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Abstract Welding residual stress and distortion are

strongly linked together. One of the ways to control or

reduce the welding distortions is the manipulation of the

generated stresses during welding, and final residual

stresses exist in the workpiece (stress engineering). In this

paper, the control of gas metal arc butt welding distortion

of 500 × 250 × 6 mm3 AH36 plates by means of additional

heat sources is studied using experimental and numerical

approaches. To understand the distortion reduction mech-

anism, 3D finite element model has been constructed and

validated by temperature, distortion and residual stress

measurements together with microstructure investigation.

The numerical results are compared to that of the experi-

mental measurements.

Keywords Weldingwith additional heating . Side heating .
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1 Background

Welding distortion is a permanent change in shape of a

component (or an instability) due to the welding-induced

stresses [1, 2]. Six types of welding distortion are defined

[2, 3]:

& Transverse shrinkage (shrinkage perpendicular to the

weld)

& Longitudinal shrinkage (shrinkage in the direction of the

weld)

& Rotational distortion (angular distortion in the plane of the

plate due to thermal expansion or contraction)

& Angular distortion (shrinkage caused by a non-uniform

temperature distribution in the through-thickness direction

of the workpiece)

& Bending distortion (distortion in a plane through the weld

line and perpendicular to the plate)

& Buckling (distortion caused by compressive stresses)

Figure 1 shows the different types of welding distortion [4].

It should be mentioned that in reality, multiple types of

welding distortion may occur at the same time and that it is

sometimes difficult to distinguish the types of distortion pres-

ent in a workpiece [4].

As reported in [5], in 1990, a Japanese Patent showed

a method to reduce buckling deformation for thin metal

sheet using additional heating sources parallel to the

welding torch located at or near plates’ edges. The meth-

od is applicable for the materials with thickness higher

than 4 mm. Since the heaters are located rather far to the

welding torch, the method is called side heating. In this

paper, attempts have been made to study the welding

with additional heating of AH36 plates with dimensions

of 500 × 250 × 6 mm3. Both experimental and numerical

approaches have been used in this investigation. The

results of such approaches are compared for two situa-

tions: (1) conventional welding and (2) welding with

additional heating.
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2 Material

AH36 steel is a grade of ASTM A131 steel. This is a

moderate strength hot rolled steel, mainly used in ship-

building [6]. The steel has a ferritic-pearlitic microstruc-

ture. The material undergoes solid state phase transforma-

tions during welding. Table 1 shows the chemical compo-

sition of such steel.

3 Conventional welding and welding with additional

heating

AH36 plates with dimension of 500 × 250 × 6 mm3 were

welded by means of gas metal arc welding (GMAW).

The welding power source was a Cloos-Quinto Profi

503. The welding torch was tilted to an angle of around

60° to the plane of the plate (leading the weld pool). A

Lincoln electric LNM 25TM filler wire with a diameter

of 1.2 mm was used. According to AWS A5.18 speci-

fication [7], the electrode is classified as ER70S-3 with

a chemical composition given in Table 2.

In order to achieve a fully penetrated weld, a Y-groove joint

was employed with dimensions shown in Fig. 2.

The shielding gas used for GMA welding was 85 % Ar-

15 % CO2. This mixture of shielding gasses provides a stable

arc, low spatter losses and acceptable weld bead profile. The

shielding gas flow rate was 15 l min−1.

The clamping system consists of a steel backing frame with

dimensions of 735 × 1200 × 30 mm3. A 30 mm deep and

20 mm wide groove is located at the centre of the backing

plate in order to apply the backing gas (and the ceramic back-

ing) as shown in Fig. 3. Four steel strips with dimensions of

660 × 32 × 10 mm3 were used to evenly distribute the

clamping pressure to the workpiece. The average welding

current and voltage were 200.2 A and 25.9 V, respectively.

The speed of welding was set to 4.5 mm s−1, while the wire

feed rate was 5.7 mm s−1.

In addition to the groove at the centre of the backing plate, a

similar groove was made at 250 mm from the starting point of

welding, perpendicular to the welding direction, to allow tem-

perature measurements by means of thermocouples at the un-

derside surface of the workpiece.

Fig. 1 Different types of welding
distortions [4]

Table 1 The chemical
composition of AH36 steel [6], Fe
balance

C Mn Si Cr Ni Al Cu V Ti Nb

Max wt% 0.124 1.42 0.465 0.026 0.017 0.040 0.018 0.003 0.003 0.020

Table 2 Chemical composition
for ER70S-3 filler wire [7], Fe
balance

C Mn Si Cu P S Cr V Mo Ni

Max wt% 0.06–0.15 0.9–1.4 0.45–0.75 0.5 0.025 0.035 total <0.5

Fig. 2 The Y-groove joint design used during welding of 6 mm thick
AH36 steel

1440 Int J Adv Manuf Technol (2017) 88:1439–1457



Fig. 4 A schematic drawing of
the positional process parameters
involved in welding with
additional heat sources: Burner
separation (BB), Burner distance
to the welding torch (BT) and
Burner distance to the plate (BP)

Table 3 The range of process
parameters used in the
experiments for different
materials

Case/set Value

Separation of burners (mm) 227 to 427

Welding torch to burners distance (mm) −220 to 220

Maximum temperature at the underside surface of the plate (°C) Up to 400

Fig. 3 Schematic drawing of the
positions of the clamps for large
plates
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In welding with additional heating, the burners can be

installed either parallel or perpendicular to the weld centre

line. It was practically impossible to test the burner as-

sembly perpendicular to the weld centre line due to geo-

metric limitations. Therefore, in all experiments, the

burners were installed parallel to the weld centre line as

shown in Fig. 4.

The new set-up was based on the rectangular

LINDOFLAMM® (http://www.lindegas.com/) special short

lance burners. The burner operates according to DIN EN

ISO 5172 [8] with compressed air and acetylene. Basically,

it consists of a burner head, a mixing pipe, a mixing chamber

with a pressure regulator and a handle. The total length of the

burner is 240 mm and includes eight nozzles with 30-mm

separation distance. The width of the burner is 27 mm. The

working pressure at the burner inlet is 0.5 bar for acetylene

and 1.5–4.0 bar for compressed air. This gives a consumption

of 0.3–3.2 m3 h−1 for acetylene and 2.1–22.4 m3 h−1 for com-

pressed air. The burners were adjusted by turning the acety-

lene and oxygen valves on the regulator to control the gas flow

and to obtain the required flame for welding with additional

heating.

The first step in the experiments is the setting of the

burners for different peak temperatures. The maximum

temperatures for different burner settings were measured

at the underside surface of the plate by means of thermo-

couples. A series of trials was performed for a number of

pressurised air-acetylene flame settings, i.e., different

peak temperatures. In this way, the mixtures were calibrat-

ed for different peak temperatures. These tests were re-

peated for the different base materials. Table 3 shows

the range of the maximum temperatures obtained and po-

sition parameters.

The distance of the burners to the plate (BP) was set

to 40 mm for AH36 sheets in order to increase the heat

input.

Table 4 Parameter values used in the simulation

Parameter Value

Welding source half width (mm) 5

Welding source depth (mm) 6

Welding source forward length 10

Welding source backward length 5

Efficiency of the welding process 75 %

Welding power (W) 5185.18

Max heat flux in additional heating (kW m−2) 375.4

Fig. 5 Overview of the set-up for the neutron diffraction measurements
at LBB. The numbers indicate neutron guide (1), the sample (2) and the
collimator (3)

Fig. 6 The models used in the
simulations with
500$\times$500$\times$6
mm$^3$ (the cross section is
shown on the left side
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4 Experiments

The out-of-plane distortions of the plates before and after

welding and welding with additional heating were measured

by means of the digital image correlation method with an

accuracy of 50 μm. In order to make the comparison of the

experiments simple and fast, a distortion index is defined

based on the result of DICmeasurements. The distortion index

is the difference between the maximum and the minimum out-

of-plane deformation of a plate.

The temperature of the workpiece during both convention-

al welding and welding with additional heating was measured

by means of k-type thermocouples with diameter of 0.25 mm.

The thermocouples were installed along or perpendicular to

the heating (or welding) line. The exact position of thermo-

couples was measured after welding. The burner-induced tem-

perature is defined as the temperature at the underside surface

of the plate beneath the burner.

The microstructure of the weld metal, the heat-affected

zone of the weld (HAZ-welding), the base metal and the

Fig. 8 The effect of the burner
separation distance on the
distortion index for AH36 plate
after conventional welding and
welding with additional trailing
heating

Fig. 7 The effect of the welding
with additional heating
temperature on the distortion
index for AH36 plate
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heated area beneath the burners (HAZ-welding with

additional heating) were studied at a cross section perpendic-

ular to the weld and in the middle of the plate using a 5%Nital

etching solution for 10 s. Hardness profiles were also taken

across the welds, the heat-affected zones and the heated areas

beneath the additional heating burners, for different materials

using Vickers micro-hardness measurements with an indenta-

tion load of 300 g.

Residual stress measurements were performed by

means of the neutron diffraction (ND) method at the

Laboratoire Leon Brillouin (LLB) France. The samples

were welded conventionally and welding with additional

heating and full penetration was obtained. Figure 5 shows

a picture of the arrangement. The diffraction measure-

ments were performed on the Fe(211). This plane is

known to be the least sensitive to the inter-granular stress

effects. The residual stress profile of samples in the

clamped condition was measured using a portable X-ray

equipment.

5 Numerical approach

The numerical approach is based on 3D decoupled thermo-

mechanical finite element model for both conventional

welding and welding with additional heating using

Msc.Marc as the commercial code.

The thermal model includes the modelling of the

welding heat by the volumetric heat flux with Gaussian

distribution proposed by Goldak [9] input and the model-

ling of heat losses by convection, radiation and conduc-

tion. The burners in welding with side heating are

modelled by eight circular Gaussian heat flux distribu-

tions with an inter-distance of 30 mm. The suitable power

Fig. 9 The effect of the burner
distance to the welding torch on
the distortion index of AH36 plate
after welding with additional
heating. The burner separation is
387 mm

Fig. 10 The final out-of-plane
deformation of AH36 plate after a
conventional welding and b

welding with additional heating
with experimentally obtained
minimum distortion
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density distribution is obtained by comparing the temper-

ature predictions and measurements. The mesh used in the

simulations is shown in Fig. 6. The parameters for thermal

modelling are summarised in Table 4. The thermal mate-

rial properties were obtained from [10] and [11].

The mechanical models for both conventional welding and

welding with additional heating consist of the modelling of

clamps using spring links and plastic strain resetting at melting

temperature. Isotropic hardening model was used in the

models. The mechanical material properties are obtained

using data from [12].

The filler wire is modelled using the deactivated ele-

ment method. This means that filler elements are initially

available in the model with scaled down material proper-

ties. The filler elements are only thermally activated ini-

tially and remain inactive on the mechanical side. If the

thermal activation time is zero, the filler elements are

activated on the mechanical side in the next increment.

If the thermal activation time is non-zero, the filler ele-

ments remain mechanically inactive until the thermal ac-

tivation time is passed [13].

6 Experimental results and discussion

The temperature effect of additional heating on the distor-

tion index for AH36 plate is shown in Fig. 7. The con-

ventional welding has a distortion index of 5.5 mm. By

increasing the burner-induced temperature, the distortion

index is decreased first and then it starts to increase. The

suitable temperature was found to be around 240 °C. This

temperature is used for the other additional heating

Fig. 12 Temperature
measurements for welding with
additional heating of AH36 plates
at different positions from the
weld centre line

Fig. 11 Temperature as a
function of time for conventional
welding of AH36 plates at several
positions from the weld centre
line
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experiments. The effect of the burner separation on the

distortion index is shown in Fig. 8. The distortion index

decreases when the burners are located 193.5 mm to the

weld centre line. The distance of the burners to the

Fig. 14 The cross section of the
welds in conventional welding
and welding with additional
heating

Fig. 13 Micrographs of the
AH36 samples showing a
close-up of the a the weldmetal, b
coarse-grained HAZ (of welding),
c fine-grained HAZ (of welding)
and d base metal, and e the top
surface of the heated area beneath
the burner after additional heating
and f the underside surface of the
heated area beneath the burner in
additional heating
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welding torch was varied. The results are shown in Fig. 9.

The leading and the trailing positions of the burners both

reduce the distortion index, but there is hardly any effect.

The case in which the burners are located 180 mm trailing

the welding torch is selected as the case with experimen-

tally obtained minimum deformation. The out-of-plane

deformation of the plate after conventional welding is

compared to that of welding with additional heating for

the selected case in Fig. 10. As can be seen, welding with

additional heating reduces the plate deformation.

Figure 11 shows the temperature as a function of time at

different positions from the weld centre line for conventional

welding of AH36 samples, while the temperature profile

during welding with additional heating of such samples is

shown in Fig. 12.

Figure 13 shows the micrograph of the weld metal, coarse-

grained HAZ (of welding), fine-grained HAZ (of welding),

and the base metal of both conventionally welded material

and welded material with additional heating. The heated areas

beneath the burners in the case of welding with additional

heating for both the top and underside surfaces of the sample

are shown in the figure. Welding with additional heating has

no influence on the microstructure of the weld metal and the

HAZ (of welding). This is because of the similar thermal his-

tories of the weld and HAZ (of welding) for both cases. It can

be seen that the top surface of the heated area beneath the

Fig. 15 Hardness profiles for
both a conventional welding and
welding with additional heating
and b the hardness profile in the
side heated zones beneath the
burners for AH36
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burners has a tempered, while the underside surface has a

microstructure close to the base metal.

Hardness profiles were measured at locations shown in

Fig. 14. The hardness profile of the weld, HAZ (of

welding) and the base metal for conventional welding

and welding with additional heating is shown in Fig. 15a,

while the hardness of the heated area beneath the burners is

shown in Fig. 15b. The hardness of the heated area beneath

the burners is slightly reduced. It is expected that such a

reduction is due to tempering and reduction of internal

energy.

The as-received condition of AH36 steel contains 15.5 %

pearlite and 84.5% ferrite. In large regions of the heat-affected

zone, austenisation will occur, but not enough time is available

for homogenisation. Figure 16 shows the CCT diagram used

for austenite transformations in AH36 steel [11]. The temper-

ature profiles, for two points located at underside surface

of the plate, 3 and 4 mm from the weld centre line are

shown together with the parameterised CCT diagram in

Fig. 16 Selected CCT diagram
for transformation of austenite
during cooling in AH36 steel [11]

Fig. 17 The cooling cycle during
conventional welding for two
points located 3 and 4 mm from
the weld centre line at the
underside surface together with
the parameterised CCT diagram

Fig. 18 The measurement position through thickness direction in AH36
plates
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Fig. 17. The temperature profiles are related to the points at

the underside surface of the plate. As can be seen from the

figure, at these two locations, the formation of hard constitu-

ents (like bainite) is expected.

The longitudinal residual stresses were measured perpen-

dicular to the welding direction as a function of distance from

the weld centre line. The origin is set at the plate centre. The

rolling direction of the material is along the longitudinal di-

rection. The position of the measurement in the through thick-

ness direction is shown in Fig. 18. A gauge volume of

2×2×2 mm3 was used here.

The longitudinal residual stress distributions for conven-

tionally welded plates and after welding with additional

heating are shown in Fig. 19a, b, respectively. The longitudi-

nal residual stresses are measured for the weld with

additional heating with experimentally obtained minimum

distortion. In both cases, the longitudinal residual stresses

are measured after releasing the clamps. The releasing of

the clamps takes place when the temperature of the plate

had reached room temperature. It can be seen from the fig-

ure that the maximum tensile stresses of the welds in both

conventional welding and welding with additional heating

are at the same levels. However, the maximum compressive

stresses in the case of welding with additional heating are

slightly higher than those of conventional welding. By in-

creasing the distance from the weld centre line to the plate

edge, the compressive stresses in welding with additional

heating decrease and change to tensile stresses.

The longitudinal residual stresses were also measured for

both the conventional weld and the weld with additional

Fig. 19 Residual stress
measurement results for AH36
after a conventional welding and
b welding with additional heating
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heating in the clamped conditions. In Fig. 20a, the result of

the stress measurement for conventional welding for the

plate in the clamped condition is shown and compared

to the plate after releasing the clamps. It is seen that the

absolute values of both tensile and compressive stresses are

higher when the plate is in the clamped condition. The stress

measurement for the plate before and after releasing the

clamps in the case of the weld with additional heating is

shown in Fig. 20b. The tensile stresses are higher in the

clamped condition. However, the compressive stresses in

the clamped condition are close to the un-clamped cases. In

order to interpret the results, numerical models for both

cases are used and discussed in the next section. Only from

the experimental point of view, such deviations (between

clamped and clamped release stress measurements) can be

attributed to errors in the measurement. The results of the

stress measurement for the clamped conditions were ob-

tained from portable X-ray equipment (only at the plate

surface). Therefore, different measurement methods are

compared in the figure.

The main sources of errors in the measurements can be

summarised as:

& For thick material, an error is introduced by the sim-

plification of the 3D stress tensor to in-plane stress

condition

& Human-related errors: sample positioning, alignment,

reading and typing errors, etc.

Fig. 20 Residual stress
measurement results for AH36 in
the clamped condition for a a
conventional weld and b a weld
with additional heating
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Fig. 21 Predicted temperature
profiles for conventional welding
of AH36 plates at the underside
surface for different positions
from the weld centre line

Fig. 22 Temperature prediction
results for weldingwith additional
heating of AH3 plates at different
positions from the weld centre
line. The temperature cycles are
shown for the underside surface

Fig. 23 Temperature distribution across the cross section of AH36 steel during welding with additional heating at the position of a burner. The burner is
located 193.5 mm from the weld centre line. The temperature is in degrees Celsius
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& Sample positioning errors: definition of the origin, sample

deformation, etc.

& Data analysis errors: peak fitting errors, elastic constants,

stress-free lattice parameter, etc.

& Measurement errors: errors from neutron source, errors

from measurement system (displacement), etc.

& Errors from sample: texture, grain size, shear stresses, out-

of-plane stresses, etc.

7 Numerical predictions and discussions

The heat input and heat loss model parameters have been set

by comparing the results of the simulations with the experi-

mental temperature measurements. Therefore, a trial and error

method has been used to fit the numerical output to the exper-

imental results by variations in the parameters. The predicted

temperature profile during conventional welding of AH36 at

Fig. 24 The predicted final
out-of-plane deformation of
AH36 steel plate after a
conventional welding and b

welding with additional heating in
the experimentally obtained
minimum distortion. The scale
is −8 to +8 mm
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different positions from the weld centre line is shown in

Fig. 21.

The prediction results of the temperature profile during

welding with additional heating are shown in Fig. 22. The

predictions are in a good agreement with the temperature

measurements.

Figure 23 shows the prediction through thickness tempera-

ture distribution of AH36 plate beneath the burner during

welding with additional heating. The burners are located

193.5 mm from the weld centre line. The maximum predicted

temperature at the top surface of the plate beneath the burners

whenweldingwith additional heating for thismaterial is 610 °C.

Figure 24 shows the numerical results for the out-of-plane

deformation of AH36 steel after welding and welding with

additional heating. The welding with additional heating was

modelled using the experimentally obtained minimum distor-

tion (trailing case). It is clear that the out-of-plane deformation

of the plate is reduced using additional heating.

Figure 25 shows the predicted and the measured out-of-

plane deformation for points located across the middle part

of an AH36 plate from one edge to the other edge along a line

perpendicular to the weld centre line for conventional welding

and welding with additional heating. Comparing the numeri-

cal results and the measurements for conventional welding, it

is seen that the predicted deformations are close to the exper-

imental measurements for the points at the middle part of the

plate. At the edges of the plates, there is a small deviation.

Since the thermal field was predicted to be close to the

Fig. 25 Comparison between the
predicted and measured
out-of-plane deformation for
points over the cross section
across the middle of a AH36 plate
for a a conventional weld and b a
weld with additional heating
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measured field, the main source of the deviation is related to

the mechanical field. This includes the material properties and

the clamping model explained before for the other two

materials.

Table 5 shows the numerical results of the out-of-plane

deformation of AH36 steel plate for different burner po-

sitions. It can be seen that the trailing situation provides

the minimum distortion index both in the numerical and

measurement results. The predictions are in agreement

with the experiments.

Figure 26 shows a comparison between the prediction

and the measured results of longitudinal residual stresses

for AH36 plate. In Fig. 26a, the results of conventional

welding are presented, while in Fig. 26b, the results of

welding with additional heating are shown. In both cases,

the clamps are released after welding. In the numerical

results, it is predicted that after welding with additional

heating, a tensile stress region is formed at the location of

the burners (193.5 mm from the weld zone). This area has

a very low stress level in conventional welding. It can

Fig. 26 Predicted longitudinal
residual stresses after releasing
the clamps for AH36 plates
compared to the measurements
for a conventional welding and b

welding with additional heating

Table 5 The simulation results compared to the experimental results
for AH36 plates, where the burners were positioned 193.5 mm from the
weld centre line

Condition Distortion index (mm)

Numeric Experiment

Conventional welding 8.8 5.5

Welding with additional leading heating 3.1 1.8

Welding with parallel additional heating 2.9 No data

Welding with additional trailing heating 2.6 1.5
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also be seen that the predictions indicate the same level of

stresses in the weld and its HAZ in both conventional

welding and welding with additional heating. However,

the experimental results show a significant lower residual

stress for the region beneath the burners in welding with

additional heating. The main deviations between the nu-

merical results and the experiments are attributed to the

following:

& There is a possibility that the heat generated by the

burners causes stress relieving. The temperature of the

top surface beneath the burners is predicted to be

around 600 °C. The time of heating depends on the

length of the burner (240 mm) and the heating speed

(4.5 mm s−1). Both temperature and time needed for

stresses relieving are available. Therefore, it is expected

that two competing phenomena are occurring here: (1)

stress build-up by the burners and (2) stress reduction by

stress relieving. The winning term determines the final

level of residual stresses. In the numerical model,

phase transformations and microstructure changes

have been excluded. In the predicted results, such

tensile stress peaks at the position of the burners

are expected. Implementation of these small changes

in the numerical models is difficult. It should be

noted here that the hardness measurement does not

show significant change for the region beneath the

burners. Full stress relieving needs more time than

the heated time in the experiment. It is expected that

stress relieving phenomenon occurs partially for this

experimental heating time. Similar results have been

observed in [14].

Fig. 27 Predicted longitudinal
residual stresses before releasing
the clamps for AH36 plates
compared to the measurements
for a conventional welding and b

welding with additional heating
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& The experimental source of errors explained in previous

section should be taken into account in the interpretation.

& The numerical models exclude the phase transformations.

However, the experimental results show lower stress in the

region close to the weld in both conventional welding and

welding with additional heating. Since the residual stress-

es are in a balanced condition, a change of these stresses

somewhere in a plate causes a change somewhere else.

& All errors in material-related properties and the way of

clamping in the numerical models explained for previous

materials are valid here as well.

Figure 27 shows a comparison between the prediction

and the measured results of longitudinal residual stresses

for AH36 plate before releasing the clamps. In Fig. 27a,

the results of conventional welding are presented, while in

Fig. 27b, the results of welding with additional heating

are shown. It is believed that the material properties con-

tribute the most to the differences between the measured

and the modelled residual stresses. Finally, it should be

mentioned that the stresses have been measured only in

the longitudinal direction. If more information for residual

stresses in other directions were available for this thick

material, it may be possible to determine more appropriate

model parameters and obtain a better match between pre-

dictions and experiments.

8 Conclusions

The mechanisms of distortion reduction in welding with

additional heating are complex. The complicated nature of

welding stress and strain fields is increased by the large

number of parameters involved in welding with additional

heating. In welding with additional heating, it was found

that the closer the burners were to the weld centre line, the

higher deformation obtained. Moreover, the trend in dis-

tortion as a function of the burner positions (leading, par-

allel or trailing) relative to the welding torch was non-

linear. The results of distortion measurements indicated

that the distortion of the plates is less sensitive to this

parameter. The best temperature for welding with addi-

tional heating depends on many factors such as the posi-

tion of the burners, the thermal and the mechanical mate-

rial properties, the clamping system around the weld, the

area heated by the burners, the geometry of the plate and

the welding process. It was seen that the thermal field

around the welds is not changed by additional heaters.

The introduction of the additional heat by the burners is

limited. Although at the top surface of the plate, higher

temperatures are obtained. This causes minor changes in

microstructure and mechanical properties. For AH36 steel

plate, the top surface of the heated areas beneath the

burners showed a tempered microstructure, while the mi-

crostructure of the underside surface is not affected. In the

region beneath and close to the burners, compressive re-

sidual stresses are reduced in welding with side heating

compared with those of conventional welding of AH36.

Finite element models were constructed to simulate and

investigate the thermal and the mechanical fields in both

conventional welding and welding with additional

heating. The assumptions made in the high temperature

material properties, plastic strain resetting, modelling of

clamps and the additional heaters resulted in some dis-

crepancies between the models and the measurements.

For the conventional welding process, close matches be-

tween the temperature, residual stress and distortion mea-

surements and the numerical predictions were observed.

The main sources of deviation in the thermal modelling of

both conventional welding and welding with side heating

are related to the thermal material data at elevated tem-

perature. The essential feature of the welding with side

heating is the creation of a temperature peak at the loca-

tion of the burners. The temperature distribution in the

weld zone and the HAZ (of welding) remains unchanged.

The predicted residual stresses are close to the measured

values for both conventionally welded plates and plates

after side heating. The characteristic of side heating from

a numerical point of view is the creation of tensile resid-

ual stresses at the location of the burners (tensile peaks

were observed in the numerical results for the regions

beneath the burners).
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