 

= –0.468 V versus ferrocenium/ferrocene.47 The reference potential was converted to the 

saturated calomel electrode (SCE) by use of the experimentally determined value of E°’(Fc+/0) = 

+0.311 versus SCE.47 E(MV2+/+�) for the MV2+/+� in CH3CN with 1.0 M LiClO4 was measured as 

–0.781 V versus AgNO3/Ag. The cell reference potential was converted to SCE using 

E(AgNO3/Ag) = +0.393 V versus SCE.52  The measured cell potentials were converted to 

effective cell potentials, for which a normalizing 10 mM concentration was used for comparison 

with previous results.  The effective cell potential for n-Si electrodes, Eeff,n (A/A–) was 

determined by:47 

 (1) 

and the effective cell potential for p-Si electrodes Eeff,p (A/A–) was determined by: 

E
eff, n

A / A
−( ) = E A / A

−( )+
k

B
T

q
ln

A
eff

−⎡⎣ ⎤⎦

A
−⎡⎣ ⎤⎦
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 (2) 

Here, and are the effective 10 mM concentrations of the reduced and oxidized 

species, respectively, and  and  are the solution concentrations of the reduced and 

oxidized species, respectively.  For the Cp*
2Fe+/0 cell, Eeff,n (Cp*

2Fe+/0) = –0.073 V versus SCE, 

and Eeff,p (Cp*
2Fe+/0) = –0.188 V versus SCE. For the MV2+/+� cell, Eeff,n (MV2+/+�) = –0.244 V 

versus SCE, and Eeff,p (MV2+/+�) = –0.436 V versus SCE. 

III. RESULTS 

 III.A. Spectroscopic Characterization and Surface Recombination Velocity of 

Si(111)–TFPA and Si(111)–MMTFPA Surfaces. Figure 2 presents TIRS data for a Si(111)–

TFPA surface collected at 74° and 30° incidence with respect to the surface normal. The 

spectrum collected at 74° incidence exhibited an intense peak at 1533 cm–1, which was ascribed 

to primary skeletal phenyl C–C stretching vibrations.53-54 This peak was reduced in intensity at 

30° incidence, indicating that this motion has a significant component that is perpendicular to the 

surface. At 74° incidence, weak peaks were observed at 1612, 1584, 1432, 1366, and 1351 cm–1 

and were characteristic of aromatic systems.54 At 30° incidence, the signal at 1432 cm–1 was 

readily observed, while the other characteristic aromatic C–C stretching peaks were not present. 

A sharp signal observed for 74° incidence at 1251 cm–1 was indicative of C–F stretching,54-56 and 

this peak was greatly reduced in intensity at 30° incidence. A very weak signal at 2160 cm–1 was 

observed only at 74° incidence, indicating the presence of C≡C triple bond stretching 

perpendicular to the surface.54 Weak C–H stretching signals were observed only for 74° 

incidence at 2962 and 2853 cm–1, which can be ascribed to adventitious saturated hydrocarbon 

species.50 No distinct aromatic C–H stretch (typically near 3050 cm–1) signal was observed for 

Eeff, p A / A−( ) = E A / A−( )−
kBT

q
ln

Aeff[ ]
A[ ]

A
eff

−⎡⎣ ⎤⎦ A
eff[ ]

A
−⎡⎣ ⎤⎦ A[ ]
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the surface-bound TFPA group. A broad peak centered near 1050 cm–1 was ascribed to 

transverse optical (TO) Si–O–Si stretching.50 The observation of this mode indicated the 

presence of subsurface SiOx, consistent with the oxidation of unreacted Si–Cl sites on the 

functionalized surface.  A sharp signal overlapped by the Si–O–Si stretching peak was observed 

at both angles of incidence centered at 1055 cm–1 and was ascribed to in-plane aromatic C–H 

bending. No residual Si–H signal was detected when a SiOx surface was used as a reference, 

indicating that the surface sites were only terminated by TFPA or Cl moieties.  
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Figure 2. TIRS data for a Si(111)–TFPA surface collected at 74° (top) and 30° (bottom) with 

respect to the surface normal. The symbols ν and δ indicate stretching and bending motions, 

respectively, and the subscript “Ph” indicates modes associated with the phenyl ring. The 

spectrum collected at 74° had θTFPA = 0.16 ML and θSiOx
 = 0.17 ML, while the spectrum 

collected at 30° had θTFPA = 0.25 ML and θSiOx
 = 0.03 ML. The spectra were referenced to the 

Si(111)–H surface. The peak at 1533 cm–1 and the surrounding satellite peaks were attributed to 

skeletal C–C stretching in the phenyl ring. The C–F stretch was observed at 1251 cm–1, and a 

weak C≡C stretch was observed at 2160 cm–1. The inset shows a magnified portion of the 

spectrum from 2250 to 2000 cm–1. 
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TIRS data for a Si(111)–MMTFPA sample with θTFPA = 0.16 ML are presented in Figure 

S2 (Supporting Information). The Si(111)–MMTFPA surface showed the modes associated with 

the phenyl ring and aromatic C–F stretching observed in Figure 2 in addition to reduced SiOx 

content. The symmetric C–H bending, δs(C–H),50 mode overlapped significantly with the C–F 

stretching peak, resulting in a single peak at 1253 cm–1. Additionally, the –CH3 rocking mode 

was observed at 762 cm–1.50 The presence of these peaks demonstrates that the Si(111)–

MMTFPA exhibits both TFPA and –CH3 functionality. 

 Figure 3 shows the surface recombination velocity (S) as a function of the composition of 

the functionalized Si surfaces. The Si(111)–CH3 surface exhibited S = 13 ± 5 cm s–1, which 

corresponds to a trap-state density, Nt, of ~1.3 × 109 cm–2, i.e. 1 trap for every 6.0 × 105 surface 

sites. This low trap-state density has been shown to be stable over >500 h of air exposure.32-33 A 

substantial increase in S was observed for surfaces with θTFPA > 0.1 ML, which is consistent with 

an increase in S observed for increased fractional coverages of bulky groups in mixed 

monolayers on Si(111) surfaces.34, 43 A Si(111)–MMTFPA surface with θTFPA = 0.10 ML 

exhibited S = (1.6 ± 0.5) × 102 cm s–1, corresponding to Nt =1.6 × 1010 cm–2. With θTFPA = 0.22 

ML, a Si(111)–MMTFPA surface had S = (1.9 ± 0.1) × 103 cm s–1, corresponding to Nt = 1.9 × 

1011 cm–2. The Si(111)–TFPA surface, which had higher θTFPA than the measured Si(111)–

MMTFPA samples, exhibited substantially higher S than was observed for the measured 

Si(111)–MMTFPA. 
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Figure 3. S values for Si(111)–CH3, Si(111)–MMTFPA, and Si(111)–TFPA surfaces as a 

function of fractional monolayer coverage with TFPA groups. For θTFPA > 0.1 ML, S increased 

rapidly.  

 

 Figure 4a presents a representative XP survey spectrum of a Si(111)–MMTFPA surface 

with θTFPA = 0.11 ML. Survey spectra were free of contaminants and only showed the presence 

of Si, C, O, and F core-level peaks. A high-resolution C 1s spectrum showed the presence of C 

bound to Si at 284.2 eV,33, 41, 57 C bound to C at 285.3 eV, C bound to O at 286.8 eV, and C 

bound to F at 288.0 eV (Figure 4b).45, 58-59 Figure 4c shows the high-resolution Si 2p XP 

spectrum, which showed only bulk Si0 and no detectable high-order SiOx in the 102–104 eV 

region. The F 1s high-resolution spectrum exhibited a single peak at 688.3 eV (Figure 4d), 

indicative of a single source of F on the surface.59 Generally, samples with θTFPA < 0.15 ML 

exhibited no detectable SiOx in the 102–104 eV range, while samples with θTFPA > 0.15 ML 

exhibited θSiOx
 = 0.07 ± 0.02 ML. Samples with θTFPA > 0.2 ML also often exhibited a small 

amount of residual Cl, which gave an average Si–Cl coverage,  θCl, of 0.11 ± 0.01 ML.  
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Figure 4. XPS data for an n-Si(111)–MMTFPA surface with θTFPA = 0.11 ML. The survey 

spectrum (a) exhibited signals from Si, C, O, and F. The high-resolution C 1s spectrum (b) 

showed signals ascribed to C bound to Si (CSi), C bound to C (CC), C bound to O (CO), and C 

bound to F (CF). The Si 2p high-resolution spectrum (c) showed peaks attributed to bulk Si0 with 

no detectable high-order SiOx (magnified region). The F 1s high-resolution spectrum (d) 

exhibited a single peak ascribed to F bound to C.  

 

Figure S3 (Supporting Information) shows analogous XP spectra for a Si(111)–TFPA 

surface with θTFPA = 0.35 ML. Without subsequent methylation, the Si(111)–TFPA surface 

exhibited residual Cl, as seen in the survey spectrum (Figure S2a) and in the high-resolution Cl 

2s spectrum (Figure S2e). The C 1s spectrum similarly showed contributions from C bound to Si 
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(284.1 eV), C bound to C (285.0 eV), C bound to O (286.2 eV), and C bound to F (287.6 eV) 

(Figure S2b). The Si 2p spectrum shown did not exhibit detectable levels of SiOx, while θSiOx
 = 

0.11 ± 0.07 ML across multiple Si(111)–TFPA sample preparations  (Figure S2c). The F 1s 

spectrum exhibited a single signal centered at 687.9 eV (Figure S2d). 

 III.B. Hg Contacts to Si(111)–MMTFPA Surfaces. Figure 5a displays the J-V behavior 

for n-Si(111)–MMTFPA/Hg contacts having a range of θTFPA. By convention, measured values 

of Φb and of the built-in voltage were unsigned for two-electrode measurements in contact with 

Hg. The n-Si(111)–CH3/Hg contact exhibited strongly rectifying behavior (Φb = 0.9 V), 

evidenced by small, near-constant current at reverse bias.40 The n-Si(111)–MMTFPA/Hg 

contacts exhibited less rectification as θTFPA increased, suggesting that the molecular dipole 

induced by the C–F bonds in the TFPA group shifted the band-edge positions to produce a 

smaller built-in voltage at the n-Si(111)–MMTFPA/Hg junction. At high θTFPA, the n-Si–

MMTFPA/Hg contact was ohmic to Hg, indicating Φb ≤ 0.3 V and corresponding to a shift of 

≥0.6 V in the Si band-edge positions compared with n-Si(111)–CH3 surfaces. Samples that 

exhibited low values for Φb generally did not exhibit clear linear regions in the forward-bias 

portion of the semi-log J-V plot, which precluded analysis of the J-V data within a thermionic 

emission model. The diode-ideality factor, n, for the n-Si(111)–MMTFPA/Hg junctions was 

estimated as 1.5 ± 0.2 (eq S4), which is comparable to previous observations on junctions 

between alkyl-terminated n-Si and Hg.40  

 Figure 5b shows J-V data for p-Si(111)–MMTFPA surfaces in contact with Hg. The p-

Si(111)–CH3 samples exhibited ohmic behavior in contact with Hg, and previous work has 

indicated that Φb < 0.15 V for this junction.40 Addition of TFPA to the alkyl monolayer resulted 

in increased rectification of the junction, producing measureable values for Φb. Similar to n-
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Si/Hg junctions, p-Si/Hg junctions that exhibited low values for Φb gave semi-log J-V response 

curves with no definitive linear portion in the forward-bias region, thereby limiting the 

determination of Φb for these samples. The p-Si(111)–MMTFPA samples showed increased 

rectification with increasing θTFPA, which indicated an increase in the built-in voltage for p-Si/Hg 

junctions as θTFPA increased. Analysis of the J-V response yielded a maximum measured value 

for Φb of 0.7 V on p-Si(111)–MMTFPA/Hg junctions, which indicated a shift in the band-edge 

positions of ≥0.5 V relative to p-Si(111)–CH3 surfaces. The value of n for p-Si(111)–

MMTFPA/Hg junctions was 1.3 ± 0.2 (eq S4).   
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Figure 5. Representative two-electrode J-V behavior for (a) n-type and (b) p-type Si(111)–

MMTFPA/Hg junctions. The fractional ML coverage of TFPA for a given curve is indicated 

below each curve. By convention, the forward bias region is depicted in the first quadrant. 

 

Cdiff-V data were also collected for the functionalized n-Si/Hg and p-Si/Hg junctions. The 

flat-band position was calculated from the Cdiff-V data using eq S5, and the flat-band values were 

used to determine Φb (eq S6 or eq S7). As with J-V measurements, samples with small Φb in 

contact with Hg generally did not exhibit ideal behavior by Cdiff-V measurements, precluding 

determination of Φb for samples that did not show strong rectification. The dopant density, ND, 
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was also calculated from these measurements and was compared to the value of ND determined 

by 4-point probe measurements. For n-Si, ND determined by Cdiff-V analysis was (2.7 ± 0.3) × 

1015 cm–3, and ND determined by 4-point probe data was 4.4 × 1015 cm–3. For p-Si, ND 

determined by Cdiff-V analysis was (1.7 ± 0.4) × 1016 cm–3, and 4.0 × 1016 cm–3 by 4-point probe. 

For either n-Si and p-Si samples, the values of ND were thus within a factor of ~2 when 

calculated by the Cdiff-V or by 4-point probe measurements.  

Figure 6 presents the values of Φb calculated from the J-V response and Cdiff-V analysis 

for Si(111)–MMTFPA/Hg junctions as a function of θTFPA. The n-Si(111)–MMTFPA/Hg 

junctions exhibited values of Φb that were in close agreement for both methods. Samples for 

which the junction appeared ohmic are plotted with a value of Φb = 0 V. The p-Si(111)–

MMTFPA/Hg junctions showed values of Φb that generally were not in good agreement for the 

two analytical methods used, and Φb determined by Cdiff-V measurements exhibited significantly 

greater spread for a given θTFPA than Φb determined from J-V measurements. For high θTFPA, the 

p-Si/Hg junctions exhibited values of Φb determined by Mott-Schottky analysis near the Si band 

gap, while apparent Φb values determined from analysis of the J-V response were considerably 

lower, at ~0.65 V.  
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Figure 6. Correlation between the calculated barrier height for Si(111)–MMTFPA/Hg junctions 

and the fractional monolayer coverage of TFPA for (a) n-type and (b) p-type samples. The 

barrier heights calculated from fitting the forward bias region of the J-V curves using eq S4 are 

shown as black circles, and the barrier heights calculated from fitting the Cdiff-V data using eqs 

S5, S6, and S7 are shown as red triangles. Samples that showed low Φb values did not exhibit 

ideal junction behavior, precluding analysis of Φb for samples with poor rectification. Error bars 

represent the statistical variation in Φb for samples from the same preparation. 

 III.C. Photoelectrochemical Behavior of Si(111)–TFPA and Si(111)–MMTFPA 

Surfaces in Contact with CH3CN-Cp
*

2Fe
+/0

. Figure 7 presents representative J-E data for 

functionalized n- and p-Si(111) samples in contact with CH3CN-Cp*
2Fe+/0 (1.2, 0.92 mM) under 

100 mW cm–2 of simulated solar illumination. The effective cell potential, Eeff(Cp*
2Fe+/0), was 

determined using eq 1 and eq 2, to give Eeff,n (Cp*
2Fe+/0) = –0.073 V and Eeff,p (Cp*

2Fe+/0) =           

–0.188 versus SCE. Data for the Si(111)–CH3 surface were collected for comparison with 

Si(111)–MMTFPA and Si(111)–TFPA samples. The photocurrent density was limited by mass 

transport because the electrode areas were relatively large and the redox couple concentrations 

were low. Large electrode areas were required to produce reliable Cdiff-E measurements with 

minimal edge effects. Table 1 presents the measured values of the open circuit potential (Eoc ) for 
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the functionalized electrodes under 100 mW cm–2 illumination as well as the values of Φb 

determined from Cdiff-E measurements. Values of Φb are reported as unsigned magnitudes. 
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Figure 7. Representative J-E data under 100 mW cm–2 simulated sunlight illumination for 

functionalized Si(111) surfaces in contact with Cp*
2Fe+/0 (1.2, 0.92 mM) in dry CH3CN for (a) n-

type and (b) p-type samples. Si(111)–CH3 samples (solid black) are shown for comparison with 

Si(111)–MMTFPA (dashed red) and Si(111)–TFPA (blue dotted) samples.  
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Table 1. Eoc and Φb measurements for functionalized Si surfaces in contact with CH3CN-

Cp
*

2Fe
+/0

. 

Surface 
Eoc in 

Cp
*

2Fe
+/0

 (V)
a 
Φb in Cp

*
2Fe

+/0
 

(V)
b θTFPA (ML) 

n-Si–CH3	 –0.43 ± 0.02	 1.07 0 

n-Si–MMTFPA	–0.16 ± 0.03	 0.56 ± 0.01 0.23 ± 0.01 

n-Si–TFPA	 –0.072 ± 0.001	 0.427 ± 0.001 0.307 ± 0.007 

p-Si–CH3	 +0.03 ± 0.03 -	 0 

p-Si–MMTFPA	+0.095 ± 0.004 0.56 ± 0.07 0.193 ± 0.007 

p-Si–TFPA	 +0.12 ± 0.02 0.35 ± 0.01 0.27 ± 0.02 

    
aThe redox couple concentrations were 1.2 mM Cp*

2Fe+ and 0.92 mM Cp*
2Fe. The effective cell 

potentials calculated from eq 1 and eq 2 were Eeff,n (Cp*
2Fe+/0) = –0.073 V and Eeff,p (Cp*

2Fe+/0) = 

–0.188 V versus SCE. bThe values of Φb were determined by Cdiff-E measurements using eq S8 

through S11 and are reported as unsigned magnitudes. No value for Φb is reported for samples 

that formed weakly rectifying junctions with the redox solution. 

 

The Eoc of n-Si(111)–MMTFPA and n-Si(111)–TFPA samples shifted by +0.27 V and 

+0.36 V, respectively, compared with the Eoc for n-Si(111)–CH3 samples in contact with 

CH3CN-Cp*
2Fe+/0. The calculated values of Φb for n-Si(111)–MMTFPA and n-Si(111)–TFPA 

samples were lowered in magnitude by 0.51 V and 0.64 V, respectively, compared with Φb for n-

Si(111)–CH3 samples in contact with CH3CN-Cp*
2Fe+/0. The dopant density, ND, for 

functionalized n-Si samples was found to be (4.6 ± 0.8) × 1015 cm–3, which agreed well with ND 

determined from 4-point probe measurements (4.4 × 1015 cm–3). 
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 For p-Si samples in contact with CH3CN-Cp*
2Fe+/0, the Eoc shifted positively and Φb 

increased in magnitude for surfaces that contained TFPA functionality compared with p-Si(111)–

CH3 surfaces. The p-Si(111)–CH3 samples exhibited very low photovoltages, and Φb was too 

small to be accurately determined by Cdiff-E measurements. The p-Si(111)–MMTFPA samples 

exhibited a moderate shift in Eoc of +0.07 V relative to p-Si(111)–CH3 samples, and p-Si(111)–

TFPA samples showed a slightly greater shift in Eoc of +0.09 V. The p-Si(111)–MMTFPA 

samples yielded Φb = 0.56 ± 0.07 V, while p-Si(111)–TFPA samples yielded an apparent Φb of 

0.35 ± 0.01 V despite the higher Eoc observed for these samples relative to p-Si(111)–MMTFPA 

samples. The value of ND determined from Cdiff-E measurements in contact with CH3CN-

Cp*
2Fe+/0 was 2.0 ± 0.3 × 1016 cm–3, compared with the value of ND = 4.0 × 1016 cm–3 determined 

from 4-point probe measurements.  

III.D. Photoelectrochemical Behavior of Si(111)–TFPA and Si(111)–MMTFPA 

Surfaces in Contact with CH3CN-MV
2+/+�. Figure 8 shows representative J-E data for 

functionalized n- and p-Si(111) samples in contact with CH3CN-MV2+/+� (1.5, 0.035 mM) under 

100 mW cm–2 simulated solar illumination. The effective cell potential, Eeff(MV2+/+�) was 

determined using eq 1 and eq 2 to give Eeff,n (MV2+/+�) = –0.244 V and Eeff,p (MV2+/+�) = –0.436 V 

versus SCE. Low concentrations (0.035 mM) of the radical MV+� species resulted in very low 

anodic photocurrent densities. Table 2 presents the measured values of Eoc determined for the 

functionalized electrodes under 100 mW cm–2 illumination, in addition to the absolute values of 

Φb determined from Cdiff-E measurements.  
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Figure 8. Representative J-E data under 100 mW cm–2 illumination for functionalized Si(111) 

surfaces in contact with MV2+/+� (1.5, 0.035 mM) in dry CH3CN for (a) n-type and (b) p-type 

samples. Si(111)–CH3 samples (solid black) are shown for comparison with Si(111)–MMTFPA 

(dashed red) and Si(111)–TFPA (blue dotted) samples.  

 

Table 2. Eoc and Φb measurements for functionalized Si surfaces in contact with CH3CN-

MV
2+/+• 

. 

Surface 
Eoc in MV

2+/+•
 

(V)
a 

Φb in MV
2+/+• 

(V)
b θTFPA (ML) 

n-Si–CH3	 –0.26 ± 0.02	 0.64 ± 0.06 0 

n-Si–MMTFPA	–0.021 ± 0.007	 -	 0.23 ± 0.01 

n-Si–TFPA	 –0.01 ± 0.01	 -	 0.310 ± 0.007 

p-Si–CH3	 +0.15 ± 0.01 0.51 ± 0.08	 0 

p-Si–MMTFPA	+0.254 ± 0.009 0.99 ± 0.07	 0.196 ± 0.002 

p-Si–TFPA	 +0.24 ± 0.02 0.7 ± 0.1	 0.26 ± 0.02 

    
aThe redox couple concentrations were 1.5 mM MV2+ and 0.035 mM MV+�. The effective cell 

potentials calculated from eq 1 and eq 2 were Eeff,n (MV2+/+�) = –0.244 V and Eeff,p (MV2+/+�) =    

Page 25 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 26 

–0.436 V versus SCE. bThe values of Φb were determined by Cdiff-E measurements using eq S8 

through S11 and are reported as unsigned magnitudes. No value for Φb is reported for samples 

that formed weakly rectifying junctions with the redox solution.  

 

The Eoc of n-Si(111)–MMTFPA samples in contact with CH3CN-MV2+/+� shifted by 

+0.24 V relative to the Eoc of n-Si(111)–CH3 samples. This shift is comparable to the shift 

observed for the same samples in contact with CH3CN-Cp*
2Fe+/0. The n-Si(111)–TFPA samples 

in contact with CH3CN-MV2+/+� exhibited a slightly larger shift in Eoc, of +0.25 V, compared to 

the Eoc for n-Si(111)–CH3 samples. The value of Φb for n-Si(111)–CH3 samples in contact with 

CH3CN-MV2+/+� was 0.64 ± 0.06 V, while the low barrier at n-Si(111)–MMTFPA and n-

Si(111)–TFPA junctions with CH3CN-MV2+/+� precluded determination of Φb by Cdiff-E 

measurements. The change in measured Eoc and Φb for n-Si samples containing TFPA 

functionality is consistent with an overall positive shift in the composite molecular dipole present 

at the interface. The dopant density, ND, for functionalized n-Si samples was found to be (4.7 ± 

0.2) × 1015 cm–3 in contact with CH3CN-MV2+/+�. 

 As observed for p-Si samples in contact with CH3CN-Cp*
2Fe+/0, the Eoc for p-Si(111)–

MMTFPA and p-Si(111)–TFPA samples in contact with CH3CN-MV2+/+� shifted positively 

relative to Eoc for p-Si(111)–CH3 surfaces. The positive shift in Eoc was accompanied by an 

increase in the magnitude of Φb. The p-Si(111)–MMTFPA samples exhibited a modest shift in 

Eoc, of +0.10 V in contact with MV2+/+� relative to the Eoc of p-Si(111)–CH3 samples, and p-

Si(111)–TFPA samples showed a very similar shift in Eoc of +0.09 V relative to p-Si(111)–CH3 

samples. For p-Si(111)–CH3 samples, Φb was determined by Cdiff-E measurements to be 0.51 ± 

0.08 V, while Φb = 0.99 ± 0.07 V for p-Si(111)–MMTFPA surfaces, i.e. the barrier height of this 
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junction is close to the Si band gap. As was observed in contact with Cp*
2Fe+/0, p-Si(111)–TFPA 

samples yielded a lower Φb of 0.7 ± 0.1 V, despite the nearly identical Eoc observed for these 

samples as compared to p-Si(111)–MMTFPA samples. The value of ND determined from Cdiff-E 

measurements was (2.4 ± 0.4) × 1016 cm–3.  

IV. DISCUSSION 

 IV.A. Si(111)–TFPA Surface Characterization. The TIRS data for Si(111)–TFPA 

surfaces yielded modes consistent with the presence of a phenyl ring, aryl C–F bonds, and a C≡C 

bond (Figure 2). The observation of the C≡C stretch at 2160 cm–1 at 74° incidence but not at 30° 

incidence indicates that TFPA group is predominantly oriented perpendicular to the surface. The 

large reduction in intensity of the primary aromatic C–C stretching peak at 1533 cm–1 at 30° 

incidence relative to 74° incidence demonstrates that this mode is primarily oriented 

perpendicular to the surface. Similarly, the C–F stretching signal at 1251 cm–1 was greatly 

reduced at 30° incidence relative to 74° incidence, indicating that the majority of this mode is 

oriented perpendicular to the surface.  The residual intensity observed for the 1533 and 1251 

cm-1 modes at 30° incidence indicates that a fraction of each mode is not perpendicular to the 

surface, in accord with expectations based on the geometry of the TFPA group. The in-plane 

aromatic C–H bend was observed at both angles of incidence at 1055 cm–1, indicating that this 

mode is not primarily oriented perpendicular to the surface. The aryl C–H stretching peaks near 

3050 cm–1 were not observed by TIRS, suggesting that substitution of the phenyl group with C–F 

bonds weakens the C–H stretching signal for the TFPA group. 

 TIRS data for the Si(111)–MMTFPA surface, presented in Figure S2, showed a single 

peak at 1253 cm–1 that was ascribed to the overlap of the symmetric C–H bending and C–F 

stretching modes. The energy of this mode falls between the TFPA C–F stretch, observed at 
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1251 cm–1, and the symmetric C–H bend of the –CH3 group, observed at 1257 cm–1.50 The 

Si(111)–TFPA sample exhibited a 0.18 height ratio of the peak at 1253 cm–1  relative to the peak 

at 1533 cm–1, while the Si(111)–MMTFPA sample yielded a 0.22 height ratio of the peak at 1251 

cm–1 relative to the peak at 1533 cm–1. Thus, the peak at 1253 cm–1 on the Si(111)–MMTFPA 

sample results from a convolution of the symmetric C–H bending and C–F stretching modes, 

indicating that both TFPA and –CH3 groups are present on the surface. 

The shoulder observed in the C 1s XPS signal of the Si(111)–TFPA surface (Figure S2b) 

centered at 284.1 eV provides evidence for the formation of a Si–C bond.  The residual Cl 

observed on Si(111)–MMTFPA surfaces for samples with θTFPA > 0.2 ML is consistent with 

steric crowding of the surface precluding reaction of a small fraction of residual Si–Cl sites with 

CH3MgCl. This behavior suggests considerable steric crowding that limited further passivation 

of the remaining Si–Cl sites on surfaces with θTFPA > 0.2 ML. 

A small amount of SiOx was observed in the Si 2p spectrum from 102–104 eV on Si(111) 

–MMTFPA surfaces containing θTFPA > 0.15 ML and on Si(111)–TFPA surfaces. Mixed 

monolayers with high concentrations of bulky groups can prevent passivation of neighboring Si–

Cl sites with –CH3 groups for steric reasons, leaving the surface sites more susceptible to 

oxidation.34 Consistently, slightly more SiOx was observed on Si(111)–TFPA surfaces compared 

with Si(111)–MMTFPA surfaces with high θTFPA.  

Si(111)–MMTFPA samples exhibited high S compared with previously reported mixed 

monolayers.7, 34, 43 A discussion of the relationship between the reagents used to prepare the 

mixed monolayers and the resulting S is presented in the Supporting Information.  

 IV.B. Hg Contacts to Si(111)–MMTFPA Surfaces. The work function of Hg is 4.49 

eV,60 which lies between the energies of the bottom of the conduction band and the top of the 
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valence band of bulk Si, and is very near the estimated energy of the absolute electrochemical 

potential for the standard hydrogen electrode (SHE), which is 4.44 eV at 25 °C.61-62 Hg can also 

be readily applied to and removed from the Si surface at room temperature without formation of 

metal silicides.40  

The J-V data presented in Figure 5, and the plots of Φb versus θTFPA in Figure 6, show a 

clear trend in the value of Φb as a function of θTFPA for functionalized n- and p-Si(111) surfaces 

in contact with Hg. The surface composition played an essential role in the electrical behavior of 

the junction. The composite dipole at the interface between the Si and the Hg results in a net 

electric field that can be tuned to energetically favor the transfer of electrons from p-Si to Hg or 

holes from n-Si to Hg, respectively. The n-Si/Hg junction exhibited maximum rectification for 

surfaces terminated by –CH3 groups, and addition of TFPA to the monolayer yielded junctions 

with lower Φb. The decrease in Φb with increase in θTFPA resulted from a shift in the band-edge 

positions. The electrical behavior of n-Si(111)–MMTFPA/Hg junctions that showed ohmic 

behavior by J-V analysis could have also been influenced by high surface recombination 

velocity, which was measured for samples with high θTFPA. 

For p-Si, the Si(111)–CH3 surface formed an ohmic contact with Hg, and addition of 

TFPA to the monolayer resulted in an increase in Φb as θTFPA increased. Hence as θTFPA increased 

the band-edge positions of the Si shifted relative to the band-edge positions of Si(111)–CH3 

surfaces. This behavior is consistent with the formation of a surface dipole in the orientation 

shown in Figure 1b due to the addition of surficial TFPA. The resulting electric field at the 

interface is favorable for the flow of electrons from p-Si to the Hg contacting phase.   

The values of Φb for Hg contacts to n-Si electrodes determined by J-V analysis agreed 

well with those obtained by Cdiff-V analysis. In contrast, Cdiff-V analysis for p-Si/Hg contacts 
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with θTFPA near 0.2 ML yielded Φb = 1.07 V, i.e. close to the Si band gap, while J-V data of the 

same samples yielded Φb = 0.68 V. The Cdiff-V analysis is performed while the sample is in 

reverse bias and passes only small amounts of current to measure the real and imaginary 

impedance as well as the current-voltage phase shift. Cdiff-V analysis thus minimizes the effects 

of recombination current on the calculated Φb.  J-V analysis, in contrast, is performed in forward 

bias, for which significantly more current passes, and the effects of surface recombination are 

more readily observed. The difference in Φb determined for p-Si(111)–MMTFPA/Hg by J-V 

versus Cdiff-V methods indicates that high S values yields lower Φb when measured by J-V 

analysis. 

Si(111)–H surfaces have been widely used for fabrication of Si-based optoelectronic 

devices, and comparison of the band-edge positions of Si(111)–H surfaces with the results 

reported in this work is informative. For n-Si, the electrical behavior of Si(111)–H surfaces in 

contact with Hg produced a junction with Φb = 0.3 V, which appeared ohmic when measured at 

296 K.40 The n-Si(111)–MMTFPA samples with θTFPA > 0.17 ML in contact with Hg produced 

behavior similar to the n-Si(111)–H samples. Previous results for p-Si(111)–H/Hg junctions 

yielded Φb = 0.8 V by both J-V and Cdiff-V measurements,40 while p-Si(111)–MMTFPA samples 

achieved a maximum Φb of 0.68 V when measured by J-V analysis. The near-band-gap Φb 

measured by Cdiff-V analysis for p-Si(111)–MMTFPA samples indicated that the band-edge 

positions were energetically closer to the vacuum level than the band-edge positions of Si(111)–

H surfaces, but high S values for these surfaces limited the Φb measured under J-V operation. 

IV.C. Photoelectrochemical Measurements of Si(111)–TFPA and Si(111)–MMTFPA 

Surfaces in CH3CN. Photoelectrochemical measurements for n- and p-Si(111)–CH3 samples in 

contact with CH3CN-Cp*
2Fe+/0 were in good agreement with previously reported results.47 
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However, n- and p-Si(111)–CH3 samples in contact with CH3CN-MV2+/+� exhibited Eoc values of 

–0.26 ± 0.02 and +0.15 ± 0.01 V, respectively that were not within the error of previously 

reported results of –0.10 ± 0.03 V and +0.31 ± 0.02 V, respectively.47 The calculated values of 

Eeff,n (MV2+/+�) and Eeff p (MV2+/+�) were shifted by –0.16 V and –0.13 V, respectively, compared 

to previous work. This difference in effective solution potential likely arose because the previous 

work used 1,1’-dimethyl-4,4’-bipyridinium dichloride hydrate as the source of MV2+, while this 

work used 1,1’-dimethyl-4,4’-bipyridinium hexafluorophosphate. The reversible potential for the 

MV2+/+� couple has previously been found to be dependent on the nature of the anion in the 

electrolyte.63 For the calculated values of Eeff,n (A/A–) and Eeff,p (A/A–), extrapolation of the 

results reported previously predicts Eoc values that are within close agreement with the values 

measured in this work. 

Photoelectrochemical measurements under 100 mW cm–2 illumination demonstrated that 

the Eoc exhibited by the semiconductor-liquid junctions was sensitive to the surface composition. 

Compared with Si(111)–CH3 samples, Eoc for n-Si(111)–MMTFPA samples shifted by +0.27 V 

in contact with CH3CN-Cp*
2Fe+/0 and by +0.24 V in contact with CH3CN-MV2+/+�. The n-

Si(111)–TFPA samples exhibited a greater shift in Eoc, suggesting that the residual Si–Cl sites, 

with a molecular dipole in the positive direction (Figure 1b), and greater θTFPA contributed to the 

positive shift in the band-edge positions. Despite higher S observed for Si(111)–TFPA samples 

(Figure 3), Si(111)–TFPA samples showed larger shifts in Eoc  than those observed for Si(111)–

MMTFPA samples. This behavior indicated that the overall greater θTFPA observed for Si(111)–

TFPA samples, and inclusion of Si(111)–Cl sites, contributed more to the overall Eoc than the 

high S measured for Si(111)–TFPA samples. The observation of different Eoc values for n-

Si(111)–MMTFPA and n-Si(111)–TFPA samples in contact with different redox species 
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indicates that the Fermi level of the semiconductor is not fully pinned by surface states, 

evidenced by the high observed S. The observed decrease in the magnitude of Φb for n-Si(111)–

TFPA and n-Si(111)–MMTFPA samples was indicative of a substantial positive shift in the 

band-edge positions of these surfaces relative to Si(111)–CH3 samples. The Eoc observed for n-

Si(111)–MMTFPA samples in contact with Cp*
2Fe+/0 and MV2+/+� was further shifted positively 

by the high S observed for samples with high θTFPA. 

The p-Si(111)–MMTFPA and p-Si(111)–TFPA samples exhibited a maximum shift in 

Eoc of +0.10 V relative to p-Si(111)–CH3 samples in contact with Cp*
2Fe+/0 and MV2+/+�. The 

increase in Φb observed for p-Si(111)–MMTFPA samples relative to p-Si(111)–CH3 samples 

was approximately 0.5 V, which should produce a larger increase in Eoc than was observed. The 

Eoc observed for p-Si(111)–MMTFPA samples in contact with Cp*
2Fe+/0 and MV2+/+� was shifted 

negatively by the high S observed for samples with high θTFPA. For p-Si samples, the effect on 

Eoc of high S opposes the effect on Eoc produced by the surface dipole, so the reduced positive 

shift in Eoc achieved for p-Si samples as compared with n-Si samples is consistent with the 

presence of significant surface recombination at such interfaces. 

Monolayer chemistry on Si(111) surfaces can effectively control the interfacial energetics 

at Si(111) interfaces. Moreover, alkyl monolayers can be applied to a broad range of crystalline, 

polycrystalline, and thin-film semiconductors without requiring expensive, specialized 

processing equipment. The electrochemical measurements presented in this work demonstrate 

that mixed monolayers on Si(111) can produce measurable shifts in the band-edge positions to 

yield junctions with tunable energetics. The development of methods to reduce S while 

maintaining a surface composition comparable to that of the MMTFPA monolayers presented in 

this work may enable the use of a broad range of materials in semiconductor devices. 
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V. CONCLUSIONS 

The electrochemical behavior of  n- and p-Si(111)–MMTFPA samples in contact with Hg 

showed that addition of TFPA to the monolayer produced shifts in the band-edge positions, 

relative to Si(111)–CH3 surfaces, by ≥0.6 V for n-Si and ≥0.5 V for p-Si samples. 

Photoelectrochemical measurements in contact with CH3CN-Cp*
2Fe+/0 and CH3CN-MV2+/+� 

demonstrated that the composition of the organic monolayer on the surface yielded shifts in Eoc 

consistent with a net positive molecular dipole at the Si surface. The n-Si(111)–MMTFPA 

samples exhibited Eoc values that shifted by as much as +0.27 V compared with n-Si(111)–CH3 

surfaces, and the p-Si(111)–MMTFPA samples showed Eoc values that shifted by up to +0.10 V 

with respect to the p-Si(111)–CH3 surface. The change in Eoc was limited by surface 

recombination, suggesting that larger changes in Eoc could be achieved by maintaining low S 

while allowing for comparable levels of F coverage on the surface. Si(111)–MMTFPA surfaces 

provide a versatile and scalable means of tuning the Si band-edge positions, especially for 

samples with low θTFPA. Semiconductor surface chemistry therefore holds promise to allow for 

control of the interface between semiconductors and functional components, such as metals, 

metal oxides, catalysts, and conductive polymers.  

ACKNOWLEDGEMENTS 

 We acknowledge the National Science Foundation Grant No. CHE-1214152 for support 

of supplies and equipment for this work. Instrumentation support was provided by the Molecular 

Materials Research Center of the Beckman Institute at the California Institute of Technology. 

N.T.P. acknowledges support from a National Science Foundation Graduate Research 

Fellowship. B.S.B. and N.T.P. acknowledge support from the National Science Foundation CCI 

Solar Fuels Program under Grant No. CHE-1305124. N.S.L. acknowledges support from a 

Page 33 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 34 

National Science Foundation Grant No. CHE-1214152.  We thank Dr. Adam C. Nielander, Mr. 

Christopher W. Roske, and Dr. Kimberly M. Papadantonakis for helpful discussions. 

ASSOCIATED CONTENT 

Supporting Information 

 XPS data fitting and quantification, calculation of S, analysis of J-V, J-E, Cdiff-V, and 

Cdiff-E data, discussion of the surface recombination velocity, and supporting Figures S1, S2, and 

S3. The Supporting Information is made available free of charge on the ACS publications 

website at  DOI:  

AUTHOR INFORMATION 

Corresponding Author 

*E-mail: nslewis@caltech.edu. Telephone: (626) 395-6335. 

Notes 

The authors declare no competing financial interest. 

  

Page 34 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35 

REFERENCES 

1. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; 

Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446-6473. 

2. Huang, Z.; McKone, J. R.; Xiang, C.; Grimm, R. L.; Warren, E. L.; Spurgeon, J. M.; 

Lewerenz, H.-J.; Brunschwig, B. S.; Lewis, N. S. Comparison between the Measured and 

Modeled Hydrogen-Evolution Activity of Ni- or Pt-Coated Silicon Photocathodes. Int. J. 

Hydrogen Energy 2014, 39, 16220-16226. 

3. McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; 

Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni-Mo Electrocatalysts for Hydrogen 

Evolution on Crystalline Si Electrodes. Energy Environ. Sci. 2011, 4, 3573-3583. 

4. Sun, K.; Saadi, F. H.; Lichterman, M. F.; Hale, W. G.; Wang, H.-P.; Zhou, X.; Plymale, 

N. T.; Omelchenko, S. T.; He, J.-H.; Papadantonakis, K. M., et al. Stable Solar-Driven Oxidation 

of Water by Semiconducting Photoanodes Protected by Transparent Catalytic Nickel Oxide 

Films. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 3612-3617. 

5. Sun, K.; McDowell, M. T.; Nielander, A. C.; Hu, S.; Shaner, M. R.; Yang, F.; 

Brunschwig, B. S.; Lewis, N. S. Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-

Coated Silicon Photoanodes. J. Phys. Chem. Lett. 2015, 6, 592-598. 

6. Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S., 

Amorphous TiO2 Coatings Stabilize Si, GaAs, and GaP Photoanodes for Efficient Water 

Oxidation. Science 2014, 344, 1005-1009. 

7. O’Leary, L. E.; Strandwitz, N. C.; Roske, C. W.; Pyo, S.; Brunschwig, B. S.; Lewis, N. S. 

Use of Mixed CH3–/HC(O)CH2CH2–Si(111) Functionality to Control Interfacial Chemical and 

Page 35 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 36 

Electronic Properties During the Atomic-Layer Deposition of Ultrathin Oxides on Si(111). J. 

Phys. Chem. Lett. 2015, 6, 722-726. 

8. Kim, H. J.; Kearney, K. L.; Le, L. H.; Pekarek, R. T.; Rose, M. J. Platinum-Enhanced 

Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al2O3) on 

Si(111)–CH3 Photoelectrodes. ACS Appl. Mater. Inter. 2015, 7, 8572-8584. 

9. Roske, C. W.; Popczun, E. J.; Seger, B.; Read, C. G.; Pedersen, T.; Hansen, O.; Vesborg, 

P. C. K.; Brunschwig, B. S.; Schaak, R. E.; Chorkendorff, I., et al. Comparison of the 

Performance of CoP-Coated and Pt-Coated Radial Junction n+p-Silicon Microwire-Array 

Photocathodes for the Sunlight-Driven Reduction of Water to H2(g). J. Phys. Chem. Lett. 2015, 

6, 1679-1683. 

10. Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-

Evolution Characteristics of Ni-Mo-Coated, Radial Junction, n+p-Silicon Microwire Array 

Photocathodes. Energy Environ. Sci. 2012, 5, 9653-9661. 

11. Juang, A.; Scherman, O. A.; Grubbs, R. H.; Lewis, N. S. Formation of Covalently 

Attached Polymer Overlayers on Si(111) Surfaces Using Ring-Opening Metathesis 

Polymerization Methods. Langmuir 2001, 17, 1321-1323. 

12. Sailor, M. J.; Klavetter, F. L.; Grubbs, R. H.; Lewis, N. S. Electronic Properties of 

Junctions between Silicon and Organic Conducting Polymers. Nature 1990, 346, 155-157. 

13. Giesbrecht, P. K.; Bruce, J. P.; Freund, M. S. Electric and Photoelectric Properties of 3,4–

Ethylenedioxythiophene-Functionalized n-Si/PEDOT:PSS Junctions. ChemSusChem 2016, 9, 

109-117. 

Page 36 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 37 

14. Bruce, J. P.; Oliver, D. R.; Lewis, N. S.; Freund, M. S. Electrical Characteristics of the 

Junction between PEDOT:PSS and Thiophene-Functionalized Silicon Microwires. ACS Appl. 

Mater. Inter. 2015, 7, 27160-27166. 

15. Warren, E. L.; Boettcher, S. W.; Walter, M. G.; Atwater, H. A.; Lewis, N. S. pH-

Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen2+/+ Contacts through Use of 

Radial n+p-Si Junction Microwire Array Photoelectrodes. J. Phys. Chem. C 2011, 115, 594-598. 

16. Johansson, E.; Boettcher, S. W.; O’Leary, L. E.; Poletayev, A. D.; Maldonado, S.; 

Brunschwig, B. S.; Lewis, N. S. Control of the pH-Dependence of the Band Edges of Si(111) 

Surfaces Using Mixed Methyl/Allyl Monolayers. J. Phys. Chem. C 2011, 115, 8594-8601. 

17. Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; 

Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A., et al. 

Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays. J. Am. Chem. Soc. 2011, 

133, 1216-1219. 

18. Heller, A. In Photoeffects at Semiconductor-Electrolyte Interfaces, American Chemical 

Society: 1981; Vol. 146, pp 57-77. 

19. Zhou, X., Liu, R.; Sun, K.; Friedrich, D.; McDowell, M. T.; Yang, F.; Omelchenko, S. T.; 

Saadi, F. H.; Nielander, A. C.; Yalamanchili, S., et al. Interface Engineering of the 

Photoelectrochemical Performance of Ni-Oxide-Coated n-Si Photoanodes by Atomic-Layer 

Deposition of Ultrathin Films of Cobalt Oxide. Energy Environ. Sci. 2015, 8, 2644-2649. 

20. Smith, W. A.; Sharp, I. D.; Strandwitz, N. C.; Bisquert, J. Interfacial Band-Edge 

Energetics for Solar Fuels Production. Energy Environ. Sci. 2015, 8, 2851-2862. 

21. Kocha, S. S.; Turner, J. A. Displacement of the Bandedges of GaInP2 in Aqueous 

Electrolytes Induced by Surface Modification. J. Electrochem. Soc. 1995, 142, 2625-2630. 

Page 37 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 38 

22. Hilal, H. S.; Turner, J. A. Controlling Charge-Transfer Processes at 

Semiconductor/Liquid Junctions. Electrochim. Acta 2006, 51, 6487-6497. 

23. MacLeod, B. A.; Steirer, K. X.; Young, J. L.; Koldemir, U.; Sellinger, A.; Turner, J. A.; 

Deutsch, T. G.; Olson, D. C. Phosphonic Acid Modification of GaInP2 Photocathodes toward 

Unbiased Photoelectrochemical Water Splitting. ACS Appl. Mater. Inter. 2015, 7, 11346-11350. 

24. Kim, H. J.; Seo, J.; Rose, M. J. H2 Photogeneration Using a Phosphonate-Anchored Ni-

PNP Catalyst on a Band-Edge-Modified p-Si(111)|Azo Construct. ACS Appl. Mater. Inter. 2016, 

8, 1061-1066. 

25. Seo, J.; Kim, H. J.; Pekarek, R. T.; Rose, M. J. Hybrid Organic/Inorganic Band-Edge 

Modulation of p-Si(111) Photoelectrodes: Effects of R, Metal Oxide, and Pt on H2 Generation. J. 

Am. Chem. Soc. 2015, 137, 3173-3176. 

26. Ciampi, S.; Harper, J. B.; Gooding, J. J. Wet Chemical Routes to the Assembly of 

Organic Monolayers on Silicon Surfaces Via the Formation of Si-C Bonds: Surface Preparation, 

Passivation and Functionalization. Chem. Soc. Rev. 2010, 39, 2158-2183. 

27. Ciampi, S.; Luais, E.; James, M.; Choudhury, M. H.; Darwish, N. A.; Gooding, J. J. The 

Rapid Formation of Functional Monolayers on Silicon under Mild Conditions. Phys. Chem. 

Chem. Phys. 2014, 16, 8003-8011. 

28. Bansal, A.; Li, X.; Lauermann, I.; Lewis, N. S.; Yi, S. I.; Weinberg, W. H. Alkylation of 

Si Surfaces Using a Two-Step Halogenation/Grignard Route. J. Am. Chem. Soc. 1996, 118, 

7225-7226. 

29. Linford, M. R.; Chidsey, C. E. D. Alkyl Monolayers Covalently Bonded to Silicon 

Surfaces. J. Am. Chem. Soc. 1993, 115, 12631-12632. 

Page 38 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 39 

30. Buriak, J. M. Illuminating Silicon Surface Hydrosilylation: An Unexpected Plurality of 

Mechanisms. Chem. Mater. 2014, 26, 763-772. 

31. Buriak, J. M.; Sikder, M. D. H. From Molecules to Surfaces: Radical-Based Mechanisms 

of Si–S and Si–Se Bond Formation on Silicon. J. Am. Chem. Soc. 2015, 137, 9730-9738. 

32. Royea, W. J.; Juang, A.; Lewis, N. S. Preparation of Air-Stable, Low Recombination 

Velocity Si(111) Surfaces through Alkyl Termination. Appl. Phys. Lett. 2000, 77, 1988-1990. 

33. Plymale, N. T.; Kim, Y.-G.; Soriaga, M. P.; Brunschwig, B. S.; Lewis, N. S. Synthesis, 

Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces. J. Phys. 

Chem. C 2015, 119, 19847-19862. 

34. O’Leary, L. E.; Johansson, E.; Brunschwig, B. S.; Lewis, N. S. Synthesis and 

Characterization of Mixed Methyl/Allyl Monolayers on Si(111). J. Phys. Chem. B 2010, 114, 

14298-14302. 

35. Webb, L. J.; Lewis, N. S. Comparison of the Electrical Properties and Chemical Stability 

of Crystalline Silicon(111) Surfaces Alkylated Using Grignard Reagents or Olefins with Lewis 

Acid Catalysts. J. Phys. Chem. B 2003, 107, 5404-5412. 

36. Webb, L. J.; Michalak, D. J.; Biteen, J. S.; Brunschwig, B. S.; Chan, A. S. Y.; Knapp, D. 

W.; Meyer, H. M.; Nemanick, E. J.; Traub, M. C.; Lewis, N. S. High-Resolution Soft X-Ray 

Photoelectron Spectroscopic Studies and Scanning Auger Microscopy Studies of the Air 

Oxidation of Alkylated Silicon(111) Surfaces. J. Phys. Chem. B 2006, 110, 23450-23459. 

37. Bansal, A.; Lewis, N. S. Stabilization of Si Photoanodes in Aqueous Electrolytes through 

Surface Alkylation. J. Phys. Chem. B 1998, 102, 4058-4060. 

Page 39 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 40 

38. Maldonado, S.; Knapp, D.; Lewis, N. S. Near-Ideal Photodiodes from Sintered Gold 

Nanoparticle Films on Methyl-Terminated Si(111) Surfaces. J. Am. Chem. Soc. 2008, 130, 3300-

3301. 

39. Maldonado, S.; Lewis, N. S. Behavior of Electrodeposited Cd and Pb Schottky Junctions 

on CH3-Terminated n-Si(111) Surfaces. J. Electrochem. Soc. 2009, 156, H123-H128. 

40. Maldonado, S.; Plass, K. E.; Knapp, D.; Lewis, N. S. Electrical Properties of Junctions 

between Hg and Si(111) Surfaces Functionalized with Short-Chain Alkyls. J. Phys. Chem. C 

2007, 111, 17690-17699. 

41. Hunger, R.; Fritsche, R.; Jaeckel, B.; Jaegermann, W.; Webb, L. J.; Lewis, N. S. 

Chemical and Electronic Characterization of Methyl-Terminated Si(111) Surfaces by High-

Resolution Synchrotron Photoelectron Spectroscopy. Phys. Rev. B 2005, 72, 045317. 

42. Wong, K. T.; Lewis, N. S. What a Difference a Bond Makes: The Structural, Chemical, 

and Physical Properties of Methyl-Terminated Si(111) Surfaces. Acc. Chem. Res. 2014, 47, 

3037-3044. 

43. O’Leary, L. E.; Rose, M. J.; Ding, T. X.; Johansson, E.; Brunschwig, B. S.; Lewis, N. S. 

Heck Coupling of Olefins to Mixed Methyl/Thienyl Monolayers on Si(111) Surfaces. J. Am. 

Chem. Soc. 2013, 135, 10081-10090. 

44. Lattimer, J. R. C.; Blakemore, J. D.; Sattler, W.; Gul, S.; Chatterjee, R.; Yachandra, V. 

K.; Yano, J.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Assembly, Characterization, and 

Electrochemical Properties of Immobilized Metal Bipyridyl Complexes on Silicon(111) 

Surfaces. Dalton Trans. 2014, 43, 15004-15012. 

Page 40 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 41 

45. Lattimer, J. R. C.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Redox Properties of 

Mixed Methyl/Vinylferrocenyl Monolayers on Si(111) Surfaces. J. Phys. Chem. C 2013, 117, 

27012-27022. 

46. Rivillon, S.; Chabal, Y. J.; Webb, L. J.; Michalak, D. J.; Lewis, N. S.; Halls, M. D.; 

Raghavachari, K. Chlorination of Hydrogen-Terminated Silicon (111) Surfaces. J. Vac. Sci. 

Technol. A 2005, 23, 1100-1106. 

47. Grimm, R. L.; Bierman, M. J.; O’Leary, L. E.; Strandwitz, N. C.; Brunschwig, B. S.; 

Lewis, N. S. Comparison of the Photoelectrochemical Behavior of H-Terminated and Methyl-

Terminated Si(111) Surfaces in Contact with a Series of One-Electron, Outer-Sphere Redox 

Couples in CH3CN. J. Phys. Chem. C 2012, 116, 23569-23576. 

48. Hendrickson, D. N.; Sohn, Y. S.; Gray, H. B. Magnetic Susceptibility Study of Various 

Ferricenium and Iron(III) Dicarbollide Compounds. Inorg. Chem. 1971, 10, 1559-1563. 

49. Megehee, E. G.; Johnson, C. E.; Eisenberg, R. Optical Versus Thermal Electron Transfer 

between Iridium(I) Maleonitriledithiolate Complexes and Methyl Viologen. Inorg. Chem. 1989, 

28, 2423-2431. 

50. Webb, L. J.; Rivillon, S.; Michalak, D. J.; Chabal, Y. J.; Lewis, N. S. Transmission 

Infrared Spectroscopy of Methyl- and Ethyl-Terminated Silicon(111) Surfaces. J. Phys. Chem. B 

2006, 110, 7349-7356. 

51. Li, Y.; O’Leary, L. E.; Lewis, N. S.; Galli, G. Combined Theoretical and Experimental 

Study of Band-Edge Control of Si through Surface Functionalization. J. Phys. Chem. C 2013, 

117, 5188-5194. 

52. Kratochvil, B.; Lorah, E.; Garber, C. Silver-Silver Nitrate Couple as Reference Electrode 

in Acetonitrile. Anal. Chem. 1969, 41, 1793-1796. 

Page 41 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 42 

53. Kim, N. Y.; Laibinis, P. E. Derivatization of Porous Silicon by Grignard Reagents at 

Room Temperature. J. Am. Chem. Soc. 1998, 120, 4516-4517. 

54. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 

3rd ed.; John Wiley & Sons Ltd.: Chichester, West Sussex, England, 2001. 

55. Larkin, P. J. Ir and Raman Spectroscopy: Principles and Spectral Interpretation; 

Elsevier: Waltham, MA, USA, 2011. 

56. Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons 

Ltd.: Chichester, West Sussex, England, 2004. 

57. Jaeckel, B.; Hunger, R.; Webb, L. J.; Jaegermann, W.; Lewis, N. S. High-Resolution 

Synchrotron Photoemission Studies of the Electronic Structure and Thermal Stability of CH3- 

and C2H5-Functionalized Si(111) Surfaces. J. Phys. Chem. C 2007, 111, 18204-18213. 

58. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomen, K. D. Handbook of X-Ray 

Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and 

Interpretation of XPS Data; Physical Electronics USA, Inc.: Chanhassen, Minnesota, 1995. 

59. Collins, G.; O’Dwyer, C.; Morris, M.; Holmes, J. D. Palladium-Catalyzed Coupling 

Reactions for the Functionalization of Si Surfaces: Superior Stability of Alkenyl Monolayers. 

Langmuir 2013, 29, 11950-11958. 

60. Handbook of Chemistry and Physics, 75th ed.; CRC Press, Inc. : Boca Raton, Florida, 

1994. 

61. Trasatti, S. The Absolute Electrode Potential: An Explanatory Note. Pure Appl. Chem. 

1986, 58, 955-966. 

62. Dekker, M. Standard Potentials in Aqueous Solution; CRC Press, Inc.: New York, 1985. 

Page 42 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 43 

63. Bird, C. L.; Kuhn, A. T. Electrochemistry of the Viologens. Chem. Soc. Rev. 1981, 10, 

49-82. 

TOC Graphic 

 

EVac

EC

EV

EF

E(A/A-)

Interface

Semiconductor Contacting 
Phase

Positive Surface Dipole

Φb

E
n
e
rg

y
 (

e
V

)
(+

)
(-

)

Si

Si CH3

F

F

F

Si

Si CH3

F

F

F

Si CH3

Page 43 of 43

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


