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Abstract

Transition control by localized “pinpoint” suction in a three-dimensional boun-

dary-layer flow with crossflow is investigated by means of direct numerical sim-

ulation. The control of large-amplitude steady crossflow vortices with active

secondary instability constitutes hereby an alternative promising possibility to

maintain laminar flow on relevant regions of airliner wings (active laminar flow

control) resulting in a significant reduction of drag and thus also of greenhouse

gas emissions.

Up to date, laminar flow control applied to tackle crossflow instability aims

at a reduction of the primary crossflow instability, i.e. hindering the devel-

opment of large-amplitude, secondarily unstable crossflow vortices. The clas-

sically applied homogeneous suction focuses on reducing the crossflow in the

quasi two-dimensional base flow which results in hindered growth of cross-

flow vortices, later-induced secondary instability and hence delayed laminar-

turbulent transition. On the other hand, techniques like the “distributed

roughness elements” method or “distributed flow deformation” excite locally

stable or weakly unstable crossflow vortex modes, leading to “benign” cross-

flow vortices that are spaced narrower than the naturally amplified ones while

suppressing all other modes, including the most unstable ones.

In the current work, the three-dimensional nonlinear disturbance state with

large-amplitude steady crossflow vortices including already active secondary

instability is controlled by means of pinpoint hole suction.

The influence of hole-suction modeling on the effects of pinpoint suction is

checked in the first part of the work where results from a numerically extensive

compressible simulation are discussed that comprises the channel flow below

the suction orifice. Although the actual wall-normal velocity distribution in

the suction hole deviates from the modeled prescribed distribution, it is shown

that at equal mass flux the effects on the crossflow vortex are virtually identical

and secondary instability is equally attenuated.
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In the second part of the work, localized pinpoint suction through holes

is activated below the updraft side of the primary vortices. It is shown that

the overall vortical motion is reduced by the imposed negative wall-normal ve-

locity component while simultaneously the growth of unstable high-frequency

secondary instability modes is attenuated that are located in a high-shear layer

above the suction holes. Thereby, the associated flow field is stabilized and

laminar-turbulent transition is significantly delayed or suppressed. A case with

homogeneous suction at equal suction rate is shown to be virtually ineffective

at this transition stage, while cases with slit suction, where the slits extend in

spanwise direction, perform still well; however, the attenuation found in cases

with concentrated hole suction is not reached. In all considered setups the

suction-induced increased wall shear is by far overcompensated by the much

stronger decrease due to the transition delay resulting in an overall effective

drag reduction.



Zusammenfassung

Mit Hilfe von direkten numerischen Simulationen wird untersucht, ob der

laminar-turbulente Umschlag in einer dreidimensionalen Pfeilflügelgrenzschicht

durch konzentrierte Absaugung kontrolliert werden kann. Diese Methode stellt

im Forschungsgebiet Laminarhaltung (laminar flow control) eine Möglichkeit

dar, Strömungen an Pfeilflügeln von Verkehrsflugzeugen über weite Strecken

laminar zu halten, auch wenn sich schon großamplitudige stationäre Querströ-

mungswirbel mit aktiver instationärer Sekundärinstabilität entwickelt haben.

Durch das Hinauszögern der Transition wird der Widerstand und damit der

Treibstoffverbrauch erheblich reduziert, was gleichzeitig eine Reduktion der

ausgestoßenen Treibhausgase bewirkt.

Bis heute wurde Laminarhaltung in Pfeilflügelgrenzschichten dadurch er-

reicht, dass die Primärinstabilität (Querströmungsinstabilität) reduziert und

damit die Entwicklung stationärer großamplitudiger, sekundär instabiler Quer-

strömungswirbel verzögert wurde. Die klassische, homogene Absaugung der

Grenzschicht an der Wand reduziert die Querströmung in der Grenzschicht,

was eine Abschwächung der Querströmungsinstabilität und damit ein späteres

Einsetzen von Sekundärinstabilitäten und der Transition zur Folge hat. Das

andere Laminarkonzept, bekannt als “distributed roughness elements” (ver-

teilte Rauigkeitselemente) oder “distributed flow deformation” (verteilte Strö-

mungsverformung), verspricht eine Unterdrückung der instabilsten Querströ-

mungswirbelmoden durch die gezielte Anregung von schwach instabilen Moden,

die nicht sekundär instabil sind. Die dadurch entstehenden “gutartigen” Wirbel

liegen in Spannweitenrichtung näher zusammen als die natürlich angefacht-

esten, hindern sich gegenseitig im Wachstum aufgrund gleicher Rotationsrich-

tung und sättigen deshalb auf (für die Sekundärinstabilität relevantem) un-

terkritischem Amplitudenniveau. Das Wachstum anderer instabiler Moden

wird durch die vorherrschenden Wirbel unterdrückt.

In der vorliegenden Arbeit wird im Gegensatz dazu ein dreidimension-

aler, nichtlinearer Strömungszustand, der großamplitudige stationäre Quer-
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strömungswirbel mit aktiver Sekundärinstabilität beinhaltet, durch konzen-

trierte (Loch-) Absaugung kontrolliert.

Im ersten Teil wird der Einfluss der Absauge-Modellierung auf die kon-

zentrierte Absaugung untersucht. Das Modellieren von Lochabsaugung bietet

generell den Vorteil, dass die numerischen Simulationen erheblich günstiger

sind. Ergebnisse einer aufwändigen Simulation, in der die Kanalströmung

unter der Absaugeöffnung mitsimuliert wird, werden hier mit dem zugehöri-

gen, modellierten Fall verglichen. Obwohl sich die wandnormale Geschwin-

digkeitsverteilung in der Öffnung des simulierten Kanals von der modellierten

Verteilung unterscheidet, sind die Auswirkungen auf den Querströmungswirbel

bei gleicher abgesaugter Masse praktisch identisch und auch die Sekundärin-

stabilität wird in gleichem Maße abgeschwächt.

Im zweiten Teil der Arbeit wird gezeigt, dass konzentrierte Absaugung durch

Löcher, die unterhalb der aufwärtsdrehenden Seite der Querströmungswirbel

angebracht sind, die Wirbelbewegung reduziert, und zwar durch die dadurch

überlagerte negative wandnormale Geschwindigkeitskomponente. Gleichzeitig

wird das Wachstum instabiler, sekundärer Hochfrequenzinstabilitätsmoden ab-

geschwächt, die sich in einer Scherschicht über den Absaugelöchern befinden.

Das Strömungsfeld wird dadurch stabilisiert und das Einsetzen von laminar-

turbulenter Transition erheblich verzögert oder unterdrückt. Eine Simulation

mit homogener Absaugung bei gleicher Absaugerate zeigt einen nur schwachen

Einfluss in diesem nichtlinearen Stadium der Transition. Schlitzabsaugung mit

wenigen spannweitigen Schlitzen liefert gute Ergebnisse; jedoch wird die Ab-

schwächung durch konzentrierte Absaugung nicht erreicht. Das Ansteigen der

absaugeinduzierten Wandschubspannung wird durch deren Verringerung als

Folge der Transitionsverzögerung bei weitem überkompensiert, was in allen

betrachteten Fällen zu einer Widerstandsreduktion führt.



Notation

Latin letters

A amplitude or area

a speed of sound

c chord length

cf local skin friction coefficient

cq suction coefficient

d diameter of suction holes

E total energy

fv function for disturbance generation (vortex)

fw function for disturbance generation (wave)

h timewise harmonic, see also subscript h

or height coordinate in the cylindrical coordinate system

H12 shape parameter

k spanwise harmonic or roughness height

K maximum number of spanwise harmonics

l streamwise length of suction slits

(l) time level

lx streamwise extension of applied homogeneous suction

L reference length

ṁ mass flux

Ma Mach number

Nx, Ny, Nz number of grid points in streamwise, wall-normal and spanwise

direction

p pressure

P porosity

q general flow quantity or velocity component q =
√

u2 + w2

r radius or radial coordinate in the cylindrical coordinate system

Re Reynolds number

Rekk roughness Reynolds number based on roughness height k and

corresponding local velocity component uk

sx, sz streamwise and spanwise distance of suction-hole spacing

t time or orientation of a high-shear layer plane (sec. 5.5.2)
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T temperature

T0 fundamental period in time

u, v, w velocity components in streamwise, wall-normal and spanwise

direction

up pseudo velocity component for boundary-layer evaluation

x, y, z streamwise, wall-normal and spanwise coordinates

X, Y , Z combined non-linear terms

x0 start of the flow domain computed by the PNS equations

(x0r, z0r) origin of the rotated coordinate system

x1 first disturbance-strip position

x2 second disturbance-strip position

xe end of the flow domain computed by the PNS equations

xe12, xs1, xs2 start and end coordinates of the first and second DNS domains

for the compressible base-flow computation

Greek letters

αi amplification rate

αr streamwise wave number

βH Hartree parameter

δ1 displacement thickness

δ2 momentum thickness

δ, δ99 boundary-layer thickness

∆ Laplace operator or increment

∆̃ modified Laplace operator

∆x, ∆y, ∆z step sizes of the computational grid in streamwise, wall-normal

and spanwise direction

∆t time step

φ circumferential coordinate in the cylindrical coordinate system

φe angle of the potential-streamline orientation with the x-axis

φr rotation angle of the rotated coordinate system with the x-axis

γ spanwise wave number

κ ratio of specific heats (adiabatic index)

λz spanwise wavelength

λ2 vortex-visualization criterion

µ dynamic viscosity
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ν kinematic viscosity

ρ density

Θ phase

ω angular frequency

ωx, ωy, ωz vorticity components in streamwise, wall-normal and spanwise

direction

ξ, ζ special rotated coordinate system where the origin coincides

with the center of the suction hole

Subscripts

0 fundamental quantity

∞ quantity of the freestream

avg average quantity

b base-flow quantity

CHAN quantity for case CHAN

(simulation at Ma=0.7 with suction channel, sec. 4.3)

comp quantity for a compressible case

crit critical quantity

e external quantity (outside the boundary-layer)

exp experimental quantity

h index for Fourier coefficient after expansion in time (partially

performed for the second time derivative of the variable [9])

incomp quantity for an incompressible case

H quantity of a suction hole

k index for Fourier coefficient after expansion in spanwise direction

max maximum value

mod quantity for modeled suction

(incompressible simulations, sec. 2.1.2.2 and chap. 5)

MOD quantity for case MOD

(simulation at Ma=0.7 with modeled suction, sec. 4.3)

r quantity in the rotated coordinate system

s quantity in the streamline-oriented coordinate system

t quantity evaluated along the orientation of a high-shear layer

wall quantity at the wall y = 0.0
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Superscripts

’ disturbance quantity

ˆ Fourier coefficient

Symbols

¯ dimensional quantity

˜ quantity divided by the local streamline-oriented velocity com-

ponent of the base flow: q̃ = q/ub,s,e

* complex conjugate

〈 〉 mean quantity in time

| | absolute value of a quantity

Abbreviations

3-d three-dimensional

AKSA Aktive Kontrolle von Störungen in der Aerodynamik (active

control of disturbances in aerodynamics), LuFo project

CFV crossflow vortex

DFD distributed flow deformation

DLR Deutsches Zentrum für Luft- und Raumfahrt (German Aero-

space Center)

DRE distributed roughness elements

DNS direct numerical simulation

ERM equivalent roughness model

IAG Institut für Aerodynamik und Gasdynamik

(Institute for Aerodynamics and Gas dynamics)

(H)LFC (hybrid) laminar flow control

LST linear stability theory

PLST, SLST primary, secondary linear stability theory

PNS parabolized Navier-Stokes (equations)

PSE parabolized stability equations

T-S Tollmien-Schlichting

UFD upstream flow deformation

VER2SUS Verifikation eines vereinfachten Absaugesystems (verification of

a simplified suction system), LuFo project



1 Introduction

One of the fundamental research fields in fluid dynamics is the investigation

of laminar-turbulent transition in various flow scenarios. The transition pro-

cess was first observed in 1883 by Osborne Reynolds in his famous pipe-flow

experiment, where “coloured filaments” were added to the flow through a pipe

showing first a well-ordered, laminar flow regime comprising straight color-

particle lines that eventually became turbulent and resulted in strong mixing

and finally even-colored fluid motion. Ever since the research of this phenom-

ena was of enormous interest.

Around the turn of the century, Ludwig Prandtl proposed his concept of

boundary-layer theory dividing a wall-bounded flow into a physically most rel-

evant thin layer evolving near the body’s wall with dominating viscous effects

and the remaining flow where viscosity can be neglected. Theoretical investi-

gations by Osborne Reynolds, Lord Rayleigh and William Orr & Arnold Som-

merfeld led to primary linear stability theory (PLST) that predicted wave-like

perturbations in plane boundary layers to be damped or amplified depending

on the detailed velocity profile and their frequency. The first satisfactory nu-

merical results were published by Walter Tollmien and Hermann Schlichting

in 1930.

An experimental milestone was set in 1947 by the work of Schubauer &

Skramstad [75] who detected the predicted unstable two-dimensional Tollmien-

Schlichting (T-S) waves for the first time in the boundary-layer flow on a flat

plate with controlled disturbance input. Further experiments by Klebanoff

et al. [36] in 1962 revealed three-dimensional ordered Λ-structures right before

breakdown to turbulence, whereas Kachanov et al. [34] additionally found stag-

gered ones in 1984. Today, the formation of these distinct three-dimensional

structures is known as a consequence of secondary instability mechanisms

(secondary linear stability theory, SLST, published in 1988 by Herbert [29]).

1



2 1. INTRODUCTION

The two processes of transition to turbulence were named fundamental K-

breakdown (K for Klebanoff) and subharmonic N- or H-breakdown (for Novosi-

birsk or Herbert). Including the oblique-type breakdown (first observed in nu-

merical simulations by Fasel et al. [18]), the most important scenarios leading

to turbulent flow in flat-plate boundary layers with low disturbance background

were basically understood [85, 72].

In 1952, Gray observed that the transition process on a swept wing started

much earlier than in the corresponding scenario on a straight wing [26]. By

flow visualization he found closely-spaced stationary streaks very close to the

leading edge - footprints of (later known as) stationary crossflow vortices

(CFVs). Further work by P. Owen and D. Randall as well as H. Squire has

been summarized in 1955 by Gregory et al. [28] who proposed the complete

three-dimensional disturbance equations. Primary stability mechanisms have

been elucidated by Mack in 1984 [46]. The secondary instability of (steady or

traveling) CFVs, i.e. the physical mechanisms of transition to full turbulence

in three-dimensional or swept-wing boundary layers, has only been completely

clarified in the last decades and is described in section 1.1.

Besides theory and experiments, numerical simulations are nowadays a well-

established field of research for the investigation of fluid-dynamic phenomena

and can provide insight and explanation of successively more complex physical

mechanisms considering the increasing computational resources. The first nu-

merical solutions of the incompressible Navier-Stokes equations were reported

in 1974 by Fasel [17]. In the 1990s, “correct spatial” direct numerical simu-

lations (DNS) of the K-breakdown were conducted by Rist [66], and Kloker

provided results for a strongly decelerated flow [37]. As of today, DNS codes

can handle incompressible and compressible, fully three-dimensional flows on

more complex integration domains, see, e.g. [6, 5], providing a powerful tool

to not only validate experiments and offer highly-resolved flow physics but to

investigate and predict completely new flow scenarios including, e.g., localized

suction for boundary-layer control as in the current work.

Since laminar and turbulent boundary-layer flows are found in many techni-

cal applications the control of the boundary-layer state is of enormous interest.

Triggering turbulence effectively enables, e.g., to improve combustion in an en-

gine by strongly enhanced fuel-oxidant mixing. Also, since a laminar boundary
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layer detaches more easily, turbulent boundary layers can ensure attached flow

over a wind turbine blade, for example, providing higher efficiency, or over air-

plane control surfaces to warrant a reliable steering operation. On the other

hand, a laminar boundary layer typically causes less drag or thermal load than

a turbulent one. Maintaining laminar flow as long as possible and thus effec-

tively reducing drag presents the main goal of the rapidly growing research

field of laminar flow control (LFC). Aircraft manufacturers are forced to put

a lot of effort in producing more efficient airplanes that allow airlines to de-

crease their direct operation costs regarding the increasingly expensive fuel.

An Airbus advertisement for the new A350-1000 aircraft reads “while burning

25 percent less fuel than its nearest competitor” [1], while Boeing promotes the

787 laminar flow nacelle claiming “Laminar flow: The 787 nacelle was designed

to maintain laminar flow over a longer portion of the nacelle than ever before”

[2]. Furthermore, not only the economic but also the environmental aspect has

gained growing interest and limiting greenhouse gas emission by regulators is

at hand.

Until today, actually applied optimizations for new airplanes are limited to

enhanced shaping, higher surface quality, and engine improvement, but little

potential is thought to be left in these research fields using the proven aircraft

shape. New concepts have therefore to be envisaged. According to Schrauf

in 2005, LFC provides a total drag-reduction potential of up to 16% by, e.g.,

realizing 40% laminar flow on wings and tail planes of a current airliner [74].

Many investigations on LFC technologies including active T-S wave cancel-

lation, boundary-layer suction, plasma actuators, to name a few, have shown

the relevance and practical applicability of LFC for plane boundary layers.

For three-dimensional (3-d) boundary layers, however, only little work on flow

control by means of discrete suction is available and the gained knowledge

from two-dimensional (2-d) flow scenarios cannot be simply transferred to 3-d

boundary-layer flows since the physical effects are completely different.



4 1. INTRODUCTION

1.1 Crossflow vortices and their secondary

instability

The transition process for a boundary-layer flow depends mainly on the tur-

bulence level of the oncoming flow, see e.g. [70]. For very high turbulence, a

mechanism called bypass transition sets in and leads directly to turbulent flow.

Bypass transition can also be caused by large roughness elements. For medium

and low freestream turbulence different stages within the transition process can

be distinguished. The first stage is called receptivity, where disturbances are

generated inside the boundary layer resulting from sound waves, vibrations,

vorticity fluctuations, or small roughness elements at the wall, just to name a

few. A medium turbulence level can then provoke transient growth of the gener-

ated disturbances, where the interaction of two non-orthogonal modes leads to

limited, but possibly large algebraic disturbance growth that can trigger tran-

sition to turbulence. For low turbulence levels, typically observed in free-flight

conditions, the two following stages are usually observed: The generated small

disturbances grow exponentially within the boundary layer according to pri-

mary LST. Next, secondary mechanisms are triggered that typically generate

growing secondary disturbances and cause the final breakdown to turbulence.

In the case of a two-dimensional boundary-layer flow the primary instability

mechanism results in unsteady, two-dimensional T-S waves and, depending on

their finite amplitude level and the disturbance background, secondary insta-

bility with subsequent either fundamental or subharmonic breakdown sets in.

Another way to turbulence is caused by a non-linearly acting pair of oblique

modes that are amplified strongest in plane boundary layers at high subsonic

up to supersonic flow speeds. Breakdown occurs hereby in the absence of a

large-amplitude primary T-S wave and the mechanism is called oblique break-

down.

For swept-wing boundary layers the underlying flow as well as the instability

mechanisms are different. Due to wing sweep and chordwise pressure gradient

an instability called crossflow instability sets in which is the dominant tran-

sition mechanism on airliner wings for sweep angles larger than 20-25◦. The

most important region where crossflow instability is active is located in the



1.1. CROSSFLOW VORTICES AND SECONDARY INSTABILITY 5

favorable-pressure region on the wing which ranges approximately from the

leading edge to the chord position with maximum thickness. (Further rele-

vant instability mechanisms in a flow over a swept wing are the attachment

line instability, the Görtler instability on the lower side of a wing with concave

curvature, and the T-S instability in regions with pressure-gradient changeover,

but are out of the scope of the current work.)

The crossflow instability is a result of curved potential streamlines that

arise from a non-zero spanwise freestream-velocity component and a pressure-

gradient component pointing to the curvature center of the streamlines that

originates, e.g. on the front part of a swept-wing, from the chordwise accel-

eration of the flow. Considering the fluid motion outside the boundary layer,

centrifugal forces and pressure forces are in equilibrium. Inside the boundary

layer, as the velocity reduces close to the wall due to the no-slip condition, pres-

sure forces overcome and a compensating flow (crossflow) component evolves,

as sketched in figure 1.1, in a local potential-streamline-oriented coordinate

system. The characteristic crossflow-velocity profile ws appears orthogonal to

the streamline orientation and has a distinct maximum at approximately 25%

of the boundary-layer thickness. According to the inflection-point criterion

(Rayleigh, Tollmien, and Fjørtoft), the occurring inflection point causes an in-

viscid instability. In contrast to Blasius boundary-layer flows, PLST predicts

steady and unsteady unstable modes within spanwise wave number bands that

are amplified with wave vectors nearly orthogonal to the direction of the local

x

y

z

xs zs

us

inflection point
leading edge

ws

✟
✟✟✙

freestream

Projection of the
potential streamline

Figure 1.1: Typical velocity profile in a swept-wing boundary layer. Wing

fixed, with oncoming flow.
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streamwise velocity component. Steady or unsteady, longitudinal co-rotating

CFVs develop as a consequence of the primary instability where the vorti-

cal motion close to the wall follows the crossflow direction. Typically, they

are staggered in spanwise direction according to the naturally most amplified

mode, and in smooth flight conditions steady CFVs are observed due to the

higher receptivity of the flow to steady CFV modes.

The resulting flow field shows water-wave shaped streamwise velocity iso-

contours in flow crosscuts. Low-momentum fluid is transported away from

the wall on the updraft side of each vortex while high-momentum fluid from

outside the boundary layer is pushed towards the wall on the other side. The

vortex-deformed flow reveals strong gradients of the streamwise velocity com-

ponent and can be strongly unstable with respect to secondary instabilities

depending on the CFV amplitude and state. In this case, small, finger-like

secondary vortices develop in a typical scenario with unstable CFVs, winding

up the updraft side of the main vortex. Fed by underlying exponential growth

they rapidly grow, and tertiary structures in between the finger vortices trigger

finally transition to turbulence.

Partially based on the reviews on stability of three-dimensional boundary

layers by Reed and Saric [63, 71], the most important publications on secondary

instability of CFVs are briefly summarized below.

Experimental work has been carried out by research groups at the DLR

Göttingen, Germany [8], at the Arizona State University in Phoenix, AZ,

USA [69, 84, 83], at the Tohoku University in Sendai, Japan [42, 35], and at

Chalmers University of Technology in Göteborg, Sweden [15].

At the DLR, the so-called “Prinzipexperiment Querströmungsinstabilität”

(a basic experiment on crossflow instability) was set-up by Bippes and co-

workers [8] who studied steady and unsteady CFV modes including non-linear

interaction. They found that in low-turbulence environments steady CFVs

dominate whereas crossflow waves prevail in a higher-turbulence environment.

Explosive growth of secondary instability modes leads to transition in the

CFV scenario whereas transition in the unsteady case sets in comparably

slowly. White & Saric and co-workers at the ASU [69, 84, 83] focused on

low-turbulence cases with the controlled excitation of steady CFVs and pro-
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vided well-resolved investigations on secondary-instability growth. Kawakami,

Kohama and co-workers [42, 35] found secondary instability of CFVs for both

the steady and unsteady fundamental scenarios on a flat plate at Tohoku Uni-

versity. Chernoray and co-workers investigated the steady case at Chalmers

University [15] providing growth rates for secondary amplification and studied

the interaction of large-amplitude CFVs.

Theoretical work, namely the development of a SLST model, has been

mostly carried out using the parabolized stability equations (PSE) to calculate

nonlinear solutions for unstable CFV modes, see publications by Balachandar,

Malik, Koch, and Reed [7, 51, 52, 41, 40, 62]. Three different classes of sec-

ondary instability modes were identified, namely the high-frequency mode I

or z-mode related to the minimum of the spanwise gradient of the stream-

wise velocity component, the high-frequency mode II or y-mode, related to

the maximum of the wall-normal gradient, and a low-frequency type III mode

related to the maximum spanwise gradient.

Type I

Type II

Type III

Figure 1.2: Location of different

types of secondary instability modes.

The location of the respective

modes is sketched in figure 1.2. Dis-

crepancies between SLST and exper-

iments regarding growth rates of sec-

ondary instability modes as e.g. re-

ported by White & Saric [83] were

investigated later thoroughly by Bon-

figli & Kloker [12]. Based on their re-

sults from SLST and DNS they found

that secondary growth rates are very sensitive to the primary state (i.e. the

underlying vortex-deformed base flow) and particularly to moderate artificially

induced wall-normal and crossflow velocity components. They concluded that

the reported differences originated most likely from ambiguities and possibly

also inaccuracies in the base-flow extraction technique for the SLST calcula-

tions. Furthermore they suggested that this sensitivity might open a door for

transition control which lead to the initial idea of pinpoint suction proposed

in the current work.

Results from DNS have been mainly reported by three groups: Based on

the temporal model (with timewise growth and fixed streamwise periodicity
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of the flow) the Kleiser group at ETH Zürich, Switzerland, investigated the

nonlinear development of stationary and traveling crossflow modes but details

on the secondary instability of steady CFVs were not given [87, 88, 86]. In-

vestigations employing spatial DNS were first reported by the Swedish work

group at KTH, Stockholm, Sweden by Högberg & Henningson in 1998, who

found the highest amplification rates for the high-frequency z-mode [30]. The

DNS group in Stuttgart provided first results in 1995 where some aspects of

interaction between steady and unsteady modes were clarified [59]. Succeeding

publications by Bonfigli & Kloker [11, 10] showed very good agreement with

results from the DLR “Prinzipexperiment”. As of 2002, Wassermann & Kloker

used a wing-generic base flow for their investigations of steady and unsteady

fundamental cases [80, 81, 82] and provided fully detailed insights into the

secondary-instability and breakdown mechanisms. They also provided conclu-

sive and detailed visualizations of the actual flow fields in very good agreement

with available data from theory [52] and experiments [83].

A concept of swept-wing boundary-layer control without the help of suc-

tion has been introduced by Saric and co-workers at Arizona State University,

and by Wassermann & Kloker at Stuttgart University. Saric proposed the

distributed-roughness-elements (DRE) technique [68, 69], for a recent overview

see [67]. A one-time excitation of steady CFVs that are spaced narrower in

the spanwise direction than the naturally most amplified ones enforces a flow

scenario with, at first, secondarily stable CFVs and thus delays transition

to turbulence by suppressing other, further downstream more unstable CFV

modes. The upstream-flow-deformation concept (UFD), proposed in Stuttgart

[80], pursues a similar goal, however, not necessarily based on roughness. Cur-

rently, investigations are started in the LuFo project AKSA where the base

flow of the DLR “Prinzipexperiment” is to be controlled by the DRE/UFD

technique both numerically and experimentally using pneumatic and plasma

actuators.

1.2 Discrete suction for laminar flow control

Mainly driven by rising fuel prises intense research on LFC with the help of

boundary-layer suction has been carried out within the last decades. For plane
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boundary-layer flows without crossflow, (homogeneous) suction at the wall has

been shown to significantly delay transition to turbulence by pulling high-

momentum fluid towards the wall, thus enforcing fuller streamwise-velocity

profiles which lead to attenuated growth of Tollmien-Schlichting (T-S) insta-

bility waves, see e.g. [65].

As for swept-wing boundary layers, suction has until now been employed

for a reduction of the basic crossflow and thus to weaken primary instability

resulting in attenuated (primary) vortex growth and postponed transition.

Starting in the early 1960s, several flight campaigns were conducted in

the USA and Europe. Based on the overviews by Joslin [33, 32] and Braslow

[13] the most important ones are mentioned here briefly (see also [56]):

Spanwise suction slits employed in the Northrop X-21 flight tests in the

1960s showed successful transition delay on 30◦-swept wings at a global Rey-

nolds number of 20 millions, but never entered regular operation since it was

too difficult to keep the slits clean [61]. For the NASA Jetstar campaign in

the 1980s laminar flow on a wing glove with perforated suction panels (suc-

tion hole diameters of 65µm) was reported [50]. Flight tests on a Boeing 757

employed a complete suction system for the wing and 65% laminar flow could

be maintained at Ma=0.82 and a global Reynolds number of 30 millions [49].

In France, 30% laminar flow was achieved at 30◦ wing sweep on a Falcon 50

in the late 1980s at small suction rates [14]. An Airbus A320 fin test was

conducted in 1998 at Ma=0.8 and laminar flow up to 50% was reported but

detailed information on the suction system parameters was not provided [77].

To date, suction systems are still far from mass production but both Airbus

and Boeing are currently setting up new flight campaigns: The Boeing ZA003

test aircraft which is a 787-9 airplane employs a hybrid laminar flow control

(HLFC) surface including suction in a limited area on the leading edge of the

vertical stabilizer, one-quarter to one-half the way up the fin, and started oper-

ation in November 2011. No publications are available yet. Airbus focuses on a

“simplified” suction system and a 1:1 wind-tunnel model of a vertical stabilizer

that is currently developed and built at the DLR Göttingen comprising suc-

tion panels with suction hole diameters of 50-100µm within the LuFo Project

VER2SUS (Verifikation eines vereinfachten Absaugesystems, verification of a
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simplified suction system). Experiments and flight tests are planned in the

near future.

The perfect homogeneous suction panel that does not induce any distur-

bances is mostly approximated by suction-hole or suction-slit arrays which

inherently comprise the excitation of disturbances with finite stream- or span-

wise wavenumbers. Thus, various experiments as well as numerical investiga-

tions have been carried out in the last decades to gain a deeper understanding

of mechanisms occurring in a boundary layer with discrete suction. Further-

more, the focus was on a mechanism often referred to as “oversuction” where

suction-induced early transition to turbulence is triggered due to too large

suction rates.

As for discrete suction in two-dimensional boundary layers, the first

publications date back to 1957 where Goldsmith [25] investigated the influence

of suction-hole mass-flux variations on a pipe flow with closely-spaced suction

holes. At low suction rates, a pronounced counter-rotating stationary vortex

pair was visible behind each hole turning such that high-momentum fluid was

transported towards the wall in between the vortices (see figure 1.3a) but no

premature transition could be observed. At high suction rates, additionally,

horseshoe vortices connecting adjacent holes occurred that detached periodi-

cally in time and caused early transition. Meitz & Fasel provided DNS results

for the pipe-flow experiments and found seemingly good agreement for the

threshold of critical suction rates that triggered early transition [54, 53]. (How-

ever, recent extensive numerical resolution studies within the current work, see

appendix B, have shown that these results are not converged and that a much

finer grid in the wall-normal direction is necessary to correctly resolve the

occurring suction phenomena with the vorticity–velocity code used.)

Gregory [27] investigated the variation of the suction-hole diameters and

the spanwise spacing of the holes experimentally and found increasing criti-

cal suction rates (i.e. higher rates are needed for triggering turbulence) with

decreased diameters or increased hole spacing.

Reneaux & Blanchard tried to design perforation patterns allowing for high

suction rates without inducing transition and therefore investigated systemat-

ically the influence of two hole patterns. Their “triangular” pattern performed
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a) b)

Figure 1.3: Vortical structures caused by suction through a spanwise row

of holes in a Blasius boundary layer (a) and an accelerated boundary layer

with crossflow (b). The flow direction is indicated by streamlines. In (b), the

potential and wall-near flow is visualized by streamlines above and below the

CFVs; crossflow is from right to left. For simulation details see appendix A.
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better than their “square” pattern which was explained by an “increased dis-

tance between holes for a given streamline” [64]. Today it is known that

staggered hole patterns in two-dimensional boundary layers provide an effec-

tive method to reduce pattern-induced disturbances since succeeding staggered

suction holes create modes in anti-phase that can cancel each other.

MacManus & Eaton [48] provide experimental and numerical results for

HLFC suction surfaces. They confirm the complex nature of flow phenomena

evolving behind single suction orifices and suction panels at varying suction

rates and provide a critical suction design based on measured and predicted

streamtube characteristics. They query a critical suction parameter suggested

by Reneaux & Blanchard based on a rectangular shape of the streamtube and

state that Goldsmith’s parameter Gk performs better since his assumed round

shape was more realistic. Based on their experiments they correlate Gk with

Rekk, the Reynolds number based on the streamtube height, and find a linear

relationship allowing for the derivation of a critical suction Reynolds number

Rekk = 890.

Müller, Friederich & Kloker summarized and examined investigations on

roughness analogies for strong discrete suction by means of spatial DNS [58].

Comparisons with results reported by MacManus & Eaton showed unaccept-

able deviations. As it turned out, the Reynolds-number variation of Mac-

Manus’ experiments was too weak and thus the roughness analogy and the

derived critical suction parameter is valid for a small Reδ1-range only. This

conclusion was confirmed evaluating experimental results by Reneaux & Blan-

chard who covered a broader Reδ1-range. The proposed critical suction value

of Rekk = 890 by MacManus was refuted. Several cases with strong modeled

hole suction in a Blasius boundary layer revealed oversuction to set in only

above Rekk-values of 1400 to 1700, where suction-induced unsteadiness of the

resulting counter-rotating vortex pair was observed. Horseshoe-type secondary

vortices, located almost symmetrically above each vortex caused by a y-mode

were found to be responsible for triggering breakdown to turbulence. The

results were confirmed with a simulation comprising the channel flow below

the suction hole showing that the flow field with channel is slightly more sta-

ble than in the case with modeled suction. However, a simulation revealing

oversuction including the channel flow has not been accomplished.
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The presence of crossflow constitutes a fundamental change of physical

effects as for discrete suction in three-dimensional boundary layers.

Messing & Kloker [56] point out that “any direct transfer of findings gained

from two-dimensional boundary layers to three-dimensional boundary layers is

almost always misleading or even impossible”. They provide an example, where

MacManus & Eaton [47] addressed the problem of possible interaction between

suction-induced vortices and CFVs. Assuming that two counter-rotating vor-

tices evolve behind a suction hole in a 3-d boundary layer MacManus identified

wrong lengths scales relevant for nocent interaction and disturbance amplifi-

cation. Indeed, two counter-rotating vortices can be discovered right behind

the suction hole, but the one turning against the crossflow near the wall is

damped instantly, cf. figure 1.3b. Recall also that steady modes excited by

suction holes are not exponentially and continuously amplified in the Blasius

flow but, depending on their spanwise spacing, can be exponentially amplified

in a 3-d boundary layer.

Experiments on discrete suction in three-dimensional boundary

layers turn out to be very complex and have been carried out only at ONERA,

France and at DLR Göttingen, Germany.

In 2000, Arnal and co-workers managed to successfully delay transition on

a 50◦ swept wing with cylindrical nose using 45µm suction holes at 1200µm

spanwise spacing. Increased initial amplitudes caused by the suction holes

were overcompensated by a reduction of CFV growth [4].

Abegg and co-workers modified the DLR “Prinzipexperiment” by introduc-

ing two suction chambers at 16% and 35% chord. Metal sheets containing

chordwise slits or suction holes could be mounted. After measuring and com-

paring the different initial amplitudes introduced by the suction orifices they

concluded that an appropriate design of suction panels should allow for mini-

mizing the excitation of steady three-dimensional disturbances [3]. As already

noted by Messing & Kloker [56] one fundamental flaw of these experiments

however was that the perforated metal sheets were designed for free-flight

experiments. Similarity parameters like d/δ1, sz/δ1, sx/δ1 (d: suction hole di-

ameter, δ1: displacement thickness, sz, sx: spanwise, chordwise spacing of the

suction holes) were therefore not kept constant since the freestream velocity

was about one order of magnitude smaller in the wind tunnel. Moreover, the
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unstable wavelengths are then one order of magnitude larger which means that

the hole spacings were unrealistically subcritical.

Besides the publications by scientists from Stuttgart University results of

DNS on discrete suction in 3-d boundary layers have only been provided

by Spalart in 1993 [76]. His goal was to simulate by-pass transition by strong

suction but he ended up obtaining steady saturated CFVs only. His explana-

tions at the chosen parameters (likely to cause premature transition) are the

smooth shape of the modeled hole-suction distribution, the perfect spanwise

periodicity, or the omission of time-dependent forcing. Furthermore, he states

that “the number of parameters is daunting” regarding the wide parameter

space for the expensive simulations of oversuction. Simulations with succeed-

ing rows of suction holes showed damped amplitude development right after

the first hole rows, but at some streamwise distance crossflow modes started

to grow right behind the holes, induced by the suction panel.

In Stuttgart, results with discrete, modeled suction in 3-d boundary layers

were published by Messing & Kloker [55, 56]. They showed the survival of

only one vortex behind a single suction hole since the one rotating against the

crossflow near the wall is damped. They also analyzed suction panels con-

sisting of slits and holes that included small manufacturing imperfections and

showed that subcritically designed suction panels, i.e. inducing in the optimal

case only smaller spanwise wavelengths than the amplified ones, can excite

unstable vortex eigenmodes. In one case (“overcritical suction”) they proved

that secondary instability can set in on an active suction panel. Furthermore,

they proposed a combination of UFD and suction leading to the concept of

distributed flow deformation (DFD) and in particular “formative suction”. A

panel was designed such that narrow-spaced useful vortices were continuously

excited and maintained, suppressing other unstable modes and thus enhancing

the positive effect of bare suction. It was also shown that succeeding panels

can be adapted to the altering stability characteristics of the base flow when

proceeding downstream and hence continuously excite the locally optimal DFD

mode.

Müller, Friederich & Kloker investigated oversuction in the three-dimensional

DLR “Prinzipexperiment” base flow [58] employing compressible DNS. They

found a suction-induced vortex pair behind the suction holes where the one
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turning against the crossflow was damped instantly, and for large suction rates

self-induced unsteadiness lead to transition to turbulence which was consid-

ered oversuction. The resulting secondary structures resembled the ones found

in their overcritical two-dimensional case. A comparison of relevant unsta-

ble secondary modes of an undercritical and an overcritical case revealed the

changeover from a typical, naturally evolving high-frequency z-type mode to a

suction-induced y-type mode. The corresponding Rekk-values were 627 (under-

critical) and 876 (overcritical). A comparison with values found in the Blasius

case shows strong deviations and trying to constitute a universally valid crit-

ical Reynolds number (for two- and three-dimensional flows) is questionable

considering the fundamentally different underlying base flows.

1.3 Goals, methods and overview

Up to date, the challenging task of LFC in swept-wing boundary layers applied

for drag reduction has been tackled by influencing primary crossflow instability

only. Approaches with bare suction aim at a reduction of the basic crossflow

to reduce primary instability. Thereby, the growth of CFV modes and the de-

velopment of large-amplitude CFVs is weakened which results in later-induced

secondary instability and delayed laminar-turbulent transition. A similar goal

is persued by the DRE and UFD methods, however the primary-growth reduc-

tion is here achieved by, at first, stable CFVs that are spaced closer than the

naturally most amplified ones. These nonlinearly large CFVs cause a mean

flow alteration similar to suction. The DFD method combines this effect and

suction and furthermore provides a possibility to adapt the panel to changing

stability characteristics of the base flow by locally exciting and maintaining

the correct, benign DFD vortices.

The concept of LFC proposed in the current work aims at a direct control

of the secondary crossflow instability by means of localized “pinpoint” suction.

The investigated base flow contains nonlinearly large and secondarily unsta-

ble steady CFVs that would naturally develop in the flow near the leading

edge on a swept wing at cruise flight and cause early transition to turbu-

lence. The flow setup corresponds to the DLR Göttingen “Prinzipexperiment”
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[8, 12] where a swept flat plate with a displacement body above was employed.

It is a model flow for the boundary layer developing on the upper side of a

swept-back airplane wing within the region of accelerated flow. Located be-

low the updraft side of each CFV, “pinpoint” suction holes are activated at

the wall such that the vortical motion is weakened by the imposed negative

wall-normal velocity component which simultaneously attenuates the growth

of unstable high-frequency secondary instability modes, see also [12] and first

tentative studies [21, 39]. The accompanying transition delay leads to a possi-

bly large overall drag reduction at considerably lower suction rates compared

to standard (homogeneous) suction.

The incompressible high-order DNS code developed at the institute is em-

ployed for the investigation of various suction scenarios realized by modeled

velocity distributions within the wall boundary condition. It is chosen due to

its excellent numerical performance.

To check the influence of the suction-hole modeling a numerically extensive

compressible simulation is carried out where the channel flow below the suction

orifice is included in the simulation and the result is compared to a modeled-

suction case. The DNS are performed for a freestream Mach number Ma∞ =

0.7 to (i) exploit the improved performance of the compressible code compared

to Ma∞ = 0.05 for the “Prinzipexperiment”, and (ii) to check the influence of

a Mach number relevant to airliner flight.

The structure of the dissertation is as follows: The numerical methods are

described in chapter 2. The underlying base flows and characteristics are

introduced in chapter 3, followed by the comparison of simulations with mod-

eled and simulated hole suction in chapter 4. The main results of secondary

instability control by (modeled) pinpoint suction for incompressible flow are

provided in chapter 5.



2 Numerical methods

The origin of solving the incompressible Navier-Stokes equations numerically

for stability investigations dates back to the work by Fasel in 1974 [17]. Rist

[66], Konzelmann [43] and later Kloker [37] developed the basic numerical

scheme for the actual code. Including the improvements by Wassermann [79]

and Bonfigli [9] the applied numerical method is capable of solving the full

three-dimensional unsteady incompressible Navier-Stokes equations for span-

wise periodic, asymmetric three-dimensional flows using high-order spatial and

timewise discretization schemes. A detailed overview of the historical devel-

opment can be found in [79, 55, 9].

The compressible numerical method is based on the work by Thumm [78]

and improvements by Kloker [38], Eissler [16], Fezer & Kloker [19], and Pagella

[60]. Due to rising scientific and computational demands a new compressible

code was developed by Babucke et al. [6]. It solves the full three-dimensional

unsteady compressible Navier-Stokes equations using high-order spatial and

timewise discretization schemes. The current code, further adapted especially

for spanwise asymmetric flows within the pinpoint suction investigations allows

for simulating the disturbance development in 3-d boundary layers, similarly to

the incompressible method, but comprises also a module to include the flow in

an attached cylindrical domain (e.g. a cylindrical blowing or suction channel).

The incompressible and compressible numerical methods are described in

sections 2.1 and 2.2 followed by a verification of the numerical methods in

section 2.3.

2.1 Incompressible numerical method

The full three-dimensional unsteady incompressible Navier-Stokes equations

are solved in vorticity-velocity formulation. A rectangular integration domain

17
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Figure 2.1: Integration domain. For details on coordinate systems see ap-

pendix D.

on a flat plate is considered as shown in figure 2.1. The computational Carte-

sian reference system (x, y, z) denotes chordwise, wall-normal and spanwise

direction. The corresponding velocity vector is (u, v, w)T , and the following

definition of the vorticity components is considered:

ωx =
∂v

∂z
− ∂w

∂y
, ωy =

∂w

∂x
− ∂u

∂z
, ωz =

∂u

∂y
− ∂v

∂x
. (2.1)

All flow quantities are non-dimensionalized using the reference length L̄ =

0.1m and the reference velocity ū∞ = 14.0m/s (the overbar indicates dimen-

sional values) unless otherwise stated. The Reynolds number is Re = ū∞L̄/ν̄ =

92000. The non-dimensional variables are

x =
x̄

L̄
, y =

ȳ

L̄
, z =

z̄

L̄
,

u =
ū

ū∞

, v =
v̄

ū∞

, w =
w̄

ū∞

,

ωx =
ω̄x · L̄

ū∞

, ωy =
ω̄y · L̄

ū∞

, ωz =
ω̄z · L̄

ū∞

,

t = t̄ · ū∞

L̄
.

(2.2)

The three vorticity transport equations and three Poisson equations for the ve-

locity components represent a non-linear coupled system of partial differential



2.1. INCOMPRESSIBLE NUMERICAL METHOD 19

equations, where ∆ is the Laplace operator:

∂ωx

∂t
+

∂

∂y
(vωx − uωy) − ∂

∂z
(uωz − wωx) =

1

Re
∆ωx, (2.3a)

∂ωy

∂t
− ∂

∂x
(vωx − uωy) +

∂

∂z
(wωy − vωz) =

1

Re
∆ωy, (2.3b)

∂ωz

∂t
+

∂

∂x
(uωz − wωx) − ∂

∂y
(wωy − vωz) =

1

Re
∆ωz, (2.3c)

∂2u

∂x2
+

∂2u

∂z2
= −∂ωy

∂z
− ∂2v

∂x∂y
, (2.3d)

∆v =
∂ωx

∂z
− ∂ωz

∂x
, (2.3e)

∂2w

∂x2
+

∂2w

∂z2
=

∂ωy

∂x
− ∂2v

∂y∂z
. (2.3f)

Each flow quantity q is split into its steady base-flow component qb(x, y) and

perturbation component q′(t, x, y, z) which are computed consecutively. This

procedure allows for setting optimal boundary conditions in each case. Note

that the time mean 〈q′〉 is non-zero for large q′ in the perturbation simulation,

and that no simplifications of the equations are introduced with this ansatz.

2.1.1 Computation of the steady spanwise-invariant base

flow

The three-dimensional base flow (subscript b) is assumed to be independent of

the spanwise direction (infinite wing assumption). Nevertheless, wb, ωx,b, and

ωy,b are non-zero which results in curved potential streamlines for ub,e = f(x).

If all derivatives with respect to z are neglected the base-flow equations can

be derived from the equation system (2.3). In contrast to standard codes that

tackle the complete system at once the procedure developed by Bonfigli (for

details on the numerical implementation and validation of the code see [9])

solves the two-dimensional problem for ub, vb, ωz,b in a first step before the

remaining three flow quantities for the three-dimensional problem wb, ωx,b, ωy,b

are computed hereafter. This is a consequence of the independence principle

holding for spanwise invariant flows.

As for the inflow boundary condition the quantities vb, wb and ωz,b are pre-

scribed as a function of the wall-normal coordinate y employing Falkner-Skan
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profiles with a Hartree parameter βh = 2/3. Small adaptations were necessary

to match the experimental flow, see also section 3.2. At the outflow all second

derivatives with respect to x are neglected and the remaining equations are

solved. The freestream consists of a prescribed ub(x)-velocity field which is de-

rived from the experimental pressure distribution. Furthermore, the constant

spanwise velocity component wb and vanishing vorticity ωx,b = ωy,b = ωz,b = 0

are prescribed. The no-slip and no-penetration condition ub = vb = wb = 0

forms the boundary condition at the wall. A fictive time development is ap-

plied to obtain a steady-state solution.

2.1.2 Computation of the perturbation flow

Once the steady base flow is computed, the extensive unsteady perturbation

simulation can be set up. The boundary conditions at the wall allow for

the input of controlled steady and unsteady disturbances that are periodic in

spanwise direction. Furthermore, suction slits and holes can be turned on and

the spatial downstream development of all perturbations is simulated. In order

to (i) keep the integration domain short and (ii) easily check for secondary

instability of grown CFVs, unsteady, pulse-like disturbances are continuously

forced in a disturbance strip.

The basic numerical method has been described in detail by Wassermann &

Kloker [80] and Bonfigli & Kloker [12]. Modifications were made by Messing

[55] who implemented a wall boundary condition that allows for modeled suc-

tion through slits, slots, and holes. He furthermore added a direct solver for

the v-Poisson equation achieving a speed-up of the code. The advancement

by Meyer [57] included the porting to Fortran 90, improved parallelization,

and stretched-grid handling in wall-normal direction. This was realized by

calculating biased compact finite differences adapted to the base-flow grid and

resulted in savings of up to 50% of the grid points at similar spatial resolution

near the wall.

The code is based on sixth-order compact finite differences alternatingly for-

ward/backward biased in x- and central in y-direction, whereas the z-direction

is discretized by a fully complex Fourier expansion. The general perturbation
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flow quantity q′ is decomposed into

q′(t, x, y, z) =
∞

∑

k=−∞

q̂′

(k)(t, x, y) · eikγ0z, γ0 =
2π

λz,0

, i2 = −1, (2.4)

where γ0 is the fundamental wave number in spanwise direction. The coeffi-

cients q̂′

(k) with k < 0 need not be computed since q′

(k) = q′∗

(−k) ∀ k, where

the asterisk indicates complex conjugates. However, both imaginary and real

parts of the equations have to be solved.

For time integration a four-step explicit fourth-order Runge-Kutta scheme

is originally implemented.

The code was tested and verified for weak suction by Messing & Kloker [56].

In the current work it was found that for higher suction rates an extremely well-

resolved grid in wall-normal direction is needed near the wall; see grid studies

in appendix B and also the discussion of figure 4.11. Since the numerical time-

step limit then is of viscous type ∆tmax ∼ ∆y2
wall, simulations with the explicit

Runge-Kutta O4 time integrator turned out to be no longer feasible. Thus, a

semi-implicit time integration scheme was developed and implemented which

is described in section 2.1.2.4.

2.1.2.1 Governing equations

After applying the decomposition (2.4) to the equation system (2.3), all flow

quantities are split into their base-flow and perturbation parts and the zero-

sum base flow is subtracted. The following perturbation equations have to be

solved for the Fourier coefficients:

∂ω̂x,(k)

∂t
=

1

Re
∆̃kω̂x,(k) + X̂(k) ∀ k, (2.5a)

∂ω̂y,(k)

∂t
=

1

Re
∆̃kω̂y,(k) + Ŷ(k) ∀ k, (2.5b)

∂ω̂z,(k)

∂t
=

1

Re
∆̃kω̂z,(k) + Ẑ(k) ∀ k, (2.5c)

∂2û(k)

∂x2
− (kγ)2û(k) = −ikγω̂y,(k) − ∂2v̂(k)

∂x∂y
k �= 0, (2.5d)

∂û(k)

∂x
= −∂v̂(k)

∂y
k = 0, (2.5e)

∆̃kv̂(k) = ikγω̂x,(k) − ∂ω̂z,(k)

∂x
∀ k, (2.5f)
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∂2ŵ(k)

∂x2
− (kγ)2ŵ(k) =

∂ω̂y,(k)

∂x
− ikγ

∂v̂(k)

∂y
k �= 0, (2.5g)

∂ŵ(k)

∂x
= ω̂y,(k) k = 0. (2.5h)

The Laplace operator with a spectral z-derivative now reads:

∆̃k =
∂2

∂x2
+

∂2

∂y2
− (kγ)2. (2.6)

The nonlinear convective terms of the momentum equations are called X̂(k),

Ŷ(k) and Ẑ(k) and include base-flow as well as perturbation quantities. These

terms are generally dependent on all Fourier harmonics and therefore form

the coupling between the spanwise modes. If a truncated Fourier sum for the

decomposition (2.4) is introduced by choosing −K ≤ k ≤ +K, the equation

system (2.5) represents K + 1 complex differential equations.

2.1.2.2 Boundary conditions

Inflow: All perturbations are set to zero. (The disturbances are introduced far

enough downstream of the beginning of the integration domain.)

Outflow: All second derivatives with respect to x are locally neglected. Most

importantly, a preceding damping zone reduces all perturbations of the vortic-

ity vector and the wall-normal velocity component v as well as very low values

of u and w to zero [37, 11].

Freestream: Vanishing vorticity and an exponential decay of the wall-normal

velocity according to linear stability theory are prescribed:

∂v′

∂y
= −α∗v′. (2.7)

The constant is defined as α∗ =
√

αr
2 + (kγ0)2 for all k. According to Mess-

ing [55], cases that include wall suction require α∗ = 0 for k = 0, since the

two-dimensional part of v′ does not decay outside the boundary layer. The

remaining α∗-values for k > 0 stay unaffected for cases with suction.
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Perturbation strips at the wall: Perturbation strips are activated by prescrib-

ing the wall-normal velocity component v′(x, z, t) at the wall:

v′(x, 0, z) = fv(x) ·
∞

∑

k=1

2 · A(0,k) · cos(kγ0z + Θ(0,k))

+ fw(x) ·
∞

∑

h=1

∞
∑

k=−∞

2 · A(h,k) · cos(kγ0z − hω0t + Θ(h,k)), (2.8)

with frequencies hω0, spanwise wavenumbers kγ0, amplitudes A(h,k), and phases

Θ(h,k). (The common double-spectral notation is used where (h, k) denotes

timewise and spanwise harmonics of the respective fundamental wavenumbers.)

The fundamental frequency ω0 determines a fundamental period in time de-

noted by T0 = 2π/ω0. The functions fv(x) and fw(x), indicating vortex and

wave excitation, respectively, are functions of the downstream direction and

sketched in figure 2.1. As the initial condition of the perturbation simulation

consists of the bare base flow only the perturbation strips are gradually ramped

on during time.

Wall: The no-slip/no-penetration condition u′ = v′ = w′ = 0 is imposed

except within regions of perturbation strips or suction orifices. The following

equations hold for the wall-vorticity vector:

∂2ω̂′

x,(k)

∂x2
+

∂2ω̂′

x,(k)

∂z2
=

∂2ω̂′

y,(k)

∂x∂y
+

∂

∂z
∆v̂′

(k) k �= 0, (2.9a)

∂ω̂′

x,(k)

∂x
= −

∂ω̂′

y,(k)

∂y
k = 0, (2.9b)

ω′

y = 0, (2.9c)

∂ω′

z

∂x
=

∂ω′

x

∂z
− ∆v′. (2.9d)

Modeled suction: Two types of modeled suction are considered in the current

work, namely spanwise-slit suction and hole suction. The following wall-normal

velocity components are prescribed at the wall:

v′(x, 0, z) = −vmax cos3(
π(x − xS)

lmod
), (2.10)

v′(x, 0, z) = −vmax cos3(
πr

dmod
), (2.11)
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where vmax is the maximum suction velocity in the slit or hole center.

As for the spanwise slit suction, xS defines the slit center position and lmod

the chordwise extension of the slit. Note that the modeled suction is two-

dimensional with respect to the computational coordinate system (x, y, z).

For the hole suction, r and dmod are the radius and diameter, respectively,

of the suction hole with r = {(x−xH)2 +(z −zH)2}1/2 and (xH , 0, zH) defining

the hole center.

Note that a modeled hole-suction velocity distribution needs three param-

eters to be defined: The maximum suction velocity vmax, the hole diameter

dmod, and the distribution v(r). For the chosen v(r), see equation (2.11), a

diameter dmod larger than d of an assumed Hagen-Poiseuille (suction-channel)

profile is required (dmod/d = 1.51, see section 4.1) to yield identical mass flow

at the same maximum suction velocity.

Similar to the holes, a plane Poiseuille-flow profile is assumed for the slit

flow and hence lmod/l = 1.57 has to be considered to obtain identical mass

flow at equal maximum suction velocity, where lmod ≈ dmod has been chosen,

cf. also sections 4.1 and 5.2.

Homogeneous suction can be defined at the wall by prescribing a constant

wall-normal velocity component at the wall within a certain chordwise domain

lx covering the complete spanwise domain. At the beginning and at the end of

this area the velocity distribution is ramped from zero to one and vice versa

using a cos3-distribution.

2.1.2.3 Implementation

To obtain the solution at a new time-level, the following procedure is car-

ried out [12]: The explicit fourth-order Runge-Kutta O4 integration scheme is

used to advance the vorticity field, equations (2.5a-2.5c) in time. Hereby, the

non-linear terms are computed pseudo-spectrally based on an aliasing-free fast

Fourier transformation. Once the vorticity field is known, the Poisson equation

(2.5f) is solved for the v-component using an implemented direct solver, fol-

lowed by the solution of the vorticity vector at the wall using the wall boundary

conditions (2.9). Last, the remaining two Poisson equations (2.5d) and (2.5g)

for u and w are solved.
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2.1.2.4 Semi-implicit time integration

The three momentum equations (2.5a-c) can be written as

∂ω

∂t
= −N +

1

Re
∆ω = −N + V xx + V yy + V zz, (2.12)

where N and V combine the non-linear and viscous terms, respectively.

For cases with suction above, say, vmax = 10 − 15%, highly-resolved wall-

normal grids are necessary, and the resulting numerical time-step limit is dom-

inated by the term V yy comprising the second wall-normal derivative of each

vorticity component. An implicit time-integration scheme for this term is im-

plemented according to the trapezoidal rule. Since this yields O(2)-accuracy,

a modified Heun method being second-order accurate as well is used for the

remaining explicit time integration for full consistency. A second corrector

step is added to secure A-stability. The scheme reads (see also Friederich &

Kloker [20]):

ω(l+1)∗

= ω(l) + ∆t {R(l) +
1

2
V (l)

yy +
1

2
V (l+1)∗

yy }, (2.13a)

ω(l+1)∗∗

= ω(l) +
∆t

2
{R(l) + R(l+1)∗

+ V (l)
yy + V (l+1)∗∗

yy }, (2.13b)

ω(l+1) = ω(l) +
∆t

2
{R(l) + R(l+1)∗∗

+ V (l)
yy + V (l+1)

yy }, (2.13c)

where (l) is the current time level and R = −N + V xx + V zz. Each of these

equations has the form

(1 − ∆t

2Re

∂2

∂y2
) ω(l+1) = R̃, (2.14)

where R̃ includes all remaining explicit parts of the right hand sides of (2.13).

At the wall, the equation system (2.9) is applied for obtaining the new wall-

vorticity values. Equation (2.9a) depends on the v-velocity component of the

flow field at the new time level which in turn depends on the new wall-vorticity

values. Thus, an iteration procedure has to be carried out for each substep

(2.13a) - (2.13c), monitoring wall vorticity and starting with the wall-vorticity

values of the old time level:

(1 − ∆t

2Re

∂2

∂y2
) ω(l+1)(i+1)

= R̃, (2.15)
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with (i) being the iteration level. For equation (2.13a) for example, within

each iteration step the vorticity components for y > 0 are computed, then

the v-poisson equation and finally the wall-vorticity equations are solved. The

updated wall values serve as new boundary condition for the next iteration

step. Note that the right hand side R̃ remains constant during the iteration.

(5,4,3) iteration cycles have shown to be sufficient for equations (2.13a, 2.13b,

2.13c).

The convective terms in y-direction still impose a small time step trans-

lating into an insufficient damping of high-wavenumber modes devised by the

alternating forward-/backward-biased differencing of the convective terms in

chordwise direction [38]. Therefore a compact spatial filter [9] is activated in

chordwise direction x for all simulations with suction and the fine wall-normal

grid.

2.2 Compressible numerical method

The procedure of solving the unsteady compressible Navier-Stokes equations

is also split into two consecutive parts: A steady, spanwise invariant base

flow is computed first and used as an initial solution for the second step,

the unsteady simulation employing the full variables and including controlled

perturbations. The IAG code PROFKOM, that has until now been typically

used for creating compressible base flows, solves the compressible boundary-

layer equations and is thus capable of computing two-dimensional flows only,

i.e. no spanwise velocity component is considered. For the current work a

computation scheme for obtaining a spanwise invariant three-dimensional base

flow, similar to the incompressible one, is necessary and described in section

2.2.1. Furthermore, the numerical method for solving the unsteady problem

has until now been applied for symmetrical two-dimensional base flows and

without streamwise pressure gradients only. Modified freestream boundary

conditions allow now for simulating 3-d boundary layers and are presented in

section 2.2.2.1, where the compressible Navier-Stokes solver is introduced.
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2.2.1 Computation of the steady spanwise-invariant base

flow

The compressible base flow is obtained in two steps: First, a solution of

the three-dimensional compressible parabolized Navier-Stokes (PNS) equations

with constant spanwise freestream velocity and prescribed streamwise pressure

gradient is computed using an extension of the PNS code originally developed

by Schmidt [73]. This PNS solution serves as an initial and as boundary condi-

tion for the second step, the steady full Navier-Stokes computation, cf. figure

2.2. The goal is to create a base flow matching as closely as possible the

incompressible one.

This procedure is necessary for three reasons: Appropriate boundary con-

ditions of the final DNS domain at the inflow and the upper boundary are re-

quired, preventing significant streamwise transients within the domain. Also,

the integration domain of the (numerically cheap) PNS solution is huge in or-

der to prevent influences of the ad-hoc chosen inflow boundary onto the final

DNS domain. Last, matching the flow to the incompressible case required

many iterations suggesting a fast numerical procedure.

As for the PNS, the dimensionless freestream-velocity distribution ue(x) is

chosen as design variable and matched to the incompressible case. Alterna-

tively, the pressure distribution could be matched, but matching ue(x) eases

comparison with our incompressible vorticity-based code. The beginning of

the PNS integration domain is close to the leading edge, far upstream of the

ȳ

x̄0 x̄a x̄s1 x̄s2 x̄e12 x̄e

Figure 2.2: Sketch of the integration-domain extensions for compressible

base-flow computations. Not to scale. PNS domain from x̄0 to x̄e. DNS

domains from x̄s1, x̄s2 to x̄e12. For details on x̄a see section 3.2.
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DNS domain start in order to keep influences from the inflow at a minimum

where Blasius profiles are prescribed as an inflow boundary condition. At the

upper boundary the streamwise pressure gradient has to be specified. The

compressible Bernoulli equation along a streamline (subscript s) is considered:
∫

dp̄

ρ̄
+

q̄2

2
= const. (2.16)

When substituting ρ̄ by p̄ using the isentropic relations, equation (2.16) can

be written as ∂p̄/∂s̄ = f(ū, ∂ū/∂s̄) which is known from the incompressible

base flow. Dirichlet boundary conditions can then be prescribed for T̄e(x̄) and

ρ̄e(x̄) using the isentropic relations. The non-dimensional ue(x)-distribution

can be matched perfectly to the incompressible one by this procedure.

The second step, the steady Navier-Stokes solution, is carried out in two

parts to obtain the final base flow: First, a preliminary DNS domain is used

employing PNS velocity profiles at the inflow (x̄s1), see figure 2.2. Then the

final DNS domain 2 is considered where profiles from the first DNS solution

are used for the inflow boundary condition at x̄s2. Both domains end at x̄e12.

For both DNS domains PNS values are prescribed at the freestream boundary.

At the outflow the space operator from the last but one grid point is applied.

2.2.2 Computation of the perturbed flow

The three-dimensional unsteady compressible Navier-Stokes equations are solved

together with the continuity and energy equation in conservative formulation,

where Q = (ρ, ρu, ρv, ρw, E)T represents the solution vector consisting of den-

sity, mass fluxes and total energy per volume. The equations may be found in

appendix C. In contrast to the incompressible code the computation happens

here mainly in physical space; the Fourier space is exploited for calculating

spanwise derivatives only. Also unlike the incompressible case, the unsteady

compressible equations are solved in total variables. The numerical method is

extensively described in [5, 45, 6].

The integration domain, the computational coordinate system and the non-

dimensionalization are chosen and defined similarly to the incompressible case

as described in section 2.1. The reference density ρ̄∞, the reference temper-

ature T̄∞, and the speed of sound ā∞ =
√

κRT̄∞ are additionally used for
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normalization (see sections 3.2 and 3.3 for the actual reference values):

ρ =
ρ̄

ρ̄∞

, T =
T̄

T̄∞

, p =
p̄

ρ̄∞ū2
∞

,

Ma∞ =
ū∞

ā∞

, P r =
c̄pµ̄∞

θ̄∞

, Re =
ρ̄∞ū∞L̄

µ̄∞

.

(2.17)

The specific heats cp and cv as well as the Prandtl number are assumed to be

constant whereas the temperature-viscosity dependence is modeled by Suther-

land’s law.

Sixth-order compact finite differences on an orthogonal grid (stretched in

wall-normal direction) are used to discretize the streamwise and wall-normal

direction, respectively. Stretched grids are handled by grid transformation. For

the spanwise direction a Fourier-spectral ansatz is implemented to compute the

spanwise derivatives following the Fourier decomposition (2.4). The explicit

four-step fourth-order Runge-Kutta scheme serves as time integrator.

2.2.2.1 Boundary conditions

At the subsonic inflow all base-flow variables are prescribed and upstream-

traveling acoustic waves are allowed to leave the integration domain using a

disturbance transformation to characteristic variables. The no-slip isothermal

wall with wall-pressure condition ∂p/∂y|wall = 0 includes several disturbance

strips where the wall-normal mass flux ρv-component is prescribed to excite

steady and unsteady disturbances. At the outflow, a buffer domain is employed

that ramps all conservative variables to their respective base-flow values. At

the freestream, the base-flow values are kept for w, T , and ρ, suppressing all

disturbances. In addition, ∂u/∂y|e = 0 allows ue to adequately adapt, and

∂v/∂y|e = −(∂(ρeue)/∂x)/ρe is exploited to obtain ve, assuming ∂ρ/∂y|e = 0.

For cases with modeled suction, equation (2.11) from the incompressible

code is considered. The wall-normal mass flux ρv is prescribed here instead of

v:

ρv′(x, 0, z) = −ρvmax cos3(
πr

dmod

), (2.18)

where ρvmax is the maximum suction mass flux in the hole center.
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2.2.2.2 Module for simulated suction

A code extension developed by Kunze [44] allows for the attachment of a

cylindrical channel-flow domain to the rectangular flat-plate domain. It was

applied to study the influence of cold-gas blowing through holes on film cooling

in super- and hypersonic boundary layers.

In the current work the code was adapted to simulate suction through the

channel domain in order to compare the effects of modeled hole suction and

the attached simulated suction channel. Figure 2.3 shows the integration do-

mains and the definition of the cylindrical coordinate system. The original

channel domain employed an equidistant grid for r and h. The circumferen-

tial direction was resolved by an equidistant grid as well, featuring spectral

derivatives similar to the spanwise direction of the rectangular integration do-

main. The implementation of grid stretching for the h-coordinate resulted in

a considerable speed-up during the current investigations. The center line of

r φ h

0.00

0.02
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0.06

0.08

0.10

z

3.32 3.34 3.36 3.38x 0.00 0.04 0.08 0.12z

-0.10

-0.05

0.00

0.05

y

Figure 2.3: Sketch of computational grids in the vicinity of the coupling

between main integration domain and suction-channel domain. Every 4th grid

line of case CHAN (cf. section 4.3) is shown. The origin of the cylindrical

coordinate system (h, r, φ) is at the lower end of the suction channel.
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the channel forms a singularity at r = 0. By choosing an appropriate numer-

ical grid the center line is not simulated but the neighboring grid points are

located at ±∆r/2. Thus, the stencil of finite differences can be easily set up

across the channel center. An implemented mode reduction for the circum-

ferential coordinate at small r handles prohibitive grid steps monitoring r∆φ.

The boundary conditions include an isothermal wall with no-slip condition and

periodic boundary conditions in circumferential direction. The inflow (when

the channel is used for suction) represents the coupling between the Cartesian

and cylindrical domains where interpolation routines are implemented featur-

ing overlapping finite differences. The outflow is defined prescribing pressure,

temperature, and boundary values for all three velocity components extrapo-

lated from the channel flow above. By adapting the pressure at the outflow,

the suction mass flux can be controlled. The flow is initialized with a constant

pressure gradient Hagen-Poiseuille velocity profile according to pipe-flow the-

ory. Spatial filtering is inevitable to obtain stable simulations with eventually

smooth flow. The filter is applied for y ≥ 0.0 and for y < 0.0, 0.0 ≤ r < d.

2.3 Verification

Publications of detailed data of non-weak, localized suction in three-dimensional

boundary layers are not known. The incompressible numerical method has

been well tested and validated for crossflow transition scenarios [79, 9] as well

as for moderate suction in two- and three-dimensional boundary layers [56]. As

verification for strong suction and the semi-implicit time-integration scheme,

one of the current cases is simulated also with the compressible code that is

not based on vorticity.

The chordwise Mach number for the “Prinzipexperiment” is approximately

0.05. Since the numerical time-step limit of the compressible method is very

prohibitive at small freestream Mach numbers, a similar boundary-layer flow

at Ma∞ = 0.20 is chosen for the verification simulation. For details of the

numerical setup see appendix A and also Friederich & Kloker [20].

The wall-normal resolution can be coarser for the compressible case: the

step size ∆ywall = 2.3 · 10−4 is 35 times larger, and thus only 95 grid points
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are needed compared to 225 for the incompressible case. The wall-normal grid

stretching yields ∆ye/∆ywall = 12, versus 120 for the incompressible case. The

resolutions in downstream and spanwise direction (∆x = 1.309 · 10−3, K = 10)

are identical. The resolution of the relevant shear layers at the edge of the

boundary layer is still appropriate, cf. table A.1 in appendix A.

(Still, to obtain a solution at a given physical time after disturbance acti-

vation, the incompressible code runs more than 14 times faster when a Mach

number of 0.2 is chosen for the compressible case, the latter having an about

seven times smaller time step, cf. also appendix A.)

A visualization of vortical structures [31] and velocity crosscuts for the case

with modeled suction is given in figure 2.4 comparing the incompressible and

compressible results. The rotated reference system (cf. appendix D) is used

for visualization with x0 = 3.20, z0 = −0.03, φr = 45.0◦. The inset shows a

top view where the suction holes are marked by black circles. Again, almost

identical results can be observed proofing the correctness of the results. A

preceding study of the verification can be found in [24].

Figure 2.5 shows the downstream modal development of the streamline-

oriented disturbance velocity component ũ′

s = u′

s/ub,s,e for a reference case

without suction and a case with modeled hole suction. These are the cases REF

and 1-H with K = 10, see tables A.1 and 5.1 discussed in more detail later. In

all cases, the steady CFV mode with γ = γ0 = 52.4 has been excited at x = 2.2

as primary disturbance and a packet of controlled unsteady disturbances at

x = 3.0 has been introduced to easily check for secondary instability. The

modeled hole-suction distributions as well as the disturbance-strip setups are

virtually identical in all cases since prescribing ρv in the compressible case

results in negligible v-deviations at the chosen Mach number. The match of the

results of the two codes proofs the correctness of the results at the prescribed

boundary conditions and used discretization. Moreover, careful grid studies

using higher resolutions, especially K = 15 and 21, clearly show that the

results in figure 2.5 are converged, see also appendix B.
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Figure 2.4: Comparison of vortical structures

(λ2 = −10) and velocity crosscuts for case 1-H.
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3 Base flows

The 3-d boundary-layer flow that has been experimentally investigated by

Bippes and co-workers in the “Prinzipexperiment” (DLR Göttingen, see, e.g.,

the review article by Bippes [8]), is subject of investigation in the present work.

The experimental setup consists of a flat plate with a displacement body above

to generate a favorable streamwise pressure gradient. Streamline-shaped lat-

eral plates are used to approximate an infinite wing-span. The chord length

of the flat plate is c̄ = 0.5m. A nearly constant favorable pressure gradi-

ent imposed corresponds to a Falkner-Skan-Cooke (FSC) flow with a Hartree

parameter βh = 2/3, but the flow resulting is only nearly a FSC flow [9, 12].

Three base flows are employed in the current work: First (3.1), the proven

incompressible 3-d base flow computed by Bonfigli [9] is chosen for various

(modeled-) suction scenarios presented in chapter 5.

Second (3.2), an akin flow at Ma(x0) = 0.7 is computed for comparing

results between modeled and simulated pinpoint suction discussed in section

4.3. Here, the incompressible streamwise freestream-velocity distribution is

chosen as design variable and matched. The DNS are performed for a Mach

number Ma=0.7 to (i) exploit the improved performance of the compressible

code compared to Ma=0.05 for the “Prinzipexperiment”, and (ii) to check the

influence of a Mach number relevant to airliner flight.

Third (3.3), a compressible Blasius flow at Ma∞ = 0.5 is set up for a funda-

mental comparison of modeled and simulated suction unaffected by crossflow

and pressure gradient; the results are discussed in section 4.2.

The most relevant characteristics of the incompressible and compressible

3-d base flows are discussed in section 3.4.

Note that the 3-d base flow used for verification in section 2.3 at Ma∞ = 0.2

is not further discussed here.
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3.1 Incompressible 3-d boundary layer

The incompressible base flow was computed by Bonfigli [9] who also developed

the numerical procedure described in section 2.1.1. The goal was to match the

experimental flow of the DLR “Prinzipexperiment” as closely as possible. An

effective experimental sweep angle of φexp = 42.5◦ and a freestream velocity of

Q̄∞ = 19.0m/s (Ū∞ = 14.0m/s) as well as the experimental, nearly constant

negative streamwise pressure gradient define the most important parameters

for the computation. The streamwise velocity distribution is used as reference

for the compressible base flow. Velocity profiles as well as boundary-layer

parameters are included in the respective figures in section 3.4 and compared

to results from the compressible 3-d case at Ma=0.7.

3.2 Compressible 3-d boundary layer at

Ma=0.7

The time-step limit and therefore the computational performance of the com-

pressible code depends directly on the freestream Mach number for low Mach

numbers.

As for the verification simulation a fairly low Mach number of Ma∞ =

0.2 had been chosen (cf. section 2.3) to meet both computational feasibility

and “incompressible” flow behavior which was indispensable for a quantitative

comparison of the incompressible and compressible numerical method.

The investigation purpose here, however, is different. A comparison of mod-

eled suction and suction comprising the suction channel is desired. The inte-

gration domain covers the incompressible-case Reδ1 range to ensure a related

flow field where the dimensionless freestream velocity components ue and we

are chosen as design variables and matched to the incompressible distribution.

Following the computational procedure described in section 2.2.1, the vari-

ables for the upstream boundary of the PNS domain at x̄0 = 0.0010m de-

pend on the initial choice of the Mach number based on the oncoming flow

q̄e(x̄0) = {w̄e(x̄0)2 + ūe(x̄0)2}1/2, set to Maq(x̄0) = q̄e(x̄0)/ā(x̄0) = 0.70. The
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density is chosen to be ρ̄(x̄0) = 1.225kg/m3. To match the kinematic viscos-

ity of the incompressible case (ν̄ = 1.52 · 10−5m2/s) the temperature is set

to T̄e(x̄0) = T̄wall = 303.4K. Therewith, q̄e(x̄0) = 244.43m/s is found, and by

varying the angle of the oncoming flow such that the incompressible stream-

wise velocity distribution ue(x) is met, yielding φ(x̄0) = 72.58◦, the span-

wise and streamwise velocity components are w̄e(x̄0) = w̄e = 233.22m/s and

ūe(x̄0) = 73.18m/s, respectively.

Prescribing w̄e = const., T̄e(x̄), ρ̄e(x̄), and ∂p̄/∂x̄(x̄), the desired non-

dimensional ue(x) distribution is matched. For simplicity, Blasius inflow pro-

files are given. By this procedure, however, the resulting crossflow component

ws(y) did not match the distribution obtained from the DLR experiment and

the incompressible base flow. Hence, during chordwise integration, the solu-

tion is adapted once at x̄a = 0.0047m (cf. figure 2.2). Enlarging ws(xa, y) gives

modified u- and w- profiles that match the incompressible crossflow that in turn

had also been matched [9] to the well-documented experimental development.

The domain extensions introduced in figure 2.2 are x̄s1 = 0.0055m, x̄s2 =

0.0062m, x̄e12 = 0.0304m. Note that the DNS domain of the final simulation

with disturbances starts only at x̄ = 0.0104m.

Similarly to the incompressible case the reference velocity is chosen at

the chordwise position with a local flow angle of φe = φ∞ = 42.5◦ and

yields Ū∞ = w̄e,0/ tan φ∞ = 254.51 ms−1. Defining Re = 92000 and using

ν̄ = 1.52 · 10−5m2/s from the incompressible case the reference length yields

L̄ = 5.49 · 10−3m. Additionally, T̄∞ = T̄ (x̄0) and ρ̄∞ = ρ̄(x̄0) are used for

normalization as already mentioned in section 2.2.2. Properties of the com-

pressible 3-d base flow are provided in section 3.4.

3.3 Compressible Blasius boundary layer at

Ma=0.5

The compressible boundary-layer equations are solved to obtain a Blasius sim-

ilarity solution at Ma∞ = Ū∞/ā∞ = 0.5. The Reynolds number is 100,000

and the reference values include the freestream velocity Ū∞ = 173.63m/s,
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the reference length L̄ = 9.1575 · 10−3m, the temperature T̄∞ = 300K, and

the density ρ∞ = 1.161kg/m2. The considered streamwise domain covers the

Reynolds number range 1880 < Reδ1 < 2000 resulting in the dimensionless

streamwise coordinate 11.7 < x < 13.1.

3.4 Properties of the 3-d base flows

Velocity profiles from the Ma=0.7 steady compressible 3-d Navier-Stokes base

flow are compared with the corresponding incompressible ones in figure 3.1 for

two downstream positions. The slightly fuller u- and w-profiles of the incom-

pressible flow show that, owing to the decreasing density during acceleration,

the boundary layer becomes thicker for the compressible case. This finding

is in accordance with less negative v-profiles. Figure 3.2 compares velocity

profiles in the streamline-oriented coordinate system (for a definition of the

corresponding coordinate system see appendix D) and provides temperature

and density profiles for the Ma=0.7 case. The us-profile behavior is similar to u

before. The typically shaped crossflow profiles with maxima at approximately

δ/4 are found for ws, with the compressible maxima being slightly larger than

the incompressible ones. This can be explained by the equilibrium of forces

normal to a curved, steady streamline: ∂p/∂n = ρv2/r. Since for the Ma=0.7

case the density decreases in the boundary layer and the pressure gradient is

approximately constant, the (crossflow) velocity component must increase.

A comparison of the boundary-layer parameters is provided in figures 3.3

and 3.4. Values with subscript s are evaluated using the streamline-oriented

velocity component us. For the calculation of the displacement and momentum

thickness a pseudo-velocity distribution up =
∫ ye

0 ωzdy is used for both cases

to suppress influences from slightly non-constant u-velocity profiles outside

the boundary layer. Thus, the wall-normal density variation is neglected to

compare velocity profiles only.

The flow is accelerated in chordwise direction throughout the complete inte-

gration domain, and due to the sweep angle the wall-normal maximum of the

crossflow velocity component ws increases as well as already observed before.

The shape factor H12 is computed from the displacement thickness δ1 and the
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Figure 3.5: Amplification rates αi (shaded) and streamwise wave numbers αr

(lines) of unstable steady crossflow modes as functions of streamwise coordinate

x and spanwise wavenumber γ obtained from spatial incompressible LST. The

dashed line marks the investigated fundamental mode γ0 = 52.4.

momentum thickness δ2 and yields approximately 2.26, slightly decreasing.

The difference between compressible and incompressible computations be-

comes obvious in the boundary-layer-thickness evaluations and the maximal

crossflow. However, the shape parameters H12 and H12,s are identical indicat-

ing similar profiles. The already observed thicker boundary layer and larger

maximal crossflow component for the Ma=0.7 case can also be found in the

respective downstream development.

Results from an analysis of the incompressible base flow according to in-

compressible linear stability theory (LST)1 are provided in figure 3.5 for the

steady mode ω = 0.0. A band of unstable spanwise modes is found indicat-

ing crossflow instability. Although higher amplification rates can be found

for unsteady, traveling crossflow modes (not shown) investigations have shown

that under free-flight conditions typically the steady ones prevail due to their

higher receptivity [51]. Thus, only steady crossflow modes are investigated in

the current work.

Owing to previous numerical studies the unstable crossflow mode with γ =

52.4 is subject of investigation for all simulations. It represents one of the most

amplified steady modes that are expected to develop in a natural scenario.

1The numerical method was programmed by M. Zengl, IAG, Universität Stuttgart
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Figure 3.6: Comparison of amplification rates αi (left) and streamwise wave

numbers αr (right, αr-values for αi > 0 cut off) as functions of streamwise

coordinate x and spanwise wavenumber γ for the incompressible base flow

(shaded, spatial incompressible LST) and the Ma=0.7 base flow (lines, spa-

tial compressible LST). The dashed line marks the investigated fundamental

mode γ0 = 52.4.

Figure 3.6 provides a comparison of results from a compressible LST eval-

uation2 of the Ma=0.7 base flow (solid lines) with the incompressible LST re-

sults (shaded) of the incompressible base flow. The corresponding streamwise

wavenumbers αr of the unstable steady crossflow modes are almost identical,

the amplification rates αi however show some deviations. For the Ma=0.7

case the maximum is shifted towards lower spanwise wave numbers and also

the absolute value decays slightly (at x = 2.2 and γ = 52.4: αi,incomp = −2.44,

αi,comp = −2.31). For γ ≤ 20 the solution did not converge, however this is

outside the region of interest.

2Code included in the PNS solver by O. Schmidt [73]



4 Comparison of modeled and simu-

lated suction

The effects of hole suction on two- and three-dimensional boundary layers are

investigated in this chapter with special focus on the comparison of modeled

and simulated suction. For modeled suction, the suction-velocity distribution

is prescribed at the wall whereas for simulated suction the flow below the

suction orifice in the suction channel is simulated.

In the three-dimensional boundary layer, the development of a controlled

excited crossflow vortex (CFV) eventually inducing secondary instability is

controlled by a single suction hole. The focus of this chapter is on the compar-

ison of the effects on the flow through modeled and simulated suction rather

than on the physical effects of transition control by means of pinpoint suction.

This is elaborated in chapter 5.

The channel-flow module is integrated in the compressible DNS code intro-

duced in section 2.2. Originally developed for cold-gas blowing through holes

[45] the module has been adapted to simulate a suction channel (cf. section

2.2.2.2); see also the tentative study [22]. Due to the extensive computa-

tional demands of the simulation with channel, the increasing performance of

the compressible code with increasing Mach number is exploited, and hence

the comparisons are carried out at the subsonic Mach numbers Ma=0.5 and

Ma=0.7.

First, an overview of modeled and simulation suction setups is given in

section 4.1. Then, results from modeled and simulated hole suction in a Blasius

boundary-layer flow at Ma∞ = 0.5 are compared in section 4.2 to explicate

the influences of bare hole suction in the absence of pressure gradient and

crossflow.
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The comparison for a three-dimensional boundary layer provided in section

4.3 is carried out in the Ma=0.7 3-d base flow where results for transition delay

by modeled and simulated pinpoint suction are discussed.

4.1 Aspects of modeled and simulated suction

setups

For a useful comparison it has turned out that the sucked mass fluxes in the

modeled case (MOD) and simulated case with suction channel (CHAN) should

be identical; see appendix E for a study where the hole diameter and maximum

suction velocity are varied. The derivation of the corresponding parameters

yielding equal mass fluxes is described in the following.

The modeled suction-velocity distribution (see equation 2.18) is defined ac-

cording to a cos3-profile. As for the theoretical channel flow, a Hagen-Poiseuille

profile is considered. (Of course, the channel-velocity distribution differs from

a Hagen-Poiseuille profile in the vicinity of the wall orifice, however, the overall

mass flux is not affected due to mass continuity.)

The sucked mass flux of the channel simulation can be obtained by inte-

grating the actual wall-normal mass flux ṁ =
∫

(ρv)rdrdφ in the channel.

Considering the theoretical mass fluxes for both cases

ṁCHAN = |(ρv)|max
π

8
d2

CHAN , |ρv|mean = 0.5|ρv|max (4.1)

ṁMOD = |(ρv)|max
2(3π − 7)

9π
d2

MOD, |ρv|mean ≈ 0.2184|ρv|max (4.2)

at equal |(ρv)|max and assuming constant density across the channel diameter,

the diameter ratio results in

dMOD/dCHAN = 1.51313. (4.3)

The hole-diameter of the modeled suction is larger due to the smoother shape of

the cos3-profile compared to the second order polynomial. Applying equation

(4.3), the modeled case can be set up with equal sucked mass flux by choosing

dMOD and |(ρv)|max, once the values from the channel simulation are known.
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For the sake of completeness, the procedure for slit suction (not part of

this chapter, but applied in chapter 5) shall be mentioned here briefly: For

the modeled case the two-dimensional cos3-velocity distribution (see equation

(2.10) for the incompressible case) is considered and compared to a plane

Poiseuille-flow profile. The mass fluxes are

ṁCHAN,2D = |(ρv)|max
4

3π
lCHAN (4.4)

ṁMOD,2D = |(ρv)|max
2

3
l2
MOD. (4.5)

resulting in

lMOD/lCHAN = 1.57080 (4.6)

at equal maximum mass flux.

4.2 Suction in a Blasius boundary layer at

Ma=0.5

The effects of modeled and simulated hole suction are compared in a Blasius

boundary layer at Ma∞ = 0.5 (see section 3.3 for relevant base-flow parameters

and appendix A for the numerical setup). The center of the suction orifice

is located at Reδ1 = 1925 for both cases. This was originally chosen for

comparison with experiments [58].

As for the channel simulation, a suction-channel diameter of 2.0 δ1,s is em-

ployed at a spanwise spacing of λz/δ1,s = 14.8; δ1,s = 1.925 · 10−2, δ̄1,s =

1.7628 · 10−4m is the displacement thickness of the undisturbed base flow at

the chordwise location x = 12.12 (x̄ = 0.111m) of the suction hole center. At

the pressure level prescribed at the channel outflow, the resulting mass flux

corresponds to a Hagen-Poiseuille profile with (ρv)max = |−0.597|. (Note that

this corresponds to an area-averaged mass flux of 0.3 which is relatively large

compared to standard suction with about 0.1.) This value is consequently

used for the simulation with modeled suction where the suction-hole diameter

is chosen according to equation (4.3) to yield identical mass fluxes.
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Figure 4.1 shows a comparison of vortical structures and velocity crosscuts

caused by the modeled and the simulated suction hole. The most obvious

difference can be observed for the wall-normal velocity-distributions in the

wall orifices. The clean, analytically prescribed modeled distribution consists

of concentrical isocontours. For the simulated case, almost evenly distributed

suction can be observed with two distinct maxima. (A more detailed discussion

including all velocity components at various channel crosscuts is provided in

the next section for the 3-d boundary-layer flow.) When the resulting vortices

are compared, almost identical structures can be found even very close to the

suction hole. The only noticeable difference is the streamwise extension of the

smaller, secondary structures lying outside of the main vortex pair where the

generation is slightly underpredicted in the modeled case. As for the velocity

crosscuts only weak deviations can be observed for the sensitive v-component.

The overall agreement is excellent. For the given suction rate it is concluded

that - assuming equal mass flux - the actual suction-velocity distribution has

virtually no influence on the generation of vortical structures. Note that the

streamwise extension of the integration domain is too short to capture the

region where the main vortex pair decays and eventually disappears.

A comparison of the downstream modal amplitude development of the u′-

velocity component is provided in figure 4.2 for the first four steady spanwise

modes and the mean-flow deformation (0,0). A simulation with significantly

improved wall-normal resolution for the modeled case (not shown) confirms

the converged result. Once more, the agreement is excellent justifying the

applicability of the employed modeled suction in two-dimensional boundary

layers.

A case with differently modeled suction (not shown) employs a top-hat pro-

file for the suction distribution at equal mass flux. Thus, the resulting modeled

diameter is smaller than the channel diameter. The amplitude development is

almost identical but the spanwise spacing of the counter-rotating structures is

somewhat closer, probably due to the more closely spaced edges of the suction

hole where the structures emerge. It is concluded that the cos3-distribution is

an appropriate choice for modeling suction through a cylindrical channel up

to the considered suction rate.
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Figure 4.2: Downstream development of selected steady modal ũ′

(0,k)-

amplitudes in a Ma=0.5 Blasius flow for the modeled-suction case (dashed)

and the case with suction channel (solid lines) after Fourier analysis in time.

The amplitude level of all unsteady modes is too small for the chosen ordinate

values.

4.3 Pinpoint suction in a 3-d boundary layer

at Ma=0.7

The 3-d boundary-layer flow at Ma(x0) = 0.7 introduced in section 3.2 is em-

ployed for the comparison of modeled and simulated “pinpoint” suction in a

three-dimensional boundary layer applied for LFC of large-amplitude CFVs

with active secondary instability. Since the flow scenario contains now oncom-

ing CFVs, the term pinpoint suction is used to explicate the importance of

the hole location relative to the vortex. (Physical aspects of hole suction in

the three-dimensional boundary layer without oncoming CFVs are discussed

in the next chapter.)

Three cases are considered: The reference case without suction is called

REF-07, the case with modeled hole suction (MOD) and the simulation com-

prising the channel flow (CHAN) employ a single pinpoint suction hole with

identical coordinates and mass fluxes; see appendix A for the numerical setup.

For all cases two succeeding disturbance strips at the wall excite steady and

unsteady perturbations, respectively, with momentum input but without net
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Figure 4.3: Downstream development of modal ũ′

s,(h)- and ũ′

s,(h,k)-amplitudes

from Fourier analysis in time (maximum over y or y and z, ω = 0 and 42 ≤
ω ≤ 138, ∆ω = 24 for case REF-07.

mass flow. Equation (2.8) describes the incompressible disturbance generation;

here, the wall-normal mass-flux ρv is prescribed accordingly instead of the

wall-normal velocity component v. At x = 2.20 the steady vortex mode (0,1)

is triggered with an amplitude of A = 9.3 · 10−3 whereas at x = 3.00 an

unsteady, pulse-like disturbance is generated that includes modes (h, ±1), h =

1 − 50 with amplitudes of A = 6.25 · 10−4 and phases Θ = 0.0 (see the inset

of figure 5.1 for the resulting time signal). The fundamental spanwise wave

number γ0 = 52.4 and the fundamental frequency ω0 = 6.0 are chosen for the

simulation representing one of the most amplified primary modes according to

LST. Exciting spanwise modes with γ = ±γ0 only does not form a limitation

since, together with the (large) vortex modes (0,1), (0,2) etc. of the prevailing

CFV, the full disturbance spectrum is generated non-linearly at once.

The downstream modal development of the streamline-oriented disturbance

velocity component ũ′

s = u′

s/ub,s,e for the reference case REF-07 without suc-

tion is shown in figure 4.3. At x = 3.00 the steady and purely three-dimensional

part of the mean flow ω = 0−(0, 0), i.e. the steady part of the flow field without

the spanwise mean (0,0), reaches 17%. Secondary instability sets in immedi-

ately, shown by the growth of high-frequency disturbances, e.g., mode ω = 90
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Figure 4.4: Pinpoint-suction setup for the Ma=0.7 boundary layer: Crosscut

at x = 3.36 for case REF-07 (t/T0 = 0.0) without suction. Solid lines show

ũs-isocontours (0.05 to 0.95, ∆ = 0.1), dashed lines show λ2-isocontours (−20

to −5, ∆ = 5), modal ũ′

s-amplitude distribution for high-frequency secondary-

instability mode ω = 90 visualized by gray scale (0.3 to 0.9, ∆ = 0.2). Location

of the suction channel to be applied marked by two vertical lines (case CHAN,

crosscut through center of suction channel). The horizontal dashed line denotes

the undisturbed boundary-layer thickness δ99,s.

(h = 15). Starting at x = 3.60, non-linear growth of the low-frequency mode

ω = 42 (h = 7) followed by transition to turbulence can be observed.

When examining y-z-crosscuts of the ũ′

s-amplitude distributions, low-fre-

quency type-III modes are found in the range 6 ≤ ω ≤ 48, whereas the high-

frequency modes (ω > 60) reveal the typical type-I or z-mode amplitude dis-

tributions. Mode ω = 90 gains the largest amplitude level at x = 3.36. Figure

4.4 shows its location with respect to the clockwise-turning CFV visualized by

ũs- and λ2-isocontours.

The pinpoint-suction setup is visualized by two vertical lines and arrows

that mark the suction channel walls and the sucked flow as applied in case

CHAN. The center of the suction channel is located at x = 3.360 and z =

0.052 and a diameter of dCHAN = 0.01687 is chosen which corresponds to

d/δ1,s = 2.00. The channel outlet is located at y = −0.250 which corresponds

to approximately 15d. Details on the choice of the specific location and the

underlying physical mechanisms are explained in detail in chapter 5.

After transient effects from the start of the simulation have died out the flow

in the suction channel adjusts to the prescribed pressure difference and a steady
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flow field can be observed. According to equation (4.1) the integrated mass flux

yields a theoretical Hagen-Poiseuille profile with (ρv)max = | − 0.64239|. Con-

sequently, case MOD with modeled suction-distribution is set-up with identical

hole-center coordinates employing the same maximum mass flux and, accord-

ing to equation (4.3), a modeled diameter of dMOD = 0.02542.

The channel Reynolds number based on the maximum wall-normal mass flux

and the channel diameter d is Re = |ρ̄v̄|maxd̄/µ̄ = 970 and well below the crit-

ical Reynolds number Recrit = 2300 for pipe flow with sharp-edged inlet based

on the average channel velocity. Furthermore, to check for possible oversuc-

tion, a critical Reynolds number Rekk is evaluated according to the “equivalent

roughness model” (ERM) [48, 58]. If the height of the sucked streamtube is hk

(measured sufficiently far upstream of the suction hole) and the correspond-

ing actual local streamwise velocity component is uk,s, the equivalent rough-

ness Reynolds number is defined as Rekk,ERM = h̄kūk,s/ν̄. The values yield

Rekk ≈ 350 for cases MOD and CHAN, being well below the observed, critical

values found, 700 < Rekk < 800, in the same boundary-layer flow [58]. Note

that the critical roughness Reynolds number, defined as Rekk,crit = k̄ūk/ν̄,

based on the roughness height k and the corresponding streamwise velocity

component of the reference base flow uk, is typically much smaller. Authors

give values of 350 for hemispherical roughness elements and 600 or higher for

cylindrical shapes, however, evaluated in two-dimensional base flows, cf. the

overview in [58]. The corresponding oversuction cases in a Blasius boundary

layer suggest critical values above Rekk = 1400. Therefore, the critical equiv-

alent roughness Reynolds numbers for suction cases seem to be higher by a

factor of 2, and, as already concluded in [58], the ERM seems questionable.

The effect of pinpoint suction becomes obvious in figure 4.5 where the modal

downstream development of disturbances for cases MOD and CHAN is com-

pared. The attenuation of the CFV is identical in both cases and a reduction

from 26% amplitude level at x = 3.45 to less than 14% at x = 3.64 can be

found for ω = 0 − (0, 0). The accompanying weakening of secondary ampli-

fication is somewhat stronger in case CHAN considering the amplitude level,

suggesting that case MOD slightly underpredicts the attenuating effect of pin-

point suction rendering the modeling intrinsically rather conservative. The

growth rates coincide well for corresponding modes.
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Figure 4.5: As figure 4.3 but for cases MOD and CHAN. Mode ω = 90 from

case REF-07 has been added as reference (dotted line).

Crosscuts through the CFVs at x = 3.72 are shown in figure 4.6 for all three

cases. Isocontours of the streamwise ũs-velocity component as well as eigen-

functions for mode ω = 90 highlight the relevant shear-layer regions. The effect

of pinpoint suction can be found in the reduction of the CFV strength indi-

cated by the less-deformed ũs-velocity isocontours for cases MOD and CHAN

and also by the reduced size of the vortex shown by the λ2-isocontours. More-

over, the shape of the eigenfunction reveals less localized-acting secondary

instability. The agreement for cases MOD and CHAN is excellent.

Note the small, newly appearing structure at z = 0.096, y = 0.008, for

cases MOD and CHAN which is a relict from a suction-hole-induced vortex.

A further discussion is again postponed to chapter 5.

Figure 4.7 provides a top view of vortical structures for all cases in a rotated

reference system (for details on the used coordinate systems see appendix

D) that is chosen to approximately show straight CFVs. The snapshot for

case REF-07 reveals undisturbed flow up to xr = 0.9. The small structures

at xr = 1.0 show the disturbance pulse in an early stage. The turbulent

region between xr = 1.6 and xr = 2.5 is caused by the previous pulse and

full turbulence starts at xr = 3.0. Postponed transition can be found for
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Figure 4.6: Crosscuts at x = 3.72 showing ũs-isocontours (solid lines, 0.05

to 0.95, ∆ = 0.1), λ2-isocontours (dashed lines, levels -1 and -5) and the

normalized us-amplitude distribution for mode ω = 90 (shaded, levels 0.5, 0.7,

and 0.9) at time level t/T0 = 0.2.
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Figure 4.7: Vortex visualization (λ2 = −5), top view, snapshot in time

(t/T0 = 0.0), to scale, for cases REF-07, MOD, and CHAN. Right plots show

a zoom of the structures in the vicinity of the suction hole; lines show wall-

normal isocontours. The suction holes are marked by black circles. A rotated

reference system is used with xr0 = 3.0, zr0 = 0.0, Φr = 45.0◦.
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case MOD where the equivalent secondary structures described for case REF-

07 are on a much lower level and hence transition occurs only later in the

considered domain. Due to the large numerical demands of the computation

with suction channel a shorter integration domain is chosen for case CHAN.

The comparison is therefore available only up to xr = 1.6 but provides very

good agreement. The close-ups show almost identical structures evolving from

the suction orifices with slightly more pronounced secondary structures in case

MOD which is in agreement with the earlier-observed larger amplitude level

of secondary modes. The near-wall, spanwise periodic structures in case MOD

result from the coarser spanwise grid which is however sufficient considering

the alike downstream evolution of vortical structures.

The flow fields of cases MOD and CHAN are compared in more detail in

figures 4.8-4.12 where a distinct rotated coordinate system (ξ, y, ζ) is chosen

such that its origin coincides with the suction hole center (cf. appendix D).

Note that in a boundary layer with crossflow the streamline direction varies

with the distance from the wall and thus the chosen angle φr = 45.0◦ does not

coincide with the potential streamline direction outside the boundary layer,

φe(x = 3.36) = 49.2◦, but rather follows the local flow direction in the bound-

ary layer which coincides well with the orientation of the CFV cores. The

crosscuts at ζ = 0.0 and ξ = 0.0 in figure 4.8 reveal the flow fields in this very

local streamwise and spanwise flow direction through the suction-hole center.

The agreement of the flow fields for y > 0.0 is perfect. Wall-normal mass

flux ρv and projected streamlines are shown in the left column. Differences

can be observed only for a very small region directly above the suction hole,

but the far-field distributions are identical and also the streamlines coincide.

The suction channel shows a large region of positive ρv at the left side indi-

cating steady separation (−0.026 < y < 0.000). The maximum suction lies

downstream of the center of the channel. The right column shows the local

streamwise velocity component ur and pressure levels in a spanwise crosscut.

The water-wave shapes are identical for both cases and also the pressure level

1.07 coincides fairly well. Close to the wall the pressure distributions show

minor deviations due to the suction modeling. The channel flow reveals a

symmetrical and for a decreasing y-coordinate decaying ur-component.

Figure 4.9 gives a comparison of the wall-pressure distributions. Differences
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Figure 4.8: Crosscuts for cases MOD and CHAN. Left column shows ρv-

distributions (shaded) and projected [u,v,w]-streamlines. Right columns shows

ur-isocontours (shaded) and pressure levels p (thick lines). A distinct rotated

coordinate system (ξ, y, ζ) is used with φr = 45◦ and xr0 and zr0 being the

hole-center coordinates. Note that the channel extends up to y = −0.25.
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Figure 4.9: Wall-pressure distributions for cases MOD and CHAN. The

wall of the suction channel is marked in both figures by a black circle. The

coordinate system from figure 4.8 is used.

occur only above the suction orifice due to the differing velocity distributions

but the wall-pressure distributions outside the holes coincide well.

Wall-normal crosscuts of velocity and mass-flux distributions are provided

in figure 4.10. At y = +d the wall-normal mass fluxes are compared right

above the suction centers and very good agreement is found. At the wall,

ρv and v show qualitatively similar distributions for the channel case and are

scaled only by the density value. The crosscuts for ur and wr show the actual

streamwise and spanwise velocity components at y = 0.0 (that are zero in the

modeled case) and values up to 50% or 20% can be observed, respectively. The

channel-flow evolution is shown by two more crosscuts at y = −d and y = −5d

revealing ur- and wr-components below 10% while the wall-normal mass flux

approaches the theoretical Hagen-Poiseuille distribution.

Wall-normal profiles along the suction-hole center can be found in figure

4.11 for the six flow variables. The ur-profile is deformed above the suction

hole and approaches a value of 0.4 close to the wall, surprisingly also in the

modeled case. The imposed no-slip suction distribution forces here the value

to be zero at the wall which creates a large wall-normal gradient. This is

most likely the explanation for the demanding wall-normal resolution of the

incompressible, vorticity-based code considering that the variable ωz is mainly

determined by ∂u/∂y and the equation system includes second derivatives of all
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Figure 4.10: Wall-normal crosscuts providing various velocity/mass-flux dis-

tributions at four locations for case CHAN (left two columns). For case MOD,

two ρv-distributions are shown at y = +d and y = 0 (right column). The

respective crosscut locations are marked in figure 4.11. The coordinate system

from figure 4.8 is used.
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Figure 4.12: Profiles of selected flow variables vs. local streamline direction

ξ in the plane ζ = 0.0 for case CHAN at five channel locations: i) y = 0.0,

ii) y = −d, iii) y = −2d, iv) y = −5d, v) y = −15d. The ordinates are defined

in subfigures i) and successively shifted by -1.0. for ii)-v). The modeled ρv-

distribution from case MOD at the wall is added for comparison (solid line

with symbols) in the left figure. The coordinate system from figure 4.8 is used.
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vorticity components. In the channel case the ur-component approaches zero

for increasing channel-flow direction −y, as does wr. The crossflow profile wr

does not vanish outside the boundary layer since the chosen coordinate system

does not coincide with the (potential) streamline-oriented one as explained

above. The wall-normal mass flux ρv is almost zero outside the boundary layer

with increasing negative values when approaching the wall. The modeled wall-

value of -0.64 is never reached in the channel case where a maximum of -0.50

can be found for large | − y| suggesting that the theoretical Hagen-Poiseuille

distribution has not yet been reached. Density, temperature and pressure

profiles show the resulting distributions of the prescribed low pressure region

at the channel outlet.

The according profiles for varying ξ-coordinate at ζ = 0.0 are provided

in figure 4.12 for five channel positions and show the distributions in local

flow direction. For comparison, the prescribed modeled suction distribution

is added in the left figure at every position. In subfigure ii) the maximum

suction mass flux can be found at ξ = 0.007 whereas the positive values at

ξ = −0.007 reveal the separated flow region. Note that the total sucked mass

flux is determined by the area integral of ρv and the line integrals of ρv do not

yield equal values at equal mass flux. The distributions of ρ, T , and p result

from the pressure gradient and the chosen isothermal-wall boundary condition.

A visualization of vortical structures for the channel flow is provided in

figure 4.13. The left subfigure shows the main domain of case CHAN and

the channel domain in a three-dimensional view. The channel domain can be

found separately in the right subfigure at a higher λ2-level including various

crosscuts that show isocontours of the wall-normal velocity component. Re-

call that the local flow direction corresponds approximately to the coordinate

xr. The emerging structures are symmetrical to some extent with respect to

the oncoming flow direction. The corresponding structures wind around the

channel center and decay with increasing |−y| coordinate. The separated flow

region is visualized by positive v-values in the two wall-near crosscuts.
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normal velocity-component v. The coordinate system of figure 4.7 is used. To

scale.



5 Control of crossflow transition

All results in this chapter are obtained from the incompressible, vorticity-based

numerical method introduced in section 2.1. Subject of investigation is the in-

compressible base flow that represents the 3-d boundary-layer flow of the DLR

Göttingen “Prinzipexperiment”. The goal of all applied suction setups - using

modeled suction throughout this chapter - is the drag reduction by maintain-

ing laminar flow as long as possible. In the most considered scenarios this is

achieved by the pinpoint-suction concept where one or several suction holes are

placed underneath the updraft-turning side of a grown crossflow vortex (CFV)

which can substantially postpone the location of laminar-turbulent transition.

The following simulation cases are considered (for a tentative study see [24]

and for a subset see also [20]): The reference case REF is used as the basis

for the transition process without suction and for comparison. It includes the

generation of a large-amplitude CFV with triggered, active secondary instabil-

ity leading to transition to turbulence. All remaining cases employ the same

disturbance generation - unless stated otherwise - but additionally some kind

of suction: Case HOM shows the effect of homogeneous suction in a chordwise

finite area of the integration domain. Cases 1-H, 3-H, 3-H*, and 9-H are set

up with one, three, or nine successive, identical suction holes at the wall, posi-

tioned along one CFV. Spanwise suction slits are considered in cases 3-S, 1-S,

and 3-S* employing different suction rates. The numerical parameters for the

various cases are given in table A.1 of appendix A and table 5.1 summarizes

parameters for the suction generation.

Note that the values d and l are the hole diameters and slit extensions from

Hagen-Poiseuille and plane Poiseuille profiles, respectively, that correspond

to the actually computed cases with the numerical parameters dmod and lmod

at identical sucked mass flux. Thereby, d and l would directly represent the

dimensions of a respective channel setup.
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Figure 5.1: Downstream development of modal ũ′

s,(h)-amplitudes for case

REF from Fourier analysis in time (maximum over y and z, 0 ≤ ω ≤ 180,

∆ω = 6). The inset shows the physical time signal of the pulsing.

5.1 Reference case and pinpoint suction setup

For all cases two succeeding disturbance strips excite steady and unsteady

modes similarly to the procedure described in section 4.3 for the compressible

setup but here the wall-normal velocity component at the wall is prescribed

as defined in equation (2.8). At x = 2.20 the fundamental steady vortex mode

(0,1) is triggered with an amplitude of A = 9.30 · 10−3 whereas at x = 3.00

the unsteady, pulse-like disturbance is generated that includes modes (h, ±1),

h = 1 − 50, here excited on a lower amplitude level of A = 6.25 · 10−7 and

Θ = 0.0. The same fundamental spanwise and timewise wavenumbers γ0 =

52.4 and ω0 = 6.0 are chosen.

The downstream modal development of the streamline-oriented disturbance

velocity component ũ′

s = u′

s/ub,s,e for the reference case REF without suction is

shown in figure 5.1. A high initial amplitude of mode (0,1) is chosen as before

to skip the linear development of the crossflow vortex mode. The linear stage

has been extensively discussed in [12] and left out here to save computational

resources. (A comparison of the induced CFV shows no notable differences to

cases where the fundamental mode was triggered on a lower amplitude level.)

At x = 3.00, the steady three-dimensional part of the mean flow ω = 0 − (0, 0)
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Figure 5.2: Pinpoint suction setup: Crosscut at x = 3.36 for case REF

without suction. Solid lines show ũs-isocontours (0.05 to 0.95, ∆ = 0.1),

dashed lines show λ2-isocontours (−25 to −5, ∆ = 5), modal ũ′

s-amplitude

distribution for high-frequency secondary-instability mode ω = 90 visualized by

gray scale (0.3 to 0.9, ∆ = 0.2). Arrows show pinpoint-suction distribution at

the wall to be applied (case 1-H, crosscut through center of suction hole). The

horizontal dashed line denotes the undisturbed boundary-layer thickness δ99,s.

reaches 19% and secondary instability of high-frequency modes sets in. Non-

linear growth of the low-frequency modes followed by transition to turbulence

can be observed starting at x = 3.75.

Note that without unsteady forcing the simulated flow breaks down to tur-

bulence for x > 5.5 only. In this case the strong convective secondary in-

stability caused by the large-amplitude CFVs amplifies the small numerical

background noise (O(ũ′

s) = 10−12 − 10−15) and it takes until x = 5.5 to reach

the turbulent state. The forcing of unsteady pulse disturbances has been ap-

plied to keep the integration domain short for the various cases considered.

The ũ′

s-amplitude distributions show low-frequency type-III modes in the

range 6 ≤ ω ≤ 48, and high-frequency modes (ω > 60) reveal typical type-I or

z-mode distributions. Figure 5.2 shows the distribution of mode ω = 90 with

respect to the clockwise-turning CFV visualized by ũ′

s- and λ2-isocontours.

The pinpoint-suction setup is visualized by arrows indicating the prescribed

suction velocity at the wall as applied in case 1-H.

The suction position shown is (near-) optimal with respect to secondary-

growth attenuation and has been found iteratively. It is not exactly beneath
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the maximum of the z-mode. Note that as explained in section 4.3 the stream-

line direction varies with the distance from the wall.

5.2 Downstream development of disturbances

for cases with suction

First, the homogeneous-suction case HOM is considered. A suction coefficient

using the free-stream velocity in chordwise direction is defined by

cq =
v̄avg · P

Ū∞

, (5.1)

where v̄avg = 1/A
∫

v dA, A - orifice area, is the average suction velocity

over the suction orifice and P the porosity of the suction panel. A value of

cq,0 = 1.63 · 10−3 on a chordwise extension of the suction domain of lx = 0.9 is

chosen for case HOM according to table 5.1. The homogeneous suction oper-

ates at v = vmax = 0.0016 (P = 1) and covers the complete spanwise domain.

The increase of the spanwise mean (0,0) between 3.15 ≤ x ≤ 4.05 in figure 5.3a

is a consequence of the homogeneous suction. Little influence on the main vor-

tex is observed, visualized by ω = 0 − (0, 0). A slight reduction of secondary

amplification is found for all considered high-frequency modes compared to

the selected reference mode ω = 120 from case REF that gained the high-

est amplification rate. However, transition to turbulence is only marginally

delayed.

The first pinpoint-suction case 1-H is set up by selecting the location of

the suction-hole center (xH = 3.356, zH = 0.060) according to figure 5.2

and choosing a hole diameter of d = 0.0173 = 2.30 δ1,s(xH). The maximum

suction velocity is vmax = v̄max/Ū∞ = 0.5, corresponding to vmax/ub,s,e =

0.413. Slight variations of the spanwise location of the hole center have only a

minor influence on the attenuating effect of the suction.

If the reference area from case HOM is considered (Ahom = λz,0 · lx), the

porosity for case 1-H yields P = πd2/4/Ahom = 0.0022 and the suction coeffi-

cient results in cq = 5.45 · 10−4 which is cq,0/3.

The localized suction influences the vortex strength, see figure 5.3b. The

y-z-maximum of the steady, three-dimensional ũ′

s-deformation of the flow ω =
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Figure 5.3: Downstream development of modal ũ′

s,(h)-amplitudes from

Fourier analysis in time (maximum over y and z, 0 ≤ ω ≤ 180, ∆ω = 30.

Mode ω = 120 from case REF has been added as reference (dotted line).

0 − (0, 0) shows a significant reduction behind the suction hole, its amplitude

dropping from 0.30 to 0.17. Secondary growth of all modes is affected imme-

diately and significantly reduced. Only after x = 4.3, the former amplification

rates are regained due to the re-grown CFV. The transition delay is about the

same as in case HOM, but with 67% less suction mass flow.

The influence of the diameter and the mass and momentum input are sum-

marized in appendix E. The main finding is that the mass flux sucked is

the most important parameter with respect to secondary-growth attenuation

rather than the maximum suction velocity and thus the wall-normal momen-

tum output at the considered rates.

To check for oversuction, the parameter Rekk, defined in section 4.3, is

evaluated in a case without oncoming vortex. For a single hole and suction pa-

rameters identical to case 1-H, Rekk reaches 335 and is well below the observed

critical values 700 < Rekk < 800 [58].

To increase the sucked mass flow, more holes are added to prevent over-

suction caused by one hole with an unduly large suction velocity v̄avg . Three

succeeding suction holes, each with the same suction parameters as the sin-

gle hole in case 1-H, are set up, resulting in cq = cq,0. The hole centers are
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Figure 5.4: Like figure 5.3 but for cases 3-H and 3-H*.

aligned on a straight line, parallel to the vortex-core orientation at x = 3.36.

Results for this case, called 3-H, are provided in figure 5.4a. In spite of a local

increase the vortex amplitude level is reduced to 0.12 at x = 3.7, and stronger

secondary-growth attenuation can be observed for all unsteady modes. Tran-

sition is shifted to the end of the considered domain. Note that one length

unit (L̄ = 0.1 m) corresponds to 133 · δ1,s at x = 3.36.

In order to check the influence of the spanwise suction-hole position, case

3-H* is set up with all three suction holes shifted by λz,0/2. This is pessimal

considering the spanwise spacing and sense of rotation of the CFV. Figure

5.4b shows indeed an enhancement of the CFV strength to a maximum value

of more than 53% at x = 3.65. However, the overall effect of the suction

seems to overcome the misalignment drawback, and transition is at least not

enhanced. Therefore it is concluded that a varying spanwise location of the

suction holes can either enhance or weaken the CFV amplitude, but secondary

instability is always weakened due to deformation of the CFV and the mean

suction effect, pulling the flow to the wall.

To further investigate the role of the spanwise position of suction, case 3-S

with three consecutive spanwise slits is set-up at the same chordwise locations

as for case 3-H. No spanwise variation of suction is present, but in contrast to

case HOM it is localized in the chordwise direction. With our spectral code

this is simply achieved by neglecting v′

k(y = 0) for k > 0, since the spanwise slit



70 5. CONTROL OF CROSSFLOW TRANSITION

lo
g(

m
ax

y
z
{ũ
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Figure 5.5: Like figure 5.3 but for cases 3-S and 1-S.

represents the spanwise mean component v′

k=0(y = 0) of a case with a suction

hole. The suction coefficient cq = cq,0 corresponds to cases HOM and 3-H

but the maximum suction velocity reduces from 50.0% to 4.63%. (Note that

by this procedure the three consecutive slits overlap marginally in chordwise

direction and the resulting slit length given in table 5.1 does therefore not

exactly match the value of the employed hole diameters of case 3-H.) Figure

5.5a shows that the resulting transition delay lies in between cases 1-H and 3-

H. The chordwise concentration of suction improves transition delay compared

to homogeneous suction, however, the slit suction does not perform as well as

case 3-H at identical cq-values.

To further increase the chordwise concentration of suction case 1-S is set-up

with a single suction slit operating at vmax = 0.50. A similar suction coefficient

as in cases HOM, 3-H, and 3-S can be achieved by choosing a slit length of

l1−S ≈ 1/3 l3−S = 0.005 represented by 6∆x, yielding cq = 1.852 · 10−3 ≈ cq,0.

The resulting transition delay is provided in figure 5.5b and shows no significant

improvement with respect to case 3-S. Also, the influence on the main vortex

is virtually identical. It is concluded that the optimal chordwise concentration

for slit suction has already been reached with case 3-S.

To further increase the mass flux the maximum suction velocity for the

next case 3-S* is multiplied by a factor of 3 compared to case 3-S, yielding

a maximum suction velocity of 13.8% and cq = 3 · cq,0. Figure 5.6b shows a



5.2. DISTURBANCE DEVELOPMENT FOR SUCTION CASES 71

lo
g(

m
ax

y
z
{ũ
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Figure 5.6: Like figure 5.3 but for cases 3-S* and 9-H.

massive attenuation of secondary growth and transition is shifted outside the

domain considered. Also, ω = 0 − (0, 0) does not exceed 30% amplitude. Only

weak secondary growth can be found with the highest amplitudes reached by

mode ω = 90.

Finally, the corresponding pinpoint-suction case is set-up: Nine consecutive

holes are arranged on a straight line parallel to the vortex-core orientation

at x = 3.36, employing cq = 3 · cq,0. Secondary growth and thus transition to

turbulence is eliminated completely, see figure 5.6b. The downstream regrowth

of the CFV pulled to the wall is apparently too small to provoke secondary

instability inside the considered domain. In order to enable the formation of

possibly new instability modes, the disturbance pulse from x = 3.0 is repeated

at x = 4.0 and x = 4.5 and can be found in the local increase of e.g. mode

ω = 180. No palpable secondary growth is however observed throughout all

modes.

Figure 5.7 provides a comparison of the transition delay for all cases. The

amplitude level of ũ′

s = 10−2 of the largest unsteady mode is used to measure

the (relative) transition shift. Case 1-H is almost as efficient as case 3-S al-

though cq is three times smaller. The chordwise concentration from 3 slits to

1 slit results in a 17% improvement comparing cases 3-S and 1-S. Case 3-H

shows a 50% larger transition delay compared to case 3-S at identical suction

rates. For cases 3-S* and 9-H onset of transition cannot be detected in the
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Figure 5.7: Transition delay of all cases including respective suction coef-

ficient. Downstream locations are detected by where the first unsteady mode

reaches a ũs-amplitude of 10−2. Reference displacement thickness of the undis-

turbed base flow: δ1,s(x = 4.00) = 7.73 · 10−3.

considered domain. However, considering the growth rates at the end of the

integration domain for case 3-S* it is expected that in this case transition will

still occur.

5.3 Skin friction development

Figure 5.8 shows the parameter C(x) =
∫

maxt{∂u42.5◦/∂y |y=0} dx. The wall-

normal gradient of the spanwise mean flow in flight direction ∂u42.5◦/∂y |y=0

is proportional to the directional local skin friction coefficient. In order to

account for fully turbulent flow the maximum value within one fundamental

period in time (t ∈ [0; T0[) is taken from our simulation with pulsed distur-

bances. The integral C(x) allows for direct comparison of the curves at chord-

wise locations as a measure for the friction drag share up to this position. The

reference case reveals laminar flow up to x = 4.0. The change in slope indicates

transition to turbulent flow. Case 1-H shows the skin-friction increase caused

by suction, pulling high-momentum fluid to the wall, at x = 3.36. However, at

x = 4.2 the increase is compensated by sustaining laminar flow and less skin

friction can be found throughout the integration domain in spite of turbulent

flow starting at x = 5.0.
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Figure 5.8: Downstream development of the (in streamwise direction) inte-

grated wall-normal velocity gradient of the spanwise mean velocity component

in direction of the oncoming flow (φ∞ = 42.5◦) at the wall serving as a mea-

sure of the skin friction coefficient cf . For the integration the maximum over

one fundamental period in time T0 has been used in order to account for a fully

turbulent flow (and not pulsed transition).

For case 3-H the approximately three times higher increase occurring at

x = 3.5 arises from the three consecutive holes and thus three times larger

mass flow sucked. However, for x > 5.1 this case causes less friction drag

than case 1-H. Case 1-S* lies in between cases 1-H and 3-H. Case 9-H shows

an enormous increase around x = 3.5 but the flow stays laminar so long that

it will eventually outperform all other cases which is in turn true for case

3-S*. Cases HOM, 3-S, and 3-H* provide similar results as case 1-H with

different locations of transition to turbulence. Note that further effects like the

influence of the suction on the pressure distribution (sink effect) or the power

possibly required for the suction system have not been taken into account in

this evaluation. (Suction without additional pumps is currently investigated in

practice. In this case the suction areas are connected to regions of low pressure

at an aircraft.)
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5.4 Vortical structures

Figures 5.9 and 5.10 show visualizations of vortical structures for all cases in

a rotated reference system (cf. appendix D); for close-ups, marked by black

rectangles, see figures 5.11 and 5.12. The angle φr = 45.0◦ has been chosen

to approximately straighten the CFVs in the visualization. The snapshot for

case REF shows nearly undisturbed flow up to xr = 1.3. The small structures

at xr = 0.8 show the disturbance pulse in an early stage. The turbulent region

between xr = 1.5 and xr = 2.0 is caused by the previous pulse.

For case 3-H the suction holes are marked by black circles. A counter-

rotating vortex pair developing behind the suction orifices is expected such that

each vortex “transports” fluid into the hole. Looking downstream, the vortex

emerging to the right turns counter-clockwise, i.e. close to the wall against the

crossflow direction, and thus dies out soon in this case and cannot be discerned

[56]. The one emerging to the left (structure I) turns in clockwise direction

like the oncoming CFV, is shifted to the left and suppressed by the next CFV

to the left shortly before merging with it. The oncoming CFV persists and

is marginally shifted in positive spanwise direction. The secondary structures

from the pulsing are on much lower amplitude levels compared to case REF.

Case 3-S shows local dislocation to the left and deformation of the oncoming

CFV above the suction slits, marked by black lines, but the spanwise location

downstream is not altered at all. (The local, opposite dislocation at the begin-

ning and end of suction might be caused by the oblique slit orientation with

respect to the CFV axis.) Secondary structures are more pronounced than in

case 3-H.

Case 3-H* with pessimal suction-hole locations shows strong deformation

of the primary vortices and only marginal transition delay.

Case 9-H shows strong downstream effects of the nine consecutive suction

holes and a strong positive spanwise shift of the oncoming CFVs. Similar

to case 3-H the left co-rotating vortex emerging from the suction holes can

be clearly seen (structure II), this time almost merging with the CFV. The

counter-rotating, right suction vortex (structure III) does not die out soon but

is strong enough to push the oncoming CFV to the right before it is swallowed



5.4. VORTICAL STRUCTURES 75

REF 3-H 3-S 3-H* 9-H

0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

xr xr xr xr xr

zr zr zr zr zr

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

✲I

✲II

✲III

Figure 5.9: Vortex visualization (λ2 = −1), top view, snapshot in time

(t/T0 = 0.0), to scale. A rotated reference system is used with xr0 = 3.2,

zr0 = 0.0, Φr = 45.0◦. Dotted lines refer to crosscuts of figures 5.13, 5.14,

5.15, and 5.18. Approximately 3 fundamental spanwise wavelengths are shown.
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Figure 5.10: As figure 5.9.
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Figure 5.11: Close-ups from figure 5.9.
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Figure 5.12: Close-ups from figure 5.10. Note the deviating streamwise

section shown for case REF since t/T0 = 0.4 is selected here.
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by the crossflow. No structures from the pulse are visible in the considered

domain.

Note that in case 9-H turbulence does not occur near x ≈ 5.5 (xr ≈ 3.3)

as discussed for case REF before, in the latter caused by amplification of

numerical background noise. In case 9-H secondary instability is absent, and

unsteady disturbances do not grow, or grow very weakly only.

Cases 1-H, HOM, and 1-S show less pronounced secondary structures com-

pared to case REF and transition delay can be found. Secondary structures

starting at x = 2.9 for case 3-S* indicate early stages of turbulence which was

not observed in case 9-H.

Figure 5.12 gives a comparison of the secondary structures for cases REF,

HOM, 1-H, and 1-S by means of close-ups of the respective downstream loca-

tions. Note that for case REF the close-up is not directly extracted from figure

5.10 but a snapshot at t/T0 = 0.4 has been chosen to show the typically shaped

finger-like vortices and thus the downstream domain shown is also different.

The effect of homogeneous suction on the shape of the instability modes is

negligible since the secondary structures look very much alike. For case 1-H

the structures are less pronounced but the angle of the finger vortices is similar

to the reference case. The structures of the case with slit suction differ from

the other three cases: They seem to sit on top of the vortex and are more

symmetrical than the ones before that are located exclusively at the updraft

side of the vortex.

5.5 Secondary instability

5.5.1 Eigenfunctions in crosscuts

The influence of suction on the ur-amplitude distribution of secondarily un-

stable eigenmodes becomes evident in figure 5.13. For case REF, the low-

frequency mode ω = 30 of type III can be found below the main vortex con-

nected to the local maximum spanwise gradient, whereas the high-frequency

mode ω = 120 is connected to the local minimum and hence a type-I or z-
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Figure 5.13: Crosscuts at xr = 0.82 (x ≈ 3.78). Left column (ω = 30)

shows ũr-isocontours (lines, 0.05 to 0.95, ∆ = 0.075), λ2-isocontours (dashed

lines, -2 to -12, ∆ = 2) and the normalized ur-amplitude distribution for mode

ω = 30 (shaded, levels 0.3 to 0.9, ∆ = 0.2). Right column (ω = 120) shows

y · (∂ur

∂zr
)/ub,s,e-isocontours (solid lines, ∆ = 0.2, ∆ = 0.4 for case REF) and

y · (∂ũr

∂y
)-isocontours (dotted: positive, dashed: negative values, zero-level not

shown, ∆ = 0.05, ∆ = 0.10 for case REF) and normalized ur-amplitudes for

mode ω = 120. The rotated reference system from figure 5.9 is used.
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mode. The focus is on the z-mode since it has the largest amplification rates.

Usually, its maximum is also connected to the maximum wall-normal gradient.

Figure 5.13b displays distributions of the spanwise and wall-normal gradi-

ents of the downstream velocity component ũr multiplied by the wall-normal

coordinate y to downgrade near-wall maxima that are not relevant. At the

maximum of the eigenfunction uz,max = y · (∂ur

∂zr
)/ub,s,e = | −1.21| and uy,max =

y · (∂ũr

∂y
) = 1.00 is found. Case 3-S reveals a changeover to a y-mode, with

uz,max = | − 0.38| and uy,max = 1.12 which confirms the more symmetri-

cal shape of secondary structures found in figure 5.12. The spanwise mean

suction reduces the overall spanwise shear by pulling the vortex towards the

wall. For case 3-H uz,max = | − 0.16| and uy,max = 0.77 is found. The hole

suction deforms the vortex such that the flow gradients are additionally re-

duced. The impact on the main vortex can be found when comparing the

zr zr

a) xr = 0.82 (x ≈ 3.78) b) xr = 0.82 (x ≈ 3.78)

c) xr = 1.36 (x ≈ 4.19) d) xr = 1.36 (x ≈ 4.19)

e) xr = 2.87 (x ≈ 5.23) f) xr = 2.87 (x ≈ 5.23)
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Figure 5.14: Crosscuts for case 9-H. Left column shows mode ω = 30, right

column mode ω = 90. See figure 5.13 for details.
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three λ2-distributions where case 3-H shows the weakest main vortex. If the

value
√

u2
z + u2

y|max is compared for cases REF, 3-S, and 3-H the values 1.57,

1.18, 0.79, are found, indicating an overall shear reduction, suggesting a direct

measure for secondary-growth attenuation. When comparing the amplification

rates of mode ω = 120 at x = 3.78 from figures 5.4a, 5.5a, it turns out that the

growth rates for cases 3-S and 3-H are almost identical, with the amplitudes

lower for case 3-H. In other similar cases not shown the secondary growth rates

decrease with decreasing gradient, too.

An evaluation of case 9-H (figure 5.14) shows a similar trend. The frequency

ω = 90 is chosen instead of ω = 120 as for figure 5.13 since it has the highest

amplitude level.
√

u2
z + u2

y|max yields the values 0.41, 0.82, and 0.71 at the three

downstream positions shown. Using nine holes reduces the main-flow gradients

further, but predicting secondary stability is difficult employing solely this

criterion. The development of the low-frequency mode shows a non-amplified

T-S like amplitude distribution since no distinguished spanwise gradients exist.

The development of mode ω = 90 tends to switch from a z-mode to a y-mode.

All modes shown are damped or neutral.

5.5.2 Kelvin-Helmholtz shear

To find a measure for secondary amplification a procedure described by Bon-

figli & Kloker [12] is followed. A shear-layer plane, oriented perpendicular to

the axes of the secondary vortex structures, direction t, is obtained by artifi-

cially enlarging the respective u-, v-, and w-eigenmodes and visual inspection

of the corresponding secondary λ2-structures. t is roughly, but essentially not

exactly, the direction of the CFV axis. Figure 5.15 shows the vorticity com-

ponent ωx,t perpendicular to the Kelvin-Helmholtz (K-H) shear-layer plane for

four cases. The values found provide the expected information. Evaluating

wx,t at the respective eigenfunction maxima delivers the following values for

cases REF, 3-S, 3-H, and 9-H, respectively: 61.5, 40.0, 37.5, and 7.6. Evidently,

lower K-H shear-layer strength yields smaller secondary amplification. For all

cases, ωx,t at the respective eigenfunction maximum is composed primarily of

a combination of ωy and ωz,r. For cases 3-S and 3-H, ωy basically determined

by ∂ur/∂zr is significantly reduced. Additionally, for case 3-H, the K-H plane
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is tilted more relative to the plane perpendicular to the CFV axis (ψt = 10◦),

and thus the contribution of ωy is additionally decreased. Although the con-

tribution of ωz,r and thus ∂ur/∂y to the ωx,t-value is enhanced with increasing

angle φt for cases 3-S and 3-H, this effect is overcompensated by the decreased

wall-normal vorticity component. This causes a changeover from a z-mode

(figure 5.15a) to a y-mode (figure 5.15c) comparing the respective location

of the eigenfunction maximum in figure 5.15. The evaluation for case 9-H is

added to show the virtually vanishing ωx,t-component. The strongly altered

orientation of the t-plane of a damped mode is of minor relevance. Also, a

velocity component normal to the shear-layer in its plane further reduces the

instability [12]. However, to gain reliable a-priori information on secondary in-

stability properties, a two-dimensional eigenfunction solver, a comprehensive

method using the PSE (parabolized stability equations), or DNS is required.
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c) 3-H d) 9-H y
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Figure 5.15: Crosscuts at xr = 0.82 (x ≈ 3.78). Vorticity component ωx,t

(lines, ∆ = 10, dashed negative values, zero-level not shown) and normalized

ur-amplitude distribution (shaded, levels 0.5 to 0.9, ∆ = 0.1) for mode ω = 120

(ω = 90 for case 9-H) a) REF, φt = 66◦, ψt = 15◦, b) 3-S, φt = 91◦, ψt = 16◦,

c) 3-H, φt = 105◦, ψt = 10◦, and d) 9-H, φt = 54◦, ψt = 7◦. See the inset in d)

for the definition of the direction t. Note that φt is measured in the chordwise

system and φr ≈ 45.0◦ has to be subtracted in order to get the relative angle to

the CFV axis direction. The rotated reference system from figure 5.9 is used.
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5.6 Analysis of crossflow-vortex interactions

To clarify the mechanisms occurring in the vicinity and downstream of the

suction holes, the case, like case 3-H but without oncoming CFV, is considered

3-H-noCFV, no oncoming CFV, to identify the flow field induced by suction in

the undisturbed base flow. To check for secondary instability the disturbance

strip triggering the pulses is shifted from x = 3.0 to x = 4.0 and the initial

disturbance amplitudes are increased by two orders of magnitude. Figure 5.16

shows vortical structures in three different shades of gray for cases REF, 3-

H-noCFV, and 3-H to clarify the “nonlinear superposition”. For visualization,

some regions are blanked. Furthermore, the sense of rotation is marked by

arrows. The reference case REF (bright gray, two oncoming CFVs) shows early

transition starting at xr = 1.40. Case 3-H-noCFV (medium gray, no oncoming

CFVs, three evolving main vortices) shows that only one vortex of the suction-

induced counter-rotating vortex pair survives, eventually causing turbulence

as well, starting at xr = 2.60. The other one, turning against the crossflow

is strongly damped and disappears instantly (xr = 0.60, zr = 0.20). The

combination of oncoming and suction-hole induced vortex results in delayed

transition (case 3-H, dark gray, two oncoming CFVs subject to hole suction).

The CFV is sucked to the wall and reduced in size by the three suction holes

located at the updraft side of the main vortex. Interestingly, the suction-hole

induced vortex supported by the crossflow dies out soon in this case, probably

hindered by the next main vortex (xr = 1.00, zr = 0.32).

A similar procedure is carried out for the case with nine suction holes. The

initial amplitudes of the pulse are set back to the same level considered in case

9-H. The resulting flow field of the corresponding cases 9-H-noCFV and 9-H is

visualized in figure 5.17. Slightly more pronounced structures directly behind

the suction holes are found for case 9-H-noCFV due to the increased mass flux

(xr = 0.70, zr = 0.20). The emerging and prevailing main vortex however is

weaker than for case 3-H-noCFV, most likely due to the larger (stabilizing)

mean flow deformation. Moreover, no finger vortices can be observed! The

small vortex in case 9-H emanating from the last suction hole and turning

against the crossflow (referred to as structure III during discussion of figure

5.9) can also be observed at this λ2-level (xr = 0.90, zr = 0.36). The one
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zr zr

a) 3-H-noCFV, xr = 0.60 (x ≈ 3.62) b) 3-H, xr = 0.60 (x ≈ 3.62) 0.1

c) 9-H-noCFV, xr = 0.82 (x ≈ 3.78) d) 9-H, xr = 0.82 (x ≈ 3.78)
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Figure 5.18: Crosscuts: a) and c) show isocontours with λ2 = −2 (thin

lines, case REF added with thick lines) and [w̃r, ṽ]-vectors, b) and d) show

ω̃x,r-isocontours (lines, ∆ = 2, dotted negative values, zero-level not shown).

The rotated reference system from figure 5.9 is used.

turning with the crossflow is more pronounced (xr = 0.8 − 1.3, zr = 0.34,

structure II in figure 5.9) and is the result of the oncoming CFV and the

suction-hole induced one. Partly, the angular momentum input of the suction

holes is obviously consumed to weaken the oncoming vortex.

The crosscuts considered in figure 5.18a show λ2-isocontours in the plane

xr = 0.600 of figure 5.16 for case REF (thick lines) and case 3-H-noCFV

(thin lines). The CFV center can be found at zr = 0.117, the center of the

co-rotating left suction-induced vortex at zr = 0.078. Figure 5.18b shows the

same crosscut for case 3-H. (Note that the corresponding dark gray structure in

figure 5.16 is blanked there. Due to spanwise periodicity an identical structure

can be found at xr = 0.80, zr = 0.28). The persisting main vortex sits at

zr = 0.120, is much weaker, and the co-rotating suction-hole induced structure

can be found at zr = 0.074. The negative values of ω̃x,r confirm the sense of

rotation.

Crosscuts for case 9-H are taken from figure 5.17 at xr = 0.824. Figure 5.18c

provides results for case REF and case 9-H-noCFV showing the respective

spanwise vortex locations. Figure 5.18d reveals the already observed positive
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spanwise shift of the CFV. (Again, the corresponding structure is blanked in

figure 5.17 but can be found at xr = 1.23, zr = 0.29.)

The downstream development of steady and unsteady disturbances for cases

3-H-noCFV and 9-H-noCFV is compared with case REF in figures 5.19 and

5.20. Also, steady modes for cases 3-H and 9-H are added for comparison. As

for case 3-H-noCFV the steady three-dimensional deformation of the flow field

ω = 0− (0, 0) shows the localized increase caused by the suction holes between

x = 3.3 and x = 3.4 followed by amplified vortex growth beginning at x = 4.1.

The amplitude level is at 20% and secondary instability, triggered at x = 4.0,

sets in immediately, cf. figure 5.20 (dashed lines). Note that the mean-flow

deformation (0,0) drops below 13% at x = 4.1.

When the development of steady disturbances for case 9-H-noCFV is con-

sidered, the perturbation input by the nine suction holes is on a much higher

level, but relevant vortex growth cannot be observed. The mean-flow deforma-

tions (0,0) for cases 9-H and 9-H-noCFV are found to be well above 20% and

do not drop below 16% for a long downstream distance (up to x = 5.0). Es-

pecially in the region of neutral CFV development (case 9-H-noCFV, x ≈ 4.1)

and readopted CFV growth (case 9-H, up to x = 4.4) the stabilizing influence

persists. Secondary instability does not set in abruptly for case 9-H-noCFV al-

though the pulse is triggered at several succeeding disturbance strips, cf. figure

5.20 (dash-dotted lines). Weak, but decreasing growth of secondary instability

is observed (e.g. mode ω = 90) when proceeding downstream. The growth of

modes with higher frequency, e.g. ω = 180, is completely non-linear. Note that

self-induced unsteadiness (cf. the discussion regarding oversuction in sections

4.3 and 5.2), possibly triggered by the 9 holes, is not observed.

The effect of pinpoint suction becomes obvious by the following considera-

tions: The reference case leads to transition to turbulence caused by a large-

amplitude CFV and active secondary instability. The CFV develops from the

controlled excitation of one of the most unstable spanwise modes. The same

holds for case 3-H-noCFV (cq = 1.6 · 10−3 considering a chordwise reference

length of lx = 40 δ99,s), where no oncoming CFV is present but the spanwise

distance of the suction holes triggers the most unstable spanwise mode as well

and the stabilizing effect of the mean-flow deformation is too weak to hinder

its development and growth. Note that the secondary growth rates however
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ũ
′ s)

})

3.0 3.5 4.0 4.5 5.0

3.0 3.5 4.0 4.5 5.0

(0,0) 3-H
(0,0) 3-H-noCFV
(0,0) REF
ω=0-(0,0) 3-H
ω=0-(0,0) 3-H-noCFV
ω=0-(0,0) REF

(0,0) 9-H
(0,0) 9-H-noCFV
(0,0) REF
ω=0-(0,0) 9-H
ω=0-(0,0) 9-H-noCFV
ω=0-(0,0) REF

0.0

-0.5

-1.0

-1.5

0.0

-0.5

-1.0

-1.5

Figure 5.19: Downstream development of selected steady modal ũ′

s-

amplitudes for cases REF, 3-H-noCFV, and 9-H-noCFV.
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are smaller compared to case REF. The superposition of both cases (case 3-

H, figure 5.4a) resulted in a more stable flow scenario, with less secondary

amplification, revealing and proving the three-dimensional nature of pinpoint

suction.

If nine suction holes are used (cq = 4.8 · 10−3), the mean-flow deformation

is almost strong enough to suppress the onset of secondary instability (case 9-

H-noCFV). Since case 9-H results in completely eliminated secondary growth

(figure 5.6b), it is clear that the designed non-linear interaction of CFV is

beneficial. The purely two-dimensional effect of suction was provided with

case 3-S* where the same sucked mass flux was applied through spanwise

slits (without the pinpoint effect) but weak, continuously constant secondary

amplification was found (figure 5.6a).
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6 Conclusions

The effects of localized, concentrated suction at the wall on the secondary

instability of a laminar, crossflow-dominated boundary-layer flow deformed

by grown steady crossflow vortices (CFVs) have been investigated by direct

numerical simulations. The underlying laminar base flow represents the 3-d

boundary layer of the DLR Göttingen “Prinzipexperiment” where a flat plate

with a displacement body above was employed to reproduce the flow in the

leading-edge region over an infinite swept wing. The spatial evolution of forced

disturbances including various kinds of suction setups has been simulated by

numerically solving the compressible and incompressible three-dimensional un-

steady Navier-Stokes equations. The aim was to delay laminar-turbulent tran-

sition in order to reduce viscous drag.

In the first part of the work, the usefulness of hole-suction modeling has

been checked by comparing results from simulations with modeled and simu-

lated hole suction in two- and three-dimensional boundary layers. The second

part of the work provides results from various suction cases. Subject of investi-

gation was the control of grown CFVs with active, strong secondary instability.

The successful application of concentrated “pinpoint” suction could be shown

resulting in significant transition delay.

Modeled suction versus simulated suction

Modeled and simulated suction has been compared for a Ma=0.5 Blasius base

flow as well as a 3-d boundary-layer flow at Ma=0.7, the latter with large-

amplitude CFVs, using one spanwise row of suction holes. The cases with

simulated suction comprise a cylindrical channel domain below the plate and

thus the interaction of the channel with the oncoming flow. As for the modeled

cases, a wall-normal mass flux is prescribed at the wall such that the integrally

sucked mass flux is the same as in the cases with suction channel.

91
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Largely matching results, including quantitative flow-field visualization and

comparison of vortical structures and velocity distributions as well as Fourier

analyses in time, justify well the application of the chosen hole-suction model-

ing. In the Ma=0.5 flow, the generation and development of a suction-induced

vortex pair turned out to be identical if the same sucked mass flux was consid-

ered for the simulated and the modeled case. As for the 3-d boundary layer, the

weakening of the oncoming CFV is identical when the simulated or modeled

suction orifice is placed beneath the updraft side of the CFV. The resulting

attenuation of secondary-instability modes shows very good agreement.

Investigations considering critical Reynolds numbers with respect to over-

suction revealed that at the chosen pressure levels at the channel outlet the

flow in the channel adjusted well below critical values, yielding Red = 970 and

Rekk = 350 (where Red,crit = 2300 and Rekk,crit > 700 [58] are the respective

critical Reynolds numbers).

Laminar flow control by means of pinpoint suction

Motivated by the agreement found the main results for laminar flow control

have been obtained from the numerically much more efficient incompressible

method where the results in the “Prinzipexperiment” base flow are obtained

by means of various kinds of modeled slit- and hole-suction setups. To date

boundary-layer suction has been applied to reduce the primary crossflow insta-

bility. Here, however, it is shown that fully three-dimensional boundary layers

with grown CFVs can be controlled by suction as well. This method tackles

then secondary instability.

Applying identical suction coefficients cq it could be shown that homoge-

neous and slit suction setups with spanwise invariant suction orifices provide

little and medium transition delay, respectively, whereas the case employing

(three succeeding) pinpoint suction holes below the updraft side of a grown,

steady CFV postpones transition significantly. A case with nine suction holes,

placed one after the other along the CFV, shows complete suppression of sec-

ondary instability. The corresponding two-dimensional scenario with suction

slits performs well but not as good.
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For the specific action of pinpoint suction three major effects could be elab-

orated:

First, the 2-d mean-flow deformation by suction weakens the development

of a growing CFV mode or attenuates an already persisting one, at least to

some extent, depending on its strength by pulling it towards the wall. Thereby,

the vortices are flattened and spanwise shear is reduced. Furthermore, wall-

normal shear is reduced as well since the distance of the shear-layer to the

wall is diminished. This overall shear reduction leads to an attenuation of

secondary instability. Considering flow scenarios without oncoming CFVs, it

is shown that hole suction can trigger laminar-turbulent transition through the

excitation of an unstable CFV mode in the presence of suction. If the sucked

mass flux is increased, the mean-suction effect can however be strong enough

to almost suppress the development of a critical CFV.

The second effect appears if concentrated, localized suction through holes

is placed beneath the updraft side of the oncoming CFV. In the clean flow

scenario without oncoming CFV, a pair of counter-rotating vortices emanating

from each suction hole is induced. The one turning against the crossflow

is suppressed shortly downstream of the hole. The other one develops and

rotates like a growing, amplified CFV. In the combined scenario, i.e. oncoming

CFVs plus hole suction, the suppressed suction-induced one can still push

the oncoming main vortex to the side where it is hampered by the large co-

rotating suction-induced one from the other side due to its closeness. Soon

after, both suction-induced vortices disappear. The result is CFVs with less

vortical momentum and attenuated secondary amplification. (It has to be

pointed out that this effect differs largely from mechanisms found in two-

dimensional symmetrical base flows where excited vortices can be canceled,

e.g. on a suction panel, by designing a staggered panel and thus exciting anti-

phase, i.e. counter-rotating, vortices.)

Third, high-frequency instability modes are directly influenced by the local-

ized suction if placed beneath the location of their maximal amplitude. Con-

sidering a case with homogeneous suction, little influence of the suction on the

main vortex can be observed whereas the secondary growth rates are noticeably

attenuated. Also, a simulation with weak blowing at the very same location

(not shown) shows frequency-dependent attenuation although the underlying
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basic state becomes seemingly “more unstable” since the vortex is driven in

this case. Thus, the secondary instability is sensitive to very small changes

in the underlying velocity field. This effect has been detected by Bonfigli &

Kloker [12] who found that a wall-normal velocity component superposed on

the Kelvin-Helmholtz shear layer, in which secondary instability originates,

reduces the disturbance growth.

The secondary, traveling modes present in cases with suction and develop-

ing on the updraft side of each CFV are oriented more parallel to the crossflow

direction compared to a reference case without suction. If amplitude distribu-

tions are considered a changeover from the typical type-I (z-) mode to type-II

(y-) modes is found, revealing a strong change of stability properties. The

shear in the respective Kelvin-Helmholtz plane is found to be reduced as well,

resulting in an overall significant reduction of secondary instability.

As for the suction holes, a diameter of about two times the displacement

thickness and a suction velocity of about 20% of the local external velocity,

averaged over the hole, has been chosen. Compared to standard suction this

is a 2-3 times higher suction velocity than usual. Thus, pinpoint suction is

still distinctly below very strong suction that might cause local flow tripping.

(Own tentative DNS investigations on so-called oversuction caused by single

holes indicate that, at the chosen parameters Reδ1,s
and d/δ1,s, the critical

suction velocity v̄avg/ūb,s,e lies beyond 45% [58].)

As for the wall shear caused by the concentrated suction, the observed

increase is non-negligible but is far outweighed by the substantial transition

delay. For practical applications of pinpoint suction either the position of the

CFVs with respect to the suction holes has to be fixed - for example by using

controllable actuators upstream -, or a panel with many holes, controllable

in groups or even individually, can be used in conjunction with shear stress

sensors. More simply, the slit version may be applied that however is less

effective. Note that only few spanwise slits would be necessary for effective

control.



A Numerical setup and computational

performance

Table A.1 provides numerical simulation parameters for all incompressible

cases discussed in chapter 5 and for the verification simulations mentioned

in section 2.3. Nx, Ny, and Nz represent the number of grid points in stream-

wise, wall-normal and spanwise direction, and K + 1 is the number of Fourier

harmonics in z-direction. The wall-normal step sizes (∆ywall and ∆yδ) are

given at the wall and at δ99,s at the location of the (first) suction orifice. The

value ∆ywall/∆ye gives the relation between the wall-normal step size at the

outer edge and the wall. The spanwise resolution is ∆z = λz,0/Nz. The code

is parallelized in spanwise direction, see e.g. [57].

Table A.2 summarizes parameters for all cases at Ma=0.5 and Ma=0.7

investigated in chapter 4. Domain decomposition in the x − y-plane is applied

for effective parallelization, see e.g. [5]. For the channel domains the grid points

in radial direction r, in wall-normal direction h, and circumferential direction

φ are referred to as Nr, Nh, and Nφ. Note that the channel domains comprise

an equidistant wall-normal grid starting at y = 0.0 up to y = −350∆y with

subsequent grid stretching.

The most important parameters for the two simulations mentioned in the in-

troduction (figure 1.3) are given in the following. The Blasius case is simulated

with the incompressible numerical method at Re = 100, 000, Reδ1,hole = 1924,

d/δ1 = 2.0, and λz,0/d = 7.4. An area-averaged mean suction velocity of 26%

is chosen. The 3-d case is simulated with the compressible numerical method

at Re = 92, 000, Ma∞ = 0.2, Reδ1,s,hole = 719, d/δ1,s = 3.6, and λz,0/d = 4.3.

The area-averaged mean suction velocity yields 24%. For further details on

the setup of the DNS see [58], cases “1-1” and “3-1”.

All simulations were carried out on the vector computers provided by the
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ū
∞

[m
/s

]
17

3.
63

17
3.

63
25

4.
51

25
4.

51

L̄
[m

]×
10

3
9.

15
8

9.
15

8
5.

49
4

5.
49

4

M
a ∞

0.
5

0.
5

0.
7

0.
7

x
∈

(r
∈)

[1
1.

66
,1

2.
98

]
[0

.0
,0

.0
19

3]
[1

1.
66

,1
2.

95
]

[1
.9

0,
4.

28
]

[0
.0

,0
.0

08
4]

[1
.9

0,
4.

28
]

y
∈

(h
∈)

[0
.0

,0
.1

63
]

[−
0.

62
,0

.0
]

[0
.0

,0
.1

63
]

[0
.0

,0
.0

79
]

[−
0.

25
,0

.0
]

[0
.0

,0
.2

00
]

λ
z
,0

0.
28

6
-

0.
28

6
0.

12
-

0.
12

N
x

(N
r
)

10
51

25
10

27
18

18
20

18
16

N
y

(N
h
)

10
5

13
00

10
5

11
2

10
00

11
2

K
/

N
z

(K
/

N
φ
)

(4
2)

/
12

8
(4

2)
/

12
8

(4
2)

/
12

8
(4

2)
/

12
8

(4
2)

/
12

8
(1

0)
/

32

γ
0

22
.0

-
22

.0
52

.4
-

52
.4

∆
x

×
10

3
(∆

r
×

10
3
)

1.
26

0.
78

6
1.

26
1.

31
0.

43
3

1.
31

∆
y w

a
ll

×
10

5
/

∆
y

w
a

ll

∆
y

e
3.

00
/

16
.5

8
3.

00
/

3.
4

3.
00

/
16

.5
8

1.
00

/
24

.1
6

1.
00

/
7.

91
2.

30
/

21
.5

4

∆
y δ

×
10

4
18

.7
0

-
18

.7
0

8.
19

-
10

.8
9

∆
z

×
10

4
22

.3
4

-
22

.3
4

9.
38

-
37

.5

∆
t

×
10

4
0.

14
3

0.
62

8
0.

20
9

0.
52

4

T
a

b
le

A
.2

:
S
im

ul
at

io
n

pa
ra

m
et

er
s

fo
r

si
m

ul
at

io
n
s

at
M

a=
0.

5
(2

-d
b
a

s
e

fl
o

w
)

an
d

M
a=

0.
7

(3
-d

b
a

s
e

fl
o

w
).

a
T

w
o

a
d
d
it

io
n
a
l

si
m

u
la

ti
o
n
s

h
av

e
b

ee
n

ca
rr

ie
d

o
u
t

o
n

C
R

A
Y

X
E

-6
w

it
h

x
∈

[1
.9

,5
.4

3
]

a
n
d

N
x

=
2
7
0
0



98 A. NUMERICAL SETUP AND COMPUTATIONAL PERFORMANCE

HLRS (High Performance Computing Center) Stuttgart, namely on the NEC

SX-8 and SX-9 computers. The incompressible code was run with the stan-

dard RK4-O4 time integrator for cases REF/HOM. 10 GB of memory were

needed on one node SX-9 (16 vector CPUs @ 3.2 GHz) and each processor

was operating at 11200 MFLOPs. The CPU time per grid point and time step

was 0.09 µs. For the semi-implicit time integrator, applied in all remaining

incompressible cases with suction, the following values were found: 11 GB

memory requirement, 9000 MFLOPs/CPU, and 0.18 µs CPU time per time

step and grid point. Considering the actual physical problem, another impor-

tant parameter is the relation of the “CPU time per spatial grid point and

fundamental period” values since it compares the necessary integration time

to reach a certain physical flow state. For the two considered setups the code

with semi-implicit time integrator was slower by a factor of 5.1. This value

includes the factor of 2 considering the required CPU time per time step and

grid point and a factor of 2.5 resulting from a necessarily smaller time step due

to the explicitly treated convective terms using a three-step Heun method.

The compressible verification simulation at Ma=0.2 was computed on 4

nodes SX-8 (each having 8 vector CPUs @ 2.0 GHz) where the internodal MPI

parallelization extended over 4 domains in streamwise direction and intranodal

OpenMP parallelization was applied for the spanwise direction. Operating at

5650 MFLOPs a CPU time per grid point of 2.4 µs was required. This corre-

lates roughly to a value of 0.80 µs for a SX-9 CPU considering a reasonable

average speedup SX-8-CPU to SX-9-CPU of 3. Comparing the required CPU

time for a fundamental period in time to the corresponding incompressible veri-

fication simulation with suction and semi-implicit time integrator it turned out

that the incompressible code was still more than 14 times faster (comparison

on the NEC SX-9 system).

The compressible simulation at Ma=0.7 yields 0.60 µs SX-9 CPU time

per grid point for the modeled-suction case and 1.90 µs for the case with

suction channel included. For the suction channel, a much finer resolution in

wall-normal and spanwise direction is furthermore required. Thus, comparing

the corresponding integration times for a fundamental period in time, the

channel simulation is slower by a factor of 9 per spatial grid point than the

corresponding modeled case.
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Last, a comparison of totally consumed CPU hours for some cases is given.

Thereby, the required time for a certain problem is compared regardless of

factors like numerical method or resolution. The final state for the Ma=0.7

channel simulation was obtained after 15 fundamental periods in time using a

total of 11520 SX-9 CPU hours whereas the case with modeled suction con-

sumed 322 CPU hours only. The incompressible suction cases provide almost

twice the streamwise integration-domain length and required 768 hours for 15

fundamental periods in time. The consumption of the incompressible reference

case was 99 CPU hours.

For comparison, some parameters for a simulation on the new CRAY XE-6,

a massively-parallel supercomputer installed at the HLRS in 2012, are given:

The Ma=0.7 case with modeled suction and identical simulation parameters

as case MOD but Nx = 2700 required 39467 CPU hours on 1696 AMD

Opteron(tm) 6276 (Interlagos) processors @ 2.3 GHz. Thereby, 27×3 domains

were set up in streamwise and wall-normal direction, respectively (internodal

parallelization using MPI), whereas the spanwise direction is parallelized us-

ing OpenMP (intranodal, one node has 32 CPUs). Note that in this case 15

periods in time turned out to be not sufficient for obtaining a quasi-periodic

flow field and 35 periods were simulated which however might not be required.

Thus, using the factor 35/15 and considering Nx to be linearly dependent on

the required CPU time giving another factor of 3/2, the total CPU-hours have

to be scaled down by a factor of 3.5 for a direct CPU-time comparison to the

modeled-suction case on the SX-9. Still, a factor of about 35 remains that the

CRAY XE-6 processors are slower than the SX-9 processors. Note that the

domain decomposition and other parameters were not optimal. Typically a

factor of 10-20 is expected.



100 A. NUMERICAL SETUP AND COMPUTATIONAL PERFORMANCE



B Grid studies for incompressible

numerical method

During the current work it turned out that the wall-normal resolution espe-

cially close to the wall is an extremely crucial parameter for a vorticity-based

DNS code when non-weak wall suction is applied. Meitz [53] and Messing

[55] provide DNS results for an experimental flow by Goldsmith [25], where

streamwise vortices emanating from a spanwise row of suction holes with

v̄max/ū∞ = 0.60 were investigated. The case was considered “just subcritical”,

and growing streamwise, contra-rotating vortices were observed (see figures

B.1 a,b).

The case has been revisited to validate the current code version. The most

important parameters for the simulation are: Reynolds number Re = 100, 000,

freestream velocity U∞ = 15.0m/s, reference length L = 0.1m, location of the

suction hole center xhole = 0.508m, displacement thickness of the undisturbed

base flow at the suction hole center δ1,hole = 1.224 mm, corresponding Reynolds

number Reδ1,hole = 1224, dmod/λz,0 = 0.5, where dmod = 1.03mm is the suction

hole diameter. The cos3-function (see equation 2.11) suggested by Meitz was

used by Messing and has been used for the current cases as well to model the

hole suction.

Successive refinement of ∆ywall results in decreasing strength and spanwise

extension of vortical structures (see figures B.1 c-e). The result with the high-

resolved grid “fine” shows two small, instantly damped co-rotating vortices.

For case “coarse” it turned out that long-time integration is not possible for

the selected parameters. The degree of unsteadiness is therefore dependent on

the integration time level. (Note also that Messing labels his plot |ωx| = 60,

but Meitz and own results show |ωx| = 30 − this might thus as well be a

labeling error by Messing.)
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a) Result from Meitz [53] b) Result from Messing [55]

c) Own result “coarse” d) Own result “medium”

e) Own result “fine”

a) ∆y = 7.5 · 10−2 mm, K=10

b) ∆y = 5.0 · 10−2 mm, K=17

c) ∆y = 5.0 · 10−2 mm, K=17

d) ∆y = 6.3 · 10−3 mm, K=15

e) ∆y = 4.7 · 10−4 mm, K=15

a), c)-e): Stretched wall-normal grid

b): 3 wall-zones, successively halved ∆y

a)-e): ∆x = 7.5 · 10−2 mm

x − xhole

y

z

x − xhole

y

z

x − xhole

y

z

Figure B.1: Results for Goldsmith suction case by Meitz, Messing, and own

results. Shown are vortical structures marked by |ωx| = 30 - isosurfaces.
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With respect to the boundary-layer thickness, Meitz employed ∆ywall/δ1,hole =

1/16, Messing used 1/24 whereas the values for the current cases “medium”

and “fine” are 1/200 and 1/2600. Only minor differences can be observed com-

paring the result from case “fine” to a case with ∆ywall/δ1,hole = 1/1300 but

convergence has not been fully proofed.

Moreover, the semi-implicit time integration scheme introduced in section

2.1.2.4 has been verified during this grid study revealing identical results com-

pared to a simulation with the standard RK4-O4 time integrator at the same

wall-normal resolution.

B.1 Two-dimensional base flow

A thorough grid study is provided for two cases with v̄max/ū∞ = 0.30 and 0.45,

respectively, employing the cos3-suction distribution in a Blasius boundary

layer, similar to the above-mentioned Goldsmith case.

Results for the 45%-suction case are shown in figure B.2 where the down-

stream development of selected disturbance amplitudes is traced for three wall-

normal resolutions. Whereas a strong deviation is visible when ∆ywall/δ1 is de-

creased from 1/800 to 1/1300, no difference can be recognized when the finest

resolution with 1/2600 is considered. This result suggests that the above-

mentioned case “fine” operating at 60% suction might not be fully converged

assuming that the required wall-normal step size at the wall depends directly

on the maximum suction amplitude. Note that at insufficient wall-normal

resolution the generated vortex is overpredicted in amplitude which is in ac-

cordance with the various results provided in figure B.1. Refinement of the

streamwise and spanwise resolution has absolutely no effect on the solution.

The same procedure is carried out for a case with 30% hole suction and

results for ∆ywall/δ1 covering 1/400, 1/800, and 1/1300 are provided in figure

B.3 where a similar picture as above can be observed but this time converged

results are found for the 1/1300-case.

The last study constitutes a quantitative comparison with results of the

compressible code. It acts as a precursor for the final code verification pre-

sented in section 2.3 where results of a fully three-dimensional flow field in-
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Figure B.2: Grid study of the wall-normal stretched grid for an incompress-

ible case with 45% hole suction in a Blasius boundary layer. ∆ywall = 1/2600 δ1

(solid lines), ∆ywall = 1/1300 δ1 (dashed lines), and ∆ywall = 1/800 δ1

(dash-dotted lines). The downstream development for the steady modal ũ′

(h,k)-

amplitudes (0,1), (0,2), and (0,3) is evaluated.
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Figure B.3: As figure B.2 but with 30% hole suction. ∆ywall = 1/1300 δ1

(solid lines), ∆ywall = 1/800 δ1 (dashed lines), and ∆ywall = 1/400 δ1 (dash-

dotted lines).
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Figure B.4: Comparison of results from incompressible code (solid, xic) and

compressible code (dashed, xc) for a case with 30% hole suction in a Blasius

boundary layer (polynomial suction distribution, see [23]).

cluding oncoming vortices and suction are compared. A self-similar Blasius

boundary-layer solution at Ma∞ = 0.2 is computed here and used as com-

pressible reference flow. Differing from the results presented so far, a poly-

nomial has been used for the prescribed suction distribution in both cases.

Results are provided in figure B.4. The x-axes are shifted slightly to compen-

sate for weak compressible effects that result in a slightly thicker boundary

layer. Thus, the suction-hole locations are matched to investigate the effects

at identical Reδ,1-values. Almost identical results confirm converged results at

the prescribed boundary conditions for both codes. For more details on the

last study including comparisons of the resulting vortical structures and flow

fields see [23].

B.2 Three-dimensional base flow

Grid studies for the three-dimensional base flow are provided for case 3-H (see

chapter 5), where an oncoming crossflow vortex is subject to three succeeding

suction holes operating at 50% u∞. Results can be found in figure B.5. The

selected modes show unsatisfactory results for the coarse grid whereas the two

fine grids show almost identical vortex attenuation and weakening of secondary

amplification of the unsteady mode ω = 120. Similar to the two-dimensional
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Figure B.5: Grid study employing three wall-normal stretched grids:

∆ywall = 9.89 · 10−4 (solid lines), ∆ywall = 6.59 · 10−4 (dashed lines), and

∆ywall = 4.95 · 10−4 (dash-dotted lines). For Case 3-H (see chapter 5) the

downstream development of selected modal ũ′

s,(h)-amplitudes is evaluated: Mean

flow deformation (0,0); steady, three-dimensional deformation ω = 0 − (0, 0);

and unsteady high-frequency mode ω = 120.

case, the amplitude level of vortices on an under-resolved grid are too large,

thus the reduction of the crossflow-vortex amplitude turns out to be too strong.

The grid employing ∆ywall = 6.59 · 10−4 is considered for all cases provided

in section 5. Again, refining the streamwise or spanwise coordinate shows

absolutely no difference.



C Compressible Navier-Stokes

equations

The set of equations that is solved by the compressible numerical method

described in section 2.2 consist of the energy equation

E = ρ
∫

cvdT +
ρ

2
(u2 + v2 + w2), (C.1)

the equation of state

p =
ρT

κMa2
∞

, (C.2)

and the compressible three-dimensional Navier-Stokes equations including the

continuity equation
∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0, (C.3)

where the flux vectors F , G and H are defined as

F =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ u

ρ u2 + p − τxx

ρ u v − τxy

ρ u w − τxz

u(E + p) + qx − u τxx − v τxy − w τxz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.4a)

G =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ v

ρ u v − τxy

ρ v2 + p − τyy

ρ v w − τyz

v(E + p) + qy − u τxy − v τyy − w τyz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (C.4b)

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ρ w

ρ u w − τxz

ρ v w − τyz

ρ w2 + p − τzz

w(E + p) + qz − u τxz − v τyz − w τzz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (C.4c)
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The normal and shear stress components are

τxx =
µ

Re

(

4

3

∂u

∂x
− 2

3

∂v

∂y
− 2

3

∂w

∂z

)

, (C.5a)

τyy =
µ

Re

(

4

3

∂v

∂y
− 2

3

∂u

∂x
− 2

3

∂w

∂z

)

, (C.5b)

τzz =
µ

Re

(

4

3

∂w

∂z
− 2

3

∂u

∂x
− 2

3

∂v

∂y

)

, (C.5c)

τxy =
µ

Re

(

∂u

∂y
+

∂v

∂x

)

, (C.6a)

τxz =
µ

Re

(

∂u

∂z
+

∂w

∂x

)

, (C.6b)

τyz =
µ

Re

(

∂v

∂z
+

∂w

∂y

)

, (C.6c)

and the heat fluxes are

qx = − ϑ

(κ − 1)Re P r Ma2
∞

∂T

∂x
, (C.7a)

qy = − ϑ

(κ − 1)Re P r Ma2
∞

∂T

∂y
, (C.7b)

qx = − ϑ

(κ − 1)Re P r Ma2
∞

∂T

∂z
, (C.7c)

where ϑ and µ are the thermal conductivity and the dynamic viscosity.



D Coordinate systems

The coordinate system (x, y, z) used for all DNS is a body-fixed Cartesian

coordinate system where the x-axis is perpendicular to the leading edge, z

runs parallel to the leading edge and y denotes the wall-normal coordinate.

Other coordinate systems used for postprocessing and visualization of DNS

data are sketched in figure D.1.

The streamline-oriented coordinate system (xs, y, zs) is turned around the

y-axis (in clockwise direction when viewed from top) and defined such that

the xs-axis is parallel to the local edge velocity outside the boundary layer at

every downstream position (φe is the corresponding local angle of the potential

streamline with the x-axis, cf. figure 3.3 where the boundary-layer parameters

are introduced). The velocity components us and ws point in xs- and zs-

direction. The crossflow component ws has then the typical crossflow shape,

being by definition zero outside the boundary layer (cf. e.g. figure 1.1). Note

that the orientation xs is not constant with varying x-coordinate.

The rotated coordinate system (xr, y, zr) is an arbitrarily-rotated reference

system, mainly used for vortex visualization. The origin is marked by xr0

and zr0 and the axes x and xr include the angle φr. The respective velocity

components are accordingly named ur and wr.

One special rotated coordinate system (ξ, y, ζ) is defined such that the origin

coincides with the center of the suction hole. Thus, the flow field in the vicinity

of the wall orifice can be visualized optimally. The corresponding velocity

components are also named ur and wr for simplicity.

The transformation equations for the streamline oriented coordinate system

are:

xs = (x − xr0) cos(φe) + (z − zr0) sin(φr) (D.1)

zs = −(x − xr0) sin(φe) + (z − zr0) cos(φr), (D.2)
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q∞

φ∞ leading edge

x

z potential streamline
xr

φr

zr

xszs

ξ

φr
ζ

Figure D.1: Sketch of coordinate systems used.

but are identical for the other two cases when (xs, zs, φe) are substituted by

(xr, zr, φr) or (ξ, ζ , φr), respectively. The definition of the rotated velocity and

vorticity components is straightforward. If φr=const., the resulting coordinate

system has straight axes.



E Influence of the hole diameter

Suction distributions according to equation (2.11) are considered and mass as

well as momentum fluxes are calculated for cases with one suction hole per

vortex and varying hole diameters, see table E.1. The flow setup is according

to case 1-H of chapter 5. Case A employs the suction hole with diameter d = d̂

and maximum suction velocity vmax = v̂max = 0.2 u∞. The suction holes in

cases B and C provide the same mass fluxes with the hole diameters decreased

by 25% and 40%, respectively. For case B* the suction hole is 25% smaller, set

up such that the same momentum flux is obtained as in case A, resulting in less

mass flux. Figure E.1 shows the downstream modal development of selected ũ′

s-

amplitudes. We observe an almost identical attenuation of secondary growth

for cases A,B, and C whereas case B* results in less attenuation. This is due

to less weakening of the CFV in case B, see figure E.2. Thus, the effect of

localized suction for the investigated hole set-ups depends rather on the mass

flux sucked than the momentum flux associated with it.

Case d/d̂ vmax/v̂max (vmax/v̂max)2 ṁ ∼ d2vmax i ∼ d2v2

max

A 1 1 1 1 1

B 0.75 1.78 (= (d̂/d)2) 3.16 (= (d̂/d)4) 1 1.78 (= (d̂/d)2)

C 0.6 2.78 (= (d̂/d)2) 7.72 (= (d̂/d)4) 1 2.78 (= (d̂/d)2)

B* 0.75 1.33 (= d̂/d) 1.78 (= (d̂/d)2) 0.75 (= d̂/d) 1

d̂ = 20 ∆x, v̂max = 0.200 · u∞ = 0.165 · us,e

Table E.1: Mass and momentum fluxes for cases considered in appendix E.
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