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Control Primitives for Robot Systems 

Richard M. Murray, D. Curtis Deno, Kristofer S. J. Pister, 
and S. Shankar Sastry 

Abstract-A set of primitive operations i s  presented that forms the core 
of a robot system description and control language. The actions of the 
individual primitives are derived from the mathematical structure of the 
equations of motion for constrained mechanical systems. The recursive 
nature of the primitives allows composite robots to be constructed from 
more elementary daughter robots. A few pertinent results of classical 
mechanics are reviewed, the functionality of our primitive operations is 
described, and several different hierarchical strategies for the description 
and control of a two-fingered hand holding a box are presented. 

The complexity of compound, redundant robotic systems, both in 
specification and control, continues to present a challenge to engineers 
and biologists. Complex robot actions require coordinated motion 
of multiple robot arms or fingers to manipulate objects and respect 
physical constraints. As we seek to achieve more of the capability 
of biological robots, additional descriptive structures and control 
schemes are necessary. A major aim of this work is to propose.such 
a specification and control scheme. 

The ultimate goal of our project is to build a high-level task 
programming environment that is relatively robot independent. In this 
paper, we describe a language for constructing hierarchical controllers 
for complex robot systems. Our primary example is a multifingered 
robot hand. A typical task for such a system might entail moving to an 
object, grasping and manipulating the object, and using the object to 
perform a higher level task. Each of these phases of the task requires 
a separate controller that is compatible with the constraints on the 
system and the task objective. The primitives described in this paper 
allow these controllers to be constructed in a simple and organized 
fashion. Furthermore, as a consequence of the recursive nature of the 
primitives, it is possible to introduce a degree of device independence 
in constructing higher level controllers. 

This paper is organized as follows: In Section I1 we review 
the dynamics and control of coupled, constrained rigid robots in 
a Lagrangian framework. Section I11 contains definitions of the 
primitives of our robot control environment. Section IV illustrates 
the application of our primitives to the description of a two-fingered 
robot hand. We show that our environment can be used to specify 
a variety of control schemes for this hand, including a distributed 
controller that has a biological analog. Section V extends the basic 
primitives to include specification and control of constraint forces 
and redundant motion. In Section VI we discuss future avenues of 
research. The remainder of this introduction presents motivation and 
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background for our work, and an overview of the primitives we have 
chosen to use. 

A.  The Musculoskeletal System: Metaphor for a Robotic System 

Motivation for a consistent specification and control scheme may 
be sought in our current knowledge of the hierarchical organization 
of mammalian motor systems. To some degree of accuracy, we may 
consider segments of limbs as rigid bodies connected by rotary joints. 
Muscles and tendons are actuators with sensory feedback that enter 
into low-level feedback control at the spinal level [12]. Further 
up the nervous system, the brainstem, cerebellum, thalamus, and 
basal ganglia integrate ascending sensory information and produce 
coordinated motor commands. At the highest levels, sensory and 
motor cortex supply conscious goal-related information, trajectory 
specification, and monitoring. 

'The hierarchical structure of neuromuscular control is also evident 
from differences in time scale. The low-level spinal reflex control runs 
faster (loop delays of about 30 ms) than the high-level feedback loops 
(100-200 ms delays). This distinction may be exploited by control 
schemes that hide information details from high-level controllers 
by virtue of low-level control enforcing individual details. These 
concepts are shown in Fig. 1 where a drawing of neuromuscular 
control structures for a finger is juxtaposed with a block diagram to 
emphasize the hierarchical nature of the thumb-forefinger system for 
picking up objects. 

Biological control systems commonly operate with constraints 
and redundancy. Kinematic constraints arise not only from joints 
that restrict the relative motion of adjacent limb segments, but 
also from contact with objects that leads to similar restrictions. 
Many musculoskeletal subsystems possess kinematic and actuator 
redundancy that may be imagined to be resolved by effort and stability 
considerations. In any event, the neural controller directs a specific 
strategy and so expands a reduced set of control variables into the 
larger complete set. 

In the sequel we shall see these concepts expressed in a notation 
that is faithful to the laws of mechanics and flexible enough to permit 
concise descriptions of robot motion control at various hierarchical 
levels. 

The robotics and control literature contains a number of topics that 
are related to the specification and control scheme of this paper. 

Robot Programming Languages: Two directions of emphasis may 
be used to distinguish robot programming languages: traditional pro- 
gramming languages (perhaps including multitasking), and dynamical 
systems based descriptions of systems and control structures. 

More traditional task specification languages include VAL 11, 
AML, and Robot-BASIC [7], [25], [ l l ] ,  [26]. These languages are 
characterized by C-, BASIC-, or Lisp-like data structures and syntax, 
coordinate frame specification and transformation primitives, sensor 
feedback conditionally controlling program flow, and motion between 
specified locations achieved through via points and interpolation. In a 
two stage hierarchy, low-level controllers usually control joint angle 
trajectories that are specified by high-level language statements and 
kinematics computations. 

Brockett's motion description language (MDL) [3], [lo] is more 
closely aligned with dynamical systems theory. MDL employs 
sequences of triples ( u ,  k , T )  to convey trajectory information, 
feedback control information, and time interval to an extensible 
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Fig. 1. Hierarchical control scheme of a human finger. At the highest 
level, the brain is represented as sensory and motor cortex (where sensory 
information is perceived and conscious motor commands originate) and 
brainstem and cerebellar structures (where motor commands are coordinated 
and sent down the spinal cord). A pair of fingers forms a composite system 
for grasping that is shown integrated at the level of the spinal cord. The 
muscles and sensory organs of each finger form low-level spinal reflex 
loops. These low-level loops respond more quickly to disturbances than 
sensory-motor pathways that travel to the brain and back. Brain and spinal 
feedback controllers are represented by double lined boxes. 

ForthIPostScript like interpreter. The scheme described in this paper 
was inspired partly by descriptions of MDL. Our work explicitly 
utilizes geometric and inertial parameters together with the equations 
of motion to describe the organization and control of complex robots. 
MDL is less explicit on this matter but is more completely developed 
in the matter of sequences of motions. 

An object oriented approach similar to that presented here has 
been described by Cutkosky, Howe, and Witkin [8]. They present 
a method for describing the dynamics of a robot hand grasping an 
object. The advantage of the method they propose is that it is very 
general and does not rely on rigid contact models, allowing compliant 
fingertips to be considered. Their method is closely related to graph 
theoretic methods in mechanics that keep track of generalized forces 
and displacements along branches of a graph representing the system 
interconnection. The main emphasis of their approach is on system 
description rather than controller design. It is precisely because we 
are interested in designing controllers that we have initially limited 
the class of interconnections we are allowed. 

Distributed Control, Hierarchical Control: The nervous system 
controls biomechanical robots using both distributed controllers and 
hierarchical organization [12]. For example, spinal reflex centers can 
direct portions of gait in cats and the wiping motions of frog limbs 
without the brain. One reason for a hierarchical design is that high- 
level feedback loops may respond too slowly for all of motor control 
to be localized there. Indeed the complexity and time delays inherent 
in biological motor control led the Russian psychologist Bernstein to 
conclude the brain could not achieve motor control by an internal 
model of body dynamics [13]. 

Centralized control has been defined as a case in which every 
sensor's output influences every actuator. Decentralized control was 
a popular topic in control theory in the late 1970's and led to a 
number of results concerning weakly coupled systems and multi- 
rate controllers [29].  Graph decomposition techniques, applied to the 
graph structures employed in a hierarchical scheme, permitted the 
isolation of sets of states, inputs, and outputs that were weakly cou- 
pled. This decomposition facilitated stability analyses and controller 
design. Robotic applications of hierarchical control are exemplified by 
HIC [S],  which manages multiple low-level servo loops with a robot 
programming language from the "traditional" category above. One 
emphasis of such control schemes concerns distributed processing 
and interprocess communication. 

C. Overview of Robot Control Primitives 

The fundamental objects in our robot specification environment 
are objects called robots. In a graph theoretic formalism they are 
nodes of a tree structure. At the lowest level of the tree are leaves 
that are instantiated by the d e f i n e  primitive. Robots are dynamical 
systems that are recursively defined in terms of the properties of their 
daughter robot nodes. Inputs to robots consist of desired positions and 
conjugate forces. The outputs of a robot consist of actual positions 
and forces. Robots also possess attributes such as inertial parameters 
and kinematics. 

There are two other primitives that act on sets of robots to yield 
new robots, so  that the set of robots is closed under these operations. 
These primitives ( a t t a c h  and c o n t r o l )  may be considered as 
links between nodes and result in composite robot objects. Thus nodes 
closer to the root may possess fewer degrees of freedom, indicating 
a compression of information upon ascending the tree. 

The a t t a c h  primitive reflects geometrical constraints among 
variables and in the process of yielding another robot object, ac- 
complishes coordinate transformations. A t t a c h  is also responsible 
for a bidirectional flow of information: expanding desired positions 
and forces to the robots below, and combining actual position and 
force information into an appropriate set for the higher level robot. 
In this sense the state of the root robot object is recursively defined 
in terms of the states of the daughter robots. 

The c o n t r o l  primitive seeks to direct a robot object to follow a 
specified "desired" positionlforce trajectory according to some control 
algorithm. The controller applies its control law (several different 
means of control are available such as PD and computed torque) 
to the desired and actual states to compute expected states for the 
daughter robot to follow. In turn, the daughter robot passes its actual 
states through the controller to robot objects further up the tree. 

The block diagram portion of Fig. 1 may be seen to be an example 
of a robot system comprised of these primitives. Starting from the bot- 
tom: two fingers are d e f i n e d ;  each finger is c o n t r o l l e d  by muscle 
tensionlstiffness and spinal reflexes; the fingers are a t t a c h e d  to 
form a composite hand; the brainstem and cerebellum help c o n t r o l  
and coordinate motor commands and sensory information; and finally 
at the level of the cortex, the fingers are thought of as a pincer that 
engages in high-level tasks such as picking. 

The language primitives presented in this paper are intended to 
codify the description and control of hierarchically organized robots 
in contact with the environment. This is useful both as an analytic 
procedure to explore complex control laws, as well as a practical 
tool to implement control laws at different levels in hierarchical 
systems-where many different control laws may be needed to 
accomplish a task. In particular, we are very interested in systems 
for which the elementary robots remain unchanged, but the system 
constraints are variable. Such an environment is present, for example, 
in the contiol of a multi-fingered robot hand picking up an object. 
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We make a number of assumptions to simplify the initial analysis. 
We will assume that .I is bijective in some neighborhood and that 
G is surjective. For the primitives presented in the next section, we 
also assume that there exists a forward kinematic function h:  0  w .r;  
that is, the constraint is holonomic. We discuss the consequences of 
removing these assumptions in later sections. 

To include velocity constraints we again appeal to Lagrange's 
equations. Following the approach in Rosenberg [27], the equations 
of motion for our constrained system can be written as 

where 

Fig. 2. Planar two-fingered hand. Contacts are assumed to be maintained M = M + G J - ~ A ~ O J - ' G ~  
throughout the motion. For this particular system the box position and 
orientation, x, form a generalized set of coordinates for the system. c = c + G J - ~  ( c ~ . J - ' G ~  + dfo(d/dt) ( J - ' G r ) )  

N = G J - ~ N ~  + N 
In that situation, separate controllers are needed for the different F, = G J - ~ ~  
phases of motion required of the hand: free space motion of the 
hand, grasping of the object, and manipulation of the grasped object. M7 Me inertia matrix for the box and fingers, respectively 

11. REVIEW OF ROBOT DYNAMICS AND CONTROL 

In this section we selectively review the dynamics and control of 
robot systems. 

The basic result is that even for relatively complicated robot 
systems, the equations of motion for the system can be written in 
a standard form. This point of view has been used by Khatib in 
his operational space formulation [16] and in some recent extensions 
[17]. The results presented in this section are direct extensions of 
those works, although the approach is different. 

The dynamics for a robot manipulator with joint angles 0 E IR" 
and actuator torques r  E IRn can be derived using Lagrange's 
equations and written in the form 

where M(B) is a positive definite inertia matrix and c ( B , ! ) ~  is the 
Coriolis and centrifugal force vector. The vector N(B, B )  E IRn 
contains all friction and gravity terms and the vector T E IRn 
represents generalized forces in the B coordinate frame. For systems 
of this type, it can be shown that M - 2C is a skew symmetric matrix 
with proper choice of C (such as that in [31]). 

C, Co Coriolis and centrifugal terms 

Thus we have an equation with a similar form to our "simple" 
robot. In the box frame of reference, M is the mass of the effective 
mass of the box, and 6 is the effective Coriolis and centrifugal matrix. 
These matrices include the dynamics of the fingers, which are being 
used to actually control the motion of the box. However the details 
of the finger kinematics and dynamics are effectively hidden in the 
definition of if and C. The skew symmetry of i 4  - 2~ is preserved 
by this transformation. 

B. Internal Forces 

Although the grasp map G was assumed surjective, it need not 
be square.From the equations of motion (3), we note that if fingertip 
force J-'r is in the null space of G then the net force in the object 
frame of reference is zero and causes no net motion of the object. 
These forces act against the constraint and are generally termed 
internal or constraint forces. We can use these internal forces to 
satisfy other conditions, such as keeping the contact forces inside the 
friction cone (to avoid slipping) or varying the load distribution of a 
set of manipulators rigidly grasping an object. 

To include the internal forces in our formulation, we extend the 

A. Constrained Manipulators grasp map by defining an orthonormal matrix H(B) whose rows form 
a basis for the null space of G(B). As before we assume that G(B) 

Constrained robot systems can also be represented by dynamics is full row rank and we break all forces up into an external and an 
in the same form as (1). As our main example, consider the.contro1 internal piece, F, and F,. Given these desired forces, the torques that 
of a multifingered hand grasping a box (Fig. 2) where B E IRn is should be applied by the actuators are 
a vector of all the joint angles and x E IRP is a vector describing 
the position and orientation of the box. In most circumstances 11 = 3 
or 6 depending on whether we consider planar or spatial motion. 
The contacts constrain the relative velocities between fingertips 
and object, dependent on the type of contact model. The grasping 
constraint may be written as 

where q = (0, x) E IRn x IRp, J is the Jacobian of the finger 
kinematic function and G is the "grasp map" for the system. Here 
m is the number of velocity constraints imposed by the grasp. This 
form of constraint can also be used to describe a wide variety of other 
systems, including grasping with rolling contacts, surface following 
and coordinated lifting. A more complete derivation of grasping 
kinematics can be found in [24] or [20]. 

C. Redundant Manipulators 

Some manipulators contain more degrees of freedom than are 
necessary to specify the position of the end effector. Mathematically, 
these robots can be represented by a change of coordinates f : IRm -+ 

IRn where m > n. In this case, the Jacobian matrix J := d f)/dB 
is not square and hence J-' is not well defined so the derivation of 
(4) does not hold. 

It is still possible to write the dynamics of redundant manipulators 
in a form consistent with (3). To do so, we first define a matrix Ii(B) 
whose rows span the null space of J(B).  As before we assume that 
J(B) is full row rank and hence Ii(B) has constant rank m - n. The 
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rows of I i ( 8 )  are basis elements for the space of velocities that cause 
no motion of the end effector; we can thus define an internal motion, 
i, E IR'"" using the equation 

By construction, j is full rank (and square) so we can use the 
previous derivation to conclude that 

where $1, C?, AT, and F, are obtained from (4) replacing J  with J 
and augmenting G with a block diagonal identity matrix to preserve 
the .i.;'s. If we choose I< such that its rows are orthonormal then 
J-' = ( J +  I i T )  where J f  = J T ( J J T ) - '  is the least-squares 
inverseof J .  This approach is related to the extended Jacobian 
technique for resolving kinematic redundancy [I]. 

It might appear from our notation that we have parameterized 
the internal motion of the system by a variable .c;. This is not 
necessarily the case since only i; was defined in (6). Because we 
chose I i  only to span the null space of J ,  there may not exist a 
function g  such that x, = g ( 8 )  and a g / a 8  = It-. A necessary and 
sufficient condition for such a g  to exist is that each row of I i  satisfy 
a h ' i , / a O k  = a I i i k / a 8 , .  This is merely the statement that mixed 
partials of g  must commute. 

It may not always be easy to choose I { ( @ )  such that it is 
the differential of some function. For this reason, we shall not 
generally assume that an explicit coordinatization of the internal 
motion manifold is available. A more detailed discussion of this 
point can be found in [22]. 

D. Control 

To illustrate the control of robot systems, we look at two controllers 
that have appeared in the robotics literature. We start by considering 
systems of the form 

where M ( q )  is a positive definite inertia matrix and C ( q , q ) i  is 
the Coriolis and centrifugal force vector. The vectorN(q,q) E IRn 
contains all friction and gravity terms and the vector F E Rn 
represents generalized forces in thex coordinate frame. 

For the case of more complicated manipulators, the dynamics 
look essentially the same with appropriate definition of x  and F. 
For redundant manipulators we define x  as ( z , , x , ) ,  where it is 
understood that derivatives of x ,  may be used in a control law, but z ,  

should not appear unless a true coordinatization of the internal motion 
has been chosen. This is point illustrated in more detail below. 

' For manipulators that contain constraints, we define F as F,, cf. (3) 
and we add an internal force F, to the applied actuator forces. Thus 

(assuming J  is either full rank or has been extended as described 
previously). For simplicity, we omit discussion of the choice of 
internal forces (see [19], [23] for details and references). Both internal 
motions and forces are specified in terms of the basis vectors for the 
appropriate null spaces. 

Computed Torque: Computed torque is an exactly linearizing con- 
trol law that has been used extensively in robotics research. It has 
been used for joint level control [2], Cartesian control [21], and most 
recently, control of multifingered hands [19], [6]. Given a desired 
trajectory xd we use the control 

where error e = ad - 1 and I<,, and I i ,  are constant gain matrices. 
The resulting dynamics equations are linear with exponential rate of 
convergence determined by I i , ,  and I i , .  Since the system is linear, 
we can use linear control theory to choose the gains ( I i , ,  and I<,) 
such that they satisfy some set of design criteria. 

The disadvantage of this control law is that it is not easy to specify 
the interaction with the environment. We might think that we could 
use I i ,  to model the stiffness of the system and exert forces by 
commanding trajectories that result in fixed errors. Unfortunately this 
is not uniformly applicable as can be seen by examining the force 
due to a quasi-static displacement Ax: 

Since I<, must be constant in order to prove stability, the resultant 
stiffness will vary with configuration. Additionally, given a desired 
stiffness matrix it may not be possible to find a positive definite I i ,  
that achieves that stiffness, even at a fixed value of q  (the product of 
positive definite matrices is not necessarily positive definite). 

PD + Feedforward Control: PD controllers differ from computed 
torque controllers in that the desired stiffness (and potentially damp- 
ing) of the end effector is specified, rather than its position tracking 
characteristics. Typically, control laws of this form rely on the skew- 

symmetric property of mbot dynamics, namely a' (M - 2 ~ ) o  = 0 
for all a E IRn. Consider the control law 

where I i ,  and I i ,  are symmetric positive definite. Using a Lyapunov 
stability argument, it can be shown that the actual trajectory of 
the robot converges to the desired trajectory asymptotically [18]. 
Extensions to the control law result in exponential rate of convergence 

[3017 [281- 
This PD control law has the advantage that for a quasi:static change 

in position A x  the resulting force is 

and thus we can achieve an arbitrary symmetric stiffness. Exper- 
imental results indicate that the trajectory tracking performance 
of this control law does not always compare favorably with the 
computed torque control law [23]. Additionally, there is no simple 
design criteria for choosing Z i ,  and I i ,  to achieve good tracking 
performance. While the stability results give necessary conditions 
for stability they do not provide a method for choosing the gains. 
Nonetheless, PD control has been used effectively in many robot 
controllers and has some computational features that make it an 
attractive alternative. 

Control of Redundant Manipulators: Since the dynamics for a re- 
dundant manipulator have the same form as our canonical robot 
system, it is easy to extend the previous control laws to handle this 
case. If a coordinatization of the internal motion manifold is available, 
the control laws are identical with the addition of the redundant states. 
If we do not have a set of coordinates for the internal motion, but 
rather, only the velocities, then we must be slightly more careful. For 
example, the computed torque control law becomes 

Motion specification for such a control law would be in terms of a 
position trajectory x e , d ( . )  and a velocity trajectory i , , d ( . ) .  

This control law will guarantee tracking of the given internal 
velocity. One method of calculating this velocity is to attempt to 
use the redundant degrees of freedom to minimize a cost function. 
Given the gradient of the cost function, we can project this vector - - 

F = M ( q ) ( ? d  + I i , ;  + IiePe) + C ( q , q ) i  + AT(q.q) (9) (in joint space) onto the range of I< (@) ,  which spans the internal 
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motion directions. This determines x ; , ~ ,  which can be passed to the 
controller. This type of cost criterion has been used with a computed 
torque-like controller by Hsu et al. [15]. 

In this section we describe a set of primitives that gives us 
the mathematical structure necessary to build a system and control 
specification for dynamical robot systems. We do not require any 
particular programming environment or language, borrowing instead 
from languages such as C, Lisp and C++. As much as possible, we 
have tried to define the primitives so that they can be implemented 
in any of these languages. 

As our basic data structure, we will assume the existence of an 
object with an associated list of attributes. These attributes can be 
thought of as a list of name-value pairs that can be assigned and 
retrieved by name. A typical attribute that we will use is the inertia 
of a robot. The existence of such an attribute implies the existence 
of a function that is able to evaluate and return the inertia matrix of 
a robot given its configuration. 

Attributes will be assigned values using the notation attribute := 
value. Thus we might define our inertia attribute as 

In order to evaluate the inertia attribute, we would call M with a 
vector 0 E R2. This returns a 2 x 2 matrix as defined previously. 
The Coriolis/centrifugal attribute, C,  and friction/gravity/nonlinear 
attribute, N, are defined similarly. 

To encourage intuition, we will first describe the actions of the 
primitives for the case of nonredundant robots. Additionally, we 
ignore the internal forces that are present in constrained systems. 
Extensions to these cases are presented in Section V. 

A. The Robot Object 

The fundamental object used by all primitives is a robot. Associated 
with a robot are a set of attributes that are used to define its behavior: 

M inertia of the robot 

C Coriolis/centrifugal vector 

N friction and gravity vector 

rd return position and force information about the robot 

w r  send position and force information to the robot. 

The rd function returns the current position, velocity, and accelera- 
tion of the robot, and the forces measured by the robot. Each of these 
will be a vector quantity of dimension equal to the number of degrees 
of freedom of the robot. Typically a robot may only have access to 
its joint positions and velocities, in which case 2 and F will be nil. 

The w r  function is used to specify an expected position and force 
trajectory that the robot is to follow. In the simplest case, a robot 
would ignore everything but F and try to apply this force/torque at its 
actuators. As we shall see later, other robots may use this information 
in a more intelligent fashion. We will often refer to the arguments 
passed to w r  by using the subscript e .  Thus s, is the expected or 
desired position passed to the w r  function. 

The task of describing a primitive is essentially the same as 
describing how it generates the attributes of the new robot. The 
following sections describe how each of the primitives generates these 
attributes. The new attributes created by a primitive are distinguished 
by a tilde over the name of the attribute. 

Fig. 3. Example of the d e f i n e  primitive. The robot shown here corre- 
sponds to a robot with torque driven motors and only position and velocity 
sensing. 

DEFINE primitive 

S y n o p s i s :  

DEFINE ( M ,  C ,  hT, rd,  wr  ) 

The d e f i n e  primitive is used to create a simple robot object. 
It defines the minimal set of attributes necessary for a robot. These 
attributes are passed as arguments to the d e f i n e  primitive and a 
new robot object possessing those attributes is created: 

M(O) := M(0) 

Several different types of robots can be defined using this basic 
primitive. For example, a dc motor actuated robot would be imple- 
mented with a wr function that converts the desired torque to a motor 
current and generates this current by communicating with some piece 
of hardware (such as a D/A converter). This type of robot system is 
shown in Fig. 3. On the other hand, a stepper motor actuated robot 
might use a wr function that ignores the torque argument and uses 
the position argument to move the actuator. Both robots would use 
a rd function that returns the current position, velocity, acceleration 
and actuator torque. If any of these pieces of information is missing, 
it is up to the user to insure that they are not needed at a higher level. 
We may also define a payload as a degenerate robot by setting the 
wr argument to the nil function. Thus commanding a motion and/or 
force on a payload produces no effect. 

ATEACH primitive 

S y n o p s i s :  

ATTACH(J, G I  h ,  p a y l o a d ,  r o b o t - l i s t )  

A t t a c h  is used to describe constrained motion involving a 
payload and one or more robots. A t t a c h  must create a new robot 
object from the attributes of the payload and of the robots being 
attached to it. The specification of the new robot requires a velocity 
relationship between coordinate systems (JO = G ~ X ) ,  an invertible 
kinematic function relating robot positions to payload position (x = 
h(O)), a payload object, and a list of robot objects involved in the 
contact. 

The only difference between the operation of the attachprimitive 
and the equations derived for constrained motion of a robot manipu- 
lator is that we now have a list of robots, each of which is constrained 
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nil F, J ~ G +  41. RZ F 
8. 

Payload I 

Fig. 4. Data flow in a two robot attach. In this example we illustrate the 
structure generated by a call to attach with 2 robots and a payload (e.g., 
a system like Fig. 2). The two large interior boxes represent the two robots, 
with their input and output functions and their inertia properties. The outer 
box (which has the same structure as the inner boxes) represents the new 
robot generated by the call to attach. In this example the robots do not 
have acceleration or force sensors, so these outputs are set to n i l .  

to contact a payload. However, if we define O R  to be the combined 
joint angles of the robots in robot-list and similarly define M R  
and C R  as block diagonal matrices composed of the individual inertia 
and Coriolis matrices of the robots, we have a system that is identical 
to that presented previously. Namely, we have a "robot" with joint 
angles O R  and inertia matrix M R  connected to an object with a 
constraint of the form 

where once again J is a block diagonal matrix composed of the 
Jacobians of the individual robots. To simplify notation, we will 
define A := J-'GT so that 

The attributes of the new robot can thus be defined as: 

where M p , C p ,  Np  are attributes of the payload, M R  and C R  are as 
described above and iVR is a stacked vector of friction and gravity 
forces. This construction is illustrated in Fig. 4. 

The rd attribute for an attached robot is a function that queries the 
state of all the robots in robot-list. Thus O R  in (19) is constructed 
by calling the individual rd functions for all of the robots in the list. 
The 0 values for each of these robots are then combined to form 
O R  and this is passed to the forward kinematic function. A similar 
computation occurs for i ~ ,  f ? ~  and T R .  Together, these four pieces 
of data form the return value for the rd attribute. 

In a dual manner, the wr attribute is defined as a function that takes 
a desired trajectory (position and force), converts it to the proper 
coordinate frame and sends each robot the correct portion of the 
resultant trajectory. 

A special case of the attach primitive is its use with a nil 
payload object and G = I. In this case, M,, C p ,  and N p  are all zero 
and the equations above reduce to a simple change of coordinates. 

buffer control robot 

Fig. 5. Data flow in a typical controlled robot. Information written to the 
robot is stored in an internal buffer where it can be accessed by the controller. 
The controller uses this information and the current state of the robot to 
generate forces that cause it to follow the desired trajectory. 

In principle, we could also define a DETACH primitive that would 
allow a composite robot system to be broken into components. This 
operation could be useful when a robot hand releases an object in its 
grasp, for example. An alternative approach is to respecify the new 
control structure that properly models the constraints after the object 
is released. Depending on the implementation, it might be possible 
to do this efficiently using previously defined daughter robots. 

CONTROL primitive 

Synopsis: 

CONTROL(robot, controller) 

The control primitive is responsible for assigning a controller to 
a robot. It is also responsible for creating a new robot with attributes 
that properly represent the controlled robot. The attributes of the 
created robot are completely determined by the individual controller. 
However, the rd and tur attributes will often be the same for different 
controllers. Typically the rd attribute for a controlled robot will be 
the same as the rd attribute for the underlying robot. That is, the 
current state of the controlled robot is equivalent to the current state 
of the uncontrolled robot. A common wr attribute for a controlled 
robot would be a function that saved the desired position, velocity, 
acceleration and force in a local buffer accessible to our controller. 
This configuration is shown in Fig. 5. 

The dynamic attributes M, c and &' are determined by the 
controller. At one extreme, a controller that compensates for the 
inertia of the robot would set the dynamic attributes of the controlled 
robot to zero. This does not imply that the robot is no longer a 
dynamic object, but rather that controllers at higher levels can ignore 
the dynamic properties of the robot, since they are being compensated 
for at a lower level. At the other end of the spectrum, a controller may 
make no attempt to compensate for the inertia of a robot, in which 
case it should pass the dynamic attributes on to the next higher level. 
Controllers that lie in the middle of this range may partially decouple 
the dynamics of the manipulator without actually completely com- 
pensating for them. To illustrate these concepts we next consider one 
possible controller class, computed torque. However, many control 
laws originally formulated in joint space may also be employed since 
the structure of (3) has been preserved. 

Computed Torque Controller: As we mentioned in Section 11, the 
computed torque controller is an exactly linearizing controller that 
inverts the nonlinearities of a robot to construct a linear system. This 
linear system has a transfer function equal to the identity map and as a 
result has no uncompensated dynamics. The proper representation for 
such a system sets the dynamical attributes M, C,  and^ to zero and 
uses the rd and w r  attributes as described previously. We introduce 
x d  to refer to the buffered desired trajectory. 
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The control process portion of the controller is responsible for 
generating input robot forces which cause the robot to follow the 
desired trajectory (available in zd). Additionally, the controller must 
determine the "expected" trajectory to be sent to lower level robots. 
For the computed torque controller we use the resolved acceleration 
[21] to generate this path. This allows computed torque controllers 
running at lower levels to properly compensate for nonlinearities 
and results in a linear error response. The methodology is similar 
to that used in determining that the dynamic attributes of the output 
robot should be zero. The control algorithm is implemented by the 
following equations: 

where rd and wr are attributes of the robot that is being controlled. 
Note the existence of the Fd term in the calculation of F,. This 

is placed here to allow higher level controllers to specify not only a 
trajectory but also an force term to compensate for payloads attached 
at higher levels. In essence, a robot that is being controlled in this 
manner can be viewed as an ideal force generator that is capable of 
following an arbitrary path. 

The computed torque controller defines two new attributes, lip 
and I i , ,  which determine the gains (and hence the convergence 
properties) of the controller. A variation of the computed torque 
controller is the feedforward controller, which is obtained by setting 
lip = I i ,  = 0. This controller can be used to distribute nonlinear 
calculations in a hierarchical controller, as we shall see in Section IV. 

IV. EXAMPLES 

To make the use of the primitives more concrete we present some 
examples of a planar hand grasping a box (Fig. 2) using various 
control structures. For all of the controllers, we will use the following 
functions 

inertia matrix for the box in Cartesian 
coordinates 

Ml, Mr inertia matrix for the left and right fingers 

Cb?Ci,Cr Coriolis/centrifugal vector for box and fingers 

f finger kinematics function, 
f : (81,er) H ( ~ 1 , ~ r )  

9 grasp kinematics function, g : (xi, x,) r XI, 

J finger Jacobian, J = 

G grasp map, consistent with y 

r d - l e f t  r d - r i g h t  read the current joint position and velocity 
w r - l e f t  wr - r igh t  generate a desired torque on the joints 

where B1, B,, xi, z,, and xb are defined as in Fig. 2. 

box trajectory 

CONTROL Computed 
Torque 

Constraint 

ATTACH r'r'rl Kinematics Finger DEFINE 

6 Finger DEFINE 
Finger 

Fig. 6. High-level computed torque. The primitives listed next to the nodes 
in the graph indicate the primitive that was used to created the node. In this 
structure all dynamic compensation and error correction occurs at the top of 
the graph, using a complex dynamic model for the underlying system. 

In terms of the primitives that we have defined, we build this 
structure from the bottom up 

left = D E F I N E ( M ~ , C ~ ,  0, rd-left, wr-left) 
right = DEFINE(M,,C,, 0, rd-right, wr-right) 
fingers = ATTACH(J, I,f, nil, left, right) 

box = DEFINE(Mb,Cb, 0, nil, nil) 
hand = ATTACH ( I ,  G, g ,  box, fingers ) 

ct-hand = CONTROL(hand, computed-torque). 

It is useful to consider how the data flows to and from the control 
law running at the hand level. In the evaluation of xb and ib, the 
following sequence occurs (through calls to the rd attribute): 

hand: asks for current state, xb and x b  

fingers: ask for current state, 2:f and rf 

left: read current state, Bl and 81 
right: read current state, 0,. and 8, 

fingers: x f ,  x f  + f(el, e,.), J(&, 8,) 
hand: xb,ib + g ( x f ) , ~ T ~ f  

Similarly, when we write a set of hand forces using the wr 
attribute, it causes another chain of events to occur: 

box: generate a box force Fb 

hand: generate finger force Gt Fb 

fingers: generate joint torques . J ~  G+ Fb 
left: output torques conjugate to 6'1 
right: output torques conjugate to 8,. 

High-Level Computed Torque Control Using the transformations given above it is straightforward to 
In this example we combine all systems to obtain a description calculate the torque generated by the control law by expanding 

of the dynamic properties of the overall system in box coordinates. the structure of Fig. 6 using the definition of the primitives. Let 
Once this is done we can move the box by directly specifying the the subscript d denote desired quantities at each level and let the 
desired trajectory for the box. This structure is illustrated in Fig. 6. subscripts b, h, f refer to the body, hand, and fingers attributes, 
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box trajectory box trajectory 

Constraint 

DEFINE 
Kinematics 

I &F&~ COUTROL CONTROL CT 

DEF11E Left  1 1 Right / DEFINE 
Finner Finger 

Fig. 7. Low-level computed torque. Computed torque controllers are used 
for the individual fingers to provide trajectory following capability in joint 
space. Since no controller is positioned above the box, the dynamics of the 
box are ignored even though the path is given in the box's frame of reference. 

respectively, 

Me and Ce refer the block diagonal matrices formed by the indi- 
vidual finger attributes. This control law corresponds exactly to the 
generalized computed torque control algorithm presented by Li, et al. 
(191, with the omission of internal forces (see Section V-A). 

A. Low-Level Computed Torque Control 

Another common structure for controlling robots is to convert all 
trajectories to joint coordinates and perform computed torque at that 
level. In a crude implementation one might assume the dynamic 
effects of the box were negligible and construct the following 
structure shown in Fig. 7. 

The primitives used to define this structure are 

left = DEFINE(M,, C I ,  0, rd-left, wr-left ) 
right = DEFINE(M,,C,, 0, rd-right, wr-right) 
ct-left = CONTROL(left, computed-torque) 
ct-right = CONTROL(right, computed-torque) 

Torque 

Kinematics 

D E F I N E m  Finger 

Fig. 8. Multilevel computed torque and stiffness (PD). Controllers are used 
at each level to provide a distributed control system with biological motivation 
(cf. Fig. I), desirable control properties, and computational efficiency. 

B. Multilevel Computed Torque/Stiffness Control 

As a final example, we consider a control structure obtained by 
analogy with biological systems in which controllers to run at several 
different levels simultaneously (see Fig. 8). 

At the lowest level we use simple PD control laws attached 
directly to the individual fingers. These PD controllers mimic the 
stiffness provided by muscle coactivation in a biological system [14]. 
Additionally, controllers at this level might be used to represent spinal 
reflex actions. At a somewhat higher level, the fingers are attached 
and considered as a single unit with relatively complicated dynamic 
attributes and Cartesian configuration. Here we employ a feedforward 
controller (computed torque with no error correction) to simplify 
these dynamic properties, as viewed by higher levels of the brain. 
With respect to these higher levels, the two fingers appear to be two 
Cartesian force generators represented as a single composite robot. 

Up to this point, the representation and control strategies do not 
explicitly involve the box, a payload object. These force generators 
are next attached to the box, yielding a robot with the dynamic 
properties of the box but capable of motion due to the actuation in 
the fingers. Finally, we use a computed torque controller at the very 
highest level to allow us to command motions of the box without 
worrying about the details of muscle actuation. By this controller we 
simulate the actions of the cerebellum and brainstem to coordinate 
the box's motion and correct for errors. 

The structure in Fig. 8 also has interesting properties from a more 
traditional control viewpoint. The low-level PD controllers can be 
run at high servo rates (due to their simplicity) and allow us to tune 

fingers = ATTACH(J,I, f ,  nil, ct-left, ct-right) 
the response of the system to reject high frequency disturbances. 

box = D E F I N E ( M ~ , C ~ ,  0, nil, nil) 
The Cartesian feedforward controller permits a distribution of the 
calculation of nonlinear compensation terms at various levels, lending 

hand = ATTACH(I,G,~, box, fingers) 
itself to multiprocessor implementation. Furthermore, it allows a 

This controller is provably exponentially stable when the mass of degree of device independence since the underlying dynamics of the 
the box is zero. However, this controller does not compensate for the fingers are masked from higher level controllers. Finally, ,,sing a 
mass of the box. As a we expect degraded performance if the computed torque controller at the highest level gives the flexibility 
mass of the box is large. ~xperimental  results on a system of this of performing the controller design in the task space and results in 
form confirm our intuition 1231. a system with linear error dynamics. Another feature is that if we 
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ignore the additional torques due to the PD terms, the joint torques 
generated due to an error in the box position are the same as those 
of the high-level computed torque scheme presented earlier. 

V. EXTENSIONS TO THE BASIC PRIMITIVES 

Having presented the primitives for nonredundant robot systems in 
which we ignore internal forces, we now describe the modifications 
necessary to include both internal motion and internal forces in the 
primitives. As before, these extensions are based on the dynamic 
equations given in Section I1 and rely on the fact that the equations 
of motion of this class of systems can be expressed in a unified way. 

Internal motion and force can be thought of as manifestations of 
redundancies in the manipulator, and both can be used to improve 
performance. A classical use of redundant motion in robotics is to 
specify a cost function and use the redundancy of the manipulator to 
attempt to minimize this cost function. If we extend our definition of 
the wr function so that it takes not only an "external" trajectory, 
but also an internal trajectory (which might be represented as a 
cost function or directly as a desired velocity in the internal motion 
directions) then this internal motion can be propagated down the 
graph structure. A similar situation occurs with internal or constraint 
forces. 

The matrices J ( q )  and G ( q )  in (2) embody the fundamental 
properties of the constrained system. We begin by assuming that J ( q )  
and G ( q )  are both full row rank. The null space of J ( q )  corresponds 
to motions that do not affect the configuration of the object, i.e., 
internal motions. Likewise, the null space of G ( q )  describes internal 
forces-the set of forces that cause no motion of the object. A 
complete trajectory for a robot must specify not only external motion 
and force for a robot but also the internal motion and force that lie 
in these subspaces. 

A. Internal Forces 

Consider first the case where J  is square (and invertible) but G  
has a null space. If J  is not square, then we can assume an extended 
Jacobian has been defined, as described in Section 11-C. To allow 
internal forces to be specified and controlled, we must first add them 
to the r d  and wr attributes. This is done by simply adding an extra 
value to the list of values returned by rd and adding an extra argument 
to w r .  Thus the w r  attribute is called as 

~ u r ( a . ~ , j . ~ , . ? ~ ,  F,. F , )  (21) 

where F, is the desired internal force. 
Internal forces are "created" by the attach primitive. The internal 

force directions for a constraint are represented by an orthonormal 
matrix H ( 0 )  whose rows form a basis for the null space of G(6'). 
Since any of the daughter robots may itself have an internal force 
component, the internal force vector for a robot created by attach 
consists of two pieces: the internal forces created by this constraint 
and the combined internal forces for the daughter robots. 

Let F,,, parameterize the internal forces generated by the current 
constraint and let F,,2 be the collection of internal forces present in 
the daughter robots. 

The force transformations that describe this relationship are 

where T R , ~  is the vector of external forces for the daughter robots 
and TR, ,  is the vector of internal forces. This equation is analogous 
to (5) in Section 11-B. Note that T R , ,  is identical to F,,2, thus internal 

force specifications required by the daughter robots are appended 
to the internal force specification required due to the constraint. 
Expanding (22) we see the appropriate definition for the new 7Llr 

attribute generated by attach is 

uir(.r,..i.,, Y e .  F,, F , )  := w r R ( . . .  . . J ~ G + F ~  + J ~ H ~ F , , ,  , F,,2) 
(23) 

The inclusion of internal forces in the rd attribute is similar. The 
sensed forces from the robots, TR, are simply split into external and 
internal components and converted to the appropriate internal and 
external forces for the new robot. This is equivalent to inverting (22): 

It follows that 

Internal forces are resolved by the control primitive. In princi- 
ple, a controller can specify any number of the internal forces for a 
robot. Intelnal forces that are not resolved by a controller are left as  
internal forces for the newly defined robot. In practice, controllers will 
often be placed immediately above'the attached robots since internal 
forces are most efficiently resolved at this level. Unlike external 
motions and forces, internal forces are not subject to coordinate 
change and so leaving such forces unresolved causes higher level 
controllers to use low-level coordinates. 

B. Internal Motions 

Internal motions are also created by the attach primitive, this 
time due to a nonsquare Jacobian matrix. As before, we must add 
arguments to the rd and wr attributes of robots to handle the extra 
information necessary for motion specification. We only assume that 
the redundant velocities and accelerations are defined, so we add 
only those quantities to rd and w r .  Since the notation becomes quite 
cumbersome, we won't actually define the rd andwr primitives, but 
just specify the internal and external motion components. 

Given a constraint that contains internal motions, the attach 
primitive must again properly split the motion among the robots 
attached to the object. Define I<(@) to be a matrix whose rows span 
the null space of J ( 0 ) .  Then we can rewrite our constraint as 

Defining J and G as the extended Jacobian and grasp matrices, 

we see that J is full rank and so we can use it to define A = j-' ( 
in (16H20).  This then defines the dynamics attributes created 
attach. Note that the dimension of the constrained subspace (whc 
internal forces act) is unchanged by this extension. 

The input and output attributes are described in a manner sim] 
to those used for internal forces. For wr the external component 
the motion is given by I 
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is defined similarly. OR,= is only defined if an inverse kinematic 
function, hK1, is given. Otherwise that information is not passed to 
the daughter robots. As before, if the robots themselves have internal 
motions then these should be split off and passed unchanged to the 
lower level robots. ' 

The rd  attribute is defined by projecting robot motions into an 
object motion component and an internal motion component. That is 

xi., and xi are obtained by differentiating the expressions for x, and 
x, .  

Controllers must also be extended to understand internal motion. 
This is fundamentally no different than control of an ordinary 
manipulator except that position information is not available in 
redundant directions. Thus the computed torque law would become 

Motion specification for such a control law would be in terms of a 
position trajectory x,(.) and a velocity trajectory x,(.). If a controller 
actually resolves the internal motion (by specifying .i,,d(.) based on a 
pseudo inverse calculation for example), then the internal motion will 
be masked from higher level controllers; otherwise it is passed on. 

C. Other Issues 

Control laws commonly use the position of the object as part of the 
feedback term. This may not always be available for systems with 
nonintegrable constraints (such as grasping with rolling contacts). 
If the object position cannot be calculated from 6' alone, then we 
must retrieve it from some other source. One possibility is to use 
an external sensor that senses x directly, such as a camera or tactile 
array. The function to "read the sensor" could be assigned to the 
payload rd  function and a t t a c h  could use this information to return 
the payload position when queried. Another possible approach is to 
integrate the object velocity (which is well defined) to bookkeep the 
payload position. 

Some care must also be taken with the evaluation of dynamic 
attributes for robots that do not have well defined inverse kinematic 
functions. There are some robot control laws that use feedforward 
terms that depend on the desired output trajectory, e.g., M(xd)xd. 
The advantage of writing such control laws is that this expression can 
be evaluated offline, increasing controller bandwidth. This calculation 
only makes sense if the desired configuration, qd, can be written as a 
function of xd and more generally if q can be written as a function of 
x. One solution to this problem is to only evaluate dynamic attributes 
of a robot at the current configuration. Assuming each robot in the 
system can determine its own position, these attributes are then well 
defined. For all the control laws presented in this paper, M, C and 
N are always evaluated at q, the current configuration. 

Working from a physiological motivation we have developed a set 
of robot description and control primitives consistent with Lagrangian 
dynamics. Starting from a description of the inertia, sensor, and 
actuator properties of individual robots, these primitives allow for the 
construction of a composite constrained motion system with control 
distributed at all levels. Robots, as dynamical systems, are recursively 
defined in terms of daughter robots. The resulting hierarchical system 
can be represented as a tree structure in a graph theoretic formalism, 

with sensory data fusion occurring as information flows from the 
leaves of the tree (individual robots and sensors) toward the root, 
and data expansion as relatively simple motion commands at the root 
of the tree flow down through contact constraints and kinematics to 
the individual robot actuators. 

There are many problems, both general and specific, which remain 
open. We discuss a few of these below. 

One of the primary challenges in robotic control is the integration 
of large numbers of manipulators performing a coordinated task. The 
primitives given in this paper allow specification of controllers that 
can be used for such tasks. A typical task consists of many different 
phases, each potentially requiring a different type of control. An 
example of this is a hand grabbing an object, in which the initial 
move and grab phases require position control of the fingers, while 
the manipulation phase requires control of the composite grasping 
system. 

For each phase of the task, the control primitives can be used 
to specify hierarchical control structures appropriate to the motion 
being performed. Methods for smoothly changing from one control 
structure to another, for example when contact is being made with an 
object, need to be developed. If we represent the system dynamics as 
a finite state machine, with each state corresponding to a different set 
of constraints on the overall system, we can associate with each state 
a controller defined in terms of the control primitives. In this context, 
we are interested in control structures that facilitate the transition from 
one state to another. It particular, it seems important to insure that 
the controller does not force the system to return to the previous state 
and begin an oscillation between states and the associated controllers. 
The idea of representing the system as a graph of dynamical systems 
is from a suggestion by Brockett [4] and is worthy of more study. 

It would be very useful to determine broad stability properties 
for the system with controllers at various levels. This is particularly 
difficult when there are constraints in the system, since some low- 
level controllers may not be aware of the constraints and the resulting 
model mismatch could cause instability. A weak version of the 
desired result is the observation that if we place a computed torque 
controller at the highest level and feedforward controllers at lower 
levels of the hierarchy, the commanded torques are identical to those 
obtained by a single computed torque controller at the top of the 
hierarchy. Thus the overall system is stable. Similar results with 
PD controllers distributed throughout the structure seem plausible, 
and there has been some work in this area in other contexts, such 
as decentralized control [29]. By using the structure inherent in 
controllers constructed using the primitives, it may be possible to 
adapt these results and strengthen them. 

Finally, one of the major future goals of this research is to 
implement the primitives presented here on a real system. This 
requires that efforts be made toward implementing primitives in 
as efficient fashion as possible. The first implementation choice is 
deciding when computation should occur. It is possible that the 
entire set of primitives could be implemented off-line. In this case, a 
controller-generator would read the primitives and construct suitable 
code to control the system. A more realistic approach is to split the 
computation burden more judiciously between on-line and off-line 
resources. Symbolically calculating the attributes of the low-level 
robots and storing these as precompiled functions might enable a large 
number of systems to be constructed using a library of daughter robot 
systems. Although the expressions employed are continuous time, 
in practice digital computers will be relied upon for discrete time 
implementations. This raises the issue of whether lower computation 
rates may be practical for higher level robots/controllers. 

Related to the issue of on-line versus off-line computation, is the 
level at which we decide to label a mechanism as a simple robot 
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object, created by the def ine  primitive. It is certainly possible to 
define the individual links of a robot manipulator as  robot objects, and 
then attach these robots into a larger structure, such as a robotic finger. 
However, since the links of the robot remain attached throughout the 
execution of a task, it is likely that a more efficient representation 
of the dynamics can b e  achieved by modeling the entire finger as 
a single mechanism. This corresponds to computation of the finger 
dynamics in an off-line fashion. 

We have made an initial implementation of the primitives using the 
Mathematica symbolic manipulation program [32]. This implemen- 
tation supports the basic primitives described in Section 111 and cor- 
responds to a completely off-line implementation. The  Mathematica 
source code is available via anonymous ftp from united.berkeley.edu 
in the directory "pub/RobotPrimitives." The listings for the Mathe- 
matica package can be found in a recent technical report [9]. 

The  authors would like to thank the reviewers for their remarks, 
which have helped them provide a clearer description of the motiva- 
tion and goals of this work. 
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Optimal Grasps for Planar Multifingered Robotic Hands 

Gongliang Guo, William A. Gruver and Qixian Zhang 

Abstract-A fast and simple algorithm for determining optimal grasps 
of a planar multifingered robotic hand is presented. Using a representa- 
tion for the stiffness of a planar grasp system, we derive conditions for 
static equilibrium, task-oriented grasping, and stability. An optimization 
model for determining optimal grasps of a planar multifingered hand 
is established using a quality measure, which includes the effect of 
the external disturbing forces and moments. A constrained gradient 
descent technique is used to compute the optimal grasps. An example 
demonstrates the applicability and effectiveness of the theory. 

There is increasing interest in multifingered robotic hands that have 
the capability t o  grasp objects of different shapes and to manipulate 
them with a variety of actions to accomplish a task [I]. This interest 
has been driven by a need to extend the flexibility, dexterity, and 
precision of industrial robots, and a desire to improve prostheses for 
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