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Abstract

Batteries are excellent energy storage devices for many applications, such as renew-
able energy consumer electronics, smart grids, Hybrid Electric Vehicles (HEVs),
and Electric Vehicles (EVs). Among major battery chemistries, Lead (Pb)-Acid
batteries are a low-cost power source for applications ranging from hybrid and elec-
tric vehicles (HEVs) to large-scale energy storage. Lithium-Ion (Li-Ion) batteries
are also widely used in multiple applications such as HEV and EV to supply power
to motors because of their high energy and power density and low weight. This
research addresses four important problems for efficient utilization of large-scale
battery systems: control-oriented modeling, State-Of-Charge (SOC) estimation,
State-Of-Health (SOH) estimation, and parameter estimation. Lead-Acid batteries
are investigated in the areas of modeling and model-based SOC/SOH estimation.
Solid phase diffusivity of a Li-Ion cell is measured as a study of battery parameter
estimation.

Efficient simulation, design and management systems require the development
of low order but accurate models. Previous efforts to manage battery systems are
based on equivalent circuit models, which are low-order models using an equivalent
circuit to approximate the battery’s response. These models do not describe the
underlying electrochemical processes taking place in the battery. At the other
end of the spectrum, it is also found that while full order first principles models
provide reliable prediction and comprehensive understanding on multiple variables
of interest (i.e, voltage, ion diffusion, potential distributions across cells), they are
often computationally difficult and costly to solve, since they involve complicated
coupled nonlinear partial differential equations (PDEs).

In this research, we develop a reduced-order Lead-Acid battery model from
first principles using linearization and the Ritz discretization method. The model,
even with a low-order discretization, accurately predicts the voltage response to a
dynamic pulse current input and outputs spatially distributed variables of interest.
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As an efficient first principles model, the Ritz model makes an excellent candidate
for Battery Management System (BMS) model design. Also, a dynamic averaged
model is developed from the Ritz model and realized by an equivalent circuit.
The circuit resistances and capacitances depend on electrochemical parameters,
linking the equivalent circuit model to the underlying electrochemistry of the first
principles model.

Among those built-in functionalities of the BMS in a HEV, the State-Of-Charge
(SOC) estimation is crucial. SOC is the overall remaining charge in percentage in-
side a defined unit (cell, battery, module, or battery pack.). For an electric vehicle,
the SOC is similar to the remaining fuel for a vehicle powered by internal com-
bustion engine. State-Of-Charge (SOC) estimation for Valve-Regulated Lead-Acid
(VRLA) batteries is complicated by the switched linear nature of the underlying
dynamics. A first principles nonlinear model is simplified to provide two switched
linear models and linearized to produce charge, discharge, and averaged models.
Luenberger and switched SOC estimators are developed based on these models
and propogated using experimental data. A design methodology based on Linear
Matrix Inequalities (LMIs) is used in the switched SOC estimator design to obtain
a switched Luenberger observer with guaranteed exponential stability. The re-
sults show that estimation errors are halved by including switching in the observer
design.

To fully utilize a Lead-Acid cell also requires real-time estimates of its State-Of-
Power (SOP) and State-Of-Health (SOH) to efficiently allocate power and energy
amongst the cells in a pack. SOP and SOH are inversely and directly proportional
to cell resistance and capacity, respectively. In this research, the Least Squares
Method estimates the coefficients of a second order transfer function using ex-
perimental voltage and current data from new, aged, and dead Valve Regulated
Lead-Acid batteries. The coefficients are explicitly related to the cell ohmic resis-
tance, capacity, charge transfer resistance, and double layer time constant using
a fundamental model of the cell. The ohmic resistance estimate increases mono-
tonically with age, providing an estimate of SOP. The capacity estimate decreases
monotonically with age, matching the actual capacity loss for aged cells. Finally,
the voltage estimate error can be used as a SOH/SOP estimator and quantify the
reliability of the parameter estimates. The first pulse after a long rest period shows
the highest estimation error.

In battery systems, the parameters often vary with SOC, SOH, and operat-
ing conditions. Accurate and fast battery parameter measurement methods are
desirable in many applications. Solid phase diffusivity Ds is one of the first pa-
rameters to be measured in a new Lithium-Ion cell design because it dominates the
electrochemical kinetics. Amongst the Ds measurement methods, the Galvanos-
tatic Intermittent Titration Technique (GITT) is easy to implement and univerally
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accepted as the standard for diffusivity measurement. The accuracy of GITT, how-
ever, has not been reported, because there is no direct measurement method of
Ds. In this research, we develop a Least Squares Galvanostatic Intermittent Titra-
tion Technique (LS-GITT) that uses all of the voltage data from a GITT test to
optimally tune the diffusivity in a reduced order solid phase diffusion model. The
accuracy of the GITT and LS-GITT are evaluated using voltage predication error
RMS. Based on experimental results from a NCM half cell, LS-GITT is more accu-
rate than GITT, sometimes by several orders of magnitude. LS-GITT gives results
accurate to 1 mV RMS from 15% - 100% SOC while GITT provides that level of
accuracy over less than half that range. Neither technique provides accurate Ds

measurements below 10% SOC.
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Chapter 1

Introduction

Rechargeable batteries such as Lead-Acid and Lithium-Ion batteries have been

widely used in both industry and consumer products because of their high reliabil-

ity, energy efficiency, and specific energy density compared to other energy storage

devices [1, 2, 3].

In large-scale battery systems like those for hybrid and electric vehicles [2, 4],

model-based Battery Management Systems (BMS) are critical for optimal utiliza-

tion and cycle life extension. The BMS relies on accurate estimates of the battery

usage and health status based on the measured input current and output voltage

to help control and manage the battery for maximum energy efficiency and life.

Hence, computationally easy and accurate battery models are desired for estima-

tion and control functionalities in an advanced BMS.

Previous researchers have proposed many battery models. Generally, these

models are devided into two categories: first principles models and equivalent cir-

cuit models. First principles models are based on electrochemistry, which can

accurately reflect the chemical, heating, and diffusion processes within a battery.

Nevertheless, their complex expression and high computational cost make the first

principles model unamenable for implementation in the BMS. Equivalent circuit

models are efficient enough for the BMS, which are circuits approximating battery’s

current/voltage behavior using electrical components such as capacitor, resistor,

and voltage source. However, equivalent circuit models fail to provide full under-

standing about some of the key battery mechanisms such as the chemical process.

Combining the merits of the two model types, reduced order first principles models
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are hence proposed, providing an excellent candidate for the BMS. For example,

reduced-order Lithium-Ion battery models are proposed in [5] and [6]. Widely used

model order reduction techniques are: Integral Method Approximation [7, 8, 9],

Ritz method [7, 10], Finite Element Method (FEM) [11, 12], Finite Difference

Method [7, 13], and Padé Approximation Method (PAM) [14, 15]. In this disser-

tation, we choose the Ritz method to generate a reduced order Pb-Acid battery

model from an electrochemical model.

The reduced-order Ritz model can be conveniently used to estimate multiple

system variables like State-Of-Charge (SOC) because of its state space model ex-

pression. Indicating the remaining charge in a battery system, the knowledge of

SOC helps us to make the best of batteries, which can be calculated from the state

variables of the Ritz model. One property that distinguishes Pb-Acid battery

from most of the other battery types is the abrupt switching of system param-

eters between charge and discharge. This switching characteristics complicates

the SOC estimator design, because the stability of a switched system can not be

simply guaranteed by stabilizing every subsystem in it. Hence, in this research,

an Switched Luenberger Estimator design technique based on Linear Matrix In-

equalities (LMIs) is applied to produce a stable switched SOC estimator under any

given mode switching. By comparing the SOC estimation results based on various

models, mode switching is proved to be worth taking into account when designing

an accurate SOC estimator for Lead-Acid batteries.

State-Of-Health (SOH) estimation is also critical for Battery Management Sys-

tems (BMS) that are dedicated to take full advantage of large battery systems.

The knowledge of SOH is helpful for battery replacement and optimal utilization

so as to extend the cycle life of battery packs. Battery impedance measurement,

coup de fouet, parameter estimation methods are major SOH estimation methods

for Lead-Acid batteries. A SOH estimation method is proposed that identifies key

SOH-related battery parameters using Least Squares Method (LSM). For Lead-

Acid batteries, model identification error, i.e., deviation from second-order system

is found to be a sensitive SOH indicator that potentially allows SOH estimation

at early stages of battery degradation.

Solid phase diffusivity (Ds) determines the dominant pole of Lithium-Ion (Li-

Ion) battery dynamics. The accurate measurement of Ds is crucial for modeling
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and understanding of the diffusion process. Galvanostatic Intermittent Titration

Technique (GITT) is one of the Ds measurement methods that are widely used

and universally accepted. We develop a new Ds measurement method, the Least

Squares Galvanostatic Intermittent Titration Technique (LS-GITT) by applying

the Least Squares Method (LSM) to the voltage and current data of a GITT test

and compare the Ds estimates with GITT. The accuracy of the two methods are

evaluated using voltage predication error RMS, which shows that the results of

LS-GITT are more reliable in a wide range of State-Of-Charge (SOC).

In this chapter, we introduce Pb-Acid battery modeling and related model order

reduction methods, SOC and SOH estimation methods for a Pb-Acid battery, solid

phase diffusivity measurement for a Li-Ion cell. At the end of this chapter, an

overview of this dissertation is provided.

1.1 Pb-Acid Battery Modeling

Invented in 1859 by French physicist Gaston planté, lead-acid batteries are the

oldest secondary (rechargeable) battery type. The lead-acid battery can supply

very high surge current (> 100A), so it has a relatively high power density (about

220W/Kg at 80% of DOD, better than Ni-MH batteries) in spite of its low energy

density (about 166 Wh/Kg). Since created, it has been one of the most popular

batteries which maintains 40% - 45% of the battery market, primarily due to its low

cost. Most of the world’s lead-acid batteries are automobile starting, lighting and

ignition (SLI) batteries. Lead-Acid batteries are also the predominant chemistry

for stop-start microhybrids that have improved fuel efficiency and reduced carbon

and pollutant emission. Lead-Acid batteries provide low-cost energy storage with

good power density and safety. They also provide an economical and promising

choice for powering HEV due to its high round-up efficiency (75% - 80%). The

technology of lead-acid battery industry has been progressing and producing new

models. First appeared in 1970s, Valve-Regulated Lead-Acid batteries immobilize

electrolyte in gel and prevent acid from spilling, leaking and causing danger.

Figure 1.1 shows a schematic diagram of a lead acid cell, which is divided into

3 domains from left to right: the positive electrode, the separator, and the neg-

ative electrode. For Absorptive Glass Mat (AGM) VRLA batteries, positive and
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Figure 1.1. Schematic diagram of a lead-acid cell

negative electrodes are plates made of porous solid mixtures of reactants (posi-

tive electrode: lead sulfate (PbSO4) and lead dioxide (PbO2). negative electrode:

lead sulfate (PbSO4) and lead (Pb)) saturated in sulfuric acid (H2SO4). Separa-

tors made of dielectric material insulate postive and negative electrodes physically,

which prevent short circuit in solid phase while allowing free electrolyte flow and

ion diffusion to keep the electrolyte neutral.

The main electrochemical reactions in the positive electrode of a Pb-Acid bat-

tery [16] are

PbO2 +HSO−

4 + 3H+ + 2 e−
discharge−−−−−⇀↽−−−−−
charge

PbSO4 + 2H2O, (1.1)

and the negative electrode,

Pb + HSO−

4

discharge−−−−−⇀↽−−−−−
charge

PbSO4 +H+ + 2 e−. (1.2)

The reversibility of electrochemical reactions makes lead acid batteries recharge-
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Table 1.1. Comparison of discretization methods

Method Efficiency Complexity
Ritz Method (AM) High Medium

Integral Method Approximation (IMA) High Low
Finite Element Method (FEM) Medium Medium
Finite Difference Method (FDM) Low Low

Padé Approximation Method (PAM) High Medium

able. Lead sulfate and water are converted into lead, lead dioxide, and sulfuric acid

under charge, and the reactions go reversely under discharge.

Many Pb-Acid battery models have been proposed by researchers. First prin-

ciple battery models [16, 17, 18, 19, 20, 21] can accurately predict the battery

response to any input and provide physical outputs such as acid concentration and

electrical potential distributions in the solid and electrolyte phases. These mod-

els are usually boundary value problems consisting of coupled partial differential

equations that are difficult to solve. Equivalent circuit models [4, 22, 23, 24, 25]

are concise, computationally easy and can match experiment results well in many

cases. Electrochemical processes are approximated using circuits, and these equiv-

alent circuits with diverse complexity are designed for various purposes with dif-

ferent accuracy requirements. However, equivalent circuit models include no first

principles variable like acid concentration and potential distributions so the results

can be hard to interpret and understand.

Solutions to coupled partial differential equations in a first principles model are

continuous but they can be approximated by discrete points in the solution spaces,

so model order reduction can be achieved using discretization methods. Efficient

discretization methods are more desirable for battery model order reduction, which

means the same accuracy can be achieved with lower model orders.

A variety of discretization methods have been applied to batteries and similar

problems in heat conduction, including the Integral Method Approximation [7, 8,

9], Ritz method [7, 10], Finite Element Method (FEM) [11, 12], Finite Difference

Method [7, 13], and Padé Approximation Method (PAM) [14, 15]. These methods

are studied and summarized in [26] and their characteristics are shown in Tab. 1.1.

Among these methods, the Ritz method is found to be an excellent candidate

for VRLA battery modeling, because it is highly efficient and not so difficult for
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modeling. Moreover, by choosing Fourier series as its admissible basis functions,

most of the boundary conditions for a three-domain VRLA battery can be auto-

matically satisfied.

1.2 State-Of-Charge Estimation

State-Of-Charge (SOC) is defined as the percentage of the maximum charge that

remains in the battery [27], or

SOC (t) =
Cr (t)

C
= SOC (0) +

1

C

∫ t

0

I (τ) dτ, (1.3)

where I (t) is the current (> 0 for charge), the nominal capacity of the battery

C is the maximum ampere-hours that can be drawn from the fully charged cell

at room temperature and a C/30 rate, and the remaining capacity Cr (t) is the

ampere-hours that can be drawn from the battery starting from the current time

t, at room temperature and at a C/30 rate.

For battery packs used in EVs, SOC is similar to the remaining fuel percentage

for a vehicle powered by an internal combustion engine, which is a critical battery

usage variable that must be estimated by a BMS. SOC cannot be directly mea-

sured but several estimation methods have been developed [28, 29]. The Current

Counting Method [30] and Voltage Lookup Method, for example, are widely used.

The Current Counting Method is based on Eq. (1.3) and estimates the current

SOC by measuring and integrating the dynamic current input. However, one must

know the initial SOC and noise in the current sensor can accumulate error with

time and cause SOC drift. If the battery has been at rest for several hours then

SOC (0) can be determined from the Open Circuit Voltage (OCV). In dynamic

operation there may not be opportunities to correct SOC drift.

Alternatively, one can use the measured voltage in dynamic operation to es-

timate SOC. OCV has a empirically determined relationship with SOC and the

Voltage Lookup Method uses this empirical function on low-pass-filtered voltage

data. The Voltage Lookup Method fails to take into account the influence of the

input current on the output voltage of a battery, so it is inaccurate during dynamic

operation and high current charge/discharge.
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The specific gravity of the electrolyte in Pb-Acid batteries is directly related

to SOC and can be measured in flooded Lead-Acid cells [31]. In most modern

Pb-Acid cells (e.g., Valve Regulated Lead-Acid (VRLA)), the electrolyte is held in

Absorbent Glass Mat (AGM) or a gel preventing the use of this method.

The Kalman filter is one of the most widely used techniques for SOC estimation

and was used with equivalent circuit battery models by Plett [31, 32, 33]. Vasebi

et al. [4, 34] designed a VRLA SOC estimator based on an equivalent circuit

model using an Extended Kalman Filter. White et al. [35, 36, 37] developed

SOC estimators using Extended Kalman filtering and Unscented Kalman Filtering

based on a reduced-order physics-based Li-Ion battery model.

Experimental results show that the VRLA battery has different dynamics for

charge and discharge. A physics-based model using a Ritz discretization [38] in-

cludes this effect by having separate linear subsystems for charge and discharge.

The model switches between the 2 linear subsystems according to a switching law

that depends on the state, making it a switched linear system [39, 40]. State

estimation of switched linear systems can often be achieved with a switched Luen-

berger observer [41].

1.3 State-Of-Health Estimation

To fully utilize a battery pack requires a Battery Management System (BMS) that

estimates the the State-Of-Power (SOP) and the State-Of-Health (SOH) of all the

cells in the pack. SOH is usually defined as the battery capacity (Ah) divided by

the initial capacity [3], a measure of the maximum energy that can be stored in

the cell. SOP is inversely proportional to ohmic resistance. The cell impedance

as a whole rises with age, reducing the maximum power the cell can provide. The

degradation mechanisms that cause capacity fade and impedance rise in Lead-Acid

batteries include grid corrosion, water loss, sulfation, active material degradation,

and separator metalization [42, 43]. Capacity measurement, impedance measure-

ment, parameter estimation, and coup de fouet methods have been used for SOH

estimation. Capacity measurement requires slow, full discharge to 0% State-Of-

Charge (SOC) followed by a slow, full charge to 100% SOC. This is impractical

for most applications but may be used for plug-in or purely electric vehicles that
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see wide-ranging SOC during normal operation. Battery impedance measurement,

widely used in industry, employs dedicated hardware and/or software to directly

measure either DC or AC resistance of the battery [44, 45]. Battery impedance

increases as the battery ages and the measured impedance can be correlated to

SOH. The cost and invasiveness of impedance measurement prevent its use in

most applications. Coup de fouet [46, 47] is observed in Lead-Acid batteries that

have been fully charged, rested and then pulse discharged. During the first dis-

charge pulse, the voltage dips, increases, levels off at a plateau voltage and then

decreases steadily. The voltage dip or undershoot has been shown empirically to

be proportional to the capacity (SOH) of the battery [48, 49]. The electrochemical

mechanism behind coup de fouet is still not understood [46] and the requirement

of full charge followed by rest limits its utility. Parameter estimation methods

are promising in dynamic applications such as Hybrid Electric Vehicles (HEVs)

because SOH can be estimated from the available current and voltage measure-

ments at reasonable sampling rates (e.g. 1 Hz). The parameter estimates are for a

specific simplified model of the cell electrochemistry, so the estimated parameters

are explicitly related to the geometric, material, and electrochemical parameters

of the underlying model. Thus, changes in the parameter estimates can be explic-

itly correlated to specific degradation mechanisms and emperically correlated to

SOH. A variety of parameter estimation methods, including Subpace Identification

[50, 51], Kalman Filtering [33, 52], Fuzzy Logic [53], and Least Squares [54], have

been applied to Lithium-Ion [36, 54], Ni-MH [33], and Lead-Acid [50, 52] batter-

ies. The Least Squares Method (LSM) [55] is used in the present work because

of its simplicity, computational efficiency, and guaranteed convergence. LSM is

for a linear, time-invariant model and the parameter estimates are the numerator

and denominator polynomial coefficients of the impedance transfer function that

optimally fit the time-domain current and voltage data. In [54], this method is

used to estimate the coefficients of a reduced order Lithium Ion battery model [56]

and track the evolution of multiple parameters, including the capacity, diffusion

time constant, and impedance.
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1.4 Solid Phase Diffusivity Measurement for Li-

Ion Cells

Lithium-Ion batteries are excellent energy storage devices for many applications,

such as renewable energy consumer electronics, Hybrid Electric Vehicles (HEVs),

and Electric Vehicles (EVs), due to their high energy and power density. In dy-

namic operations, the kinetic behavior of electrode materials dictates the cell re-

sponse and performance. For most Lithium-Ion chemistries and cell designs, solid

phase diffusivity (Ds) dominates the electrochemical kinetics because Li+ inter-

calation is the slowest process during charge/dishcarge of the cell. To accurately

model the response of a Lithium-Ion cell, Ds must be accurately measured. Solid

phase diffusivity is one of the first parameters to be measured in a new cell de-

sign because it directly influences the cell power performance. Diffusivity also

varies with temperature, State of Charge (SOC), and electrolyte concentration

[57]. Thus, the development of fast, reliable, and accurate Ds measurement has

been a focus of researchers for many years. Many Ds measurement methods, such

as Potentiostatic Intermittent Titration Technique (PITT) [58, 59, 60], Galvano-

static Intermittent Titration Technique (GITT) [57, 61, 62, 63], Electrochemical

Impedance Spectroscopy (EIS) [64, 65], and Cyclic Voltammetry (CV) [66, 67],

have been used by previous investigators. GITT, because of its solid theoretical

foundation and convenient implementation, is widely used and the results are well

accepted. GITT uses time-domain voltage data resulting from a prescribed, low

C-rate, long rest time current discharge pulse train. Solid phase diffusivities are

calculated from the voltage response transients and a plot of Ds versus SOC is

generated. The GITT Ds measurement is based on a simplified analytical solu-

tion to the fundamental electrochemical equations, providing a firm theoretical

foundation [61]. GITT assumes diffusion occurs in a thin layer on the surface of

the solid phase material. This assumption requires a short time duration τ of the

discharge pulses (τ≪L2
s/Ds), where Ls is the characteristic dimension of the solid

phase material. The low C-rate coupled with the short pulse time and long rest

period mean that an accurate GITT test may take hours to even days to produce

an entire Ds versus SOC curve. The final problem with the traditional GITT test

is that the accuracy of Ds measurement is unknown. Orders of magnitude differ-
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ences in Ds measurement for the same chemistry can be found in the literature

[68]. Are the Ds measurement variations with SOC, for example, real on simply

artifacts of the GITT test? Certainly, one can perform an uncertainty analysis

using the GITT equations but the accuracy of the underlying model that produces

the GITT equations has never been quantified.
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Figure 1.2. GITT data for a NCM coin cell: (a) Voltage, (b) Current, (c) Zoomed-in
voltage corresponding to box in (a) (dashed lines delineate start and end of discharge
pulse)

Figure 1.2 shows an example GITT test for a coin cell with a Nickel Cobalt

Manganese (NCM) [57] positive electrode and a metal Lithium negative electrode.

Prior to the test, the cell is fully charged and rested for 1 hr. The GITT current

input consists of 40 discharge pulses at 0.1C (I0 = 0.00012 A). Each pulse lasts 15

minutes followed by 30 minutes of rest. After each pulse, the SOC has decreased by

2.5%, so the battery is completely discharged (SOC = 0%) at the end of the test.

Applying the GITT measurement methodology to each pulse produces 40 points on

the SOC curve. The negative electrode material of the coin cell produces negligible

overpotential so the GITT test measures the diffusivity of Li+ in the NCM cathode.

Figure 1.2 (c) shows the zoomed-in voltage data of one discharge pulse at

92.5% SOC. The cell voltage quickly decreases from V0 to V1 due to the total

resistance RT (ohmic and charge transfer resistances), slowly decreases to V2 due
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to the transport of Li+ in the solid phase, and then when the current is removed,

the voltage increases as the Li+ concentration evenly distributes throughout the

solid phase to produce the steady-state, post-discharge voltage V3. The voltage

drops (∆Vs = V0 − V3 and ∆Vt = V1 − V2 ) are calculated from the four voltage

measurements V0, ..., V3. The GITT Ds measurement is calculated from only four,

often hand-picked, data points from what could be hundreds if not thousands of

data points in the voltage response, depending on the sample rate. V1, inparticular,

is very sensitive to the sample rate and high frequency, unmodeled dynamics.

The diffusivity is calculated from

Ds =
4

πτ

(
nMVM

S

)2(
∆Vs

∆Vt

)2

, (1.4)

where nM and VM are the molar mass (mol) and volume (cm3/mol) of the active

material, respectively, S is the cell interfacial area, and τ is the time duration

of the pulse. For the NCM cathode, we assume that the solid phase consists of

spherical particles with radius Rs, so Eq. (1.4) becomes:

Ds =
4

πτ

(
Rs

3

)2(
∆Vs

∆Vt

)2

. (1.5)

Eq. (1.5) points out one final limitation of the GITT diffusivity measurement.

Phase change materials such as lithium iron phosphate, lithium titanium oxide,

and even graphite (present in almost all Lithium-Ion cells) have ∆Vs ≈ 0 due to

flat Open Circuit Voltage (OCV) versus SOC curves. Eq. (1.5) predicts Ds ≈ 0 for

these materials which is clearly not the case. The GITT is easy to implement and

univerally accepted as the standard for diffusivity measurement. The accuracy

of Ds measurement, however, has not been reported, because there is no direct

measurement method of Ds. Various methods produce different estimation results

and it is not clear which method is the most accurate. This uncertainty is not

desirable for such a critical parameter to cell performance. [62]. We propose that

one way to quantify the error associated with GITTDs measurement is to calculate

the error between the experimental voltage data and the simulated model response.

The error

eGITT = VGITT − V
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and the RMS value

RMSGITT =
√∑

e2GITT (1.6)

gives an overall metric for the accuracy of the model and Ds measurement.

The differential equation associated with the GITT model and diffusivity Eq.

(1.5) is
dV

d
√
t
=

2VMI0

SFz
√
Dsπ

dV

dγ
, (1.7)

where S is the total specific area, F is Faraday’s constant, z is the charge number

of the transport species, VM is the molar volume of the sample, and I0 is the input

current. In Eq. (1.6), t = 0 at the beginning of the discharge pulse. I0 and τ are

small so the slope of the OCV curve dV
dγ

is considered to be constant and replaced

by ∆Vs

∆γ
, where

∆γ =
I0τMB

zmBF
(1.8)

and MB, and mB, are the atomic and total weight of the active material, respec-

tively.

Substitution of Eqs. (1.4) and (1.8) into Eq. (1.7) produces

dV

d
√
t
=

∆Vt√
τ
.

Hence, voltage response V (t) in t ∈ [0, τ ] is

V (t) = V1 +
V2 − V1√

τ

√
t. (1.9)

Thus, RMSGITT can be calculated from the experimental voltage data and the

four mannually selected voltages V0, ..., V3 using Eq. (1.9).

The problems and limitations of GITT diffusivity measurement motivate new

methods that can optimally measure Ds using all of current and voltage data. The

Least Squares Method (LSM) is a simple parameter estimation method for linear,

time-invariant models. LSM measures the numerator and denominator polynomial

coefficients of the impedance transfer function that optimally fit the current and

voltage data [3, 51]. In [54], this method is successfully used to track the evolution

of State-Of-Health (SOH)-related parameters, including diffusion time constant,
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capacity, and ohmic resistance, through a Lithium-Ion battery’s cycle life.

1.5 Overview of Present Work

In this research, Chapter 2 addresses the modeling of a VRLA battery. The Ritz

method has been shown to be numerically efficient and accurate in comparison with

the other techniques[26] and is therefore used to a battery model. The battery

is modeled as a switched linear system[39, 40] by using different submodels for

charge and discharge and determining a rule for switching between submodels.

The model is then simulated and validated with experimental voltage data. After

that, the low-order Ritz model is further simplified to produce a dynamic averaged

model which can be realized as an equivalent circuit, providing electrochemical

understanding of the equivalent circuit model in [22].

Chapter 3 provides a solution to the SOC estimation of VRLA batteries. Linear

and switched linear models are developed for VRLA batteries and their voltage

responses are compared with experimental results. Based on these switched linear

models, we design SOC estimators by solving a convex optimization problem based

on Linear Matrix Inequalities (LMIs)[69]. This produces an switched Luenberger

observer which is exponentially stable. Luenberger observers are also designed

from the linear models to estimate SOC. The SOC estimation prediction accuracies

are compared with SOC data from experiments and the Current Integration and

Voltage Lookup methods.

Chapter 4 applies the Least Squares Method (LSM) to estimate the parameters

and SOH of a Valve Regulated Lead-Acid (VRLA) battery from experimental

voltage and current data. The VRLA battery model is second order with four

polynomial coefficients to be estimated. The reliability of the parameter estimates

are evaluated with model voltage prediction error RMS.

Chapter 5 develops a Least Squares Galvanostatic Intermittent Titration Tech-

nique (LS-GITT) that uses all of the voltage data from a GITT test to optimally

tune the diffusivity in a reduced order solid phase diffusion model. The accuracy

of GITT and LS-GITT are calculated and compared for the NCM coin cell data

in Fig. 1.2.

Finally, Chapter 6 summarizes the conclusions and contributions of this re-
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search and presents some of the promising research directions in the future based

on the current work.



Chapter 2

Control-Oriented Lead-Acid Battery

Modeling

The first principles model [16] can accurately predict the responses of a VRLA

battery to any given dynamic current input. In this chapter, we linearize and

reduce this model from 3-D to 1-D in space. Model equations obtained in this

chapter serve as a basis for this research and are used for SOC estimation in

Chapter 3.

2.1 Linearized Electrochemical Model

The first principles model upon which this work is based [16] comprises partial dif-

ferential equations describing electrochemical reactions, heat transfer, fluid flows,

convection and diffusion. These equations are coupled and nonlinear so several

assumptions are introduced to simplify the model: (i) the variables are considered

to be evenly distributed or equal within cross-sections parallel to the current col-

lectors; (ii) the parameters can take on different values in the positive electrode,

separator, and negative electrode but are assumed to be constant within each of

these domains; (iii) solid phase potential φs is considered to be equal everywhere

in each electrode due to the high conductivity of solid phase material; and (iv)

gassing and other side reactions are neglected.

As shown in Fig. 1.1, each cell is divided into 3 domains: the positive electrode

with x ∈ (0, L), the separator with x ∈ (L1, L2) and the negative electrode with
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Table 2.1. Fixed system parameters

Parameter Description Value
A Cell cross-section area, cm2 251.61
L1 Coordinate of the boundary between positive electrode and separator, cm 0.159
L2 Coordinate of the boundary between negative electrode and separator, cm 0.318
L Thickness of a cell, cm 0.477
cref Reference H+concentration, mol/cm3 4.9× 10−3

c̄ Average concentration of H+ at 56% SOC, mol/cm3 3.2548× 10−3

R Universal gas constant, J ·mol−1 ·K−1 8.3143
F Faraday’s constant, C/mol 96485
t+ Transference number of H+ 0.72
Rf average contact resistance per cell, Ω 0.0352
UPbO2

Setpoint open circuit potential at 56% SOC,, V 1.8813

ŨPbO2
Setpoint OCV slope at 56% SOC, V ·mol−1cm3 50.7

Cdl Specific capacitance for double layer effect, F/cm2 5.0× 10−4

x ∈ (L2, L).

Electrolyte diffusion [16] is given by

ε
∂c

∂t
= Deff ∂

2c

∂x2
+

a2
2F

aj (2.1)

where a2 = 3 − 2t+ in the positive electrode and a2 = 1 − 2t+ in the negative

electrode, c (x, t) is the acid concentration, and j (x, t) denotes transfer current

density. Note that specific area a changes with a = ac for charge reactions and

a = ad for discharge reactions. All the model parameters are defined in Tabs. 2.1

and 2.2. The parameters A, L1, L2, and L are from the battery specifications. The

parameters cref , t+, UPbO2
, ŨPbO2

, ε, a2, γ, i0, αa, and αc are empirical values from

literature [16, 18]. The parameters R, F , Deff , κeff , and κeff
d are theoretical values

taken from electrochemistry and physics sources [18, 1]. All of the parameters

are for 25◦C. The parameters c̄, Rf , Cdl, ac, ad, and adl are tuned to fit the

experimental results.

Charge conservation in the electrolyte [16] is governed by

κeff ∂
2φe

∂x2
+ κeff

d

∂2c

∂x2
+ aj + idl = 0 (2.2)

where φe (x, t) is the electrolyte potential and double layer current density idl =

adlCdl
∂(φs−φe)

∂t
. Solid-phase potential φs (x, t) is uniform in each electrode due to

assumption (iii), so φs (x, t) = φsp (t) in the positive electrode and φs (x, t) =
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φsm (t) in the negative electrode.

The Butler-Volmer Equation [70] is linearized to

j =
Ra

a
η, (2.3)

where Ra = a · i0
(

c̄
cref

)γ
(αa+αc)F

RT
with c̄ the average acid concentration in the cell

and overpotential

η =





φsp − φe − UPbO2

′ +′ electrode

0 separator

φsm − φe
′ −′ electrode

. (2.4)

The linearized Butler-Volmer relation in Eq. (2.3) results in negligibly small error

for the small overpotential η associated with small input current. Open Circuit

Voltage (OCV) UPbO2
is an empirically determined nonlinear function of acid con-

centration c given by

OCV =1.9228 + 0.0641 ln(Rm) + 0.0120 ln2(Rm)

+ 0.0060 ln3(Rm) + 0.0012 ln4(Rm),
(2.5)

where Rm = 1.00322c+ 0.0355c2 + 0.0022c3 + 0.0002c4. Linearization of Eq. (2.5)

at average acid concentration c yields the approximation

UPbO2
= UPbO2

+ ŨPbO2
c, (2.6)

where constant coefficients ŨPbO2
=

∂UPbO2

∂c
|c=c and UPbO2

= UPbO2
(c) − ŨPbO2

c̄

with their values being presented in Tab. 2.1.

Assumption (iv) implies that input current equals the sum of main reaction

current and double layer current in each electrode. In the positive electrode,

∫ L1

0

A

[
Ra (φsp − φe − UPbO2

) + adlCdl
∂ (φsp − φe)

∂t

]
dx = I (t) . (2.7)
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In the negative electrode,

∫ L3

L2

A

[
Ra (φsm − φe) + adlCdl

∂ (φsm − φe)

∂t

]
dx = −I (t) (2.8)

In Eqs. (2.7) and (2.8), the first terms in the integrals denote main reaction

current density and the second terms denote double layer current density.

In addition to these differential equations, the battery model includes current

collector and electrode-separator interface boundary conditions. At the current

collectors (x = 0 and x = L) [18],

∂φe

∂x
= 0,

∂c

∂x
= 0. (2.9)

At the electrode-separator interfaces (x = L1 and x = L2) [17],

(
κeff ∂φe

∂x
+ κeff

d

∂c

∂x

)∣∣∣∣
+

=

(
κeff ∂φe

∂x
+ κeff

d

∂c

∂x

)∣∣∣∣
−

,

Deff ∂c

∂x

∣∣∣∣
+

= Deff ∂c

∂x

∣∣∣∣
−

.

(2.10)

2.2 Discretization using Ritz Method

The Ritz method generates an approximate solution to boundary value problems

by using a finite set of admissible continuous functions as a basis for the L2 space.

Many basis function choices are available, such as Fourier series, Legendre poly-

nomials, and power series. In this dissertation, Fourier series expansions are used

because they satisfy the boundary conditions at the current collectors in Eq. (2.9)

and can approach the exact solution with a small number of terms.

The acid concentration distribution c is approximated by a N-th order Fourier

series c(x, t) =
N−1∑
m=0

Ψm (x) cm (t), where the admissible function Ψm (x) = cos
(
mπ
L
x
)
.

Electrolyte potential is approximated by a N-1st order Fourier series φe (x, t) =
N−1∑
m=1

Ψm (x)φm (t). The electrolyte potential expansion has no constant term be-

cause the average electrolyte potential across the cell is assumed to be zero. This

choice of ground lowers the model order without influencing the output voltage.

Eqs. (2.3) and (2.4) are plugged into Eq. (2.2) to yield the electrolyte potential
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equations for the three domains





κeff ∂2φe

∂x2 + κeff
d

∂2c
∂x2 +Ra (φsp − φe − UPbO2

)

+adlC
(
φ̇sp − φ̇e

)
= 0 for 0 < x < L1,

κeff ∂2φe

∂x2 + κeff
d

∂2c
∂x2 = 0 for L1 < x < L2,

κeff ∂2φe

∂x2 + κeff
d

∂2c
∂x2 +Ra (φsm − φe)

+adlC
(
φ̇sm − φ̇e

)
= 0 for L2 < x < L.

(2.11)

The Ritz functions are substituted into Eq. (2.11), multiplied by Ψn (x), and

integrated across the cell to produce

−
∫ L

0

κeffΨ′

n(x)

(
N−1∑

m=1

Ψ′

m(x)φm(t)

)
dx

−
∫ L

0

κeff
d Ψ′

n(x)

(
N−1∑

m=1

Ψ′

m(x)cm(t)

)
dx

+

∫ L1

0

RaΨn(x)

(
φsp −

N−1∑

m=1

Ψm(x)φm(t)

−UPbO2
− ŨPbO2

N−1∑

m=0

Ψm(x)cm(t)

)
dx

+

∫ L1

0

adlCdlΨn(x)

(
φ̇sp −

N−1∑

m=1

Ψm(x)φ̇m(t)

)
dx

+

∫ L

L2

RaΨn(x)

(
φsm −

N−1∑

m=1

Ψm(x)φm(t)

)
dx

+

∫ L

L2

adlCdlΨn(x)

(
φ̇sm −

N−1∑

m=1

Ψm(x)φ̇m(t)

)
dx = 0,

(2.12)

where integration by parts and the boundary conditions have been used. Eq. (2.12)
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is converted into matrix form

MeΦ̇e +MesΦ̇s = Kecc+KeΦe +KesΦs +Beu, (2.13)

where u =

[
I

UPbO2

]
, Φs =

[
φ̇sp(t)

φ̇sm(t)

]
, Φe =




φ̇1(t)
...

φ̇N−1(t)


, and c =




c0(t)
...

cN−1(t)


.

The model matrices, including those in Eq. (2.13), are provided in Appendix

A.

Similarly, substitution of the Fourier series expansions into Eqs. (2.7) and (2.8),

premultiplication by Ψn(x), and integration produces

MsΦ̇s +MseΦ̇e = Kscc+KseΦe +KsΦs +Bsu. (2.14)

Finally, Eq. (2.1) produces the discretized electrolyte diffusion equation

Mcċ = Kcc+KceΦe +KcsΦs +Bcu. (2.15)

Combining Eqs. (2.13), (2.14) and (2.15) in a state space model,

M1ẋ = M2x+M3u, (2.16)

where M1 =




Mc 0 0

0 Me Mes

0 Mse Ms


, M2 =




Kc Kce Kcs

Kec Ke Kes

Ksc Kse Ks


, x =




c

Φe

Φs


, and

M3 =




Bc

Be

Bs


. If M1 is invertible, which is generally true in practice at low

model orders (N < 20), by premultiplying M1
−1, the standard state space model

is obtained as

ẋ = Assx+Bssu. (2.17)

With contact resistance Rf , the cell voltage output

y = V (t) = φsp − φsm +RfI (t) = Cssx+Dssu, (2.18)
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where Css = [0 0 · · · 0 1 − 1] and Dss = [Rf 0] . Eqs. (2.17) and (2.18) form

a linear state space system if the parameters are constant. For dynamic current

inputs involving switching between charge and discharge modes, the specific area

changes so a switching law σ (t) must be established to orchestrate this mode

switching. This switched linear system is given by




ẋ = Aσ(t)x+Bσ(t)u

V (t) = Cσ(t)x+Dσ(t)u,
(2.19)

Switching is spatially distributed throughout the electrodes and depends on the

local overpotential. In this model, the switching law σ (t) depends on the difference

between the voltage V (t) and UPbO2
+ RfI (t). V > UPbO2

+ RfI triggers charge

mode with discharge mode otherwise. In essence, σ uses average overpotential in

both electrodes to switch.

One of the main advantages of Ritz method is its fast convergence. This means

that the Ritz approximation is able to quickly approach the exact solution as

approximation order N increases. Figure 2.1 shows the L2 error for a step input

relative to a 15th order Ritz approximation. By N = 10, the error is reduced to

within 0.0015% of the N = 15 value.

2.3 Model Simulation and Validation

Figure 2.2 illustrates the model-predicted and experimental voltage responses to

a pulse train current input for a 100 Ah VRLA-AGM battery with 6 cells in

series and 8 cells in parallel. The experimental setup is described in [71]. Before

the experiment, the Pb-Acid battery has been at rest for a long period of time.

Therefore, the initial acid concentration can be considered to be evenly distributed

across the cell, and calculated from Eq. (2.6) using the initially measured UPbO2
.

The initial conditions are set to be c0 (0) = c̄ and φsp (0) = UPbO2
with all other

states equal to zero.

As shown in Fig. 2.2(b), the pulse train current profile consists of alternating

6.5A (0.065 C) 240s charge/discharge pulses with a 240s rest period between them.

The pulse train simulates a battery-powered locomotive assembling trains in a
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Figure 2.1. Convergence of Ritz approximation

switchyard. The battery voltage increases/decreases with charge/discharge pulses.

Figure 2.2(a) demonstrates that the switched linear model (model order N = 8)

can predict the battery output much better than charge/discharge linear models

with the same order N . The charge/discharge model fails to match experimental

voltage data outside of the charge/discharge periods. Hence, model switching

must be taken into account when input current changes direction. Remarkably,

even the simplest switched linear Ritz model (N = 1) shows decent agreement

with the experimental voltage data, showing the fast convergence of Ritz method.

Figure 2.3 shows the spatial distributions in response to the current input in Fig.

2.2(b) with N = 8. These distributions start at t = 200s with the battery at rest

and continue every 100s until t = 500s at the end of the first charge pulse. Figure

2.3(a) shows that the acid concentration climbs during charge period. Figure 2.3(b)

reveals that electrolyte potential maintains a fairly constant distribution when the

input current is constant. Figure 2.3(c) illustrates the constant distribution of

solid-phase potential in each electrode.



23

0 200 400 600 800 1000 1200 1400 1600 1800 2000
11.8

12

12.2

12.4

12.6

12.8

V
(t

) 
(V

)

t (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−10

−5

0

5

10

I(
t)

 (
A

)

t (s)

(a)

(b)

❋✐❣✉r❡ ✶✿

✶

Figure 2.2. Experimental and simulated time response to a pulse charge/discharge cur-
rent input: (a) Voltage output for the switched linear models with N=8 (blue-solid) and
N=1 (green-dashed), charge model (red-dash-dotted), discharge model (yellow-dotted)
and experiment (black-solid), (b) Input current.

2.4 Dynamic Averaged Model and Equivalent Cir-

cuit

For N = 1, the Ritz model has only three state variables: average concentration

c̄ (t), solid phase potentials φsp (t) and φsm (t) that are averaged in electrodes.

Despite the absence of diffusion and electrolyte potential distribution, Fig. 2.2(a)

shows that this low-order model maintains close with the measured voltage because

critical dynamics such as the double layer effect and the Butler-Volmer equation

are included. Based on these simplifications, the dynamic averaged model in state

variable form is 


ẋ = Adamx+Bdamu

V = Cdamx+Ddamu
, (2.20)
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Figure 2.3. Spatial distributions in response to current input from Fig. 2.2(b) at t=200s
(blue-solid), 300s (green-dashed), 400s (yellow-dash-dotted) and 500s (red-dotted): (a)
Acid concentration c (x, t), (b) Electrolyte potential φe (x, t), and (c) Solid-phase poten-
tial φs (x, t).

whereAdam =




0 0 0

ŨPbO2
λ2 −λ2 0

0 0 −λ4


, Bdam =




λ1 0

λ3 λ2

−λ5 0


,Cdam =

[
0 1 −1

]

and Ddam =
[
Rf 0

]
, with λ1 = L

FAL[ε1L1+ε2(L2−L1)+ε3(L−L2)]
, λ2 = Ra1

adl1Cdl1
,

λ3 = 1
adl1Cdl1AL1

, λ4 = Ra3

adl3Cdl3
, and λ5 = 1

adl3Cdl3A(L−L2)
. The state and input

vectors x =




c

φe

φs


 and u =

[
I

UPbO2

]
, respectively. Subscripts ’1’, ’2’, and ’3’

represent the positive electrode, separator, and negative electrode, respectively.

This model can be realized with the equivalent circuit shown in Fig. 2.4. This

equivalent circuit comprises a voltage source, three capacitors, five resistors and 4

diodes. Their values are linked to combinations of electrochemical parameters as
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listed in Tab. 2.3. The charge transfer resistances Ra1 and Ra3 depend on specific

area a with the relationship given in Eq. (2.3), which differs between charge and

discharge. The diodes and resistors Rpd, Rpc, Rmd, and Rmc account for this ef-

fect. The bulk capacitance is related to the battery capacity. Therefore, the gap

between the equivalent circuit model and the first principles model is bridged by

this low-order Ritz model.

( )I t

( )V t

R

( )V t+ ‐

fR

spφ smφ
+ ‐ ‐+

positive electrode negative electrode

spφ smφ
+ +

η p+ ‐ + ‐ηm

R R

bulkC
2PbOU

pdR mdR

pcR mcR

pC mC

Figure 2.4. Equivalent Circuit model
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Table 2.3. Equivalent circuit components

Circuit Component Value
Rpc

1
AL1Ra1c

Rpd
1

AL1Ra1d

Cp AL1adl1Cdl1

Cbulk
FAL[ε1L1+ε2(L2−L1)+ε3(L−L2)]

ŨPbO2
L

Rmc
1

A(L−L2)Ra3c

Rmd
1

A(L−L2)Ra3d

Cm A (L− L2) adl3Cdl3



Chapter 3

State-Of-Charge Estimation

In this chapter, two switched linear models are adapted from the Ritz model in

Chapter 2 and used to estimate SOC. For comparison, the switching of model

parameters is ignored to develop the other three linear models. Based on these

models, switched observers and Luenberger observers are designed with guranteed

exponential stability using pole placement and a LMI-based convex optimization

design technique. SOC estimation accuracy of these model-based methods are com-

pared with SOC data from experiments and the Current Integration and Voltage

Lookup methods.

3.1 Models and Switching Law Design for SOC

Estimation

In the Ritz model given by Eq. (2.19), the input u =

[
I (t)

ŪPbO2

]
, state vector

x =




c (t)

φe (t)

φs (t)


, and V (t) is the voltage output. The state vector elements c,

φe, and φs are the Fourier series coefficients of the distributions c (x, t), φe (x, t)

and φs (x, t). The average acid concentration c̄, from which SOC can be calcu-

lated, is the first entry of x and c. The specific area changes from charge to

discharge, causing the matrices Aσ(t) and Bσ(t) to change. If the switching law
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Table 3.1. Lead-Acid battery models

Model Description
1

∑
(A1,B1,C1,D1) : Linear state space model based on charge parameters.

2
∑

(A2,B2,C2,D2): Linear state space model based on discharge parameters.
3

∑
σsign

(Aritz,Britz,Critz,Dritz)M : Switched linear model with switching law σsign.

4
∑
σlp

(Aritz,Britz,Critz,Dritz)M : Switched linear model with switching law σlp.

5
∑

(Aavg,Bavg, Cavg,Davg): Averaged model.

depends only on the input or time then the system is a switched linear system

symbolized as
∑
σ

(Aritz,Britz,Critz,Dritz)M , where σ (t) is the switching law and

M = 2 is the number of subsystems. The charge and discharge subsystems of
∑
σ

(Aritz,Britz,Critz,Dritz)M are
∑

(A1,B1,C1,D1) and
∑

(A2,B2,C2,D2) , re-

spectively.

In this chapter, we use fifth-order Ritz model (N = 2) summarized in Tab.

3.2. The switched linear model in Eq. (2.19) approximates the more complex and

nonlinear switching that is distributed throughout the electrodes and depends on

the local overpotential. In this chapter, the switching law σ is approximated as

a function solely of input current I (t). Two switching laws are investigated that

approximate the delay between current and overpotential switching.

The first switching law σsign is

i =




1 I (t) ≥ ǫs

2 I (t) ≤ −ǫs
, (3.1)

where the deadband ǫs is adjusted to more closely match the full model. Inside

the deadband (−ǫs < I < ǫs), the model maintains the charge or discharge mode

with which it entered. The second switching law σlp includes a first-order low-pass

filter with a time constant τ that can be tuned to match the full model,

If (s)

I (s)
=

1

τs+ 1
.
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The switching law σlp depends on the filter output,

i =




1 If (t) ≥ 0

2 If (t) < 0
. (3.2)

The simplest battery model assumes that the output voltage solely depends on

averaged acid concentration





˙̄c = Aavg c̄+Bavgu

V (t) = Cavg c̄+Davgu,
(3.3)

where Aavg = 0, Bavg =
[

3
FAL(ε1+ε2+ε3)

0
]
, Cavg = ŨPbO2

, andDavg =
[
0 1

]
.

Tables 2.1 and 2.2 list all of the parameters used in the five models summarized

in Tab. 3.1. All of the models include average concentration c̄ (t) in their state

vectors. SOC is linearly related to c̄ by

SOC = (240.1579c̄− 0.2254)× 100% (3.4)

for 10% < SOC < 90% at 25◦C [38]. Thus, all of the models can predict SOC.

3.2 Experimental Results

Figure 3.1 shows the model-predicted and experimental voltage responses to a

pulse current input for a 100 Ah 12V AGM VRLA battery. The current input

(Fig.3.1(c)) consists of two, 240s, 6.5A (0.065C) charge/discharge pulses with 240s

rest periods in between. An AE Techron LVC 5050 linear amplifier controlled by

dSPACE produces the current input. Note that the experiments are performed at

25◦C. The experimental voltage response (black-solid curve in Fig.3.1(a) and (b))

starts at 12.3V (55.6% SOC) after a long rest period and increases/decreases with

charge/discharge pulses. The switched linear models in Fig.3.1(a) clearly outper-

form the other models shown in Fig.3.1(b). The switched linear model-predicted

voltage closely matches the experiment results. The linear models match the cor-

responding charge or discharge curves but not both, well-motivating a switched
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Figure 3.1. Battery voltage response: (a) Models 3 (blue-dash-dotted) and 4 (red-
dashed) and experiment (black-solid), (b) Models 1 (blue-dashed), 2 (red-dash-dotted),
and 5 (green-dotted), and experiment (black-solid), (c) Current applied to the battery.

linear approach. The averaged model does a poor job of tracking voltage swings.

3.2.1 State Observer Design

The accuracy of the switched linear models motivates the development of a switched

Luenberger SOC estimator. A schematic diagram of a switched Luenberger ob-

server [41] is shown in Fig. 3.2, where the battery model defined by Eq.(2.19) is

used and σ (t) can be either the deadband (Model 3) or low-pass filter (Model 4)

switching laws. The switched Luenberger observer is





˙̂x = Aσ(t)x̂+Bσ(t)u+ Lσ(t)

(
V̂ (t)− V (t)

)

V̂ (t) = Cσ(t)x̂+Dσ(t)u,
(3.5)
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Figure 3.2. Switched Luenberger observer diagram

where the gain matrix Lσ(t) is designed to ensure that x̂ (t) → x (t) as t → ∞.

From Eqs. (2.19) and (3.5), the error e = x̂− x has switched linear dynamics

ė =
(
Aσ(t) − Lσ(t)Cσ(t)

)
e. (3.6)

If there exists a Common Quadratic Lyapunov Function (CQLF) eTPe for all

of the error dynamics subsystems given in Eq. (3.6), then the error dynamics is

asymptotically stable. A CQLF exists if and only if there exists a P > 0, such

that for every subsystem i ∈ M = {1, 2},

(Ai − LiCi)
T
P+P (Ai − LiCi) < 0. (3.7)

For the third-order Ritz model (N = 1) given by Eq. (2.20), Appendix B

shows a direct Switched Luenberger Observer design method that guarantees the

existence of solutions P, L1, and L2 to Eq. (3.7) and a CQLF. For higher order

Ritz models, there is no strict proof of the existence of CQLF, however, there are

infinitely many selections of P and gains L1 and L2 that solve Eq. (3.7) in most
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Figure 3.3. SOC estimation results: (a) Estimated SOC based on switched linear
models 3 (blue-dash-dotted) and 4 (pink-dashed) and experimentally calculated SOC
(black-solid), (b) Estimated SOC based on linear models 1 (cyan-dashed), 2 (yellow-dash-
dotted), and 5 (green-dotted), Voltage Lookup Method (red-solid), and experimental
data (black-solid), (c) Estimated voltage based on switched linear models 3 (blue-dash-
dotted) and 4 (pink-dashed) and measured voltage (black-solid), (d) Estimated voltage
based on linear models 1 (cyan-dashed), 2 (yellow-dash-dotted), and 5 (green-dotted)
and measured voltage (black-solid).

cases. By minimizing a cost function, an appropriate choice of P and gains L1

and L2 can be obtained. Previous researchers have proposed many optimization

methods to stabilize a switched linear system [72, 73]. However, the cost functions

in these methods often lead to a fast error convergence. For the sluggish dynamics

in the VRLA battery, such methods tend to produce very high gains L1 and L2,

making the designed observer vulnerable to noise and causing numerical issues.

To tackle this problem, we can add a weighting matrix R to penalize the gain Li.

Inspired by a LMI-based LQR control problem in [74], we construct the following
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optimization problem to design a stable estimator:

min
(Li,P)

{
tr (QP) + max

i∈M

{
tr
(
LiRLT

i P
)}}

subject to P > 0, ∀ i ∈ M = {1, 2} , (3.8)

(Ai − LiCi)
T
P+P (Ai − LiCi) < 0.

Let Li = P−1MT
i . The quadratic term

max
i∈M

{
tr
(
LiRLT

i P
)}

= max
i∈M

{
tr
(
R1/2LT

i PLi

(
R1/2

)T)}

= max
i∈M

{
tr
(
R1/2MiP

−1MT
i

(
R1/2

)T)}
.

(3.9)

Then we can redesign a similar optimization problem as

min
(Mi

,P,X̂)

tr (QP) + tr
(
X̂
)

subject to X̂ > R1/2MiP
−1MT

i

(
R1/2

)T
, ∀ i ∈ M (3.10)

AT
i P+PAi −CT

i Mi −MT
i Ci < 0, P > 0.

By Schur Complement [75], Eq. (3.10) is converted into the LMI-based opti-

mization problem as follows:

min
(Mi,P,X̂)

tr
(
QP+ X̂

)
,

subject to

[
X̂ R1/2Mi

MT
i R

1/2T P

]
> 0, ∀ i ∈ M, (3.11)

AT
i P+PAi −CT

i Mi −MT
i Ci < 0, P > 0,

where Mi ∈ R
p×n, Y ∈ R

n×n, and X̂ ∈ R
p×p are matrix variables with n being the

number of state variables and p the number of outputs in Eq. (2.19). Eq. (3.11)

searches for the ’optimal’ selection out of all the possible combinations of gains Li

and P > 0 such that a CQLF exists. The solution is feasible as long as the CQLF

existence criterion in Eq. (3.7) is met. This approach yields observer feedback gain

Li = P−1MT
i for subsystem i and CQLF eTPe exists for all of the error dynamics
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subsystems given in Eq. (3.6), ensuring exponential stability of the observer. A

short proof of the exponential stability is provided as follows:

The CQLF V = eTPe > 0, ∀ e 6= 0, is radially unbounded and decresent. Let

Si = (Ai − LiCi)
T
P+P (Ai − LiCi), then

V̇ =




−eTS1e

∑
(A1,B1,C1,D1) is active

−eTS2e
∑

(A2,B2,C2,D2) is active
.

So V̇ ≤ −min {λmin (S1) , λmin (S2)} ‖e‖2 ≤ −λV , where

λ = −min {λmin (S1) , λmin (S2)} /λmax (P) .

Hence, the error dynamics is exponentially stable.

The switching laws σsign and σlp are based on I (t), which is known, hence

x̂ (t) → x (t) as t → ∞ for both switching laws. The switched linear models 3 and

4 have 5 state variables so we choose weighting matrices

Q =




0.006 0 0 0 0

0 0.008 0 0 0

0 0 0.008 0 0

0 0 0 0.008 0

0 0 0 0 0.008




and R = 100000. Note that we use a large R compared with Q to avoid excessively

fast error convergence so that mild observer gains are obtained. For models 1 and

2, the constant observer gain matrix Li is the same as the corresponding observer

gain matrix in the switched design. Another Luenberger observer is designed based

on first-order linear model 5 by moving the one pole at origin to s = −0.01.

Figure 3.3 shows the SOC estimation results for the input current in Fig. 3.1

(c). The initial SOC is determined to be 55.6% by measuring the Open Circuit

Voltage and using an empirical relationship with the average acid concentration c̄

(or SOC) at room temperature. The experimental SOC is determined using the

Current Counting Method based on this known SOC (0). For the SOC estimators,

however, the SOC (0) is initiated at 79%. Figures 3.3 (a) and (c) show the results

for the switched linear observers. The voltage and SOC estimates converge to near
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their actual values in 300s and 650s, respectively. The linear and averaged model-

based estimators shown in Figs. 3.3 (b) and (d) have much poorer performance,

showing large SOC and voltage errors throughout the test. Voltage lookup also

shows poor SOC estimation.

3.2.2 SOC Estimation Results

To provide quantitative evaluation of estimation performance, the L2 and L∞ error

norms are calculated. The L2 norm is

‖ eSOC (t) ‖2=

√√√√ 1

Ns

(
Ns∑

n=1

∣∣∣∣eSOC

(
n

fs

)∣∣∣∣
2
)

(3.12)

and the L∞ norm is

‖ eSOC (t) ‖∞= max
n∈(1,Ns)

∣∣∣∣eSOC

(
n

fs

)∣∣∣∣ , (3.13)

where eSOC (t) = ˆSOC − SOC, the sampling rate fs = 1
3
Hz, and the number of

samples Ns = 668. The SOC estimators are initialized with ˆSOC (0) = SOC (0)

and simulated for 2000s. Table 3.3 shows that estimators based on model 3 and

4 have the least SOC estimation error, with σlp slightly outperforming σsign. This

confirms that the additional complexity of the switched linear design and the ad-

ditional computation required by the low pass filter may be warranted in some

applications. The high errors (20 - 40%) of the Voltage Lookup method would be

unacceptable in most applications. If a longer transient time is acceptable then

the Voltage Lookup method error can be reduced by increasing the filter time con-

stant to sharply reduce the higher frequency error spikes. The 5% - 10% errors

associated with the linear model-based observers may be a worthwhile tradeoff

relative to the switched linear designs due to their simple and computationally less

demanding implementation. The performance of the average model-based observer

lies between the linear observers and Voltage Lookup method. This observer has

large error spikes at the start and end of pulses. Figure 3.4 shows the simulated

results for the aggressive current input (Fig. 3.4(c)). The σlp-based outperforms

the σsign-based observer in this case as well. The σlp-based estimator does a better
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Figure 3.4. SOC estimation results: (a) SOC estimators based on model 3 (blue-dash-
dotted) and 4 (red-dashed) and calculated SOC (black-solid), (b) Simulated battery
voltage, and (c) Simulated current.

job of approximating the actual cell dynamics.

In Figs. 3.3 and 3.4 the SOC stayed near 55.6% and did not test the assumption

of small SOC variation. Figure 3.5 shows the results for another experiment where

the battery is deeply discharged at 6.5A (0.065C) from SOC ≈ 70% to 40%. The

current does not change sign during the experiment so observers based on models

2 - 4 produce the same results, shown as the yellow-dashed line in Fig. 3.5(a).

Although the estimated SOC is more accurate than that produced by the average

model-based observer, it only matches the actual value near the linearization point

of 55.6% SOC. This is primarily due to the fact that the battery parameters de-

pend on SOC. In addition, temperature changes influence the battery parameters

through, for example, the Arrhenius Equation [76]. The OCV changes with tem-
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perature at about 0.02V/◦C [1]. These effects can be compensated for by using a

gain scheduling method, where the SOC estimator parameters and gains change

with SOC and temperature. Although stability is difficult to prove, a gain schedul-

ing design would be practically stable because the SOC and temperature change

very slowly (often > 1 − 10 hr) compared to the time constant of the estimators

(about 5 min).
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Table 3.3. SOC estimation error

Method L2 Error L∞ Error
Model 4 0.20% 0.53%
Model 3 0.35% 1.12%
Model 1 4.93% 11.43%
Model 2 5.04% 10.12%
Model 5 10.00% 23.68%

Voltage Lookup 19.41% 40.20%



Chapter 4

State-Of-Health Estimation

In this chapter, the third order dynamic averaged model developed in Chapter 2

is further simplified by combining the positive and negative electrode to generate

a second order impedance transfer function model. The four polynomial coeffi-

cients of the transfer function are explicitly correlated to the ohmic resistance, cell

capacity, and double layer time constant, providing an excellent model for SOH

estimation. We apply the Least Squares Method (LSM) to estimate these SOH-

related parameters and evaluate the estimation error with model voltage prediction

error RMS, providing three possible SOH/SOP estimation methods.

4.1 Model Development for SOH Estimation

The dynamic averaged model developed in Chapter 2 is a third-order model for

VRLA batteries. In this research, we increase identifiability by reducing the model

to second order by combining the positive and negative electrodes. We also as-

sume unidirectional current flow to eliminate switched nonlinearity. The resulting

transfer function is

V (s)

I (s)
=

b2s
2 + b1s+ b0
s2 + a1s

= Rf +
ŨPbO2

∆c

Qs
+

Rc

τdls+ 1
, (4.1)

where b2 = Rf , b1 =
Rf+Rc

τdl
+

ŨPbO2
∆c

Q
, b0 =

ŨPbO2
∆c

τdlQ
, a1 = 1

τdl
, Rf is the ohmic

resistance, Rc = RT
Aδ1aci0(αa+αc)F

( cref
c̄

)γ
is the charge transfer resistance, ŨPbO2

is

the slope of the open circuit potential curve, ∆c is the acid concentration change
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Table 4.1. Dynamic Averaged Model Parameters

Parameter Description
A Cell cross-section area, cm2

δ Electrode thickness, cm
cref Reference H+ concentration, mol/cm3

c̄ Average H+ concentration, mol/cm3

R Universal gas constant, J ·mol−1 ·K−1

F Faraday’s constant, C/mol
T Temperature, K
Rf Contact resistance, Ω

ŨPbO2
Setpoint OCV slope, V ·mol−1cm3

Cdl Double layer specific capacitance, C/cm3

ε Electrolyte volume fraction
ac Charge specific interfacial area, cm2/cm3

i0 Exchange current density, A/cm2

αa Anodic transfer coefficient
αc Cathodic transfer coefficient
γ Butler-Volmer exponent
adl double layer specific surface area, cm2/cm3

for full discharge, Q = FAεδ∆c is the Ah capacity, and τdl = AδadlRcCdl is the

equivalent double layer time constant. The parameters are provided in Tab. 4.1.

Many of the parameters in Tab. 4.1 are known (A, F , R, T , ŨPbO2
, δ) and do

not change with battery age. The ohmic resistance, however, does increase with

age due to the increased impedance and reduced power of aged batteries. If Rf

is estimated from voltage and current data then the estimate R̂f can be directly

used as a State-Of-Power estimate and correlated to SOH.

For a direct SOH estimate, the capacity estimate

Q̂ =
â1

b̂0ŨPbO2
∆c

,

where the coefficients â1 and b̂0 are estimated using the LSM. In addition, the

equivalent double layer time constant

τ̂dl =
1

â1
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and equivalent charge transfer resistance

R̂c =

(
b̂1 − b̂0

â1

)

â1
− b̂2

can be estimated but their relationships to SOH and SOP are unknown.

4.2 Least Squares Method

For the second-order battery model in Eq. (4.1), estimates of coefficients ai and bi

can be related to parameter estimates that can then be correlated to SOH and SOP.

LSM is a system identification technique for linear and time-invariant models that

estimates the coefficients in Eq. (4.1) that optimally fit the time-domain current

and voltage data [3].

Figure 5.2 shows a schematic diagram of the LSM. Two identical low-pass filters

filters input the current I (t) and voltage V (t) signals and output the filtered state

vectors as follows

ẇ1 = Fw1 + bfI (t) , (4.2)

ẇ2 = Fw2 + bfV (t) , (4.3)

where

F =




0 1 0

0 0 1

−λ3 −3λ2 −3λ


 , bf =




0

0

1


 .

The eigenvalues of F equal λ > 0, the bandwidth of the state filter. The states

w1 and w2 are filtered derivates of current and voltage, respectively,

W1 (s)

I (s)
=

1

s3 + 3λs2 + 3λ2s+ λ3




1

s

s2


 , (4.4)

W2 (s)

V (s)
=

s

s3 + 3λs2 + 3λ2s+ λ3
, (4.5)
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Let WT (s) =
[
WT

1 (s) , W2 (s)
]
and ΘT = [b0, b1, b2, −a1] and

ΘTW (s) =
b0 + b1s+ b2s

2

s3 + 3λs2 + 3λ2s+ λ3
I (s) +

a1s

s3 + 3λs2 + 3λ2s+ λ3
V (s) . (4.6)

By plugging Eq. (4.1) into Eq. (5.3), we obtain

ΘTW (s) =
s2

s3 + 3λs2 + 3λ2s+ λ3
V (s) = Z (s) ,

or, in the time domain,

z (t) = ΘTw (t) .

The filter outputs are sampled periodically to produce

J = [w (0) , w (∆t) , ..., w ((Neval − 1)∆t)] ∈ R
4×Neval

and z = [z (0) , z (∆t) , ..., z ((Neval − 1)∆t)] ∈ R
Neval .

We can minimize the parameter estimation error function e =
(
z− Θ̂TJ

)2
by

choosing the least squares parameter estimate

Θ̂ =
[
JJT

]−1
Jz. (4.7)

4.3 Experimental Results

In the experiment, we test three AGM, VRLA batteries at different stages of

life (new, aged, and dead) with different capacities (100Ah, 69Ah, and 49Ah,

respectively) corresponding to different SOH (100%, 69%, and 49%, respectively).

Each battery has six cells in series and the batteries have been modified so the

voltages of all cells can be independently measured. The batteries are charged and

discharged using a Techron LVC 5050 linear amplifier controlled with Simulink

through a dSPACE interface board [77].

Before testing, the batteries are charged to 39% SOC and rested for over 10

hours. The testing data used for LSM SOH estimation consists of the sampled

voltage response to a four minute 6.5 A (0.065C) charge pulse followed by four

minutes of rest (See Fig. 4.2(d)). The sampled voltage and current data are
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digitally filtered and passed through the LSM algorithm to produce the estimates

b̂0, b̂1, b̂2, and â1 and the corresponding R̂f , Q̂, τ̂dl, and R̂c.

Figure 4.2 shows the experimental voltage response to the current input in

(d) for the new (a), aged (b) and dead (c) batteries. The voltage starts at 2.01

V corresponding to 39% SOC and jumps immediately due to the current pulse

initiation and the cell’s ohmic resistance. During the charge pulse, the voltage

increases due to charging of the double layer and conversion of active material.

At the end of the pulse the voltage jumps down quickly and then transients to an

almost steady state voltage of 2.02-2.03 V corresponding to a slightly higher SOC

(about 41 - 44%). True steady state requires a much longer rest period (>1 - 2hr),

however.

The new battery (a) shows the best match between the experimental and iden-

tified model simulation. The LSM accurately captures the ohmic jumps, transient

shape, and SOC change.

Model identification error can be calculated using the Root Mean Square (RMS)

of the voltage prediction error,

RMSV =

√√√√ 1

Neval

Neval−1∑

i=0

(
V̂ ((i− 1)∆t)− V ((i− 1)∆t)

)2
,

and V̂ (t) is the voltage predicted by simulation of Eq. (4.1) with LSM parameter

estimates and zero initial conditions. The measurement noise is a small contribu-

tion (RMS ≈ 1 mV) to the overall RMSV .

The RMSV for the new cell of 1.554 mV is a small percentage (2.1%) of the

overall voltage swing (75 mV), demonstrating the accuracy of the LSM parameter

identification and the second order model itself. The RMSV = 4.462 mV of the

aged cell and visual inspection of the responses indicate a poorer fit of the identified

model. The LSM method has done its best to fit the second order model to the

aged voltage data but has come up short. The second order model no longer

represents the cell dynamics due to aging.

The dead battery has the largest RMSV = 9.648 mV and the identified volt-

age response does a poor job of tracking the experimental voltage. One reason

for increased identification errors in aged cells is the accumulation of lead sulfate
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in the porous electrodes. In a rested cell, lead sulfate can block pores and their

opening up during the initial charge pulse creates a transient that the second order

model cannot match accurately. This is the well known coup-de-fouet mechanism

for lead acid batteries that has been correlated to SOH [49, 46]. This coup-de-fouet

mechanism also manifests itself with initial pulse transients for a rested cell that

differ from subsequent transients. Figure 4.3 compares the experimental voltage

responses of the new and dead cells to multiple charge and discharge pulses. The

voltage responses to the two charge pulses are similar for the new cell but very

different for the dead cell. During the second charge pulse, the dead cell is closer to

a second order system and RMSV decreases. Before the experiment, the cells have

been at rest for over 10 hours, during which lead sulfate can partially block the

electrode pores through dissolution and recrystalization. Heterogeneous distribu-

tions of active materials and crystals can block pores in aged cells. During the first

charge pulse, acid is produced in the blocked pores but it cannot flow out. Eventu-

ally, the pore-blocking active materials are consumed, the pores open, electrolyte

diffusion is enabled, and the voltage responds similar to new cells. Another expla-

nation is that lead sulfate crystals with stiff and smooth surfaces require higher

voltage to start the charge reaction, causing different voltage responses between

the first and subsequent pulses in the aged and dead cells.

The identification results provide three possible methods of estimating SOH and

SOP from experimental voltage and current data. First, the LSM generates Q̂ and

R̂f , the least squares optimal estimate of the cell capacity and ohmic resistance,

which are proportional and inversely proportional to SOH and SOP, respectively.

Second, the LSM generates τ̂dl and R̂c that may be correlated to SOH and/or SOP.

Finally, the estimation error for the first pulse after resting increases with age and

may be correlated to SOH and SOP.

To investigate the performance of these estimation methods, we compare the

parameter estimates and estimate errors for all six cells of the fresh, aged, and

dead batteries. The percentage changes are calculated from the average of the

six fresh cells of R̂f0, τ̂dl0, R̂c0, Q̂0, and RMSV 0. Figure 4.4 plots the parameter

estimates R̂f , Q̂, τ̂dl, and R̂c versus RMSV for the 18 cells tested. The RMSV

values are the same in all four plots, showing a clear trend with age. The fresh cell

RMSV are tightly clustered, ranging from -2.61% to 2.58% error. The aged cells
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have markedly higher and wider-ranging RMSV from 12.29% to 180.60%. The

dead cells have the highest RMSV (303.48% to 592.56%). Clearly, RMSV is a

very sensitive SOH indicator for Lead-Acid cells. In addition, the RMSV results

show that parameter estimates for the aged and dead cells may be unreliable due

to the large estimation errors.

Figure 4.4 (a) shows that the cell ohmic resistance estimates R̂f increase steadily

with age. This expected result indicates that R̂f can be used as a SOP estimate.

Cell capacity estimates Q̂ decrease by 34% on average from the fresh cells to the

aged cells, matching the 31% decrease in the measured capacity from 100 Ah to

69 Ah. The average Q̂ of the dead cells is only 6% less than the aged cells but

the measured capacity decreases by 20%. This demonstrates that Q̂ is more sen-

sitive to estimation error than R̂f . Thus, Q̂ is not a reliable SOH estimator at

high RMSV . The equivalent double layer capacitance estimate τ̂dl does not show

a monotonic trend with age, decreasing from the fresh to the aged cells and then

increasing from the aged to the dead cells. This may be due to different degrada-

tion (e.g. sulfation versus water loss) that dominate the degradation in the aged

and dead cells or simply an artifact of the high estimation error. Equivalent charge

transfer resistance estimates R̂c varies little and non-monotonically with age, so it

is not a useful SOH or SOP estimator.

Filter 1 

 1 1 f I t w Fw b

1w I t

Filter 2 

 2 2 fV t w Fw b

2w V t

2w

z 

w
A/D 

A/D z 

J 

1ˆ T


    JJ Jz

Parameter 
Estimate 

Figure 4.1. Schematic Diagram of the Least Squares Method
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(d).
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Chapter 5

Parameter Estimation: Solid Phase

Diffusivity Measurement

In this chapter, we extend the LSM to estimate battery parameters that vary

with SOC and operating condition. Solid phase diffusivity (Ds) is an important

parameter that dominates the dynamics of Li-Ion cells. To accurately measure Ds,

the LSM is applied to a Galvanostatic Intermittent Titration Technique (GITT)

test data to develop the Least Squares GITT (LS-GITT) method. The accuracies

of LS-GITT and GITT are evaluated with their voltage estimate error RMS. LS-

GITT is shown to be more accurate than GITT in a wide range of SOC.

5.1 Model Development for Solid Phase Diffu-

sivity Measurement of a Li-Ion Cell

Figure 5.1 shows the half cell model with a NCM positive electrode and a metal

Lithium negative electrode. The model assumes that: (i) the NCM material is

modeled by a single solid phase spherical particle with radius Rs; (ii) Li
+ transport

in the electrolyte is neglected; (iii) the discharge rate is low; (iv) the SOC change

is small for each pulse; and (v) isothermal conditions apply. Assumptions (i)

and (ii) are also used in the widely accepted Single Particle Model (SPM) [78].

Assumptions (iii) - (v) are reasonable for the low C-rate GITT current input.

In [56], a reduced-order Li-Ion cell model is developed using the Padé Ap-
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Figure 5.1. Schematic diagram of the half cell model

proximation [14, 15], with the impedance transfer function coefficients explicitly

correlated to physical and electrochemical parameters of the cell. For half cells,

the same approach produces the second-order impedance transfer function:

V (s)

I (s)
=

RT s
2 + (35RTα2 + 10α1) s+ 105α1α2

s2 + 35α2s
, (5.1)

where α1 = C+

3AFδεs
, α2 = Ds

R2
s
, and total resistance RT = Rf + Rct

asAδ
, with Rct =

RT
i0F (αa+αc)

. The parameters are described in Tab. 5.1. If α2 and Rs are known,

then Ds can be calculated.
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Table 5.1. Model Parameters model

Parameter Description
A Cell cross-section area, cm2

δ Positive electrode thickness, cm
R Universal gas constant, J ·mol−1 ·K−1

F Faraday’s constant, C/mol
T Temperature, K
Rf contact resistance, Ω
C+ Setpoint OCV slope, V ·mol−1cm3

εs Solid phase volume fraction
as Specific solid phase area, cm2/cm3

i0 Exchange current density, A/cm2

αa Anodic transfer coefficient
αc Cathodic transfer coefficient

5.2 Least Squares Galvanostatic Intermittent Titra-

tion Technique

For the second-order battery model in Eq. (5.1), the impedance transfer function

of the cell is in the following form:

V (s)

I (s)
=

b2s
2 + b1s+ b0
s2 + a1s

, (5.2)

where the coefficients ai and bi are related to the parameters of the cell, including

Ds. If a1 is known, for example, Ds = a1R
2
s/35.

The Least Squares Method (LSM) is a system identification technique for linear

and time-invariant models that estimates the coefficients in Eq. (5.2) that opti-

mally fit the time-domain current and voltage data [3]. By applying the LSM to

the GITT current and voltage data, we develop a new Ds estimation method, the

Least Squares Galvanostatic Intermittent Titration Technique (LS-GITT).

Figure 5.2 shows a diagram of the LS-GITT algorithm. Two digital low-pass

filters process the Neval current I and voltage V data points from a single current

pulse to produce filtered current Î, ˆ̇I, and ˆ̈
I, and voltage ˆ̇

V and ˆ̈
V derivatives. The

filter bandwidth is λ(rad/s).
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Figure 5.2. Block Diagram of the LS-GITT algorithm

Let WT (s) =
[
Î (s) , ˆ̇I (s) , ˆ̈I (s) , ˆ̇V (s)

]
and ΘT = [b0, b1, b2, −a1] so

ΘTW (s) =
b0 + b1s+ b2s

2

s3 + 3λs2 + 3λ2s+ λ3
I (s) +

a1s

s3 + 3λs2 + 3λ2s+ λ3
V (s) . (5.3)

Substitution of Eq. (5.2) into Eq. (5.3) produces

ΘTW (s) =
s2

s3 + 3λs2 + 3λ2s+ λ3
V (s) = ˆ̈V (s) ,

or, in the time domain,
ˆ̈V (t) = ΘTw (t) .

The digital filter outputs are stacked into

J = [w (0) , w (∆t) , ..., w ((Neval − 1)∆t)] ∈ R
4×Neval

and ˆ̈
V =

[
ˆ̈V (0) , ˆ̈V (∆t) , ..., ˆ̈V ((Neval − 1)∆t)

]
∈ R

Neval .

For the GITT diffusivity measurements, V0, ..., V3 are determined from the

voltage data for each pulse and substituted into Eq. (1.5) to calculate Ds. For the

LS-GITT diffusivity measurements, the current and voltage data are passed into

40 pulse inputs and outputs. Each set of pulse data is then processed through the

LS-GITT algorithm to produce Ds.
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We can minimize the parameter estimation error function e =
(
ˆ̈
V − Θ̂TJ

)2
by

choosing the pseudoinverse

Θ̂ =
[
JJT

]−1
J
ˆ̈
V. (5.4)

5.3 Diffusivity Measurement Results using GITT

and LS-GITT

Figure 5.3 compares the diffusivity measurements (a) and accuracies (b) of LS-

GITT and GITT using the current and voltage data in Fig. 1.2. Figure 5.3(a)

shows that the Ds measurements range from 10−10 − 10−11 cm2/s at SOC >

10%, matching published results in the literature [57]. LS-GITT loses stability at

extremely low SOC (< 5%) and the Ds estimate jumps dramatically and becomes

negative. GITT is more stable and always produces positive Ds measurements.

Figure 5.3(b) evaluates the Ds measurement accuracy of GITT and LS-GITT

using the RMSGITT in Eq. (1.6) and

RMSLS =

√√√√ 1

Neval

Neval−1∑

i=0

(
V̂ ((i− 1)∆t)− V ((i− 1)∆t)

)2
,

where V̂ (t) is the voltage predicted by simulation of Eq.(5.2) with LS-GITT param-

eters estimates. At SOC > 10% (first 36 discharge pulses), RMSLS < RMSGITT

so the LS-GITT method is more accurate than GITT. Both methods have very

high RMSV > 10 mV because they fail to match experimental voltage data at

low SOC. Even though GITT produces Ds measurements at SOC < 5%, they are

inaccurate and of questionable utility. GITT Ds measurements are not as accurate

as LS-GITT for most SOC. In fact, from 60% - 100% SOC LS-GITT is almost an

order of magnitude more accurate than GITT. If we set a RMS accuracy cutoff

of 1 mV (roughly the RMS noise of the voltage sensor), then the LS-GITT has a

working range of (15% - 100%), more than double than the GITT working range

of (20% - 60%).

Figure 5.4 shows representative pulse responses at 100% (a), 50% (b), and 2.5%

(c) SOC. The voltage prediction of the LS-GITT model matches the experimental
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Figure 5.3. Measured diffusivities D̂s (a) and RMS estimation errors (b) versus SOC
for GITT (o) and LS-GITT (�).

voltage data well (RMSLS = 0.1489 mV) but the GITT voltage estimate deviates

considerably from the experimental data (RMSGITT = 5.085 mV). The GITT

simulation passes through the points V1 and V2 exactly because they are inputs

to the GITT formula. The transient response between V1 and V2, however, is not

accurately captured by the model. The LS-GITT response, on the other hand,

accurately matches the ohmic drop and rise at the start and end of the discharge

pulse, respectively, the transients during and after the pulse, and the steady state

response. Clearly, the LS-GITT model more accurately fits the experimental data.

So the corresponding diffusivity is an accurate measurement. The GITT diffusivity

measurement is dubious at best. At 50% SOC, both methods produce accurate

measurements of diffusivity as measured by the RMS error. Visual inspection of

Fig. 5.4(b) also shows excellent agreement between the models and the experiment.

It is interesting to note, however, that the models predict different diffusivities (LS-
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GITTDs = 6.92×10−12 cm2/s and GITTDs = 2.23×10−11 cm2/s). The LS-GITT

has a smaller RMSLS = 0.2934 mV as compared to RMSGITT = 0.4349 mV so it

should be closer to the actual value. Or we could conclude that the actual value

lies somewhere between 6.92× 10−12 and 2.23× 10−11 cm2/s.
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Figure 5.4. Voltage response versus time (experimental (solid), GITT model simulation
(dash-dotted), and LS-GITT model simulation (dashed)): (a) 100% SOC, (b) 50% SOC,
(c) 2.5% SOC.

Figure 5.4(c) shows that neither model matches the experimental response at

2.5% SOC. It is impossible for either model to have the concave transient exhibitted

in the experiment. Despite the low C-rate and small pulses, dV
dγ

6= ∆V
∆γ

, violating a

GITT assumption and dV
dγ

6=constant, violating an LS-GITT assumption. The large

errors associated with these measurements mean that neither can be considered

accurate. Although the data time length is the same as the other 39 pulses, the

discharge pulse ends prematurely at the low voltage cutoff (3V).



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this research, we present a reduced-order physics-based model of a Pb-Acid

battery based on a linearized, coupled partial differential equations using an ef-

ficient Ritz discretization method. Experiments show that the Pb-Acid battery

has different dynamics for charge and discharge. A switching law σ is designed

to approximate the model switching between charge and discharge, making the

Ritz model a switched linear system. The Ritz model is able to output crucial

internal and external variables, such as acid concentration, electrolyte potential,

solid-phase potential, and voltage. The fast convergence of the Ritz method en-

ables a low-order model to closely match the experimental voltage response. The

dynamic averaged model is a low-order Ritz model that is realized by an equiva-

lent circuit. The circuit component values such as resistance and capacitance can

be explained and calculated from the electrochemical parameters of the underly-

ing Pb-Acid battery model, bridging the gap between equivalent circuit and first

principles models.

We also design SOC estimators based on 5 VRLA battery models and com-

pares them with the Voltage Lookup method. The two switched linear models

predict the SOC and voltage better than the three linear models that do not in-

clude switching and all of the estimators outperform the Voltage Lookup method.

A LMI-based design method is used to obtain an optimal switched SOC estimator

with guaranteed exponential stability. The switched SOC estimator based on a
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low-pass-filtered switching law converges smoothly and is the most accurate, espe-

cially when the input current changes quickly. All of the estimators perform worse

if operated far from the linearization point (SOC), so gain scheduling would be

recommended for large SOC operating ranges.

The Least Squares Method based on a second order model of Lead-Acid batter-

ies can provide reliable estimates of SOH and SOP. The ohmic resistance estimate

increases monotonically with age, providing an estimate of SOP. The capacity esti-

mate decreases monotonically with age, matching the actual capacity loss for aged

cells. Finally, the voltage estimate error can be used as a SOH/SOP estimator and

quantify the reliability of the parameter estimates. The first pulse after a long rest

period shows the highest estimation error.

Based on experimental results from a NCM half cell, LS-GITT is more accurate

than GITT, sometimes by several orders of magnitude. LS-GITT gives results

accurate to 1 mV RMS from 15% - 100% SOC where GITT provides that level of

accuracy over less than half that range. Neither technique provides accurate Ds

measurements below 10% SOC.

6.2 Future Work

6.2.1 Extended Applications of LS-GITT

Two extended applications of LS-GITT are promising in the measurement of other

cell parameters or parameters in other Li-Ion chemistries.

Firstly, the second order Lithium Ion half cell model Eq. (5.1) has three inde-

pendent coefficients α1 = C+

3AFδεs
, α2 = Ds

R2
s
, and total resistance RT = Rf +

Rct

asAδ
,

with Rct =
RT

i0F (αa+αc)
. α2 has been used for solid phase diffusivity measurement.

α1 is correlated the setpoint OCV slope and potentially useful for SOH estimation.

RT is the sum of ohmic resistance and charge transfer resistance. Charge transfer

resistance Rct can be used for the measurement of exchange current density i0, an

important electrochemical parameter. The LS-GITT already provides estimates of

RT , then Rct can be separated from RT by measuring ohmic resistance Rf using

high frequency resistance test or Electrochemical Impedance Spectroscopy (EIS).

Secondly, solid phase diffusivity in phase change electrode materials, such as
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lithium iron phosphate and lithium titanium oxide, are almost impossible to mea-

sure using GITT due to flat OCV versus SOC curves. Unlike GITT, the feasibility

of LS-GITT is not impacted by ∆Vs ≈ 0 in Eq. (1.5). Model Eq. (5.1) cannot be

directly used for phase change materials because the model equations are differ-

ent due to difference in electrochemical mechanism. However, we can still generate

transfer function models by discretizing previously published electrochemical mod-

els [79] using Padé Approximation [14, 15]. After that, LS-GITT algorithm can be

employed to measure Ds and other parameters in a phase change Li-Ion cell.

6.2.2 SOC-Based Battery Balancing

SOC-based battery balancing is another promising direction for future research. In

battery packs, batteries are often connected in series to satisfy voltage and power

requirements. Unfortunately, the imbalance of SOC among the batteries occurs

due to the discrepancies in capacity, impedance, and working conditions such as

ambient temperature [80]. Battery imbalance is one of the greatest enemies of the

battery systems, because it causes overcharge and overdischarge in the battery,

and a single ’weak’ battery often limit the performance and cycle life of the whole

battery pack [81]. Moreover, imbalance deteriorates if no measure is taken to

equalize the batteries, motivating battery balancing.

Battery balancing techniques have been developing for decades and helping to

extend the cycle life of battery packs. They are designed to equalize the voltage

instead of the SOC of the batteries, so imbalances actually occur since the param-

eters (especially ohmic resistances) vary in different batteries. Based on the SOC

estimator designed in Chapter 3, we can study the battery balancing problem from

a new perspective: SOC balancing.

Several tasks need to be done for this research. Firstly, parameter estima-

tion methods are needed to customize models for different batteries. Often, exact

models for different batteries are not available, and we will start from measuring

the contact resistances, to which the error of voltage-based methods is mostly at-

tributed. Secondly, active balancing circuits based on SOC need to be designed,

which can be extended from the battery testbed [77] by adding more channels for

balancing current. Thirdly, experiments are needed to compare voltage-based and
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SOC-based balancing methods.

6.2.3 SOH estimation of aged batteries using data-driven

methods

In Chapter 4, SOH-related parameter estimate accuracy decreases with the age of

the battery, especially the estimates of charge transfer resistance Rc and double

layer time constant τ . As the battery ages, the experimental voltage and current

data of aged cells deviate from a known model due to unmodeled dynamics, so

model-based methods such as LSM no longer provides accurate parameter estima-

tion.

Data-driven methods [82], on the other hand, can robustly and adaptively es-

timate parameters in aged cells if enough data is available. Data-driven methods,

for instances, Machine Learning [83, 84], Adaptive Control [85, 86], and Sym-

bolic Dynamic Filtering (SDF) [87, 88, 89, 90] have been proposed and developing

rapidly with the advances of computer technology. SDF is a powerful parameter

estimation and pattern recognition method for early detection of anomalies (i.e.,

deviations from the normal behavior), parametric and nonparametric changes in

dynamic systems. SDF processes time series data and constructs state machines

with state probability vector p through data space partitioning. p denotes the

pattern of the dynamic system, and the relationship can be determined between p

and SOH-related parameters through the training data. The change in p can be

used as a SOH indicator, and the change in SOH-related parameters can be esti-

mated more accurately than model-based methods. Interested readers are refered

to [87].

In addition, we find increasingly divergent voltage responses amongst cells in

the aged battery, and the discrepancies in cell responses can also be used for SOH

estimation of batteries, providing another data-driven SOH estimation methodol-

ogy worth considering for future research.



Appendix A

Table A.1. Ritz model matrix elements

Matrix Integral form

Me (n,m)
∫ L1

0
adlCdlΨn(x)Ψm(x)dx+

∫ L

L2
adlCdlΨn(x)Ψm(x)dx

Mes (n, 1) −
∫ L1

0
adlCdlΨn(x)dx

Mes (n, 2) −
∫ L

L2
adlCdlΨn(x)dx

Ke (n,m) −κeff
∫ L

0
Ψ′

n(x)Ψ
′
m(x)dx−

∫ L1

0
RaΨn(x)Ψm(x)dx−

∫ L

L2
RaΨn(x)Ψm(x)dx

Kec (n,m+ 1) -
∫ L

0
κeff
d Ψ′

n(x)Ψ
′
m(x)dx−

∫ L1

0
RaŨPbO2

Ψn(x)Ψm(x)dx

Kes (n, 1)
∫ L1

0
RaΨn(x)dx

Kes (n, 2)
∫ L

L2
RaΨn(x)dx

Be(n, 1) 0

Be (n, 2) −
∫ L1

0
RaΨn(x)dx

Ms

[
−adlCdlL1 0

0 −adlCdl (L− L2)

]

Mse (1, n)
∫ L1

0
adlCdlΨn(x)dx

Mse (2, n)
∫ L

L2
adlCdlΨn(x)dx

Ksc (1, n+ 1) −
∫ L1

0
RaŨPbO2

Ψn(x)dx
Ksc (2, n) 0

Kse (1, n) −
∫ L1

0
RaΨn(x)dx

Kse (2, n) −
∫ L

L2
RaΨn(x)dx

Ks

[
RaL1 0
0 Ra (L− L2)

]

Bs

[
− 1

A
−RaL1

1
A

0

]

Mc (n+ 1,m+ 1)
∫ L

0
εΨn(x)Ψm(x)dx

Kc (n+ 1,m+ 1) −
∫ L

0
DeffΨ′

n(x)Ψ
′

m(x)dx− ŨPbO2

∫ L1

0
a2Ra

2F
Ψn(x)Ψm(x)dx

Kce (n+ 1,m) −
∫ L1

0
a2Ra

2F
Ψn(x)Ψm(x)dx−

∫ L

L2

a2Ra

2F
Ψn(x)Ψm(x)dx

Kcs (n+ 1, 1)
∫ L1

0
a2Ra

2F
Ψn(x)dx

Kcs (n+ 1, 2)
∫ L

L2

a2Ra

2F
Ψn(x)dx

Bc (n, 1) 0

Bc (n+ 1, 2) −
∫ L1

0
a2Ra

2F
Ψn(x)dx

∫
Ψ′

n (x)Ψ
′

m (x) dx





x n = m = 0
L

4nπ
sin 2nπx

L
+ x

2
n = m 6= 0

L
2(n+m)π

sin (n+m)πx
L

+ L
2(n−m)π

sin (n−m)πs
L

n 6= m

∫
Ψ′

n (x)Ψ
′

m (x) dx





0 n or m = 0
1
2

(
nπ
L

)2 (
x− L

2nπ
sin 2nπx

L

)
n = m 6= 0

nm
2

(
π
L

)2 [ L
(n−m)π

sin (n−m)πx
L

− L
(n+m)π

sin (n+m)πx
L

]
n 6= m



Appendix B

B.1 Direct design of Switched Luenberger Ob-

server for the third-order Dynamic Aver-

aged Model

The switched linear third order model given by Eq. (2.20) has two subsystems

for charge and discharge separately. To design a Switched Luenberger Observer,

we can start by designing Luenberger Observer for each subsystem. Each system

has three poles: 0, −λ2, and −λ4, which is stable but not assymptotically stable.

So, we can place the pole at 0 to −λd and hence make the closed-loop subsystem

assymptotically stable by using the following feedback matrix:

L = λd




1

ŨPbO2

1

0


 .

Then, the error dynamics of the subsystem is

ė = ACLe, (B.1)

where

ACL = (A− LC) =




0 − λd

ŨPbO2

λd

ŨPbO2

ŨPbO2
λ2 − (λ2 + λd) λd

0 0 −λ4


 .
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The characteristic polynomial ofACL is (s+ λd) (s+ λ2) (s+ λ4), with all poles

in the LHP of the s-plane. Therefore, feedback matrix L makes subsystem error

dynamics Eq. (B.1) assymptotically stable. Furthermore, L is proportional to the

desired pole −λd and the same for both charge and discharge subsystems if same

λd is needed for both subsystems, which is convenient for switched observer design.

The eigenvectors of ACL are assembled into matrix T as below:

T =




1 λd 1

ŨPbO2
ŨPbO2

λ2 ŨPbO2

0 0 −ŨPbO2

(
1 + λ4

λd

)




B.2 Error Dynamics Exponential Stability Proof

Error dynamics of subsystem i (1: charge, 2: discharge) is given by:

ė = ACLie,

where

ACLi = (Ai − LiCi)

Parameters λ2 = Ra1
adl1Cdl1

and λ4 = Ra3
adl3Cdl3

take on different values between

charge and discharge, which are labeled λ2c and λ4c for charge and λ2d and λ4d

for discharge. Ra1 ∝ A+ and Ra3 ∝ A−, where A+ and A− are specific reaction

areas in the positive electrode and negative electrode, respectively. In [18], A+ =

A+max

(
1− SOCζ

)
, A− = A−max

(
1− SOCζ

)
for charge, and A+ = A+maxSOCζ

, A− = A−maxSOCζ for discharge, therefore, λ2c

λ4c
= λ2d

λ4d
.

Let desired pole λd = λdd for the discharge subsystem, and λd = λdc = γλdd for

the charge subsystem, where γ = λ2c

λ2d
= λ4c

λ4d
,

we can obtain

Λ1 = T−1ACL1T =




−λdc 0 0

0 −λ2c 0

0 0 −λ4c



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and

Λ2 = T−1ACL2T =




−λdd 0 0

0 −λ2d 0

0 0 −λ4d




by using transformation matrix

T =




1 λdd 1

ŨPbO2
ŨPbO2

λ2d ŨPbO2

0 0 −ŨPbO2

(
1 + λ4d

λdd

)


 .

The error dynamics for subsystem i after equivalent transformation becomes

˙̃e = Λiẽ,

where

ẽ = T−1e.

The Common Quadratic Lyapunov function V = ẽTẽ is radially unbounded

and decresent. Time derivative of V

V̇ =




2ẽTΛ1ẽ

∑
(A1,B1,C1,D1) is active

2ẽTΛ2ẽ
∑

(A2,B2,C2,D2) is active
.

So V̇ ≤ 2max {λmax (Λ1) , λmax (Λ2)} ‖ẽ‖2 ≤ −λV , where

λ = −2max {λmax (Λ1) , λmax (Λ2)} > 0.

Hence, the switched linear error dynamics is exponentially stable.
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