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Abstract— This paper presents a control-oriented model of
the magnetic flux in the International Tokamak Experimental
Reactor (ITER) actuated with Electron Cyclotron Current
Drive (ECCD) at different locations. The main objective of
the control-oriented modeling is to derive an input/output
representation of the magnetic profile written as a state-space
model. The state-space model allows determination of the most
suitable actuation strategies using the concept of controllability
analysis. To illustrate the controllability analysis of the magnetic
flux actuated at different locations, we present numerical
results based on space dependent parameters obtained from
the integrated modeling code CRONOS.

I. INTRODUCTION

With the latest developments towards the realization of the

International Tokamak Experimental Reactor (ITER), nuclear

fusion is about to demonstrate scientific feasibility of fusion

energy production. At the present stage of ITER develop-

ment, the fusion control strategy relies on the developments

of previous tokamaks, e.g. Tore Supra and JET [1]. The

control approaches developed for the previous tokamaks have

shown that different control methods can be effectively used

to improve the plasma performance. The performance of the

plasma has been influenced through active modification of

the current density and pressure profiles in advanced plasma

regimes with Internal Transport Barriers (ITBs), through

heating and current drive, and through sheared plasma rota-

tion. The improvement of the plasma performance has been

demonstrated on TFTR [2], JT-60U [3], and JET [4]. These

results are mainly based on linear models identified from

experiments [5], or on semi-empirical correlations which

can be embedded in real-time control of plasmas [6]. More

recently, a spatially distributed model of the q-profile and

ψ-profile have been suggested in [7], which opens a new

perspective on control of nuclear plasma. The development of

different spatially distributed model-based control scenarios

for operation of ITER can lead to a more efficient fusion

energy production with minimal input energy.

In principle, a tokamak plasma is organized in axisymmet-

ric flux-surfaces. These are nested tori of constant magnetic

flux. Fieldlines are embedded in these surfaces. Furthermore,

the transport along the fieldlines is “fast” and the surfaces
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thus feature constant temperature and particle density. Con-

sequently, the transport problem can be reduced to a one-

dimensional system in the direction perpendicular to the flux-

surfaces. Using first principles transport based models under

various assumptions, such as constant pedestal pressure,

constant pedestal temperature, and stationary state resistivity,

the phenomena inside ITER can be modeled as simplified

spatially distributed systems [7]. The simplified transport

models represent the flux diffusion models and include some

key physical knowledge of the tokamak as well as the

experimental results from JET and Tore Supra.

In this paper, we introduce a control-oriented model of

the magnetic flux evolution which describes the magnetic

flux in poloidal direction. The model is governed by a

one-dimensional partial differential equation (PDE), which

describes the spatial variation of the ψ-profile. The set of

parameter estimations is motivated by the results presented

in [7], where the core of the problem of modeling plasma

dynamics, e.g. ψ-profile, is a type of convection-diffusion

problem with parameters that connect the dynamics. In this

work, we consider the current density generated by the

Electron Cyclotron Current Drive (ECCD) as a spatially dis-

tributed input, whereas the other noninductive components of

the current density distribution and the plasma resistivity are

assumed to be spatially distributed parameters. The spatially

distributed parameters are obtained from the integrated mod-

eling code CRONOS [8]. In order to avoid the present long

trial-and-error approach to deposite the contribution to the

current from jeccd(x), a more general actuator strategy for

deposition of jeccd(x) is needed to determine reachable and

unreachable flux ψ-profiles. From the control perspective, the

reachable and unreachable profiles represent the controllable

and uncontrollable subspaces [9] in the proposed control-

oriented model.

The paper is organized as follows: Section II presents

the control-oriented model of the magnetic flux and its

state-space model representation. Section III establishes the

control problem related to the jeccd deposition and the

controllability analysis based on the controllability Gramian.

Section IV draws the conclusions of the paper.

II. MAGNETIC FLUX

The general ITER principles rely on the tokamak concept

of magnetic confinement, in which the plasma is contained

in a doughnut-shaped vacuum vessel. Control methods are

required in ITER both to maintain plasma stability, and also

to optimize the energy efficiency of the burning plasma.

For a given plasma density, the fusion power is primarily
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TABLE I

PHYSICAL VARABLES.

Variables Physical meaning Units

Ti ion temperature eV
Tped pedestal temperature eV
q safety factor
s magnetic shear
ψ magnetic flux of the poloidal field T/m
Bpol magnetic field in poloidal direction T

S surface m2

η‖ plasma resistivity Ω×m

µ0 permeability of free space H/m
ae minor radius m
R0 major radius m
Ip total plasma current A

jni noninductive effective current density A/m2

jbc bootstrap current density A/m2

jnbi current density driven by the neutral beams A/m2

jeccd current density driven by the ECCD A/m2

determined by the ion temperature Ti profile. Control of

the Ti profile, at the same input power into the tokamak, is

thus key to optimizing tokamak energy efficiency. In many

cases, the Ti profile stays close to the critical gradient for

the onset of turbulent, ion temperature gradient (ITG) driven,

transport, which satisfies in the flat limit (∇Ti/Ti)crit =
4/3(Ti/Te) · (1 + 2s/q), where q is the safety factor and

s is the magnetic shear [10], [11]. Assuming that indeed

(∇Ti/Ti) = (∇Ti/Ti)crit, and assuming a given value for

Tped,i, the Ti profile can be expressed as a function of s/q,

which in turn is a function of the poloidal magnetic flux

ψ(x, t), where x is a normalized one-dimensional radial co-

ordinate. This means that the poloidal magnetic flux ψ(x, t)
can be indirectly used to shape the ITER Ti profile.

A. Control-Oriented Model of the Magnetic Flux

The poloidal magnetic flux ψ(x, t) is the total flux through

the surface S defined by a circle centered on the toroidal

axis, whose edge coincides with the flux surface related to

the coordinate x, as illustrated in Figure 1. The magnetic

flux through the surface is given as

ψ(x, t) =
1

2π

∫

BpoldS.

 

0 rx

jeccd(x)

 

S

Bpol

Fig. 1. Deposition of jeccd(x) centered on the flux surface defined by the
coordinate x.

This means that the poloidal flux ψ(x, t) can be indirectly

used to shape the magnetic field in poloidal direction Bpol.

Using cylindrical approximation for the domain r ∈ [0, a],
with x≡r/a and neglecting the diamagnetic effect, the fol-

lowing flux profile evolution can be derived as suggested in

[7]

∂ψ(x, t)

∂t
=
η‖(x)

µ0a2e

(

∂2ψ(x, t)

∂x2
+

1

x

∂ψ(x, t)

∂x

)

(1)

+ η‖(x)R0jni(x, t),

where

jni(x, t) = jbc(x) + jnbi(x) + jeccd(x, t). (2)

The notations and units of the main physical variables are

summarized in Table I.

In this case, where the magnetic flux is modeled as a

diffusion effect, the boundary conditions have to be specified

both at the plasma center and at the last closed magnetic

surface (LCMS). At the center of the plasma, the spatial

variation of the flux is zero, i.e.

∂ψ(0, t)

∂x
= 0, (3)

and at the LCMS

∂ψ(1, t)

∂x
= −

R0µ0Ip
2π

. (4)

Note that the model (1) is scaled. This allows us to examine

the plasma properties regardless of the size of future toka-

maks. Rescaling can be easily done using a large amount of

experimental data available from actual tokamakas, specific

engineering parameters, and scaling laws [7].

B. Spatially Distributed Parameters

In (1), we assume η‖(x), jbc(x), and jnbi(x) to be the

space dependent system parameters. The space dependent

parameters are obtained from CRONOS for three different

stationary state regimes at Tped = 3keV, Tped = 4keV, and

Tped = 5keV, with constant plasma current Ip = 1.2 · 107A.

1) Plasma resistivity η‖(x): Figure 2 shows the space

variation of the plasma resistivity for all three different

stationary state regimes. As illustrated, the plasma resistivity
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Fig. 2. Plasma resistivity profiles in the stationary state regimes at Tped
at 3keV, 4keV, and 5keV.

3653



becomes more dominant at the LCMS for the chosen Tped.

The chosen stationary state regimes have minor or almost no

influence on the plasma resistivity. This supports our decision

for choosing the plasma resistivity η‖(x) to be the space

dependent system parameter.

2) Bootstrap current density jbc(x): The bootstrap cur-

rent density jbc(x) is usually generated by trapped particles

and represents the noninductive current in this specific sce-

nario [11].
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Fig. 3. Bootstrap current density profiles in the stationary state regimes at
Tped at 3keV, 4keV, and 5keV.

In this work, we also consider the bootstrap current density

profile of jbc(x) to be the spatially distributed parameter

as illustrated in Figure 3. The jbc(x) profiles show almost

no variations with respect to space, except for the region

between x = 0.9 and x = 1 where the variations are evident

due to the pedestal height.

3) Current density jnbi(x): The non-negligible influence

of Tped on the neutral beam current density profiles can be

observed by comparing the Tped = 4keV and 5keV cases in

Figure 4. The greater difference for the Tped = 3keV case

is due to reduced NBI power prescribed in the Tped = 3keV
scenario. Figure 4 illustrates the influence of Tped on the

jnbi(x) profiles.
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Fig. 4. Current density profiles driven by the neutral beams in the stationary
state regimes at Tped at 3keV, 4keV, and 5keV.

C. Spatially Discretized Model

Due to the fact that the parameters η‖(x), jbc(x), and

jnbi(x) are space dependent parameters, the PDE model (1)

has to be discretized in order to evaluate the magnetic flux

ψ(x, t). Considering the dynamics obtained in (1), a spatially

discretized model can be obtained according to the chosen

numerical scheme as follows

dψi(t)

dt
=
η‖i,j

µ0a2e
(c1(i)ψi+1(t)− c2(i)ψi(t) + c3(i)ψi−1(t))

(5)

+ η‖i,j
R0 (jbc,i + jnbi,i + jeccd,i(t)) ,

with the discretization coefficients

c1(i) = 1/2
2 xi + δx

δx2xi
,

c2(i) = 2
1

δx2
,

c3(i) = 1/2
2 xi − δx

δx2xi
,

where the index i denotes the discretization point in space,

i = 1, 2, ..., N , and δx represents the characteristic length

of the cell defined between two spatial discretization points

[7]. For the sake of simplicity, we consider here a finite

difference explicit method on a piecewise equidistant mesh

with constant δx = const. The parameter estimation at each

point i for η‖(x), jbc,i, and jnbi,i are obtained from the

CRONOS code previously discussed, whereas the jeccd,i(t)
profile is considered to be the manipulated variable.

Boundary condition at the center: The flux at the center

equals zero, which gives the following expression for ψ1

ψ1 − ψ0

δx
= 0 → ψ0 = ψ1

so that the ODE equation for ψ1(t) reads as

dψ1(t)

dt
=
η‖i,j

µ0a2e
((c3(1)− c2(1))ψ1(t) + c1(1)ψ2(t))

+η‖i,j
R0 (jbc,1 + jnbi,1 + jeccd,1(t)) .

Boundary condition at the edge: The fact that the flux at

LCMS is a constant value written as a function of Ip (4)

ψN+1 − ψN

δx
= −

R0µ0Ip
2π

,

gives the following dynamics at the edge

dψN (t)

dt
=
η‖i,j

µ0a2e
[(c1(N)− c2(N))ψN (t)− c1(N)ψN−1(t))

+
η‖i,j

µ0a2e
δxc1(N) + η‖i,j

R0 (jbc,N + jnbi,N + jeccd,N(t)] .

Now that we have a fully discretized model with the

boundary conditions embodied, we can define an in-

put/output structure using the discretized ψi(t) profile as

states

ψi(t) =















ψ1(t)
ψ2(t)
ψ3(t)

...

ψN (t)















,

3654



and the boundary condition at the edge and the current

density profiles as inputs u(t)

u(t) =









ψbc 0 0 0
0 jeccd,i(t) 0 0
0 0 jnbi,i 0
0 0 0 jbc,i









.

The state-space representation of the proposed spatially dis-

cretized model (5) is

dψi(t)

dt
= Aψi(t) + Bu(t) (6)

yi(t) = Cψi(t) (7)

where ψi(t) ∈ R
N is the state vector, u ∈ R

4×4 is the input

matrix with the system matrix A ∈ R
N×N , and the input

matrix B =
[

B11 B12 B13 B14

]

∈ R
N×4, with the

output vector yi(t) ∈ R
N and the output matrix C ∈ R

N×N .

We assume that the output vector yi = Iψi(t), which means

that the output matrix is the identity matrix I of order N . The

placement of the current density jeccd,i(t) is fully determined

by the input matrix B12, where the position of the peak x
corresponds to the current density jeccd(x). Note also that

the boundary condition at the LCMS and jnbi,i and jbc,i are

also written as the inputs although they are not considered

as manipulated variables with respect to time.

D. Actuation Strategies

As previously discussed, the main input is the noninduc-

tive current driven by the ECCD system jeccd(x). The current

density jeccd(x) can be roughly modeled with Gaussian

curves that have location of the peaks x and width of the

distributions according to the following equation

jeccd(x) = ϑcde
(−µcd−x)2/2σ,

with the mean and the variance, respectively

µcd =
ρ(Rabs)

a
and σcd = −

(µcd − ρ(Rc)/a)
2

2lnβ
,

where β is chosen such that jeccd(xc) = ϑβ ≈ 0 [7]. This is

equivalent to setting the Gaussian curve close to zero at Rc.

The shape of the Gaussian distribution depends on the

global plasma parameters and power inputs, which are the

main drive forces of the magnetic flux inside ITER [11]. The

maximum value of the current deposit can be computed from

ϑcd =
γPcd

R0n

(

2πa2
∫ 1

0

xe(−µcd−x)2/2σdx

)−1

.

Figure 5 illustrates three different actuation strategies where

the peak x is placed at the following locations: x = 0.3,

x = 0.35, and x = 0.4. The influence of these different

actuation strategies on the overall system behavior can be ob-

served through the input matrix B according to the spatially

discretized model written in the state-space form (6)-(7).

Figure 5(b) shows the images of B12 for the chosen actuation

strategies. The area that shows the non-zero entries in the

input matrix B12 can be easily seen in Figure 5(b) through

the red area in the image, whereas the zero entries are
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Fig. 5. Current density profiles driven by the ECCD (a) in space and (b)
the space images at x = 0.3, x = 0.35, and x = 0.4 with the ECCD
power 30MW at Tped = 3keV.

colored in blue. Changing the position of the jeccd deposition

changes the input matrix B12 and consequently influences the

controllability of the magnetic flux ψi(t).

III. CONTROL PROBLEM

In the presented control-oriented model, the current den-

sity jeccd,i(t) is considered to be the spatially distributed

input, whereas the output yi(t) can be considered to be

the magnetic flux ψi(t) in the entire domain x. For this

input/output representation of the magnetic flux, the control

problem can be formulated as finding the most suitable

input strategy to reach desirable sets of ψi(t) by placing

jeccd,i(t) at the most suitable location. To determine the most

suitable location for jeccd,i(t) deposition, we will introduce

a controllability analysis for the state-space model given as

(6)-(7).

A. Controllability and Observability Gramians

This section discusses different spatially distributed actua-

tion strategies for the jeccd(x) deposition using the following

notion for the controllable subspace X
con

X
con = im (C(A,B)) ⊂ R

N (8)

where the controllability matrix C equals

C(A,B) =
[

B AB A2B ... Ai−1B
]

. (9)

The system is controllable if the controllability matrix has

full rank. According to the Cayley-Hamilton theorem [12],

the rank of C and its image are determined by the first N×N
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columns, where N is the state dimension which agrees with

the number of discretization points in the x direction. For

large scale systems, where N > 10, there are elements of

X
con that require a significant amount of energy in terms of

∞
∑

i=0

u(t)T u(t)

in order to be reached [13]. The reachable and unreachable

sets can be quantified using the controllability Gramian P

P = C∞(A,B)CT
∞(A,B) =

∞
∑

i=0

AiBBT (AT )i, (10)

where P ∈ R
N×N . The elements in X

con, which require the

most energy to be reached, have a significant component in

the span of the eigenvectors of P corresponding to small

absolute eigenvalues [14].

Similar to the concept of input energy, there are elements

that produce more energy in terms of outputs and observable

subspaces
∞
∑

i=0

yi(t)
T yi(t)

according to the observability matrix O(A,C)

O(A,C) =















C

CA

CA2

...

CAi−1















. (11)

The observability Gramian can be obtained from the follow-

ing equation

Q = O∞(C,A))
T
∞(C,A) =

∞
∑

i=0

(AT )iCT CAi. (12)

B. Computation of Balancing Transformations

In general, a state coordinate transformation produces an

equivalent model in another coordinate system. Using the

transformation matrix T ∈ R
N×N the state-space model can

be written as

dψi(t)

dt
= TAT−1ψi(t) + TBu(t), (13)

yi(t) = CT−1ψi(t), (14)

in which ψi(t) = Tψi(t). The associated Gramians P and

Q satisfy the following relationships

P = TPTT and Q = T−T
QT−1,

which gives

PQ = TPQT−1.

By computing a Cholesky factorization of P = UUT and

Q = LLT and a singular value decomposition of UT L =
ZΣYT , it can be shown that setting

T = Σ−1/2YT LT and T−1 = UZΣ−1/2

leads to

P = Q = diag(σ1, σ2..., σN),

where σ1 ≤ σ2 ≤ ... ≤ σN [12]. Since the eigenvalues

are coordinate independent, this gives the following so-called

Hankel singular values

σi =
√

λi(PQ) =

√

λi(PQ), i = 1, 2, ..., N. (15)

It is important to note that the ith Hankel singular value

σi can be interpreted as the energy contribution of the ith
component of the balanced state to the input/output behavior

of the system. If the Hankel singular values decrease rapidly,

this means that the σi ≈ 0 corresponds to the unreachable

sets. Then, the system behavior is almost fully determined

by the first few balanced states with σi > 0 [15]. Most of

the model order reduction techniques for large-scale systems

are based on the Hankel singular values and controllability/

observability Gramian [9].

C. Numerical Results

According to the parameter estimation obtained from

CRONOS and discussed in Section II-B, the input/output

response for the ψ profile discretized by N = 101 is shown

in Figure 6. In principle, outputs can be chosen appropriate to

the measurement techniques available in ITER, which might

bring an addition limitation in determining the observability

Gramian. Here, we consider the magnetic flux ψi(t) to be

fully observable.
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Fig. 6. Profiles of ψi(t) according to (6)-(7) at t = 0, t = 1ms, and t =
1.200ms for Tped = 3keV and jeccd(x) deposition at location x = 0.3.

The Hankel singular values according to (15) for depo-

sition of jeccd(x) at three different locations are shown in

Figure 7. As can be depicted, the Hankel singular values

decrease rapidly. This means that not all ψi(t) profiles are

reachable from the chosen actuation strategy. The magnetic

fluxes for i > 30 that correspond to σ31, σ30..., σ101 can

be considered as unreachable, i.e., reachable with extremely

high input energy.

Another important conclusion that can be drawn from the

results shown in Figure 7 is related to the magnitude of the

input energy for the given actuation strategies. The singular

value σ1 for the deposition of jeccd(x) at the location x = 0.3
is lower compared to σ1 for the deposition at the location
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Fig. 8. The Hankel singular values of the first 30 largest singular values
σ1, σ2..., σ30 at Tped at 3keV, 4keV, and 5keV.

x = 0.4. This suggest that the lower input energy is required

for for the deposition of jeccd closer to the center. This means

that placing the jeccd(x) deposition at x = 0.3 needs less

input energy than the locations x = 0.35 and x = 0.4.

Furthermore, we also analyzed the influence of different

Tped on the singular values. Figure 8 illustrates the first 15

largest singular values as a function of Tped. According to

the results presented, we can conclude that the higher the

pedestal temperature is set, the less input energy is required.

Although the difference in the input energy for the given

scenarios is negligible compared to the different actuation

strategies.

IV. CONCLUSIONS

This paper presents a comprehensive framework for

control-oriented modeling of the magnetic flux in ITER. The

main feature of the proposed control-oriented model is that

it is subject to less complex plasma conditions, such as the

plasma resistivity, noninductive current density, and influence

of the pedestal temperature, compared to the previous mod-

els. The control-oriented modeling approach to plasma fusion

can be understood through possible input/output structures,

which includes finding the most suitable actuation strategy

for shaping the ψ-profiles with minimal input energy. In this

paper, we have shown that the jeccd(x) deposition at different

locations influences the controllability Gramian, and conse-

quently the input energy required to shape the ψ-profile.

Furthermore, the controllability analysis has indicated that

the system behaves as a model of much lower order, which

should be considered in future work. Future work should also

be devoted to validating the proposed model and extending

this idea to other possible actuation strategies that can lead

to more efficient operation of ITER.
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