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Control of Very Lightweight 2-DOF Single-Link

Flexible Robots Robust to Strain Gauge Sensor

Disturbances: A Fractional-Order Approach

Daniel Feliu-Talegon and Vicente Feliu-Batlle , Senior Member, IEEE

Abstract— This article deals with the control of two degrees
of freedom manipulators that have a flexible and very light-
weight link. These robots have a single low-frequency and high-
amplitude vibration mode. Their actuators have high friction,
and their vibration sensors are often strain gauges that have
offset and high-frequency noise. These problems reduce the
robot precision and produce noisy control signals that saturate
actuators. An efficient control system is proposed to overcome
these drawbacks. Actuator friction effect is nearly removed by
closing a high gain position control loop around the actuator.
It causes the separation of the robot dynamics into the controlled
actuator fast subsystem and the link dynamics slow subsystem.
Based on that, an innovative control system is designed to remove
vibrations using the singular perturbation theory combined
with the input-state linearization technique. This control system
includes fractional-order controllers that nearly remove unknown
sensor offset and sensor ramp disturbances while reducing the
high-frequency component of the control signal caused by sensor
noise. Simulated and experimental results show the superior
performance of these controllers over other standard integer-
order controllers of similar complexity and nominal behavior.

Index Terms— Control of vibrations, flexible robots, fractional-
order controller, high-frequency noise.

I. INTRODUCTION

S
OME robotic applications demand lighter and larger

robots that can be driven using smaller amounts of

energy and can be more easily transported. Unfortunately,

the flexibility of the links of these robots produces oscillations

during motion that make the precise positioning of their tips

extremely difficult.

Though a flexible link robot has infinite vibration modes,

only a small number of them is usually considered in the
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design of its control system. This number depends on the

ratio between the links and the payload masses: the lower this

ratio, i.e., the lighter the links and the heavier the payload, the

smaller the number of significant vibration modes.

Links made of composite materials (e.g., the graphite–epoxy

of fiberglass) are able to carry heavy payloads in spite of being

very lightweight. Robots with large thin links made of these

materials, therefore, often have very small link-payload mass

ratios that allow us to regard them as having a single vibration

mode. This greatly simplifies the dynamic models of these

robots and facilitates the design of their controllers. However,

there are several technological problems in the implementation

of these controls, which must be considered, and have not been

satisfactorily solved yet, which are described in the following.

One problem is the significant Coulomb friction of the robot

actuators, which is a discontinuous nonlinearity that makes

difficult the precise positioning of the robot.

Another problem is the disturbances of the vibration sensors

of flexible robots. These robots often use strain gauges because

they allow measuring both vibrations and deflections and

are cheap. However, strain gauges have several drawbacks:

1) they are prone to variations in temperature [1]; 2) they have

high-frequency noise, due to electromagnetic interferences [2],

which may cause saturation in the actuators, thus leading

to bad dynamic performance, and may impede the accurate

observation of the robot state (often needed for control) [3];

and 3) they have offset, which prompts a steady-state error in

the closed-loop positioning of the links [4].

In particular, reducing offset is mandatory because it

decreases the precision of the robot. This problem is normally

overcome by executing a calibration process before the robot

starts moving. However, the offset value may vary over time

and a calibration process may, therefore, be required before the

execution of each trajectory in order to remove the offset dur-

ing that movement. This calibration may be more or less time

consuming according to the positioning precision required.

Besides being a waste of time, this process is sometimes

ineffective as regards completely removing the offset because

its value may vary throughout the movement. Devising control

systems that remove the steady-state error caused by the offset

is, therefore, of the utmost importance.

This article consequently studies the control of robots of

several DO F (degrees of freedom) that have a particular

mechanical configuration: one flexible link with azimuthal
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and attitude degrees of freedom (2-DOF-1FL robots), whose

parameters are known with the exception of the friction of the

actuators and the disturbances of the strain gauge sensor.

This article is organized as follows. Section II presents the

proposed control approach and justifies its contribution with

respect to previous works. Section III describes the dynam-

ics of our robot. Section IV develops the proposed control

structure. Section V studies the conditions required to achieve

robustness to strain gauge disturbances and presents the design

of using a fractional-order controller (FOC). Section VI applies

the previous results to the fast and accurate control of a flexible

link sensing antenna and shows that an FOC is superior to

other equivalent integer-order controllers (IOCs). Finally, some

conclusions are given in Section VII.

II. CONTRIBUTIONS AND RELATED WORK

The contributions are the following: 1) an innovative control

system based on two nested loops that remove vibrations

and minimize actuator friction effects; 2) controllers that

significantly improve the precision of the robot tip positioning

by reducing the effect of the offset and noise of strain gauge

sensors; and 3) an improvement to the results attained in 2)

by using an FOC rather than an equivalent IOC. These

contributions are put into context in Section II-A.

A. Control System

Since the dynamics of our robots is nonlinear and most

parameters are known, the input-state feedback linearization

technique (see [5]) is used to design their controllers. Single-

link flexible robots were controlled with this technique in [6]

and, subsequently, robots with two flexible links [7].

A drawback of the above technique is that the Coulomb

friction of the actuators may introduce undesirable steady-

state errors. These can be removed by introducing an integral

term in the controller at the cost of reducing the stability

robustness (which can be a critical issue in robots, whose

payload changes) [8]. Another solution is to use a two nested

loop control scheme [9] that will be described in Section III.

The two nested loop control scheme allows us to divide the

system into two simpler subsystems and subsequently use the

input-state feedback linearization technique to control the slow

subsystem and the singular perturbation theory to guarantee

the complete stability of the system.

The singular perturbation theory has been used with single-

link [10] and multilink [11] flexible robots. It considers the

rigid dynamics as the slow subsystem and the flexible dynam-

ics as the fast subsystem. It has been applied using different

control techniques, such as composite learning combined with

sliding mode control [12] or neural networks plus disturbance

observers [13]. However, robots of very low stiffness—as

is our case—may not accurately follow desired trajectories

because the coupling between slow and fast subsystems cannot

be neglected. This drawback and the fact that a high gain

inner loop is closed in order to reduce the effect of actuator

friction—which makes the rigid dynamics faster than the flex-

ible link dynamics—make unsuitable the previous applications

of the singular perturbation theory and motivate that this theory

is applied differently in this article to that shown in previous

research: the vibration mode of the link is considered to be the

slow subsystem and the actuator dynamics the fast subsystem.

B. Robustness to Sensor Disturbances

High-pass filters are used to remove the offset of strain

gauges. However, they eliminate the constant component

caused by gravity, which is needed by the feedback controllers

of robots in order to achieve a precise tip attitude positioning.

These filters may be useful for movements on the horizontal

plane or 3-D movements in outer space—where the action

of gravity can be ignored—but they drastically reduce the

position accuracy of a flexible link robot when gravity is

present.

The aforementioned control methods, and others listed

in [1], are sensitive to strain gauge disturbances. In particular,

offset produces position steady errors. Artificial intelligence

techniques have been applied to flexible link robots, such as

fuzzy logic [14] or neural network [15] controllers. How-

ever, they have not proved to be robust to either actuator

friction or sensor disturbances. A new method, therefore, is

developed here to remove these disturbances.

C. FOC to Increase Robustness to Sensor Disturbances

FOCs have been already applied to industrial robots with

rigid links [16]. However, their application to flexible robots

is rare. The control of one horizontal degree of freedom single-

link flexible robot (1-DOF-1FL robot) using strain gauges was

addressed in [17]. Since that robot moved on a horizontal

plane, it had a linear time-invariant dynamics. This article in

question developed: 1) a control structure that reduced the tip

position error caused by sensor offset and 2) a linear FOC

(FOCs are described in [18]) embedded in that structure that

attenuated the effect of sensor noise better than any equivalent

IOC. We apply the control system from [17] to 2-DOF-1FL

robots in order to take advantage of the robustness properties

of its FOC. This application is not straightforward because

these robots are nonlinear and have static deflection caused

by gravity, unlike the robot in [17], which is linear and

has no such deflection. Our new control system, therefore,

involves the use of a nonlinear controller, the development of

a nonlinear and multivariable version of the previous control

structure robust to sensor offset, and an adaptation of the FOC

from [17].

III. DYNAMIC MODEL

A. Link Dynamics

We assume links that have certain specific features.

1) The deflections of the points of the link are small when

compared to their distance to the base. This is usually

assumed when obtaining the dynamic models of flexible

links [19].

2) Uniform link in Section I and elasticity coefficient E

through the link.

3) Link of negligible mass, length l, and a rigidity constant

κ = 3E I/ l.

4) A tip payload that is a lumped mass of value m t .
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Fig. 1. Scheme of a 2-DOF single flexible link.

The dynamic model yielded by these hypotheses can also be

used for a link whose mass is significantly lower than the tip

payload mass. If it were also assumed that the payload does

not have rotational inertia, only one vibration mode would

be apparent. Moreover, if the link rotates on the horizontal

plane, its dynamics can be accurately approximated by using

a second-order linear system (see [20]).

Fig. 1 shows our 2-DOF-1FL robot. In this figure, joint

angles are denoted as θi and tip angles as φi , whose subindexes

i = 1, 2 represent azimuthal and attitude angles, respectively.

Its dynamic model, assuming that the link verifies features

1)–4) and the payload has negligible rotational inertia, is then

obtained from [21]

˙̂x =

⎛

⎝

x̂3

x̂4

P(x̂) + Ka · µ(θ , φ)

⎞

⎠

φ = C · x̂ (1)

in which

P(x̂) =

(

2 · tan(x̂2) · x̂3 · x̂4

−Kg · cos(x̂2) − sin(x̂2) · cos(x̂2) · x̂2
3

)

(2)

µ = µ(θ , φ)

=

⎛

⎝
sin(θ1 − φ1) ·

cos(θ2)

cos(φ2)
cos(φ2) · sin(θ2)−cos(θ1−φ1) · sin(φ2) · cos(θ2)

⎞

⎠

(3)

C = (I2 02,2) (4)

where θ = (θ1 θ2)
T is the input vector, φ = (φ1 φ2)

T is the

output vector, x̂ = (φT φ̇
T
)T is the state vector, the upper

T signifies transpose, Kg = g/ l, Ka = κ/(m t · l2), g is the

gravity constant, Ik is the identity matrix of dimension k × k,

and 0k,l is the matrix of zeros of dimension k × l.

Equation (1) describes a four-state nonlinear multivariable

system whose outputs, φ1 and φ2, represent the spherical

coordinates of the tip payload position.

The moment applied to the base of the link by the actuators

or, equivalently, the coupling torque between the link and

the set of actuators can be defined by its components in the

directions of the azimuthal and attitude degrees of freedom

Ŵ
coup

1 and Ŵ
coup

2 , respectively. These are given by

Ŵ
coup

1 = κ · sin (θ1 − φ1) cos (θ2) cos (φ2)

Ŵ
coup

2 = κ · (− cos (θ1 − φ1) cos (θ2) sin (φ2)

+ cos (φ2) sin (θ2)). (5)

B. Actuator Dynamics

DC motors with high ratio reduction gears actuate our

2-DOF-1FL robots. The dynamic model of the motor is

Ŵi = ni Kmi qi = Ji θ̈i + νi θ̇i + Ŵnlc
i + Ŵ

coup

i (6)

where the subindex i = 1, 2 is the azimuthal or attitude joint

and ni is the ratio of the reduction gear. In this equation,

voltages qi are the control signals. As it is assumed that the

motors have servo amplifiers with very fast dynamics, the

currents of the motors and, therefore, the motor torques Ŵi ,

are assumed to be proportional to the previous voltages. Kmi

are the motor constants that define this proportionality, νi are

the corresponding viscous friction coefficients, and Ji are the

motor rotational inertias. Ŵ
coup

i are the moments transmitted

by the actuators to the link and Ŵnlc
i are the Coulomb friction

terms, which are nonlinear. In summary, the inputs to the

system are voltages q1 and q2, which are applied to the motors,

and the outputs are angles θ1 and θ2.

The complete dynamic model is, therefore, provided by

(1)–(5), plus (6), which are particularized for the 2-DOF

i = 1, 2. The complete system is, therefore, an eighth-order

differential equation with two inputs, q1 and q2, and two

outputs, φ1 and φ2. The Coulomb friction of the motors is

considered disturbances.

IV. CONTROL SCHEME

A. General Description

Motor positions θi and moments at the base of the link Ŵ
coup

i

are often used to control flexible links [22]. They are obtained

using optical encoders and strain gauge bridges, which are

placed at the base of the flexible links. Control laws often

feedback the tip position of the flexible link, which is estimated

by combining these measurements.

The strategy proposed in this work consists of dividing the

control system into two nested loops (denominated as the inner

and outer loops) such that the output of the control law of

the outer loop is the reference of the inner loop. The inner

loop is responsible for controlling the position of the actuators

in such a way that the effects of nonlinear and time-varying

frictions are almost removed. The outer loop is responsible

for controlling the outputs of the system in such a way that

vibrations are removed [9].

This methodology makes it possible to design the control

system in two separate stages that have different objectives.

First, the inner loop is designed to move the actuators as quick

as possible without saturating the actuators. The usually more

complex outer loop is then designed in order to achieve the

desired behavior of the complete system. The complete closed-

loop dynamics is subsequently integrated into a singularly

perturbed model in order to assess the stability of the closed-

loop system.

B. Inner Loop

The scheme proposed in [22]–[24] is used to control the

position of the motors. It includes feedback of the coupling

torques Ŵ
coup

i , which makes the dynamics of the controlled
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Fig. 2. Inner control loop scheme.

motors insensitive to the movements of the link. This feedback

of the coupling torque drastically simplifies the motor models

used to design the motor controllers, thus making the design

of this inner loop relatively simple.

Let us consider the motor dynamics (6). Fictitious control

signals for the motors can, therefore, be defined as q ′
i(t) =

qi(t) − ((Ŵ
coup

i (t))/(ni Kmi )), which cancel the effect of the

link on the motor dynamics by substracting terms proportional

to the coupling torques to the real control signals. Moreover,

if it were assumed that the Coulomb friction is a step-like

disturbance that can be compensated by the loop closed around

the motor, the transfer function from the fictitious input to the

motor angular position would be obtained as

θi(s)

q ′
i (s)

= Gmi(s) =
Kmi

s · (Ji · s + νi )
, i = 1, 2 (7)

where Gmi (s) is the transfer function between the motor angle

θi(t) and the fictitious control signal q ′
i (t).

Proportional, integral, and derivative (PID) controllers

with a low-pass filter term, i.e., of the form R(s) =

((a2 · s2 + a1 · s + a0)/(s · (s + b))), ensure good trajectory

tracking, compensate disturbances such as unmodeled compo-

nents of the friction, and are robust to parameter uncertainties,

thus providing precise and fast positioning of the motor. These

PID controllers are, therefore, used in the inner loop according

to the 2-DOF control scheme shown in Fig. 2, in which two

of these controllers, R1,i (s) and R2,i (s), are implemented in

each motor control in order to place the poles and zeros of

the closed-loop system at the desired locations.

The four closed-loop poles of this scheme are placed at the

same arbitrary location pi by following the algebraic method

described in [24]. The two zeros of the closed loop are also

placed in pi in order to cancel two poles of the closed loop.

The overall transfer functions of the inner loop then become

Mi (s) =
θi (s)

ûi(s)
=

1

(1 + ǫi · s)2
; ǫi = −p−1

i , i = 1, 2 (8)

where ûi is the command signal for the motor. Since very fast

motor movements are desired, the absolute values of poles pi

are high and the values of ǫi are, therefore, small.

C. Outer Loop

The system to be controlled by the outer loop is expressed

by (1)–(5) plus the two inner loop transfer functions (8). This

system has eight states: φ1, φ2, φ̇1, φ̇2, θ1, θ2, θ̇1, and θ̇2; two

inputs: u1 and u2; and two outputs: φ1 and φ2. Moreover, there

are four variables that are measured: θ1, θ2, Ŵ
coup

1 , and Ŵ
coup

2 .

Since the model above is nonlinear, the input-state lineariza-

tion technique (see [5]) is proposed in order to achieve a

fast, precise and free-of-vibration outer loop control. Obtaining

the controllability and involutivity conditions of this system,

along with the linearizing control law, is a highly involved

process, yielding very complex mathematical expressions. It is,

therefore, difficult to apply to control this system.

An alternative approach was proposed in [21], in which the

inner loop dynamics (8) was canceled by adding prefilters to

the inputs of the inner loop. These prefilters are of the form

Fi (s) = ((ûi(s))/(û
′
i (s))) = ((1 + ǫi · s)/(1 + ςi · s))2, where

ςi ≪ ǫi and û′
i are the outputs of the outer loop controller

(i = 1, 2). These prefilters Fi (s) approximately cancel the

inner loop dynamics. The overall system (prefilter-inner loop-

link dynamics) can, therefore, be approximated by only the

link dynamics (1)–(5).

Since the inner loop dynamics Mi (s) are approximately

inverted by prefilters Fi (s), the motor angles θ closely follow

their references û′ = (û′
1 û′

2)
T , which are generated by the

controller of the outer loop, and vector θ can be substituted

for vector û′ in (1).

Model (1) is not affine in its input θ , signifying that

the input-state linearization technique cannot be directly

applied. However, it is affine in µ. A fictitious input µ =

(μ1 μ2)
T given by (3) can then be designed [21], which

makes (1) affine and allows the implementation of this control

technique.

Moreover, some analytical expressions were obtained

in [21] that allowed the inversion of the vector field (3), pro-

vided that φ were known. This inversion process is represented

as

θ = µ−1(µ, φ) (9)

and involves the following calculations:

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

θ2 = arcsin
(

cos(φ2) · μ2 ± sin(φ2)

·

√

1 − (μ1 · cos(φ2))2 − μ2
2

)

θ1 = φ1 + μ1 ·
cos(φ2)

cos(θ2)

. (10)

This makes it possible to calculate the real control signal to be

provided by the outer loop controller once the fictitious input

has been determined. This transformation was used in [21] as

the basis on which to successfully implement an input-state

linearization controller. However, prefilters Fi (s) are phase-

lead compensators that make the actuators prone to saturation

when very fast trajectories are demanded.

D. Tip Position Estimator

Tip position can be estimated from the measured variables

by equating φ1 and φ2 from (5). The attainment of these angles

can be simplified by using the following simple estimator [21]:

φ1 ≈ θ1 −
Ŵ

coup

1

κ · cos(θ2)
, φ2 ≈ θ2 −

Ŵ
coup

2

κ
(11)

in the most relevant region of the robot workspace.
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E. Singularly Perturbed Model

In order to prevent actuator saturations, prefilters Fi (s)

of [21] are not used in this article. It rather proposes to use a

control system based on a singularly perturbed model in which

the inner loop dynamics (8) and the link dynamics (1)–(5) are

considered to be the fast and the slow subsystems, respectively.

The proposed control combines the inner loop motor control

with a state-input feedback linearization of the link dynamics.

1) Open-Loop Dynamic Model: The slow subsystem is

modeled by equations (1)–(4). A state model of the fast

subsystem (8) can be obtained by defining the state ẑ =

(θT θ̇
T
)T , the input û = (û1 û2)

T , ǫ = max(ǫ1, ǫ2), and

Az = diag(ǫ/ǫ1, ǫ/ǫ2)

ǫ · ˙̂z = A · ẑ + B · û (12)

A =

(

02×2 Az

−Az −2 · Az

)

, B =

(

02×2

Az

)

. (13)

2) Reference Trajectory: Let us assume a desired trajec-

tory φ∗(t) for the robot tip. The corresponding state trajec-

tory should, therefore, be x̂
∗(t) = (φ∗T (t) φ̇

∗T
(t))T . Since

( ˙̂x∗
3 (t) ˙̂x∗

4 (t))T = φ̈
∗
(t), equating µ in the last two rows of (1)

yields

µ∗(t) = K −1
a · (φ̈

∗
(t) − P(x̂

∗(t))). (14)

Once µ∗(t) has been determined, the desired motor angles

θ∗(t) can be calculated from (9) and (10) as

θ∗(t) = µ−1
(

K −1
a · (φ̈

∗
(t) − P(x̂∗(t))),φ∗(t)

)

. (15)

3) Control Law: The input-state feedback linearization

technique is used

û(t) = µ−1
(

K −1
a · (φ̈

∗
(t) − v(t) − P(x̂(t))), φ∗(t)

)

(16)

combined with a linear feedback control law of order n

ẋc(t) = Ac · xc(t) + Bc · (x̂(t) − x̂
∗(t))

v(t) = Cc · xc(t) + Dc · (x̂(t) − x̂
∗(t)) (17)

in which xc ∈ ℜn×1, v ∈ ℜ2×1, Ac ∈ ℜn×n, Bc ∈ ℜn×4,

Cc ∈ ℜ2×n , and Dc ∈ ℜ2×4. Dynamics (16) and (17) are

included in the slow subsystem because they are designed to

be much slower than the fast subsystem (12). Model (17) is

a generalization of the static feedback control law commonly

used in state feedback linearization, which is derived from it

by making

Cc = 0, Dc =

(

λ1 0 λ3 0

0 λ2 0 λ4

)

. (18)

4) Closed-Loop Dynamic Model: Define the incremental

variables x = x̂ − x̂
∗ and z = ẑ − ẑ∗. Substitute them in

the dynamic equations (1)–(3) and (12) and the control law

(16) and (17). Operating these equations and combining them

yields the incremental dynamic model of 8 + n states

ẋ = f(t, x, z)

ẋc = fc(x, xc)

ǫ · ż = g(t, x, xc, z). (19)

In this expression, we have that

f(t, x, z) =

⎛

⎝

x3

x4

f3,4(t, x, z)

⎞

⎠ (20)

where the third and fourth rows of f are

f3,4(t, x, z)

= P(x + x̂∗) − P(x̂∗) + Ka · (µ(θ ,φ) − µ(θ∗,φ∗)) (21)

where φ = φ∗ + C · x and θ = θ∗ + C · z. The dynamics of

the control system is

fc(x, xc) = Ac · xc + Bc · x (22)

and the dynamics of the fast subsystem is

g(t, x, xc, z) = A · z − B · µ−1
(

K −1
a · (φ̈

∗
− P(x̂∗)),φ∗

)

+ B · µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · x

− P(x + x̂∗)),φ
)

. (23)

It has been assumed that ǫ/ǫ1 and ǫ/ǫ2 in Az are constant.

F. Stability Analysis of the Closed Loop

The stability of system (19)–(23) is assessed by applying

a well-known result of singular perturbation theory (see [5]),

which yields the following theorem.

Theorem: Let us consider the system described by (2) and

(3), (9) and (10), and (19)–(23), matrices (4) and (13), and

trajectories x̂∗ and ẑ∗ shown in Section IV-E2 that do not

produce vertical configurations (x̂2 = ±π/2 or ẑ2 = ±π/2).

There consequently exists an ǫ∗ > 0, such that for all ǫ < ǫ∗,

the origin of this system is exponentially stable if it is verified

that every eigenvalue of matrix

� =

⎛

⎝

02,2 I2 02,n

−Dc0 −Dc1 −Cc

Bc0 Bc1 Ac

⎞

⎠ (24)

has a negative real part. In matrix �: Dc0, Dc1 ∈ ℜ2×2 are

submatrices of Dc, such that Dc = (Dc0 Dc1), and Bc0, Bc1 ∈

ℜnx2 are submatrices of Bc, such that Bc = (Bc0 Bc1).

The proof of this is provided in Appendix I.

Remark 1: The vertical configuration cannot be avoided

a priori. However, constraints in the desired trajectory can

easily be imposed, which prevents the state from reaching

that configuration. They are based on the small link deflection

assumption cited in Section III-A., which was quantified

in [25]; it is verified if the deflection is lower than 10%

of the length of the link. Since (12) is the fast subsystem,

it is assumed that θ(t) ≈ θ∗(t) and, hence, ẑ2(t) ≈ ẑ∗
2(t).

The generation of trajectories whose vertical configuration is

bounded by |ẑ∗
2(t)| < π/2 − 0.1 consequently guarantees that

|ẑ2(t)| < π/2 − 0.1 and, hence, that ẑ2(t) is not vertical

and, therefore, according to the small link deflection condition

mentioned that x̂2(t) would not be either. Note that 0.1 rad

≈ 6◦, which is a small reduction in the robot workspace;

attitude movements are permitted between ±84◦ rather than

between ±90◦.

Remark 1 imposes that tip trajectories must be designed

such that |x̂∗
2(t)| < π/2 − 0.1. ẑ∗

2(t) would subsequently be
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obtained from (15) and condition |ẑ∗
2(t)| < π/2−0.1 would be

checked. If it were not verified, the tip trajectory would have

to be modified in order to make x̂∗
2 (t) and ẑ∗

2(t) simultaneously

fulfill the condition given in the remark. Given x̂∗(t) that

verifies the condition, one way of making ẑ∗(t) also verifies it

too would be to slow down x̂∗. This would reduce velocities,

φ̇
∗
, and accelerations, φ̈

∗
, in (15), which reduces the difference

between x̂∗ and ẑ∗. Having to perform a task in a vertical

configuration is, however, very unlikely, and the robot path

through this configuration can be avoided by choosing other

intermediate points in order to reach a desired target point.

V. CONTROL SYSTEM ROBUST TO STRAIN GAUGE

DISTURBANCES: FRACTIONAL-ORDER CONTROL

The strain gauges used to measure the moments of the

slow subsystem dynamics introduce errors into the estimation

of the state x̂(t) and consequently into the control signal.

This section studies how to reduce the effects of these errors

in the controlled system. First, a dynamic model of the

perturbed system is developed. Conditions are then proposed

for the controllers in order to reduce the effects of offset

and high-frequency noise. The resulting closed-loop system

is subsequently analyzed, and finally, the FOC is designed.

A. Slow Subsystem Model Including Strain

Gauge Disturbances

Denote as γ1(t) and γ2(t) the additive errors produced in the

measurements provided by the strain gauges of the coupling

torques Ŵ
coup

1 (t) and Ŵ
coup

2 (t). According to (11), the estimate

of the tip position is then represented by φe = φ + d, where

d(t) ≈ −

(
γ1(t)

κ · cos(ẑ2)

γ2(t)

κ

)T

(25)

and the estimate of the slow subsystem state is given by x̂e =
(

φT
e φ̇

T

e

)T

. The deviation of this estimate from the reference

is xe(t) = x̂e(t) − x̂∗(t) or, equivalently

xe(t) = x(t) + δ(t) (26)

where δ(t) =
(

dT (t) ḋ
T
(t)

)T

. Since x̂e(t) rather than x̂(t) is

feedback, the dynamics of the controller is

ẋc = Ac · xc + Bc · xe (27)

and the dynamics of the fast subsystem becomes

ǫ · ż = A · z − B · µ−1
(

K −1
a · (φ̈

∗
− P(x̂∗)),φ∗

)

+ B · û

(28)

û = µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · xe − P(xe + x̂∗)),φe

)

.

(29)

Substitute xe for (26) and φe by φ+d in (29). Assume small

values of δ and d. This makes it possible to approximate (29)

using the first term of its expansion in a Taylor series about the

real system trajectory χ(t) = (x̂(t), xc(t), ẑ(t)). This yields

the dynamic model of the perturbed slow subsystem

(

ẋ

ẋc

)

= � ·

(

x

xc

)

+

⎛

⎝

02×4

−�(χ)

Bc

⎞

⎠ · δ (30)

where

�(χ) = Ka ·
∂µ

∂φ

∣
∣
∣
∣
χ

· C + Dc +
∂P

∂ x̂

∣
∣
∣
∣
χ

. (31)

The Jacobian matrices of this expression are

∂µ

∂φ
=

(

−m3(θ ,φ) m1(θ ,φ) · cos−2(φ2)

−m1(θ ,φ) −m2(θ ,φ)

)

(32)

where m1(θ ,φ) = sin(θ1 − φ1) · sin(φ2) · cos(θ2), m2(θ ,φ) =

sin(φ2)·sin(θ2)+cos(θ1−φ1)·cos(φ2)·cos(θ2), and m3(θ ,φ) =

cos(θ1 − φ1) · cos(θ2)/ cos(φ2), and

∂P

∂ x̂
=

⎛

⎝
0

2 · x̂3 · x̂4

cos2(x̂2)
2 · tan(x̂2) · x̂4 2 · tan(x̂2) · x̂3

0 m4(x̂) − sin(2 · x̂2) · x̂3 0

⎞

⎠

(33)

where m4(x̂) = Kg · sin(x̂2) − cos(2 · x̂2) · x̂2
3 . The derivation

of this model is detailed in Appendix II.

B. Control Robust to Strain Gauge Offset

Strain gauge offsets are modeled by means of constant

disturbances: γ1(t) = γ10 and γ2(t) = γ20. The disturbance

vector (25) is, therefore

d0 ≈ −

(
γ10

κ · cos(ẑ20)

γ20

κ

)T

, δ0 =
(

dT
0 01×2

)T
. (34)

This section improves the precision of the tip position by

reducing the effect of δ0 on the steady state of x̂. Steady-

state values are represented by φ0, θ0, x̂0, xc0, and ẑ0, their

incremental values by x0 and z0, and the final state of a

reference trajectory by x̂∗
0 and ẑ∗

0. Since in the steady state,

ẋ = 0, ẋc = 0, and x3, x4, δ3, δ4 = 0, expression (30) yields
(

�(χ) · CT

−Bc0

)

· d0 =

(

−Dc0 −Cc

Bc0 Ac

)

·

(

C · x0

xc0

)

(35)

and eliminating xc0 in this equation gives
(

Cc · A−1
c · Bc0 − �(χ) · CT

)

· d0 =
(

Dc0 − Cc · A−1
c · Bc0

)

· Cx0

which shows that, provided that Dc0−Cc·A
−1
c ·Bc0 	= 0, the first

two states of x0 are made zero by imposing the condition

Cc · A−1
c · Bc0 − �(χ) · CT = 0. (36)

If �(χ) is substituted for (31), and considering that (32) and

(33) are

∂µ

∂φ
=

⎛

⎝
−

cos(θ20)

cos(φ20)
0

0 − cos(θ20 − φ20)

⎞

⎠ (37)

∂P

∂ x̂
=

(

0 0 0 0

0 Kg · sin(x̂20) 0 0

)

(38)

in the steady state, the following condition is yielded:

Dc0 − Cc · A−1
c · Bc0

= Ka · diag

(
cos(θ20)

cos(φ20)
, cos(θ20 − φ20) −

Kg

Ka

· sin(φ20)

)

.

(39)
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If Ac, Bc0, Cc, and Dc0 verify condition (39), the equilibrium

point of (30) is x0 = 0, xc0 = −A−1
c · Bc0 · d0. In this case,

we have that x̂0 = x̂∗
0 and P(x̂0) = P(x̂∗

0). Moreover, since

f3,4 = 0, (21) yields that µ(θ0,φ0) = µ(θ∗
0,φ

∗
0). Considering

that φ0 = φ∗
0, inverting µ on the two sides of that equality

gives that θ0 = θ∗
0. Condition (39) can then be used to tune

the controller by substituting the steady state (φ0, θ 0) for the

reference steady state (φ∗
0, θ

∗
0).

Condition (39) imposes constraints in the design of matrix

Dc. For example, if the feedback control law commonly

utilized in state feedback linearization (18) were used, gains

λ1 and λ2 would be given by condition (39) and only λ3 and λ4

could be tuned to improve the dynamics. Gains λ3 and λ4 make

it possible to tune only the damping of the closed-loop system

and not its speed of response. Alternative control laws must,

therefore, be designed in order to simultaneously achieve the

desired speed of response and damping while approximately

removing the steady-state errors caused by offset.

C. Control Robust to Strain Gauge High-Frequency Noise

Let us consider the state feedback control law (27) with

an output equation whose parameters are (18), where state

xe(t) is corrupted according to (25) and (26). Since signals

δ3(t) and δ4(t) are the time derivatives of δ1(t) and δ2(t),

their amplitudes are high and are amplified by gains λ3

and λ4, producing control signals with large high-frequency

components that saturate the actuators. The objective of this

section is to reduce the effects of this noise on the control

signal û.

The noise effect can be reduced by canceling the disturbance

input matrix in (30), i.e., making �(χ) = 0 and Bc = 0.

However, this cannot be achieved by the linear time-invariant

controller (17) because: 1) �(χ) is a time-varying function

that, according to (31), cannot be canceled by tuning Dc and

2) if Bc were canceled, (17) would be reduced to a gains

controller that feeds back the state with gains Dc, which is

inconvenient, as stated in the last paragraph of Section V-B.

The following approximation is, therefore, proposed.

1) Tune Dc to the target position at the end of each

trajectory. The effect of noise is, therefore, reduced

when the robot is motionless. In this case, �(χ) can

be made zero because it is a constant matrix. Applying

this condition to (31) and using steady-state reference

values (in which φ̇
∗

0 = θ̇
∗

0 = 02×1) yields the tuning

laws

Dc0 = Ka ·

⎛

⎝

m3

(

θ∗
0,φ

∗
0

)

−m1

(

θ∗
0,φ

∗
0

)

· cos−2
(

φ∗
20

)

m1

(

θ∗
0,φ

∗
0

)

m2

(

θ∗
0,φ

∗
0

)

−
Kg

Ka

· sin
(

φ∗
20

)

⎞

⎠

Dc1 = 0. (40)

2) Since ḋ(t) has a much higher amplitude than d(t) at high

frequencies, the priority is to cancel the input matrix of

ḋ(t). We, therefore, propose to make

Bc1 = 0 (41)

and Bc0 	= 0, and this last matrix is, therefore, the input

matrix to the controller.

Fig. 3. General control scheme of the system.

The fulfillment of the previous two conditions reduces the

effects of d on x and xc. Since these two state vectors are the

inputs to the controller output equation of (17), v is hardly

affected by this noise and, hence, the u, z, and q signals have

small noise components.

D. Closed-Loop Analysis

In order to remove the effects of the strain gauge offset

and high-frequency noise from the robot steady state, con-

ditions [39]–[41] are imposed on the controller. Substituting

�(χ) = 0 in (36) yields that

Cc · A−1
c · Bc0 = 0 (42)

which, when substituted in (39), gives

Dc0

= Ka · diag

(

cos
(

θ∗
20

)

cos
(

φ∗
20

) , cos
(

θ∗
20 − φ∗

20

)

−
Kg

Ka

· sin
(

φ∗
20

)

)

.

(43)

Equations (1)–(4) yield that, in the equilibrium state, θ∗
10 = φ∗

10

and θ∗
20 = φ∗

20 + arcsin((Kg/Ka) · cos(φ∗
20)). Substituting this

in (43) and operating gives that

Ka ·
cos

(

θ∗
20

)

cos
(

φ∗
20

) = Ka · cos
(

θ∗
20 − φ∗

20

)

− Kg · sin
(

φ∗
20

)

. (44)

Let ω2(φ∗
20) denote these two terms. This is expressed as

ω2
(

φ∗
20

)

= ω2
0 ·

(
√

1 +
(

̟ · sin
(

φ∗
20

))2
− ̟ · sin

(

φ∗
20

))

(45)

where ω2
0 = (K 2

a − K 2
g )1/2 and ̟ = (Kg/ω

2
0). The 2 × 2

transfer matrix of controller (17) is, therefore

C(s) = Cc · (s · I − Ac)
−1 · Bc0

︸ ︷︷ ︸

C′(s)

+ ω2
(

φ∗
20

)

· I2
︸ ︷︷ ︸

Dc0

(46)

whose input is φ − φ∗ and whose output is v. Since (42) is

verified, C′(s) is a 2 × 2 transfer matrix such that C′(0) = 0.

A scheme of the control system with the generic controller

(46) is shown in Fig. 3 and will subsequently be analyzed.

Upon applying the Laplace transform to state equation (30),

where Bc1 = 0, Dc1 = 0 and �(s) denotes the Laplace

transform of �(χ(t)) · δ(t), we obtain that

s2 · �(s) + Cc · Xc(s) + ω2
(

φ∗
20

)

· �(s) + �(s) = 0

Xc(s) = (s · In − Ac)
−1Bc0 · (�(s) + D(s)). (47)

Eliminating Xc in (47) and considering (46) yields that
(

s2 · I2 + C′(s) + ω2
(

φ∗
20

)

· I2

)

· �(s)

= −C′(s) · D(s) − �(s) (48)
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Fig. 4. Nyquist plots of L(s).

whose right-hand side term groups together the disturbances

and whose left-hand side term gives the characteristic matricial

equation of the closed-loop slow subsystem

I2 + L(s) = 0, L(s) =
1

s2 + ω2
(

φ∗
20

) · C′(s). (49)

By making C′(s) = diag(C ′
1(s), C ′

2(s)), (49) is decoupled into

two equivalent independent scalar characteristic equations

1 + L i(s) = 0, L i(s) =
C ′

i (s)

s2 + ω2
(

φ∗
20

) , i = 1, 2. (50)

If the same dynamic specifications were imposed on the

azimuthal and attitude movements, controllers C ′
i(s) could be

made equal for the two degrees of freedom.

Expressions (50) show that controllers C ′
i(s) have to be

tuned before each movement according to the attitude angle

φ∗
20 of the target position. Moreover, Dc0 in (46) must also

be tuned according to φ∗
20. Methods with which to quickly

tune these controllers must, therefore, be developed. This is

the objective of Section V-E.

E. Fractional-Order Controller

Let us assume a generic controller C ′(s) that can be either

C ′
1(s) or C ′

2(s) and a generic L(s) which is (50) with C ′(s).

The first path of the Nyquist diagram (0 < ω < ∞)

of L(s), assuming that C ′(s) = 1, i.e., L(s) = 1/(s2 +

ω2(φ∗
20)), is shown in Fig. 4, and has a marginally stable

closed-loop system, i.e., a phase margin ϕm = 0◦. In order

to improve the relative stability, i.e., to increase the phase

margin, it is necessary to design a phase lead controller C ′(s).

An obvious strictly proper structure that verifies C ′(0) = 0

is the real differentiator C ′(s) = K · s/(1 + ρ · s)β , where

β > 1 is integer and ρ is chosen to be sufficiently small

so as to not influence the closed-loop dynamics. However,

this structure has only one parameter that can be tuned, K ,

while at least two parameters have to be tuned in order to

simultaneously achieve closed-loop damping and speed of

response.

A generalization of the previous structure is proposed here

C ′(s) = K ·
sα

(1 + ρ · s)β
(51)

where α > 0 is a real number. This controller has two

parameters to be tuned, K and α, which will be designed using

frequency response methods. Expression (51) implements a

fractional-order differentiator. The previous real integer-order

differentiator is a particular case of (51), making α = 1.

Controller (51) cannot be exactly represented by (17). It can,

however, be accurately approximated by a state equation or a

high-order transfer function. In this case, since (51) is eventu-

ally transformed into structure (17), it is possible to propose

the use of an IOC of high order rather than an FOC. Methods

with which to approximate fractional operators by integer-

order models can be found in [18]. This reference provides

the algorithms that can increase their accuracy at the cost of

increasing the complexity of their integer-order models.

The validity of an approximation depends on the particular

application and the control specifications required. This is

discussed as follows, in the case of our application. The the-

orem mentioned in Section IV concerns exponential stability.

The only requirements to make the closed-loop system stable

with an integer-order approximation of an FOC are, therefore,

that: 1) this approximation verifies condition (24) and 2) it

is verified that ǫ∗ > ǫ. In addition to stability, two other

features have to be considered when assessing the accuracy of

this approximation: 1) the error in the phase margin and the

gain crossover frequency must be sufficiently small and 2) the

fitting error of the frequency response of the FOC achieved

by the integer-order approximation must be enough small in

the frequency range in which the sensitivity to disturbances is

relevant.

We should stress that (51) has the advantage of being much

more easily tuned than a high-order IOC (17) because the two

parameters of (51) can be tuned in a straightforward manner,

the closed-loop frequency response of our system can be more

easily interpreted using (51) than using a high-order controller

(17), and the phase margin robustness of our system can be

easily studied using (51), which would not be the case if an

IOC were used. We should also mention that, once the two

parameters of (51) have been tuned, the conversion of this

controller into an approximate IOC (17) is a simple, almost

automatized, process [18]. However, directly tuning all the

parameters of a high-order controller (17) in order to obtain

a frequency response similar to that achieved by (51) is a

complicated and time-consuming process.

Specifications for each L(s) are defined by employing a

phase margin ϕm and a gain crossover frequency ωc, which

make it possible to tune closed-loop damping and settling time,

respectively. Fig. 4 shows the first path of the Nyquist diagram

(0 < ω < ∞) of L( j · ω) using controller (51) in the case

of ρ = 0, i.e., L(s) = K · sα/(s2 + ω2(φ∗
20)), in which the

corresponding ωc and ϕm are represented. This diagram shows

that the stability of the closed-loop system is ensured if ωc >

ω(φ∗
20), ϕm > 0, and α < 2. Converting a controller (51)

with ρ = 0 into one of the form (17) yields an improper

controller that violates the conditions stated for high-frequency

noise rejection. In what follows, an FOC (51) with ρ > 0 will

consequently be designed that will aim to reproduce the basic

properties highlighted previously.

The following will tune the controller parameters consider-

ing the slow linearized dynamics (50) and the fast dynamics

(8) jointly. Controllers are then tuned, which verify ϕm and

ωc specifications more accurately than considering the slow
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dynamics only. The open-loop transfer function is

L(s) =
C ′(s)

(

s2 + ω2
(

φ∗
20

))

· (1 + ǫ · s)2
(52)

whose Nyquist plot L( j · ω) is also shown in Fig. 4.

The tuning of the FOC is carried out by fulfilling the

following complex design condition [26]: L( j · ωc) = −e j ·ϕm .

Equating first phases and then magnitudes in this equation and

substituting ( j · ωc)
α by ωα

c · e j ·(π/2)·α yields that

π

2
· α − β · arctan(ρ · ωc) − 2 · arctan(ǫ · ωc) = ϕm (53)

and upon equating the magnitudes, we obtain that

K =

(

ω2
c − ω2

(

φ∗
20

))(

1 + ǫ2 · ω2
c

)(

1 + ρ2ω2
c

) β
2

ωα
c

. (54)

For a given value of ρ, the value of α is easily obtained from

(53) and, subsequently, K from (54).

A final step in the design is that of verifying the stability

of the closed-loop slow subsystem according to the fourth

condition checked in the proof of Theorem (see Appendix I).

VI. RESULTS

In this section, simulations and experiments are carried

out in order to prove the advantages of the proposed control

technique. Several IOC are compared with our FOC. These

controllers are embedded in our nonlinear control scheme,

which is robust to sensor disturbances. The standard means

of removing sensor offset, based on a high-pass filter, is also

assessed.

A. Experimental Setup

The experimental platform is a 2-DOF flexible beam, which

is used as a sensing antenna in haptics applications. It has

a structure made of stainless steel with three legs to ensure

perfect stability. The system is a flexible link, which is attached

at one of its ends (denoted as its base) to two dc mini

servo actuator PMA-5A motor sets that include harmonic drive

reduction gears. These dc motors have incremental optical

encoders that measure the angular position of the motors θi .

The system also has an F-T sensor located at the base of the

flexible link that measures torques Ŵ
coup

i at this point. More

information about this platform can be found in [24].

Data acquisition and control algorithms are programmed

using Labview. Simulations are performed using

Simulink/MATLAB. The data acquisition (measurements,

control signals, and written data) sampling time is Ts = 2 ms.

Tables I and II show the parameters of the two motors and

the characteristics of the sensing antenna, respectively, where

V nlc
i is the Coulomb friction in terms of voltage.

Fig. 5 shows a photograph of the robotic sensing antenna.

It shows a camera-based system, which is used as an external

sensor to measure the position of the tip of the flexible link.

B. Identification of the Flexible Link

The dynamics of the link has been identified from its

frequency response. A chirp signal in a range of between

0.01 and 50 Hz was used as an input to the azimuthal

TABLE I

PARAMETERS OF THE MOTORS

TABLE II

FLEXIBLE-LINK CHARACTERISTICS

Fig. 5. Photograph of the sensing antenna.

Fig. 6. (a) Identification of the antenna. (b) Sensor disturbance.

movement (assuming zero attitude angle) in order to stimulate

the vibration modes and obtain the frequency response data

of the tip position. This tip position was estimated from the

motor position and the coupling torque measurements by using

(11). The magnitude and phase of the frequency response are

shown in the upper and lower halves of Fig. 6(a), respectively.

This figure shows a single vibration mode (a single resonant

peak in the magnitude and a single sharp change of 180◦ in

the phase). This experimental result supports the hypotheses

of: 1) a massless link with a mass concentrated at its tip and

2) zero rotational inertia at the tip. We note that the angular

frequency of the vibration mode of the antenna, 14.6 rad/s, is

similar to the theoretical value obtained using the parameters

of the antenna κ/(m t · l2) = 14.9 rad/s.

The upper half of Fig. 6(b) shows the signal Ŵ
coup

1 (t)

provided by the strain gauges when the system is in steady

state and the vibration has been removed. This signal

should be zero but, instead, has a noticeable disturbance

that includes the two unwanted effects: high-frequency noise

and offset. The lower half of Fig. 6(b) shows the spec-

trum of that signal after removing its average value. This

shows that significant noise is present in a wide range of

frequencies.
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C. Specifications of the Control System

The same specifications are imposed on the azimuthal and

attitude movements. A single controller C(s) will, therefore,

be designed that will be used in the 2-DOF (C(s) = C1(s) =

C2(s)). These specifications are given in the following.

1) The closed-loop system must be robust to motor friction,

i.e., it must be insensitive to uncertainties or changes

in the Coulomb and viscous friction of the motor.

In particular, steady-state errors caused by Coulomb

friction must be removed.

2) Frequency specifications ϕm = 70◦ and ωc = 20 rad/s

are tuned in order to achieve the fast and precise tracking

of a tip trajectory without exciting the first vibration

mode. These specifications were taken from [17].

3) Steady error at the robot tip caused by strain gauges

offset must be zero.

4) Effects of the high-frequency noise of the strain gauges

must be reduced.

The first specification is achieved by designing the inner

loop of the system. Its time constant is set to ǫ = 0.017,

i.e., the closed-loop poles at p = −60, in the two motors. The

PID controllers of the inner loop (using parameters mentioned

in Table I) are

R1,1(s) =
74.2 s2 + 8900s + 2.67 × 105

s · (s + 235.1)

R2,1(s) =
347 s2 + 8900s

s · (s + 235.1)

R1,2(s) =
22.2 s2 + 2664s + 79.9 × 104

s · (s + 224.6)

R2,2(s) =
89.7 s2 + 2664s

s · (s + 224.6)
.

Controllers (46) with a proportional term given by

ω2 = 222.6 ·
(
√

1 +
(

0.0873 · sin
(

φ∗
20

))2
− 0.0873 · sin

(

φ∗
20

))

(55)

are used in order to achieve the third specification.

D. Simulated Results

Four controllers C ′(s) are proposed.

1) An FOC (51): A value ρ = 0.01 has been chosen as

a tradeoff between largely reducing the gain of this

controller at high frequencies and hardly degrading the

closed-loop performance. Applying the tuning rules (53)

and (54) yields controller

C ′(s) = 2.748 ·
s1.44

(1 + 0.01 · s)2
(56)

which verifies the desired frequency specifications.

2) An Ideal Derivative Controller C ′(s) = K · s: Its only

parameter is gain K . This signifies that ϕm and ωc cannot

be simultaneously tuned. The decision was, therefore,

made to tune ωc, which is related to the settling time,

resulting in the controller

C ′(s) = 9.81 · s (57)

which has ωc = 20 rad/s and ϕm = 53.13◦.

3) A real derivative controller that includes a second-order

low-pass filter, of the form C ′(s) = K · s/(1 + ρ · s)2.

As in the previous case, only K can be tuned. Parameter

ρ is chosen to be equal to that used in the FOC (56).

A controller is, therefore, obtained

C ′(s) = 10.2 ·
s

(1 + 0.01 · s)2
(58)

with specifications ωc = 20 rad/s and ϕm = 30.51◦.

4) The previous controller has the required ωc but needs

more phase in order to meet the required phase margin.

A phase-lead compensator is, therefore, added to (58) in

order to fulfill the ϕm specification. A controller of the

form C ′(s) = K ·s ·(1+σ ·s)/(1+ρ ·s)β is consequently

proposed, which is the series connection of (58) and a

phase-lead term (1+σ ·s)/(1+ρ ·s)β−2 with σ > ρ. This

term allows us to attain the phase margin specification

ϕm = 70◦, in addition to the gain crossover frequency

ωc = 20 rad/s achieved by the previous IOCs. Two

parameters now have to be tuned: K and σ . Parameters

ρ and β have the sole purpose of guaranteeing the high-

frequency noise attenuation conditions (40) and (41). ρ

is chosen to be equal to that used in the FOC (56) and

the other IOCs, and β = 3 is chosen in order to make

C ′(s) strictly proper. A controller is, therefore, obtained

C ′(s) = 6.6065 ·
s · (1 + 0.0613 · s)

(1 + 0.01 · s)3
(59)

which fulfills the required specifications.

Fig. 7 shows the azimuthal and attitude components of

the tip position when the antenna performs a movement

with the aforementioned controllers. It shows that the four

controllers make the system asymptotically stable and remove

the vibration effectively. However, the lowest overshoot is

provided by controllers (56) and (59) because their phase

margins have been adequately tuned since they are bigger

than the phase margins of the other controllers. Moreover, this

figure shows that FOC (56) provides slightly more damped

responses than (59).

The four previous controllers have been designed using the

same gain crossover frequency. However, the phase margins

of the controllers are different because we cannot tune the two

design specifications with only one parameter in the cases of

(57) and (58). One of the advantages of using an FOC is

that it allows us to design simpler controllers such as (56), in

which the fractional order is used to tune the phase margin.

Controller (59) also achieves the two specifications, but its

order is higher than that of (56). We could have attempted to

retune K and ρ of controller (58) in order to increase its phase

margin. However, the simultaneous achievement of ϕm and ωc

implied a negative value of ρ, which would make the closed-

loop system unstable. The highest value of the phase margin

that can be achieved with this controller is obtained with ρ =

0, yielding controller (57). IOCs with two parameters could

have been used to tune the two design specifications. However,

the condition of eliminating the strain gauge offset C ′(s) = 0

would have been violated, signifying that only controllers (56)

and (59) fulfill the four specifications.
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Fig. 7. Components φ1 and φ2 of the tip positioning.

Remark 2: The value of ρ is lower than ǫ. This suggests that

part 1/(1+0.01·s)2 of the controllers should be included in the

fast dynamics subsystem rather than in the slow dynamics sub-

system. This can be done by yielding an extended state model

(12) that is stable. The fifth condition given in Appendix I is,

therefore, verified and, upon repeating the process described

in the theorem, the closed-loop stability is also proven in this

case.

Finally, we should mention that simulations have been

carried out without sensor disturbances because the purpose of

this section is to illustrate the superior dynamic performance

that can be achieved using our FOC.

E. Sensitivity Analysis of the Slow Subsystem

This section studies the sensitivity functions between the

sensor disturbance, d(t), and the tip angular position, φ(t),

and between d(t) and the control signal, û(t) = θ∗(t), which

is the reference of the inner loop. This study is carried out

for the closed-loop slow subsystem, i.e., it is assumed that

θ(t) = θ∗(t). The sensitivity functions of controllers (56) and

(59), which are the only ones that fulfill the four specifications

shown in Section VI-C, are compared here.

The azimuthal and attitude sensitivity functions Sφ1
(s) and

Sφ2
(s), between d1(t) and φ1(t), and between d2(t) and φ2(t),

respectively, are obtained in Appendix III for the dynamic

model linearized around the target position φ∗
0 and θ∗

0. Assum-

ing that C ′
1(s) = C ′

2(s) = C ′(s), expression (80) yields that

Sφ1
(s) =

�1(s)

D1(s)
= −

C ′(s)

s2 + C ′(s) + ω2
(

φ∗
20

) = Sφ2
(s). (60)

This sensitivity, which is the same in the 2-DOF, is represented

by Sφ(s).

The azimuthal and attitude sensitivity functions Su1
(s)

and Su2
(s), between d1(t) and u1(t) and between d2(t) and

u2(t), respectively, are also obtained in Appendix III for

the linearized dynamic model. Signals ui(t), i = 1, 2, are

the differences between ûi(t) and their values in the target

position. Taking (60) and (83) into account yields that

Su1
(s) =

U1(s)

D1(s)
=

s2 + ω2
(

φ∗
20

)

ω2
(

φ∗
20

) · Sφ(s) (61)

Fig. 8. Sensitivity functions |Sφ( j · ω)| and |Su1
( j · ω)|.

Su2
(s) =

U2(s)

D2(s)
=

Ka · cos
(

θ∗
20 − φ∗

20

)

ω2
(

φ∗
20

) · Su1
(s). (62)

Since (62) shows that Su2
(s) is proportional to Su1

(s), any

of these two functions can be used to compare controllers.

Moreover, (61) shows that the frequencies at which one

controller has a higher sensitivity than the other coincide in

Sφ(s) and Su1
(s) and, because of (62), in Su2

(s).

Fig. 8 shows the magnitudes of Sφ( j · ω) and Su1
( j · ω)

yielded by controllers (56) and (59). These functions are

represented in a frequency range whose upper limit is the

Nyquist frequency π/Ts and whose lower limit is 4 decades

below. This figure shows that the following holds.

1) |Sφ( j · ω)| and |Su1
( j · ω)| are lower with controller

(56) than with controller (59) in most of the frequency

range. Only in the small interval (7.1, 14.9) rad/s (14.9

is ω(φ∗
20)), and at very high frequencies (over 435.5

rad/s), does controller (56) have slightly higher sensi-

tivity than (59).

2) The sensitivity at low frequencies is significantly lower

with (56) than with (59). For each of these controllers,

|Sφ( j · ω)| and |Su1
( j · ω)| almost coincide at low

frequencies. This can easily be seen by substituting

s = j · ω in (61) and then making the limit ω → 0.

3) The slope of |Sφ( j ·ω)| and |Su1
( j ·ω)| at low frequencies

is 28.8 dB/decade with controller (56) and 20 dB/decade

with (59). Low-frequency disturbances are, therefore,

rejected by (56) much better than by (59). In fact, while

both controllers yield tip position zero steady-state error

to step disturbances, controller (56) yields tip position

zero steady-state error to ramp disturbances, unlike (59),

which yields a constant steady-state error. These last

two features can be proved by applying the final value

theorem of the Laplace transform to (60).

As a consequence, (56) rejects the disturbances better than

(59) at most frequencies, and this feature is significant at low

frequencies.

A disturbance in the azimuthal degree of freedom is simu-

lated in order to assess the time behavior of the control system

using controllers (56) and (59). Fig. 9 shows the disturbance,

d1(t). It mimics the real disturbance registered and shown

in Fig. 6(b). An offset of 0.0034 is suddenly applied at 0 s

and, after 4 s, we make this offset grow linearly for 6 s up to

a value of 0.045. This offset is then maintained for 4 s. The

high-frequency noise shown in Fig. 6 is added to the offset in

the entire time interval.
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Fig. 9. Disturbance d1(t) applied to the sensor.

Fig. 10. Simulated results with controllers (56) and (59).

Fig. 10 shows the responses φ1(t) and û1(t) to the above

disturbance. There is a transient behavior at the beginning

caused by a sudden change in the value of the offset from

0 to 0.0034. The upper plots in this figure show that both

controllers (56) and (59) efficiently remove the tip position

steady-state error caused by the constant offset. However, FOC

(56) removes the error caused by the linear variation in the

offset, while (59) does not (it yields a steady-state error).

The lower plots in Fig. 10 show that both controllers

moderately amplify the sensor high-frequency noise, produc-

ing control signals û1(t) that do not saturate the actuators,

although the control signal yielded by (56) has a high-

frequency noise of slightly less amplitude than that yielded by

(59). These simulations validate the results predicted by the

previous analysis of the sensitivity functions. Similar results

are obtained for the elevation degree of freedom.

F. Simulated Results Using a High-Pass Filter

In this section, a high-pass filter is included in our control

scheme in order to remove the offset of the sensor. In this

case, condition (39) is not necessary and there is no constraint

in the design of matrix Dc. The controllers described in

Section IV-E3 are used here, signifying that gains λ1 to λ4

can be freely tuned. The high-pass filter removes the dc

component of the measured moments. In the steady state,

Ŵ
coup

1 = Ŵ
coup

2 = 0 and (11), therefore, yield that φe = θ .

Control signal (17) is consequently v = diag(λ1, λ2)·(θ−φ∗).

Upon substituting v in (16) and considering (2), û is obtained.

Upon substituting û in (10), considering that θ∗ = θ in

the steady state and operating, the conditions that allow the

attainment of the references for the motor angles are yielded

θ∗
1 = φ∗

1 ; λ2 ·
(

φ∗
2 − θ∗

2

)

+ Kg · cos
(

θ∗
2

)

= 0. (63)

Fig. 11. Component φ1 of tip positioning using filter Hh-p(s).

The fictitious input µ is obtained from (3) by substituting

the real values φ of the tip position and considering that

θ∗ = θ . Upon substituting µ and the value of (2) in (1),

considering the steady-state condition and using the real values

φ, the conditions that make it possible to obtain the tip position

are yielded

φ1 = φ∗
1 ; Kg · cos(φ2) = Ka · sin

(

θ∗
2 − φ2

)

. (64)

The error in the component φ1 is, therefore, zero. However,

the combination of the right-hand side equations of (63) and

(64) (eliminating θ∗
2 between these two equations) shows a

significant deviation of φ2 with respect to φ∗
2 .

Simulations were carried out using the control scheme of

Fig. 3 and a high-pass filter between the sensor measurement

sensor and the estimators. The aforementioned frequency

specifications ϕm = 70◦ and ωc = 20 rad/s were used to

tune the controllers. The gains of (18) were λ1 = λ2 = 136.8

and λ3 = λ4 = 18.8. The high-pass filter was designed by

following the procedure explained in [27].

A third-order Butterworth filter (low-pass filter, Hl−p) with

a cutoff frequency of ωc = 0.5 rad/s (about 1 decade

lower than the gain crossover frequency) was designed and

was subsequently transformed into a high-pass filter, Hh-p,

using the transformation Hh-p(s) = 1 − Hl−p(s). It has the

form Hh-p(s) = ((s3 + s2 + 0.5s)/(s3 + s2 + 0.5s + 0.125)).

Fig. 11 shows the azimuthal and attitude components of the

tip position when the antenna performs a 3-D movement. They

show that the steady-state tip position error is e1 = φ∗
1 −φ1 = 0

and e2 = φ∗
2 − φ2 = 0.0443, i.e., a linear error of 22.37 mm.

The value of e2 coincides with the values obtained by solving

the right-hand side of (63) and (64).

G. Experimental Results

Experiments have been carried out on the platform described

in Section VI-A. The F-T sensor placed at the base of the

beam measures the components of the coupling torque, which

are feedback by the outer control loop. The camera-based

optical tracking system shown in Fig. 5 has a precision of

0.05 mm and is used as an external sensor that measures the

real tip position only to verify the effectiveness of the proposed

control system (it is not used in the closed-loop control).

The reference trajectories are curves formed of fourth-order

polynomials designed to meet the needs of driving flexible

links [20]. The maneuver was designed that it would neither

produce large link deflections nor motor saturation.
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Fig. 12. Component φ1 and φ2 of the tip positioning.

This section shows the design of an integer-order PD

controller of the form C ′(s) = (K p + Kv · s)/(1 + ρ · s)2.

This controller has two gains, K p and Kv , to be tuned.

This, therefore, allows the two frequency specifications (ωc =

20 rad/s and ϕm = 70◦) to be accomplished, but at the cost of

violating the condition C ′(0) = 0, which is necessary in order

to obtain robustness to sensor offset. Using the same ρ as in

previous controllers, we obtain that

C ′(s) = −129.8
1 − 0.0606 · s

(1 + 0.01 · s)2
. (65)

This controller is used in order to demonstrate the importance

of removing the influence of the offset of the sensor in the

precise positioning of the antenna. The response of the antenna

using the proposed FOC is also compared with controller (57)

in order to demonstrate the importance of considering the

influence of the high-frequency noise of the sensor. Controller

(58) has been discarded because simulations showed an unde-

sirable low damped behavior due to its low phase margin.

Complete controllers C(s) are tuned using expression (55)

according to the attitude angle φ∗
20 of the target position. For

φ∗
20 = π/8, they are C(s) = C ′(s) + 215.25.

Fig. 12 shows the components of the tip position measured

by the camera-based optical tracking system.

Experiments using the scheme in Fig. 3 with the following

controllers: are reported: 1) FOC (56); 2) controller (57);

3) P D controller (65); and 4) only motor control. This fig-

ure shows that (56) and (65) remove the vibration effectively,

although a little residual vibration remains. It also shows that

the FOC effectively removes the steady-state error due to the

offset of the sensor, whereas the IOC does not. The tip position

steady-state error using (65) is 6 × 10−3 rad in each of its

components. The offset of the sensor, therefore, produces an

error in the steady-state tip position of 5 mm (the distance

between the position of the tip and the reference in the steady

state). Controller (57) is not able to remove vibrations and the

system becomes unstable (the amplitude of φ2 is gradually

increasing in Fig. 12).

Fig. 13 shows control signals q1 and command signals û1

of the three controllers and the effect of the high-frequency

Fig. 13. Control signals and command signals.

TABLE III

CONTROLLERS

sensor noise (the other components q2 and û2 are similar and,

then, are not shown).

The residual vibration shown in Fig. 12, and using (56) and

(65), is caused by the high Coulomb friction of the motors (see

Table I). The residual vibration in component φ2 (amplitude

of 0.2 mm at the tip) is considerably lower than that in φ1

(amplitude of 2 mm at the tip) because the Coulomb friction

of Motor 2 is lower than that of Motor 1. Although the

inner loop almost removes the effects of nonlinear and time-

varying frictions, small errors in the positioning of the motors

caused by high Coulomb frictions still remain. These errors

are integrated by the integral term of the PID controllers and

produce a periodic signal similar to a sawtooth wave (see

Fig. 13 for t > 1.6 s), which produces this small amount

of residual vibration in the positioning of the end-effector.

This error is negligible in φ2 but, for the foreseen application,

φ1 error is probably not acceptable. It can be reduced by

passing the error signal through a static block with a dead

zone and lowering the motor controller gains. A methodology

with which to design them will be studied in the future.

The effect of high-frequency noise is much higher in

controller (57) than in the other two controllers. Moreover,

the signal provided by (57) surpasses the saturation limit of

the motor, causing the aforementioned instability. Table III

shows the frequency specifications achieved with all the con-

trollers designed. In this table, ω′
c and ϕ ′

m are the frequency

specifications that would be attained if the fast subsystem

dynamics were ignored. Values ǫ∗ are also provided, which are

the lowest values among the ones obtained after performing
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simulations with a set of trajectories that cover all the robot

workspace. Since they are higher than our ǫ, the condition

required to apply our stability theorem is fulfilled.

H. Implementation of the FOCs

The implementation of FOC (56) used in simulation

and experimentation is now outlined. Since C ′(s) has been

designed in the frequency domain, the method based on fitting

the frequency response of the FOC by means of an integer-

order transfer function has been chosen. The approximation is

carried out in the frequency range ω ∈ [1, 300] rad/s, which

includes the frequency of the vibration mode of the antenna

and more than a decade over and below the design frequency

ωc. A third-order transfer function has been fitted to ( j ·

ω)0.44 in the desired range of frequencies using the MATLAB

invfreqs() function (see [18] for more information about the

software packages used to carry out these implementations)

ĉ(s) = s0.44 ≃
19.6s3+2636s2+4.254 × 104s+3.905 × 104

s3+402.7s2 + 1.655 × 104s + 6.869 × 104

(66)

and (56) is approximated by a fifth-order controller

C ′(s) ≃ 2.748 ·
s

(1 + 0.01 · s)2
· ĉ(s). (67)

In order to assess the suitability of approximation (66) and

(67) to our application, the issues listed in Section V-E are

checked: 1) stability condition (24) is verified; 2) ǫ∗ is calcu-

lated and it verifies that ǫ∗ > ǫ (this ǫ∗ is very close to that

obtained for (56) in Table III); 3) the errors produced by using

(67) rather than (56) in the phase margin and the gain crossover

frequency are 0.2◦ and −0.1 rad/s, respectively, which are

considered negligible; and 4) the maximum error produced in

sensitivity functions (60)–(62) by using (67) rather than (56)

is 2 dB, in the frequency range ((π/(10 000 · Ts)), (π/Ts))

rad/s of Fig. 8, which is regarded as very small.

The integer-order approximation is, therefore, considered

appropriate.

Remark 3: The FOC is used in the design of the linearized

closed-loop system using frequency-domain techniques. How-

ever, at the final stage of the design process, it is con-

verted into the approximate IOC of fifth order (66) and (67).

Theorem 1, which deals with IOCs of arbitrary order, was

subsequently applied using this IOC to verify the stability

of the closed-loop system that results with this controller.

Consequently, the application of this theorem does not involve

any approximation, and the result of the stability analysis is

certain.

Remark 4: It is apparent that tuning our FOC and, after,

converting it into an approximate IOC using one of the

well-established FOC to IOC conversion methods is much

easier than directly tuning the fifth-order IOC (66) and (67),

which involves tuning at least nine parameters. Moreover,

Section VI-E has shown that trying to design an IOC of

intermediate complexity like (59) using simple frequency-

domain tuning rules would yield a controller that does not

reach the disturbance rejection properties achieved by (66)

and (67).

VII. CONCLUSION

This article proposes a two nested loop scheme combined

with FOCs in order to account for motor friction and strain

gauge disturbances in the control of very lightweight 2-DOF

single-link flexible robots.

When provided with a point payload, these robots have

only one significant low-frequency vibration mode. Since an

inner loop is closed with a high gain controller in order to

remove motor friction effects, this dynamics is faster than

the link dynamics and prevents the application of the singular

perturbation theory to flexible link robots, as has been done in

previous research works. This article consequently develops a

new control approach that combines state feedback lineariza-

tion with a singular perturbation method in a different way to

that which is usually employed: the motors are considered to

be the fast subsystem and the link the slow subsystem.

The main novelty of this article is introducing an FOC

in the control system of robotic antennas that outperform

the strain gauge disturbance rejection of IOCs. However,

another important contribution is condition (39), which allows

removing offset sensor disturbances of unknown amplitudes by

just tuning adequately the matrix Dc0 of the controller. This

avoids the use of filters that differentiate the sensor signals

(C ′(s) has a pure derivative in its numerator, but the complete

controller C(s) does not) or controllers that include integral

terms that reduce the relative stability of the control system.

The implementation of an FOC often requires its approxi-

mation by a high-order IOC. This compelled us to develop a

version of the singular perturbation theorem [5] for IOCs of

arbitrary order.

Simulations and experiments are reported, which shows that

our FOC behaves better than other IOC of similar complexity

(only one or two parameters have to be tuned). Our future

research will extend this controller to flexible robots with

several links.

APPENDIX I

PROOF OF THEOREM

The conditions of [5, Th. 11.4] are verified in order to prove

the stability of the closed-loop system.

By making x = xc = z = 0 in expressions (20)–(23) and

operating, the first and second conditions are easily verified.

Making g(t, x, xc, z) = 0 in expression (23), considering

that A is always invertible and equating z, it yields that

z = h(t, x, xc) = A−1 · B · µ−1
(

K −1
a · (φ̈

∗
− P(x̂∗)),φ∗

)

− A−1 · B · µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · x − P(x̂))φ

)

(68)

which shows isolated roots z. Moreover, it is easy to verify

that h(t, 0, 0) = 0. The third condition is, therefore, fulfilled.

The fourth condition is verified next. By making ǫ = 0 in

(12), we obtain that A · ẑ = −B · û, while substituting û for

the control law (16) and (17) yields that

ẑ = −A−1 · B · µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · x − P(x̂)),φ

)

.

(69)
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Premultiplying both sides of this equation by C and consider-

ing that −C · A−1 · B = I2 gives that

θ = µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · x − P(x̂)),φ

)

(70)

A similar relationship is obtained for the reference trajectories

θ∗ = µ−1
(

K −1
a · (φ̈

∗
− P(x̂∗)),φ∗

)

(71)

where it has been considered that x and xc are zero

when the closed-loop system exactly follows the reference.

By substituting (70) and (71) into (21) and considering that

µ(µ−1(a, b), b) = a, P(x̂) is canceled by P(x + x̂∗) because

x = x̂ − x̂∗ and, operating, gives the dynamics of the reduced

system

ẋ =

⎛

⎝

x3

x4

−Cc · xc − Dc · x

⎞

⎠

ẋc = Ac · xc + Bc · x (72)

which can be expressed as
(

ẋ

ẋc

)

= � ·

(

x

xc

)

(73)

where � is, therefore, the matrix (24). The origin of the

reduced system (73) is, therefore, globally exponentially stable

if all the eigenvalues of this matrix have a negative real part.

In this case, the fourth condition is verified.

The fulfillment of the fifth condition is verified as follows.

Substituting (68) in ẇ = g(t, x, xc, w + h(t, x)) and operating

easily yields that ẇ = A · w. Since system (12) is stable, its

state matrix A/ǫ has all its eigenvalues in the real negative

complex half-plane. This signifies that A is a time-invariant

matrix that also has all its eigenvalues in the real negative

complex half-plane, and system ẇ = g(t, x, xc, w + h(t, x)) is

exponentially stable, uniformly in (t, x, xc).

Functions f, g, and h and their derivatives up to order 2 are

bounded for z − h(x, t) ∈ Bρ , with the exception of the states

in which cos(x̂2) = 0 or cos(ẑ2) = 0. These correspond to

the vertical configuration of the robot. The sixth condition is,

therefore, fulfilled in all the state space, with the exception of

the points mentioned in the statement of the theorem.

APPENDIX II

DERIVATION OF THE PERTURBED MODEL

OF THE SLOW SUBSYSTEM

The first term in the Taylor series expansion of (29) is

û ≈ µ−1
(

K −1
a · (φ̈

∗
− Cc · xc − Dc · x − P(x + x̂∗)),φ

)

︸ ︷︷ ︸

û0

+
∂ û

∂x

∣
∣
∣
∣
χ

· δ +
∂ û

∂φ

∣
∣
∣
∣
χ

· d

︸ ︷︷ ︸

�û

. (74)

The computed inverse of (29) is

µ(û0 + �û,φ + d)

≈ K −1
a · (φ̈

∗
− Cc · xc − Dc · (x + δ) − P(x + δ + x̂∗)). (75)

If �û, d, and δ are small when compared to û0, φ, and x,

respectively, (75) can be linearized with respect to �û, d, and

δ around the trajectory χ(t), which yields that

∂µ

∂ û0

∣
∣
∣
∣
χ

· �û ≈ −
∂µ

∂φ

∣
∣
∣
∣
χ

· d − K −1
a ·

(

Dc +
∂P

∂ x̂

∣
∣
∣
∣
χ

)

· δ. (76)

Making ǫ = 0 in (28) and substituting (15) and (74) yields

z = A−1 · B · (θ∗ − û0 − �û). (77)

Note that substituting the differential equation (28) for (77)

does not modify the effect of d on the steady-state error of x̂.

However, since (28) acts as a low-pass filter, substituting this

for (77) amplifies the effect of the high-frequency components

of d on x̂. A control system designed to attenuate the effects

of these high-frequency disturbances in a closed-loop system

with the algebraic equation (77) will, therefore, attenuate them

better in the original system that has dynamics (28).

Since −C·A−1 ·B = I2, (77) can be expressed as C·ẑ = θ =

û0 +�û. Substituting this in (21) and subsequently linearizing

µ(û0 + �û,φ) with respect to �û gives that

f3,4(t, x, z) ≈ P(x̂) − P(x̂∗) + Ka · µ(û0,φ) + Ka ·
∂µ

∂ û0

∣
∣
∣
∣
χ

· �û − Ka · µ(θ∗,φ∗). (78)

The inversion of û0 defined in (74) gives µ(û0,φ) = K −1
a ·

(φ̈
∗

− Cc · xc − Dc · x − P(x̂)). The inversion of (15) gives

µ(θ∗,φ∗) = K −1
a · (φ̈

∗
− P(x̂∗)). Substituting these two

expressions in (78) and operating yields

f3,4 ≈ −Cc · xc − Dc · x + Ka ·
∂µ

∂u0

∣
∣
∣
∣
χ

· �û. (79)

Substituting (76) into (79) and the result in (20), substituting

(26) into (27), and combining these results yields the dynamic

model of the perturbed slow subsystem.

APPENDIX III

OBTENTION OF THE SENSITIVITY FUNCTION OF THE SLOW

SUBSYSTEM BETWEEN D(t) AND θ∗(t)

Consider (48). According to Section V-C, our control system

has been tuned to make �(χ) = 0 in the target position. This

implies that �(s) = 0. Moreover, let us assume that C′(s) is

diagonal. Equation (48) can, therefore, be split into two scalar

equations that yield transfer functions

�i (s)

Di (s)
= −

C ′
i (s)

s2 + C ′
i (s) + ω2

(

φ∗
20

) , i = 1, 2. (80)

The relationship between φ and θ is given by the dynamic

nonlinear model (1). Since we are studying the sensitivity to

small disturbances d(t) in the steady state, this equation can

be linearized around the target position φ∗
0, θ∗

0, yielding that

ẋ =

⎛

⎜
⎝

x3

x4

∂P

∂ x̂
· x + Ka ·

∂µ

∂ x̂
· x + Ka ·

∂µ

∂ ẑ
· z

⎞

⎟
⎠ (81)

Jacobian ∂P/∂ x̂ is given by (38), in which x̂20 is made

equal to φ∗
20. Jacobian (∂µ/∂ x̂) is ((∂µ/∂φ) 02×2), in which
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(∂µ/∂φ) is given by (37), and angles φ20 and θ20 are made

equal to φ∗
20 and θ∗

20, respectively. Considering that φ∗
10 =

θ∗
10 and operating, we obtain that (∂µ/∂ ẑ) = −(∂µ/∂ x̂).

Substituting all this in (81) and considering (44) and that

Ka · ((cos(θ∗
20))/(cos(φ∗

20))) = ω2(φ∗
20) yields

(

ẍ1

ẍ2

)

= −ω2
(

φ∗
20

)

·

(

x1

x2

)

+

(

ω2
(

φ∗
20

)

· z1

Ka · cos
(

θ∗
20 − φ∗

20

)

· z2

)

(82)

which can be expressed by the transfer functions

X1(s)

Z1(s)
=

ω2
(

φ∗
20

)

s2 + ω2
(

φ∗
20

) ,
X2(s)

Z2(s)
=

Ka · cos
(

θ∗
20 − φ∗

20

)

s2 + ω2
(

φ∗
20

) .

(83)

Since we are seeking the sensitivity function of a linearized

model, variables �i(s), i = 1, 2, can be substituted in (80)

for their corresponding incremental values X i(s), i = 1, 2,

respectively. Upon combining (80) and (83) and considering

only the slow subsystem dynamics, i.e., Z i (s) = �∗
i (s) =

Ui(s), i = 1, 2, the sensitivity functions between Di (s) and

Ui(s) are then obtained.
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