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Control over Unreliable Networks affected by
Packet Erasures and Variable Transmission Delays

Daniel E. Quevedo*, Member, IEEE, Eduardo I. Silva*, Graham C. Goodwin*, Fellow, IEEE

Index Terms— Control over networks, packet erasures, time-
delays, stability.

Abstract— This paper describes a novel control strategy aimed
at achieving good performance over an unreliable communication
network affected by packet loss and variable transmission delays.
The key ingredient in the method described here is to use the
large data packet frame size of typical modern communication
protocols to transmit control sequences which cover multiple
data-dropout and delay scenarios. Stability and performance of
the resultant scheme are addressed under nominal networked
conditions. Simulations verify that the strategy performs excep-
tionally well under realistic conditions with noise and unmea-
sured disturbances.

I. INTRODUCTION

There has been a trend towards the implementation of closed
loop control systems using digital networks; see, e.g. [1]. In
particular, Ethernet in its wired (hub-based and switched) and
wireless forms (IEEE 802.11) is increasingly being adopted
as a low level control network technology, see [2], [3]. The
reasons for this move towards Networked Control Systems
(NCS’s) are manifold, including lower cost, higher reliability,
interoperability of devices, and easier installation and mainte-
nance.

From a control design perspective, many interesting chal-
lenges are associated with NCS’s. For example, due to the
inherent bit-rate limitations associated with digital networks,
signals need to be coded and quantized prior to transmission
[4]. Furthermore, the network may induce variable delays and
data-dropouts [5]. Not surprisingly, designs made for non-
networked control systems (i.e., where communication links
are transparent) will often give poor performance when used
in NCS’s. Consequently, successful NCS design methods need
to consider both control and communication aspects.

Through a complete, and often complex, re-design of
the control algorithm, good NCS performance can often
be achieved; see, e.g., [6]. However, given the power and
sophistication of design methods for non-networked control
systems, there exists a strong incentive to extend existing non-
networked designs to NCS situations.

In the present work we will show how control laws designed
for non-networked control systems can be embellished so as
to achieve good performance when used in an NCS. We focus
on NCS’s having an unreliable link affected by both data-
dropouts and time delays. The delays are assumed stochastic in
nature, possibly larger than one sampling period and unknown

*School of Electrical Engineering & Computer Science, The
University of Newcastle, Callaghan, NSW 2308, Australia; Emails:
dquevedo@ieee.org, eduardo.silva@studentmail.newcastle.edu.au,
graham.goodwin@newcastle.edu.au

in advance. In our approach, we take advantage of the fact that
in contemporary IP based networks over Ethernet, data is sent
in large packets. Also, the data can be easily time-stamped,
e.g., by invoking the Real Time Transport Protocol (RTP).
Thus, rather than sending individual values, finite-length signal
predictions can be transmitted. By taking into account multiple
transmission outcomes, we show that the resultant NCS is
equivalent to an NCS without time-delays and with a data-
dropout probability which can be made arbitrary small by
choice of design parameters. Thus, our proposal amounts to a
special scheme for time-delay and dropout compensation tai-
lored to contemporary communication technology. The method
allows one to achieve NCS performance which is close to
that of the corresponding non-networked system. An important
feature of our proposal is its versatility: namely, it can be used
with any plant and any controller.

To illustrate the key ideas, we consider a single-plant,
single-controller NCS architecture where the communication
network is placed in the control-link, i.e., between con-
troller and plant input.1 NCS’s where both estimation- and
control-link use a network can then be designed by using
certainty equivalence (although, in general, separation does
not hold), see also [6]. Design for unreliable estimation-links
has also been studied, e.g., in [9]–[11]. In addition, it has
been suggested [6], [12] that it may be advantageous to use
architectures with distributed intelligence.

Our proposal is loosely related to various NCS design meth-
ods where signal predictions are transmitted, see, e.g., [13]–
[20]. The distinguishing, and novel, aspect of our approach
is that it incorporates an underlying closed loop control law
which is formulated based on predictions of all possible future
plant state scenarios (within our model). This allows us to
address performance and stability for the associated NCS’s
directly in the design process. Our results apply to constrained
non-linear unstable multiple-input plant models controlled
over unreliable communication links affected by delays and
data-dropouts, which are both unknown and variable. We
believe this to represent a significant advance on existing
packet-based NCS design strategies of the type surveyed
above.

The motivation for the circle of ideas presented here comes
from closed loop control as described in [21]. (Also called
“planning with recourse” in some fields; see, e.g., [22], [23].)
These strategies involve the determination of an optimal policy
that relates the future information states to actions. These
kinds of optimization problems are typically intractable due

1Note that the estimation-link situation (i.e., where the network is situated
between plant sensors and controller input) can be treated by adapting standard
Kalman Filter techniques, see, e.g., [5], [7], [8].
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to computational complexity. In the situation studied in this
paper, however, the future scenarios (see [24], [25]) have finite
cardinality since only packet loss and/or delays need to be
considered. Indeed, the number of scenarios is relatively small,
making it fairly straightforward to implement our proposal.

II. NETWORKED CONTROL SYSTEM CONFIGURATION

We consider a discrete-time (possibly unstable) nonlinear
plant model described in state-space form via:

x(` + 1) = f(x(`), u(`)). (1)

The plant input and state are constrained according to:

u(`) ∈ U ⊆ Rν , x(`) ∈ X ⊆ Rη, ∀` ∈ N0 , N ∪ {0},
(2)

where N denotes the set of positive integers, ν denotes the
dimension of the plant input, whilst η refers to the state
dimension.

To achieve some desired behaviour of the plant variables,
the plant input {u(`)} is manipulated by a controller. There
exist many control strategies that can be utilized in a tradi-
tional (non-networked) setting, i.e., where the communication
between controller and plant is transparent. In particular,
discrete-time controllers operating at the same sampling rate
as the plant can typically be designed to stabilize the plant
model and make (parts of) {x(`)} track a given time-varying
reference {r(`)}; see, e.g., [26]–[30]. In the non-networked
case, the plant input is given by a, possibly time-varying and
dynamic, mapping of the plant state, say

u(`) = κ`(x(`)), ` ∈ N0, (3)

where κ` : X→ U is the control policy.
In the present work, we will address the more challenging

situation, where a discrete-time controller communicates with
the plant input via an unreliable network. This network is
assumed to be able to carry large packets of data (say, a few
kilobytes). However, each packet, say U(`), may be delayed or
even lost (due to buffer overflows and transmission errors). If
quantization issues are to be explicitly taken into account, then
κ`(·) in (3) should be chosen as a quantized control policy,
such as the finite set constrained controller of [31].2

The delay experienced by U(`) has both a fixed component,
which can be included in the plant model (1), and a time-
varying component, say τ(`). The latter depends on several
factors including network load. Since we will concentrate on
a configuration where sensors, actuators and controller operate
at the same sampling rate3, it suffices to consider τ(`) ∈ N0.
Packets which are delayed by more than a given value, say
τmax, will be regarded as lost. Thus, we will use the term

2Whether quantization aspects need to be explicitly taken into account or
not, depends upon how large their effect on achieved closed loop performance
is, when compared to other quantities, including the network induced delays
and dropouts. Interestingly, simple additive quantization noise models often
give good results even for rates as low as 2 bits per sample, see, e.g., [32].
Moreover it is known that when the quantization effect can be modeled as
additive noise, then it suffices to use a non-quantized control law κ`(·), see
also [12]. Note that, if (1) is open-loop unstable, then to achieve closed loop
stability, bit-rates need to be larger than the lower bounds described in [4].

3We consider time-driven rather than event-driven systems.

“lost” to refer to those packets which are effectively dropped
by the network as well as to those which do not arrive during
a prespecified time frame. Lost packets will not be used
further in the NCS. The maximum delay τmax constitutes a
“timeout” value which can be designed based upon network
delay and dropout characteristics, see, e.g., [33]. (We will see
in Section VI that the timeout value also has an impact on the
complexity of the networked controller.) The model adopted
above includes pure erasure channels (see, e.g., [7], [19], [20]),
as a particular case, by setting τmax = 0.

In the sequel, we will present a method to use available
communication resources to control the plant (1). In particular,
we will show how closed loop properties of a non-networked
control system can be preserved when it is implemented as an
NCS. We will focus on the link between controller output and
plant input. Accordingly, we will assume that the networked
controller has access to the plant state.

III. SCENARIO-BASED NETWORKED CONTROL

To achieve acceptable performance, NCS’s need to be de-
signed taking into account properties of both the plant and the
communication link. In particular, with an unreliable network
situated between controller and plant input, the controller
should be aware that, in addition to possible quantization
constraints, data sent may be delayed or lost. Here, we will
exploit the fact that, in todays’ networks, data can be sent as
large packets.

In our proposal, at each time instant k, the controller sends a
packet U(k) to the plant input side. To take account of possible
future transmission errors, U(k) contains not only a desired
value for u(k), but also predicted plant inputs to be imple-
mented at a finite number of future time instants. In addition,
since U(k) may be delayed by τ(k), which is unknown to the
controller at time k, the plant input sequences are calculated
for all possible delay values up to the point where the packet
is deemed lost, i.e., for τ(k) ∈ {0, 1, . . . , τmax}. At the plant
input side, the received plant input sequences are buffered
according to a specific selection logic. Fig. 1 illustrates the
overall NCS configuration. The design of the buffer selection
logic and control packet are closely related. We will describe
both in the sequel.

A. Buffer Selection Logic

We will first describe the selection logic at the receiver side,
i.e., at the plant input. Here, a buffer, say ~b(k), contains the
values to be passed on to the actuator; fresh values replace
values sent earlier. For example, let us suppose that packet
U(k) is received (without error). Thus, it arrives at time instant
k + τ(k). If none of the packets

{U(k + 1), U(k + 2), . . . , U(k + τ(k))} (4)

have been received by time k + τ(k), then U(k) is used when
it arrives. Otherwise, if any of the more recent packets in (4)
have been received by time k + τ(k), then U(k) is discarded.

For further reference, we will denote the entire set of packets
after discarding by U , the sequence of time instants when these
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Fig. 1. Networked Control System Configuration.

A. Buffer Selection Logic

We will first describe the selection logic at the receiver side, i.e., at the plant input. Here,

a buffer, say "b(k), contains the values to be passed on to the actuator; fresh values replace

Fig. 1. Networked Control System Configuration.

fresh packets are generated via K = {ki}i∈N, and the arrival
instants as N = {ni}i∈N, where

ni = ki + τ(ki), ∀i ∈ N. (5)

We will assume that n1 is finite.

B. Scenarios for Control Calculations

To design U(k), the controller should ideally know the
plant state at the arrival time k + τ(k). If there were no
delay associated with U(k), i.e., if τ(k) = 0, then the plant
state needed would be simply x(k), which we assume known.
However, for finite non-zero delays, x(k+τ(k)) depends upon
x(k) and upon the future plant inputs contained in

~u(k) , {u(k), u(k+1), . . . , u(k+τ(k)−1)}, τ(k) ≥ 1. (6)

Given the buffer selection logic employed, ~u(k) is completely
determined by ~b(k − 1) and by packets other than U(k). The
relevant information for determining U(k) is contained in the
finite set of pairs:

F(k) =
{

(U(ki), τ(ki)) : U(ki) ∈ U , ki < k,

ki + τ(ki) ∈ {k, k + 1, . . . , k + τ(k)− 1}
}
.

If acknowledgments form part of the network protocol and
if the one-way delay from the buffer to the controller is smaller
than 1 sampling period, then ~b(k − 1) will be known to the
controller at time k. However, the controller cannot foresee the
future. In particular, at time k, the controller does not know
F(k) or τ(k).

The above observation motivates us to develop a control
strategy which utilizes only the available information at the
controller side at time k (namely, ~b(k − 1) and previously
sent packets), and determines U(k) by taking into account all
possibilities for τ(k) ∈ {0, 1, . . . , τmax} and for F(k). We will
denote the associated set of all possible plant input scenarios
to be considered when calculating U(k) via:

Sτ (k) , {~s (i)
τ (k)}i∈{1,...,|Sτ (k)|}, τ ∈ {0, 1, . . . , τmax}, (7)

where |Sτ (k)| denotes the cardinality of Sτ (k). Clearly,
|Sτ (k)| is always finite, and depends on τ and on when the
content of the buffer at time instant k − 1, i.e., ~b(k − 1),
was generated. Definition (7) implies that, if the actual delay
were to be τ(k) ∈ {0, 1, . . . , τmax} and the scenario were
i? ∈ {1, 2, . . . , |Sτ(k)(k)|}, then the future plant inputs would
be given by:

~u(k) = ~s
(i?)
τ(k)(k).

Therefore, the actual plant input sequence in (6) satisfies:

~u(k) ∈ Sτ (k), for some τ ∈ {0, 1, . . . , τmax}.

In the undelayed case, where τ = 0, there are no future plant
inputs in ~u(k). Accordingly, we define (for future reference):

S0(k) , {~s (1)
0 (k)}, ~s

(1)
0 (k) , { }, |S0(k)| = 1. (8)

Further characterizations of the total number of scenarios to
be considered at each time instant will be given in Section VI.

Whenever necessary, i.e., when ~b(k − 1) does not contain
enough useful plant input values or not enough packets arrive
in the situation considered, then the input scenarios in (7) will
be determined by assuming that plant input values are provided
by a given open-loop policy, say u(`) = κf (`), which depends
only on received packets up to time `. Simple examples include
keeping the current value or setting the plant input to zero.

To achieve good performance in the presence of unreliable
communication, the networked controller should be aware of
all possible plant input scenarios, Sτ (k), in (7) and (8). In
the following, we will present a strategy which embodies this
requirement.

Remark 1 (Network Protocols without Acknowledgments):
In the above, we have assumed that ~b(k − 1) is known to the
controller at time k. If the one-way delay from the buffer to
the controller is larger than one sampling period or also if
simple UDP-like protocols are used, this will not be the case.
Here, a larger (although still finite) number of scenarios needs
to be considered by the controller. Alternatively, ~b(k − 1)
could be estimated based on plant state information. We note
that the simplification in communications technology, comes
here at the expense of larger controller complexity. 4

C. Control Packet Design

To keep the exposition simple, we will assume in the
sequel that the networked controller knows the previous buffer
contents4 ~b(k−1). We then propose that, at every time instant
k, the controller calculates control sequences associated with
each of the possible plant states x(k+τ), τ ∈ {0, 1, . . . , τmax},
resulting from the input scenarios in (7) and (8). The packet
to be sent is formed as:

U(k) =
{{

~u(k; 0, ~s
(1)
0 (k))

}
,
{
~u(k; 1, ~s

(i)
1 (k))

}
i
, . . .

. . . ,
{
~u(k; τmax, ~s

(n)
τmax

(k))
}

n

}
, (9)

4If ~b(k − 1) were unknown to the controller, then the networked control
strategy to be described could still be applied, recall Remark 1.
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Fig. 2. Selection logic at the plant input side.

In a practical implementation of the SBNC, whenever the buffer runs out of data, the plant
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input, see (1). Following (14), these values are implemented until newer values arrive. In
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where ~u(k; τ, ~s (j)
τ (k)) are sequences of length N ≥ 1:

~u(k; τ, ~s (j)
τ (k)) =

{
u(k + τ ; τ, ~s (j)

τ (k)), . . .

. . . , u(k + τ + N − 1; τ, ~s (j)
τ (k))

}
. (10)

In (10), u(k + τ + `; τ, ~s (j)
τ (k)) corresponds to the plant

input, which will be applied at time k + τ + `, whenever all
three of the following conditions are satisfied:

1) The packet U(k) arrives at time k + τ (errorless).
2) No packets U(k + m), m > 1 have been received up to

time k + τ .
3) The plant input over the interval {k, k+1, . . . , k+τ−1}

equals ~s
(j)
τ (k).

In (10), the prediction horizon length N is a design pa-
rameter. This allows the designer to trade-off computational
complexity and network usage against performance. (More
insight into this trade-off will be given in Sections V and VI.)

Each of the elements in (10) results from the underlying
policy κ`(·) : X → U, see (3). The key aspect, in the present
NCS setting, is that κ`(·) uses plant state predictions. To be
more precise, for τ ≥ 1 and j ∈ {1, 2, . . . , |Sτ (k)|}, the first
element in (10) is given by:

u(k+τ ; τ, ~s (j)
τ (k)) = κk+τ

(
x(k + τ ;x(k), ~s (j)

τ (k))
)

, (11)

where x(k + τ ;x(k), ~s (j)
τ (k)) is a prediction of the plant state

at time k + τ . This predictor results from iterating the system
equation (1) from initial state x(k) and with input sequence
~s

(j)
τ (k).5

For the case τ = 0, which corresponds to the ideal situation
when U(k) arrives with no delay, we simply set

x(k;x(k), {}) = x(k), u(k; 0, {}) = κk (x(k)) . (12)

For τ ≥ 0 and j ∈ {1, 2, . . . , |Sτ (k)|}, the remaining N−1
elements of (10) are then calculated recursively via:

x(k + τ + ` + 1;x(k), ~s (j)
τ (k))

= f(x(k + τ + `;x(k), ~s (j)
τ (k))), u(k + τ + `; τ, ~s (j)

τ (k))

and

u(k + τ + ` + 1; τ, ~s (j)
τ (k)))

= κk+τ+`+1

(
x(k + τ + ` + 1;x(k), ~s (j)

τ (k)
)

, (13)

where ` ∈ {0, 1, . . . , N − 1}. The initial values are as in (11)
or (12).

Remark 2 (Effective Bit-rates): It is worth mentioning that,
in general, the values in (9) which refer to a given time

5If x(k) is unknown at the controller side, then an estimate should be used.
As documented in Section VIII-B, good results can often be achieved even
in the output feedback case with measurement noise.

instant for different scenarios are highly correlated. Thus, one
can achieve efficient compression of the packets by applying
scalar- or vector-quantization and joint entropy coding [34].

D. Resultant Plant Input
To characterize the plant input, we note that, at the buffer

side, it will always be known which packets have been received
so far. Thus, whenever a fresh packet U(ki) ∈ U arrives,
the appropriate scenario from Sτ(ki)(ki) can be identified and
the buffer can be updated accordingly. Say this scenario is
~s

(j∗)
τ(ki)

(ki), then the buffer content at time ni = ki + τ(ki) is
set to:

~b(ni)← ~u(ki; τ(ki), ~s
(j∗)
τ(ki)

(ki)),

see (9). Thus, only the N values associated with the actual
delay experienced by U(ki), namely τ(ki), are stored in the
buffer. These values are kept until time instant ni+1 ∈ N ,
see (5).

The plant input at subsequent times is then given by the
elements of ~b(ni), i.e.,

u(ni + `)← u(ni + `; τ(ki), ~s (j∗)
τ (ki)),

∀` ∈ {0, 1, . . . , ni+1 − ni − 1}. (14)

until a newer packet arrives. The buffering scheme is illustrated
in Fig. 2.

We will call this control strategy Scenario-Based Networked
Control (SBNC).

Before proceeding, we note that, from (14), it follows that,
to avoid running out of data, we require that

ni+1 − ni ≤ N, ∀ni, ni+1 ∈ N . (15)

In a practical implementation of the SBNC, whenever the
buffer runs out of data, the plant input will be governed by
the open-loop control policy κf (`) used when determining the
plant input scenarios, see Section III-B.

Remark 3 (Relationship to Receding Horizon Control):
SBNC uses control signal predictions and, thus, bears some
connections to Receding Horizon Control [35]. It should be
noted, however, that SBNC can be formulated based upon
any state feedback control policy κ`(·), see (3). The control
sequences sent are obtained by evaluating κ`(·) for all plant
state predictions (within the model). This explicitly takes into
account possible delays and dropouts of all relevant packets.
The main feature, which distinguishes SBNC from other
approaches, is that all sequences are sent to the plant input
buffer, not only those associated with “nominal” or “worst
case” scenarios. This stands in stark contrast to standard
Receding Horizon Control methods, where only a single
control value is used, which is calculated for the current plant
state. It also differs to recent extensions of Receding Horizon
Control to NCS’s, such as [13]–[20], where a single plant
input prediction sequence is sent. 4
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IV. A SPECIFIC CASE

To provide additional insight into SBNC, we will consider
a simple case consisting of an (unconstrained) linear plant
obeying (1) with f(x, u) = Ax+Bu and where A ∈ Rη×η and
B ∈ Rη×ν . The underlying control policy is simply chosen as
the proportional state feedback controller κ`(x(`)) = Kx(`)−
Gr(`), where {r(`)}`∈N0 is the reference signal, and K and
G are given gain matrices. The prediction horizon length was
chosen as N = 5. The maximum (allowed) time delay was
set at τmax = 2.

Let us suppose that the packet U(k−2) arrives at time k−1
whilst U(k − 1) has not been received by time k − 1. Then,
the buffer sequence satisfies

~b(k − 1) = {u−1, u0, u1, u2, u3},

where {u−1, u0, u1, u2, u3} = ~u(k − 2; 1, {u(k − 2)}) and
u(k−2) refers to the past plant input, see (1). Following (14),
these values are implemented until newer values arrive. In
particular, we have u(k − 1) = u−1.

To compute U(k) at time k, the SBNC examines the
possible transmission outcomes for U(k − 1). This involves
the case where U(k−1) is dropped and the two allowed delay
situations, namely, τ(k − 1) ∈ {1, 2}.

If U(k−1) is lost, then only~b(k−1) needs to be considered.
For τ(k − 1) ∈ {1, 2}, we denote the elements of the
corresponding sequences via:

~u(k − 1; 1, {u−1}) = {ū0, ū1, . . . , ū4}
~u(k − 1; 2, {u−1, u0}) = {u1, u2, . . . , u5},

where u−1 and u0 stem from ~b(k − 1).
The sets of scenarios used for calculating U(k) are then:

S1(k) =
{
~s

(1)
1 (k), ~s (2)

1 (k)
}

,

S2(k) =
{
~s

(1)
2 (k), ~s (2)

2 (k), ~s (3)
2 (k)

}
,

where:

~s
(1)
1 (k) = {u0}, ~s

(2)
1 (k) = {u0}, ~s

(1)
2 (k) = {u0, u1},

~s
(2)
2 (k) = {u0, u1}, ~s

(3)
2 (k) = {ū0, ū1}. (16)

This gives |S0(k)| = 1, |S1(k)| = 2, |S2(k)| = 3 and the total
number of scenarios to be considered at time k is equal to 6.

If we denote the plant state at time k as x(k) = x0, then
the corresponding plant state predictions at times k + τ , τ ∈
{0, 1, 2} are:

x(k;x0, {}) = x0,

x(k + 1;x0, ~s
(1)
1 (k)) = f(x0, u0),

x(k + 1;x0, ~s
(2)
1 (k)) = f(x0, ū0),

x(k + 2;x0, ~s
(1)
2 (k)) = f(x(k + 1;x0, ~s

(1)
1 (k)), u1)

= f(f(x0, u0), u1),

x(k + 2;x0, ~s
(2)
2 (k)) = f(x(k + 1;x0, ~s

(1)
1 (k)), u1)

= f(f(x0, u0), u1),

x(k + 2;x0, ~s
(3)
2 (k)) = f(x(k + 1;x0, ~s

(2)
1 (k)), ū1)

= f(f(x0, ū0), ū1).

(17)

These values can be calculated recursively. The situation is
depicted in Fig. 3. 12

x0 x(k + 1; x0, {u0})u0 x(k + 2; x0, {u0, u1})u1

ū0

u1

x(k + 1; x0, {ū0})

x(k + 2; x0, {u0, u1})

ū1 x(k + 2; x0, {ū0, ū1})

Fig. 3. Construction of plant state predictions for times k + τ , τ ∈ {0, 1, 2}. The first row corresponds to the situation

where U(k − 1) is dropped, the second row to τ(k − 1) = 2, the third to τ(k − 1) = 1.

used to calculate !u(k; 2,!s (j)
2 (k)), j ∈ {1, 2, 3}. The resultant control packet is then given by

U(k) =
{{

!u(k, 0,!s (1)
0 (k))

}
,
{
!u(k, 1,!s (1)

1 (k)), !u(k, 1,!s (2)
1 (k))

}
,

{
!u(k, 2,!s (1)

2 (k)), !u(k, 2,!s (2)
2 (k)), !u(k, 2,!s (3)

2 (k))
}}

,

where, for every !s (i)
τ in (16),

!u(k, τ,!s (i)
τ (k)) =

{
u(k + τ, τ,!s (i)

τ (k)), · · · , u(k + τ + 4, τ,!s (i)
τ (k))

}
,

with6

u(k + #, τ,!s (i)
τ (k)) = K(x" − r(k + #)), # ∈ {τ, · · · , τ + 4}. (18)

In (18), plant state predictions are formed as:

x"+1 =






Ax" + B[!s (i)
τ (k)]"+1, # ∈ {0, 1, · · · , τ − 1}

Ax" + BKx" −BGr(k + #), # ∈ {τ, τ + 1, · · · , τ + 3},

with !s (i)
τ (k) =

{
[!s (i)

τ (k)]1, · · · , [!s (i)
τ (k)]τ

}
.

Note that, in the case considered so far, the only uncertainty that needs to be taken into

account to calculate U(k) is that related to the transmission of U(k− 1). However, if neither

U(k − 1) nor U(k − 2) were received at time k − 1, then more scenarios would need to be

considered. Indeed, if we denote:

!u(k − 2; 2, {u−2, u−1}) = {û0, û1, . . . , û4},

then, in this most complex case (remember that τmax = 2), and with the same notation as

above, we obtain

S1(k) = {{u0}, {û0}, {ū0}} , S2(k) = {{u0, u1}, {u0, u1}, {û0, û1}, {û0, u1}, {ū0, ū1}} ,

6Here we assume that the reference signal is known, at least, τmax + N − 1 steps in advance.

Fig. 3. Construction of plant state predictions for times k+τ , τ ∈ {0, 1, 2}.
The first row corresponds to the situation where U(k − 1) is dropped, the
second row to τ(k − 1) = 2, the third to τ(k − 1) = 1.

The state predictions in (17) are used to calculate the
elements of U(k). More precisely, the current state x0 is used
to calculate ~u(k; 0, {}); the state predictions in the second
column (see Fig. 3) are used to calculate ~u(k; 1, ~s

(j)
1 (k)),

j ∈ {1, 2}; those in the third column are used to calculate
~u(k; 2, ~s

(j)
2 (k)), j ∈ {1, 2, 3}. The resultant control packet is

then given by

U(k) =
{ {

~u(k, 0, ~s
(1)
0 (k))

}
,{

~u(k, 1, ~s
(1)
1 (k)), ~u(k, 1, ~s

(2)
1 (k))

}
,{

~u(k, 2, ~s
(1)
2 (k)), ~u(k, 2, ~s

(2)
2 (k)), ~u(k, 2, ~s

(3)
2 (k))

}}
,

where, for every ~s
(i)
τ in (16),

~u(k, τ, ~s (i)
τ (k)) =

{
u(k + τ, τ, ~s (i)

τ (k)), · · ·

. . . , u(k + τ + 4, τ, ~s (i)
τ (k))

}
,

with6

u(k + `, τ, ~s (i)
τ (k)) = K(x` − r(k + `)), ` ∈ {τ, · · · , τ + 4}.

(18)

In (18), plant state predictions are formed as:

x`+1 =

{
Ax` + B[~s (i)

τ (k)]`+1, 0 ≤ ` ≤ τ − 1
Ax` + BKx` −BGr(k + `), τ ≤ ` ≤ τ + 3,

with ~s
(i)
τ (k) =

{
[~s (i)

τ (k)]1, · · · , [~s (i)
τ (k)]τ

}
.

Note that, in the case considered so far, the only uncertainty
that needs to be taken into account to calculate U(k) is that
related to the transmission of U(k − 1). However, if neither
U(k−1) nor U(k−2) were received at time k−1, then more
scenarios would need to be considered. Indeed, if we denote:

~u(k − 2; 2, {u−2, u−1}) = {û0, û1, . . . , û4},

then, in this most complex case (remember that τmax = 2),
and with the same notation as above, we obtain

S1(k) =
{
{u0}, {û0}, {ū0}

}
,

S2(k) =
{
{u0, u1}, {u0, u1}, {û0, û1}, {û0, u1}, {ū0, ū1}

}
,

6Here we assume that the reference signal is known, at least, τmax+N−1
steps in advance.



6

which amounts to 1 + 3 + 5 = 9 scenarios. In Section VI we
will give bounds on the number of scenarios to be considered
in the control calculations.

V. PERFORMANCE OF SBNC

In this section we will characterize the performance of
SBNC. The main aspect here is that SBNC acts as a safe-
guard against network effects and, thus, improves the network
reliability as seen by the plant.

A. Characterization of SBNC trajectories

The power of SBNC as presented in Section III derives from
the fact that knowledge of all possible scenarios is used. The
approach adopted is entirely deterministic and, thus, network
delay and dropout probability distributions are not needed in
the calculations. Nevertheless, the NCS which results from
combining SBNC with the plant (1) and an unreliable network
will be stochastic. Performance will, thus, depend upon the
interplay between the SBNC parameters and the underlying
network behavior. This interplay is captured by means of
Theorem 1 below. We first define:7

peq(`) , 1− P {τ(`) = 0}

−
N−1∑
j=0

τmax∑
i=0

(i,j) 6=(0,0), i+j≤`

P
{

τ(`− i− j) = i ∧ τ(`) > 0

∧ τ(`− 1) > 1 ∧ · · · ∧ τ(`− j − i + 1) > j + i− 1
}

.

(19)

Theorem 1 (SBNC and erasure channels): Suppose that
the plant obeys (1), then the plant state trajectories when
controlled by the SBNC over the corresponding unreliable
network are given by

x(` + 1) = f(x(`), ur(`))

ur(`) = dr(`)κ`(x(`)) + (1− dr(`))κf (`), ∀` ∈ N0.
(20)

In (20),

dr(`) =

{
0, if 0 ≤ ` ≤ n1 − 1,
1, if n1 ≤ ` ≤ n1 + N − 1,

(21)

where n1 is the first “valid” arrival instant, see Section III-A.
For ` ≥ n1 + N , dr(`) is a Bernoulli random variable such

that:

P {dr(`) = 0} = peq(`),
P {dr(`) = 1} = 1− peq(`).

(22)

Proof: The proof is included in Appendix A.
Theorem 1 states that controlling a nonlinear constrained

unstable plant model over an unreliable channel by means of
SBNC amounts to controlling the same plant over an erasure
channel with equivalent data dropout probability peq(`). This
important result, implies that, in order to analyze or design
SBNC loops, it suffices to consider a setting wherein the

7Here and in the sequel P{Ω} stands for probability of Ω.

network is modeled via an erasure channel with a given
dropout probability (see, e.g., [5], [7]–[10], [36] and the many
references therein).

It should be emphasized here that if {τ(`)}`∈N0 is a
sequence of independent random variables, then

peq(`) = peq, ∀` ≥ max{n1 + N,N − 1 + τmax}, (23)

i.e., the equivalent probability, is a constant. However, {dr(`)}
is, in general not a sequence of independent random variables,
even if the underlying network delay and dropout distributions
are.

The equivalent dropout probability characterizes closed
loop control performance. It can be used as a guideline for
choosing the horizon length N and the timeout value τmax.
Indeed, peq(`) can be made arbitrarily small (and, thus, the
performance will become indistinguishable from that achieved
in the non-networked case). This is achieved by choosing
sufficiently large values for N and τmax, albeit at an increase
in computational complexity. (This aspect will be further
explored in Section VI.) Fortunately, in practice, choosing
moderate values for N and τmax is often sufficient to achieve
good performance as illustrated by the following example:

Example 1 (Effect of N and τmax on peq(`)): Consider a
situation where {τ(`)}`∈N0 is a sequence of i.i.d.8 geometric
random variables with parameter λ, i.e.,

P{τ(`) = i} = (1− λ)iλ, ∀` ∈ N0, i ∈ N0. (24)

This model (approximately) describes typical end-to-end delay
profiles over the Internet, as discussed in [33]. Note that λ→ 1
corresponds to a more reliable network and λ → 0 to a less
reliable one. As a specific illustration, Fig. 4 shows the delay
distribution for the case λ = 0.2.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

Network delay ( ! )

Pr
ob

ab
ilit

y

Fig. 4. Delay distribution (24) for λ = 0.2.

For P{τ(`) = i} as in (24), the equivalent dropout proba-
bility achieved by SBNC is given by:

peq = 1− λ− λ

N−1∑
j=0

τmax∑
i=0

(1− λ)i

j+i−1∏
k=0

(1− λ)k+1,

see (23) and (19).

8i.i.d. stands for independent and identically distributed
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Fig. 5. 1− peq as a function of N and τmax for λ = 0.2.
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Fig. 6. The equivalent probability peq as a function of N , for λ = 0.2 and
timeout value τmax = 2. The dashed line corresponds to the probability of
packets deemed lost.

For the illustrative case λ = 0.2, Fig. 5 shows a graph of
peq as a function of N and τmax. If the timeout value is set
to τmax = 2, then the probability of packets being considered
as lost is equal to the tail probability P{τ(`) > 2} = 0.51,
see (24).

It can be seen that for a fixed N (resp. fixed τmax), peq

is monotonic in τmax (resp. in N ). Also, for moderate values
of either N or τmax, one can make 1 − peq arbitrarily close
to 1. Indeed, even for this quite unreliable network, choosing
(N, τmax) = (4, 2) yields peq < 0.1. For τmax = 2, horizons
N ≥ 7 give peq < 0.06, which is much smaller than the
probability of packets being considered as lost, see Fig. 6.

B. Deterministic Results

As shown in Theorem 1, the use of SBNC leads to a
non-deterministic control system, where the stochastic features
arise from the fact that the buffer may run out of data with
non-zero probability. In some situations, however, it is possible
to give deterministic results as follows:

Corollary 1 (SBNC reduces to non-networked control):
Suppose that the plant obeys (1) and that (15) holds. Then,

x(` + 1) = f(x(`), κ`(x(`))), ∀` ≥ n1. (25)

Proof: If (15) holds, then the buffer never runs out of
data and peq(`) = 0 for every ` ≥ n1. Expression (25) then
follows from Theorem 1.

Corollary 1 states the intuitively clear result that, if the
buffer never runs out of data, then the trajectories of the SBNC
are exactly the same as in the non-networked case. This is an
interesting result, but may be difficult to achieve in practice.
A non-trivial case where this may be achieved arises when
the network has no dropouts and the maximum delay value
is bounded by, say τ̂ ∈ N, see, e.g., [14], [37], [38]). In this
case, choosing τmax ≥ τ̂ guarantees that (15) holds and SBNC
makes the network transparent (within the model).

If the conditions of Corollary 1 are met, then we can also
derive deterministic stability conditions. To that end, we begin
by examining the start-up trajectory, namely

~x0 , {x(0), x(1), . . . , x(n1)}.

Since no packet arrives before time n1, the trajectory ~x0 is
completely determined by the initial state, say x(0) = x0 and
the initial buffer, say ~b(0) = {b0, b1, . . . , bN−1}.9 Indeed, ~x0

can be calculated directly from the system:

x(` + 1) = f(x(`), b`), ∀` ∈ {0, 1, . . . , n1 − 1}
x(0) = x0

(26)

Equation (26) allows us to conclude the following:
Corollary 2 (Stability): Suppose that κ`(·) used in the

SBNC is chosen such that the non-networked system (1)–(3)
is stable (in any deterministic sense) when starting at time
` = n1 with state x(n1) given by (26). Then, the same system,
having initial state x(0) = x0, when controlled with the SBNC
over an unreliable network, is also stable (in the same sense)
provided (15) holds.

Proof: This is an immediate consequence of Corollary 1.

Corollaries 1 and 2 allow one to establish deterministic
performance and stability guarantees for the NCS directly
in the design procedure. These guarantees hold for general
constrained non-linear stable and unstable plants controlled
via an unreliable packet-network with data-dropouts and un-
known time-varying delays satisfying (15). This should be
contrasted with the results concerning other packet-based NCS
approaches, such as, [13]–[18], [20]. In the latter, stability
guarantees are restricted to a smaller class of plants or net-
works and often require careful case-by-case analysis.

Remark 4: We note that (15) is a quite natural demand
on the network quality of service, since between successful
transmission instants the plant is necessarily operated in open-
loop. However, we stress that, as shown in Theorem 1, we do
not need this condition to hold for the proper operation of
SBNC. Expression (15) is merely a sufficient condition for
SBNC to give performance identical to the non-networked

9In accordance with (15), we will assume n1 ≤ N .
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case. If (15) is not always satisfied, then performance is
characterized by the results of Section V-A.

Requirements similar to (15) also appear in other packet-
based NCS strategies. For instance, for erasure channels (i.e.,
where τmax = 0), (15) reduces to N being larger than a bound
on the consecutive packet dropouts. In this case, closed loop
stability guarantees can also be established by using open-loop
predictions [20]. 4

Remark 5 (Robustness): Our analytical results concern the
ideal setting, where the plant is exactly described by (1).
Whilst this assumption is commonly made in the literature
which deals with stability of NCS’s, it would certainly be
informative if stability and performance were addressed for
more general situations, such as when the plant is affected
by unmodeled disturbances, measurement noise or when there
is plant-model mismatch. Note that, given the results in [39],
[40], there appears to be little hope that deterministic stability
and performance guarantees could be obtained for the general
framework we are considering in the present work, which,
inter-alia, includes unstable constrained nonlinear plants con-
trolled via networks having finite bit-rates and affected by
data-loss, see also [4]. Despite the above, and as will become
apparent from the simulation results included in Section VIII,
the SBNC can be expected to give good performance, even
when (1) is only an approximate description of the plant
behaviour. 4

VI. COMPLEXITY ANALYSIS

As shown in the previous section, good performance can
be achieved using SBNC in the presence of an unreliable
network, especially if the horizon N and timeout value τmax

are chosen large enough. This attractive feature comes at a
price, namely, the computational cost involved in calculating
the control packets U(k) for large N and τmax. In this section
we quantify complexity of SBNC as a function of the design
parameters and the network characteristics.

A. Basic Aspects

It follows directly from (9) that implementing SBNC in-
volves calculating

C(k) , N

τmax∑
τ=0

|Sτ (k)| (27)

control values at each time instant k. Thus, the complexity
of SBNC is proportional to the horizon length N and to
the total number of scenarios considered at each time. As
already foreshadowed in the example given in Section IV,∑τmax

τ=0 |Sτ (k)| depends upon how many valid packets are still
in the network, and, therefore, upon the time when the buffer
contents ~b(k − 1) were generated.

For example, in the case where U(k − 1) is received
undelayed, only the buffer contents at time k−1 are needed to
determine U(k). In more general situations, where τ(k−1) >
0 so that ~b(k− 1) stems from U(k−n), n ≥ 2, the sets taken

into account to calculate U(k) are:

{
(U(k − n + 1), τ̄(k − n + 1)) ,

(U(k − n + 2), τ̄(k − n + 2)) , . . .

. . . , (U(k − 1), τ̄(k − 1))
}

τ∈{1,2,...,τmax}
. (28)

In (28), for all τ ∈ {1, 2, . . . , τmax} and for all ` ∈
{0, 1, . . . , n− 1}, the values τ̄(k − n + `) ∈ {1, 2, . . . , τmax}
are all possible combinations such that, for all τ̄(k−n+ `) ∈
{1, 2, . . . , τmax}, it holds that:

k − n + ` + τ̄(k − n + `) ∈ {k, k + 1, . . . , k + τ − 1} (29)
τ̄(k − n + `− j) ≤ τ̄(k − n + `), ∀j ≥ 1. (30)

It is worth noting that (30) results from the precedence rule
imposed by the buffer selection logic, see Section III-A and
from the fact that the number of pairs in (28) depends upon
the timeout value τmax.

B. Bounds on Complexity

To give further insight into the complexity of SBNC for a
given timeout value τmax, we will denote the total number of
scenarios to be considered at each time k ∈ N0, when the
buffer contents ~b(k− 1) were generated at time k− η(k), via
Iτmax(η(k)), i.e.

Iτmax(η(k)) ,
τmax∑
τ=0

|Sτ (k)|, η(k) ∈ {1, 2, · · · , τmax + 1}.

(31)
Clearly, Iτmax(η(k)) is monotonically increasing in η(k).

Thus, the minimum and maximum complexity of SBNC
satisfy:

Cmin = min
η(k)∈{1,··· ,τmax+1}

NIτmax(η(k)) (32)

= N Iτmax(1),
Cmax = max

η(k)∈{1,··· ,τmax+1}
NIτmax(η(k)) (33)

= N Iτmax(τmax + 1),

where N is the horizon length.
It can be shown (by a somewhat nontrivial inductive argu-

ment) that Iτmax(η(k)) can be calculated recursively from:

Iτmax(1) = τmax + 1
Iτmax(τmax + 1) = Iτmax(τmax) + Iτmax−1(τmax)
Iτmax(η(k)) = Iτmax(η(k)− 1) + Iτmax−1(η(k)),

η(k) ∈ {2, 3, · · · , τmax}.

(34)

Table I gives some numerical values for Iτmax(η(k)).
The following result establishes upper bounds for
Iτmax(η(k)) and for the worst case complexity Cmax:

Lemma 1 (Upper bounds): The total number of scenarios
Iτmax(η(k)) and the maximal complexity of SBNC satisfy the
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TABLE I
NUMBER OF SCENARIOS Iτmax (η(k)), SEE (31), FOR SOME VALUES OF

η(k) AND τmax .

η(k)
τmax 1 2 3 4 5 6 7 8 9

0 1 - - - - - - - -
1 2 3 - - - - - - -
2 3 6 9 - - - - - -
3 4 10 19 28 - - - - -
4 5 15 34 62 90 - - - -
5 6 21 55 117 207 297 - - -
6 7 28 83 200 407 704 1001 - -
7 8 36 119 319 726 1430 2431 3432 -
8 9 45 164 483 1209 2639 5070 8502 11934

following upper bounds:

Iτmax(η(k)) ≤
η(k)−1∑

`=0

(
τmax + 1
τmax − `

) (
η(k)− 1

`

)
(35)

Cmax ≤ N

τmax∑
`=0

(
τmax + 1
τmax − `

) (
τmax

`

)
= N

(
2τmax + 1

τmax

)
.

(36)

Proof: The proof is included in Appendix B.

C. Average Complexity

To characterize the average complexity of SBNC for a given
timeout value τmax, we denote the probability that ~b(k − 1)
was generated at time k − η, η ∈ {1, 2, · · · , τmax + 1} by
P(η). Clearly, for n = 1 we have P(1) = P {τ(k − 1) = 0}.
For larger values of n it holds that

P(2) = P
{
τ(k − 2) ∈ {0, 1} ∩ τ(k − 1) ≥ 1

}
,

P(3) = P
{
τ(k − 3) ∈ {0, 1, 2} ∩ τ(k − 2) ≥ 2

∩ τ(k − 1) ≥ 1
}

and, more generally,

P(η) , P
{

τ(k − η) ∈ {0, 1, · · · , η − 1}
η−1∧
`=1

τ(k − `) ≥ `
}

.

(37)

Given the above, the average (or expected) complexity of
SBNC is given by

Cavg(k) = N

τmax+1∑
η=1

P(η)Iτmax(η). (38)

The following upper bound for Cavg(k) then follows directly
from Lemma 1:

Cavg(k) ≤ N

τmax+1∑
η=1

η−1∑
`=0

(
τmax + 1
τmax − `

)(
η − 1

`

)
P(η).

Note that, if {τ(k)}k∈N0 is a sequence of i.i.d. random
variables, each one having cumulative probability function
F (·), then the probabilities P(η) in (37) are simply given by

P(η) = F (η − 1)
η−1∏
`=1

(1− F (`− 1)).

VII. ALTERNATIVE STRATEGIES

SBNC examines all possible plant input scenarios in (7).
This feature, in conjunction with the use of appropriate closed
loop policies κ`(·), allows one to derive the performance
results presented in Section V. As seen in Section VI, the
complexity of SBNC will be significant for large values
of timeout, τmax, and horizon length, N . Although often
moderate values of τmax and N will give good results, in
some applications, simpler strategies may be preferable. We
will next briefly outline two such alternatives.

A. Central SBNC

An extremely simple variant of SBNC can be formed by
calculating U(k) based only on the input scenario resulting
from the (known) buffer state ~b(k − 1), without accounting
for any packets (other than U(k)) which could arrive at times
k, k + 1, . . . , k + τ(k)− 1.

More precisely, at every time instant k, given the state
x(k) = x0, the buffer sequence

~b(k − 1) = {u−1, u0, u1, . . . , uN−2},

and with N ≥ τmax + 2, the control strategy sends only:

U(k) =
{
~u(k; 0, {}), ~u(k; 1, {u0}), ~u(k; 1, {u0, u2}), . . .

. . . , ~u(k; τmax, {u0, . . . , uτmax})
}

, (39)

where we have used the notation of Section III-C.
If the prediction horizon is chosen such that N < τmax +2,

then one can simply set:

uN−2+j = uN−2, ∀j ∈ {0, 1, . . . , τmax −N + 2}.

Note that in (39), there are only τmax + 1 sequences of
length N to be calculated.

We will call this strategy Central SBNC. It requires only
very limited computational effort. Unfortunately, the perfor-
mance and stability results for SBNC obtained in Section V
do not, in general apply to Central SBNC. Nevertheless, it can
be expected that, for fairly reliable networks and small τmax,
Central SBNC will give good results. In particular, for erasure
channels (where τmax = 0), SBNC reduces to Central SBNC.

B. Handshaking SBNC

If reliable acknowledgment procedures are available, then
one can modify the transmission policy of Central SBNC
described above such that the controller only sends packets
U(k), once it knows whether the last packet sent has been
received or has been dropped. This reduces network usage
further and impedes the possibility that more than one packet is
on the network at the same time. Consequently, any uncertainty
on future plant inputs is eliminated. We call the associated
strategy Handshaking SBNC.

It is easy to see that, with this transmission procedure and
provided U(k) is designed as in (39), performance and stabil-
ity results similar to those of SBNC presented in Section V
can be derived. Note that, in general, larger horizon lengths
N will need to be used.
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Nevertheless, it is worth emphasizing that, between suc-
cessful transmission instants, the plant operates in open loop.
Thus, in the presence of disturbances, etc., this modification of
SBNC may give poor performance, due to the reduced network
access.

VIII. SIMULATION STUDIES

To illustrate the properties of SBNC and its reduced com-
plexity variants, we will next document simulation studies for
non-idealized cases, i.e., where (1) does not hold due to the
presence of disturbances and measurement noise. For future
reference, we present in Fig. 7 the two specific i.i.d. network
delay distributions that will be considered. In the sequel, we
will refer to these two situations as Network A and Network
B, respectively. The prediction horizon N and timeout value
τmax are used as SBNC design parameters. Note that in the
case of Network A, if one sets τmax ≤ 4, then most packets
will be effectively lost. For Network B, if τmax is chosen to
be larger than 3, then almost no packets will be considered as
lost.

For simplicity, we take κf such that κf (`) = u(`− 1), i.e.,
empty buffers are dealt with by keeping plant inputs at their
current value.
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Fig. 7. Delay distributions of the networks examined.

A. Nonlinear Plant Model

Consider the following stable nonlinear plant having scalar
input (adapted from Example 19.3 in [26])

x1(` + 1) = x1(`) + 0.01
(
x2(`) + x2(`)3

)
x2(` + 1) = x2(`) + 0.01

(
− 2x1(`)− 3x2(`)

+ u(`)
(
1 + 0.1x1(`)2

))
y(`) = x1(`) + d(`),

where x(`) = [x1(`) x2(`)]T is the plant state at time `,
{u(`)} is the plant input, {y(`)} is the plant output, and {d(`)}
is a piecewise constant output disturbance having infrequent
steps at random times. Both the plant state and disturbance

measurements are affected by Gaussian white noise of variance
σ2

d = 0.01 and σ2
x = 0.04I2, respectively.

The control objective is to achieve reference tracking for
the plant output. Whilst future reference values are known to
the controller, future disturbances are not. For simplicity, the
latter are assumed constant for control calculations.

The underlying controller is given by (see [26]):

κ`(x(`)) =
ry(`)− d(`)−B(x(`))

A(x(`))
,

where {ry(`)} is the reference for y(`),

A(x) = (1 + 3x2
2)(1 + 0.1x2

1)/9,

B(x) = −(2x1 + 6x2
2x1 + 9x3

2 − 4x2 − 4x3
2 − 9x1)/9.

To investigate the effect on performance of the SBNC design
parameters τmax and N , we consider Network A, see Fig. 7.10

Fig. 8 shows typical plant output trajectories for step-like
reference and disturbances given by:

ry(`) = µ(`) + µ(`− 1800), d(`) = µ(`− 3600),

where µ(k) denotes a unit step at time k. For each pair
(N, τmax) we also calculated the equivalent dropout proba-
bility peq(`) (see Theorem 1) and the average complexity Ca

(see (38)).
As expected, closed loop performance improves when N

and τmax are increased. However, it is also appreciated that
there are cases where increasing N has no obvious effect
on SBNC performance. This is easily explained if one notes
that, as suggested by the results of Theorem 1, the equivalent
dropout probability peq is the key parameter determining
SBNC performance. Indeed, cases with very disparate values
of N or τmax can exhibit similar performance if the corre-
sponding equivalent dropout probabilities are similar.11

It is also informative to compare the probability of a packet
being effectively lost due to the choice of τmax, and the
equivalent dropout probability peq (which depends on the
interplay between N and τmax). It follows from Fig. 7 that
if τmax ∈ {1, 2, 7}, then P{τ(k) > τmax} equals 0.959, 0.877
and 0.143, respectively. Our results show that by a proper
choice of N one can decrease this probability dramatically. It
must be noted, however, that if one chooses N too small (as
compared with τmax), then peq could be larger than P{τ(k) >
τmax} (see the case (N, τmax) = (2, 7)). This is due to the fact
that, in those cases, the buffer will run out of data quite often.

It is also worth mentioning that, for this problem, using
τmax = 0, does not stabilize the loop for any value of N .
In addition, the simple policy that regards all delayed data as
lost and only sends the current plant input, i.e., SBNC with
N = 1 and τmax = 0, gives unstable behaviour also. This
strongly supports the use of the more complex SBNC scheme
advocated here.

10As mentioned in Section V-A, SBNC does not use the delay profiles.
11Consider, for example, the cases (N, τmax) = (15, 1) and (N, τmax) =

(2, 2) or, more dramatically, (N, τmax) = (6, 7) and (N, τmax) = (15, 7).
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Fig. 8. SBNC Closed loop performance as a function of N and τmax.

B. Output Feedback

To examine the alternative strategies described in Sec-
tion VII, we next consider an unstable linear plant given by12

x(` + 1) =
[

1.184 0.5362
−0.01543 −0.7164

]
x(`) +

[
1
1

]
(u(`) + d(`))

y(`) =
[
1 1

]
x(`).

As in the previous situation, we focus on reference tracking
and disturbance rejection at the plant output and use

r(`) = µ(`)− 2µ(`− 20) + 3µ(`− 40),
d(`) = −0.5µ(`) + µ(`− 60).

The controller does not have access to the plant state or distur-
bance measurements. Only noisy plant output measurements
are available. The measurement noise is taken as white and
Gaussian of variance 10−3. We design SBNC based upon
using a standard full order observer for an augmented plant
model that includes a disturbance description, and static esti-
mated state feedback combined with a reference feedforward
gain; see, e.g., [26].13

We compare SBNC, Central SBNC and Handshaking
SBNC. Fig. 9 illustrates our results for Network B. In each

12The dynamics matrix was chosen randomly.
13We assume no data loss in the estimation-link.

of the cases shown, we have chosen parameters N and τmax

consistent with keeping computational burden low, whilst
maintaining good performance. It can be clearly seen that,
for the fairly reliable network considered here, and for these
particular tuning parameters, all three methods give good
performance. Under these conditions, the alternative strategies
proposed in Section VII are certainly appealing.

Interestingly, in the case of Central SBNC, increasing τmax

can have a negative impact on loop performance. This is
due to the fact that the Central SBNC uses only the current
buffer content to predict plant states at future possible arrival
time instants. Due to disturbance changes and arrival of other
packets, the actual plant state may differ substantially from
the predicted one. Since the plant is unstable, this mismatch
often has negative consequences. This effect does not occur
in the SBNC and the handshaking SBNC, since more precise
predictions are used.

We next consider Network A. Here, one should bear in mind
that, due to network effects, the (open loop unstable) plant is
unavoidably operated in open-loop over many successive time
instants. Fig. 10 shows typical output trajectories. In this case,
the SBNC performs well. However, the Central SBNC and
the Handshaking SBNC are incapable of providing acceptable
performance.

It is interesting to note that, in accord with observations
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made above, increasing the value of τmax in the Central SBNC
case leads to unacceptable performance and even instability.
This can be explained as before. Also, higher values for N and
τmax lead, as expected, to better performance in the SBNC and
Handshaking SBNC cases.

As in the case considered in Section VIII-A, if τmax = 0,
then the closed loop becomes unstable for the Network A and
any prediction horizon N .

IX. CONCLUSIONS

In the present work we have presented a strategy for closed
loop control of non-linear plants over unreliable networks
having data-dropouts and variable time-delays. Our proposal
uses transmission of packets containing various plant input
sequences, which are calculated by considering the various
scenarios associated with possible transmission outcomes. The
method can be used to embellish any state-feedback control
law.

We have shown that, under nominal conditions, the resultant
NCS is equivalent to an NCS which operates over a network
without time-delays and with a small data-dropout probability.
In some situations, closed loop stability and performance, in
the networked case, are directly inherited from that which
would be achieved if the network were transparent.

Design parameters, namely prediction horizon N and time-
out value τmax, allow one to trade-off control, computation and
communication aspects. In some cases, simplified strategies
lead to acceptable results. Future work could include a further
study of the simplified strategies described in Section VII and
the treatment of stochastic disturbances and modeling errors.

APPENDIX

A. Proof of Theorem 1

Since (1) holds, we have that

x(ni + `;x(ki), ~s (j∗)
τ (ki)) = x(ni + `),

∀` ∈ {0, 1, . . . ,min{N − 1, ni+1 − ni − 1}}, ∀i ∈ N.

It then follows from (14), (11) and (13) that ∀i ∈ N and for
all ` ∈ {0, 1, . . . ,min{N − 1, ni+1 − ni − 1}}, we have:

u(ni + `) = κni+` (x(ni + `)) .

Therefore, provided valid received data is in the buffer at time
`, we have u(`) = κ`(x(`)). On the other hand, if no valid
data is present at time `, i.e., if the buffer runs out of data or
no data has ever been received, then, by definition of SBNC,
u(`) = κf (`). Expression (21) then follows on noting that, for
0 ≤ ` ≤ n1− 1, no data arrives, and that the first time instant
at which the buffer may run out of data is ` = n1 + N .

To prove (22), we first observe that 1−peq(`) =
∑N−1

j=0 Pj ,
where

Pj , P {data which is still valid at instant ` arrived at k − j}
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We have

P0 = P
{
τ(`) = 0

}
+ P

{
τ(`) > 0 ∧ τ(`− 1) = 1

}
+ P

{
τ(`) > 0 ∧ τ(`− 1) > 1 ∧ · · ·

· · · ∧ τ(`− τmax + 1) > τmax − 1 ∧ τ(k − τmax) = τmax

}
,

P1 = P
{
τ(`) > 0 ∧ τ(`− 1) = 0

}
+ P

{
τ(`) > 0 ∧ τ(`− 1) > 1 ∧ τ(`− 2) = 1

}
+ P

{
τ(`) > 0 ∧ τ(`− 1) > 1 ∧ · · ·

· · · ∧ τ(k − τmax) > τmax ∧ τ(k − τmax − 1) = τmax

}
,

and, more generally, Pj =
∑τmax

i=0 Pji, where:

Pji , P
{
τ(`− i− j) = i ∧ τ(`) > 0 ∧ τ(`− 1) > 1 ∧ · · ·

· · · ∧ τ(`− (j + i− 1)) > j + i− 1
}
.

The result follows.

B. Proof of Lemma 1

To compute the bound (35) we will allow all packets {U(k−
τmax), · · ·U(k − 1)} to be considered valid if they arrive at
any of the instants {k, k + 1, . . . , k + τmax}.14

Pick any n, i.e., assume that the last valid packet was U(k−
n). Define ` as the number of packets, besides U(k), that
could arrive at the instants {k, k + 1, . . . , k + τmax}. Clearly,
` ∈ {0, 1, · · · , n−1} and, for every `, the number of different
combinations that can be made out of the n− 1 packets that

may arrive equals
(

n− 1
`

)
.

On the other hand, there exist τmax + 1 instants at which
data may arrive. Noting that the number of ways in which a
given set of ` packets (besides U(k)) may arrive in {k, k +
1, . . . , k+τmax} equals the number of ways in which τmax−`
non-arrivals can be chosen out of the τmax + 1 possibilities,
we conclude that, for every `, the number of scenarios is upper

bounded by
(

τmax + 1
τmax − `

)(
n− 1

`

)
. Summing for all values of

` gives (35). Equation (36) follows directly from (33) and
Vandermonde’s convolution formula [41].
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