
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO 1, JANUARYFEBRUARY 1992

Control Primitives for Robot Systems

Richard M. Murray, D. Curtis Deno, Kristofer S. J. Pister,
and S. Shankar Sastry

Abstract-A set of primitive operations i s presented that forms the core
of a robot system description and control language. The actions of the
individual primitives are derived from the mathematical structure of the
equations of motion for constrained mechanical systems. The recursive
nature of the primitives allows composite robots to be constructed from
more elementary daughter robots. A few pertinent results of classical
mechanics are reviewed, the functionality of our primitive operations is
described, and several different hierarchical strategies for the description
and control of a two-fingered hand holding a box are presented.

The complexity of compound, redundant robotic systems, both in
specification and control, continues to present a challenge to engineers
and biologists. Complex robot actions require coordinated motion
of multiple robot arms or fingers to manipulate objects and respect
physical constraints. As we seek to achieve more of the capability
of biological robots, additional descriptive structures and control
schemes are necessary. A major aim of this work is to propose.such
a specification and control scheme.

The ultimate goal of our project is to build a high-level task
programming environment that is relatively robot independent. In this
paper, we describe a language for constructing hierarchical controllers
for complex robot systems. Our primary example is a multifingered
robot hand. A typical task for such a system might entail moving to an
object, grasping and manipulating the object, and using the object to
perform a higher level task. Each of these phases of the task requires
a separate controller that is compatible with the constraints on the
system and the task objective. The primitives described in this paper
allow these controllers to be constructed in a simple and organized
fashion. Furthermore, as a consequence of the recursive nature of the
primitives, it is possible to introduce a degree of device independence
in constructing higher level controllers.

This paper is organized as follows: In Section I1 we review
the dynamics and control of coupled, constrained rigid robots in
a Lagrangian framework. Section I11 contains definitions of the
primitives of our robot control environment. Section IV illustrates
the application of our primitives to the description of a two-fingered
robot hand. We show that our environment can be used to specify
a variety of control schemes for this hand, including a distributed
controller that has a biological analog. Section V extends the basic
primitives to include specification and control of constraint forces
and redundant motion. In Section VI we discuss future avenues of
research. The remainder of this introduction presents motivation and

Manuscript received September 1, 1990; revised March 7, 1991 and June
17, 1991. This work was supported in part by NEI EY05 913, in part by
the Smith-Kettlewell Eye Research Foundation, in part by the Rachael C.
Atkinson Fellowship Award, in part by the NSF under Grant DMC 84-51129
and Grant ECS 87-19298, in part by the Air Force Office of Scientific Research
(AFSC) under Grant F49620-87-C0041, and in part by an IBM Manufacturing
Fellowship.

R. M. Murray was with the University of California, Berkeley, CA 94720.
He is now with the Department of Mechanical Engineering, California Institute
of Technology, Pasadena, CA 91125.

D. C. Deno, K. S. J. Pister, and S. S. Sastry are with the Electronics
Research Laboratory, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720.

IEEE Log Number 91041 13.

background for our work, and an overview of the primitives we have
chosen to use.

A. The Musculoskeletal System: Metaphor for a Robotic System

Motivation for a consistent specification and control scheme may
be sought in our current knowledge of the hierarchical organization
of mammalian motor systems. To some degree of accuracy, we may
consider segments of limbs as rigid bodies connected by rotary joints.
Muscles and tendons are actuators with sensory feedback that enter
into low-level feedback control at the spinal level [12]. Further
up the nervous system, the brainstem, cerebellum, thalamus, and
basal ganglia integrate ascending sensory information and produce
coordinated motor commands. At the highest levels, sensory and
motor cortex supply conscious goal-related information, trajectory
specification, and monitoring.

'The hierarchical structure of neuromuscular control is also evident
from differences in time scale. The low-level spinal reflex control runs
faster (loop delays of about 30 ms) than the high-level feedback loops
(100-200 ms delays). This distinction may be exploited by control
schemes that hide information details from high-level controllers
by virtue of low-level control enforcing individual details. These
concepts are shown in Fig. 1 where a drawing of neuromuscular
control structures for a finger is juxtaposed with a block diagram to
emphasize the hierarchical nature of the thumb-forefinger system for
picking up objects.

Biological control systems commonly operate with constraints
and redundancy. Kinematic constraints arise not only from joints
that restrict the relative motion of adjacent limb segments, but
also from contact with objects that leads to similar restrictions.
Many musculoskeletal subsystems possess kinematic and actuator
redundancy that may be imagined to be resolved by effort and stability
considerations. In any event, the neural controller directs a specific
strategy and so expands a reduced set of control variables into the
larger complete set.

In the sequel we shall see these concepts expressed in a notation
that is faithful to the laws of mechanics and flexible enough to permit
concise descriptions of robot motion control at various hierarchical
levels.

The robotics and control literature contains a number of topics that
are related to the specification and control scheme of this paper.

Robot Programming Languages: Two directions of emphasis may
be used to distinguish robot programming languages: traditional pro-
gramming languages (perhaps including multitasking), and dynamical
systems based descriptions of systems and control structures.

More traditional task specification languages include VAL 11,
AML, and Robot-BASIC [7], [25], [l l] , [26]. These languages are
characterized by C-, BASIC-, or Lisp-like data structures and syntax,
coordinate frame specification and transformation primitives, sensor
feedback conditionally controlling program flow, and motion between
specified locations achieved through via points and interpolation. In a
two stage hierarchy, low-level controllers usually control joint angle
trajectories that are specified by high-level language statements and
kinematics computations.

Brockett's motion description language (MDL) [3], [lo] is more
closely aligned with dynamical systems theory. MDL employs
sequences of triples (u , k , T) to convey trajectory information,
feedback control information, and time interval to an extensible

0018-9472/92$03.00 O 1992 IEEE

lEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. I , JANUARYIFEBRUARY 1992

m Motor Cortex Sensory Conex
Sensory 1
Motor M e x

Brain
Response time
100-200 ms

Cerebellum.
Brainstem. 6

Pincer Grip

Response time 2
Spinal reflexes Spinal reflexes I ~

Forefinger
Muscles 6
Joints Joints

Fig. 1. Hierarchical control scheme of a human finger. At the highest
level, the brain is represented as sensory and motor cortex (where sensory
information is perceived and conscious motor commands originate) and
brainstem and cerebellar structures (where motor commands are coordinated
and sent down the spinal cord). A pair of fingers forms a composite system
for grasping that is shown integrated at the level of the spinal cord. The
muscles and sensory organs of each finger form low-level spinal reflex
loops. These low-level loops respond more quickly to disturbances than
sensory-motor pathways that travel to the brain and back. Brain and spinal
feedback controllers are represented by double lined boxes.

ForthIPostScript like interpreter. The scheme described in this paper
was inspired partly by descriptions of MDL. Our work explicitly
utilizes geometric and inertial parameters together with the equations
of motion to describe the organization and control of complex robots.
MDL is less explicit on this matter but is more completely developed
in the matter of sequences of motions.

An object oriented approach similar to that presented here has
been described by Cutkosky, Howe, and Witkin [8]. They present
a method for describing the dynamics of a robot hand grasping an
object. The advantage of the method they propose is that it is very
general and does not rely on rigid contact models, allowing compliant
fingertips to be considered. Their method is closely related to graph
theoretic methods in mechanics that keep track of generalized forces
and displacements along branches of a graph representing the system
interconnection. The main emphasis of their approach is on system
description rather than controller design. It is precisely because we
are interested in designing controllers that we have initially limited
the class of interconnections we are allowed.

Distributed Control, Hierarchical Control: The nervous system
controls biomechanical robots using both distributed controllers and
hierarchical organization [12]. For example, spinal reflex centers can
direct portions of gait in cats and the wiping motions of frog limbs
without the brain. One reason for a hierarchical design is that high-
level feedback loops may respond too slowly for all of motor control
to be localized there. Indeed the complexity and time delays inherent
in biological motor control led the Russian psychologist Bernstein to
conclude the brain could not achieve motor control by an internal
model of body dynamics [13].

Centralized control has been defined as a case in which every
sensor's output influences every actuator. Decentralized control was
a popular topic in control theory in the late 1970's and led to a
number of results concerning weakly coupled systems and multi-
rate controllers [29]. Graph decomposition techniques, applied to the
graph structures employed in a hierarchical scheme, permitted the
isolation of sets of states, inputs, and outputs that were weakly cou-
pled. This decomposition facilitated stability analyses and controller
design. Robotic applications of hierarchical control are exemplified by
HIC [S], which manages multiple low-level servo loops with a robot
programming language from the "traditional" category above. One
emphasis of such control schemes concerns distributed processing
and interprocess communication.

C. Overview of Robot Control Primitives

The fundamental objects in our robot specification environment
are objects called robots. In a graph theoretic formalism they are
nodes of a tree structure. At the lowest level of the tree are leaves
that are instantiated by the d e f i n e primitive. Robots are dynamical
systems that are recursively defined in terms of the properties of their
daughter robot nodes. Inputs to robots consist of desired positions and
conjugate forces. The outputs of a robot consist of actual positions
and forces. Robots also possess attributes such as inertial parameters
and kinematics.

There are two other primitives that act on sets of robots to yield
new robots, so that the set of robots is closed under these operations.
These primitives (a t t a c h and c o n t r o l) may be considered as
links between nodes and result in composite robot objects. Thus nodes
closer to the root may possess fewer degrees of freedom, indicating
a compression of information upon ascending the tree.

The a t t a c h primitive reflects geometrical constraints among
variables and in the process of yielding another robot object, ac-
complishes coordinate transformations. A t t a c h is also responsible
for a bidirectional flow of information: expanding desired positions
and forces to the robots below, and combining actual position and
force information into an appropriate set for the higher level robot.
In this sense the state of the root robot object is recursively defined
in terms of the states of the daughter robots.

The c o n t r o l primitive seeks to direct a robot object to follow a
specified "desired" positionlforce trajectory according to some control
algorithm. The controller applies its control law (several different
means of control are available such as PD and computed torque)
to the desired and actual states to compute expected states for the
daughter robot to follow. In turn, the daughter robot passes its actual
states through the controller to robot objects further up the tree.

The block diagram portion of Fig. 1 may be seen to be an example
of a robot system comprised of these primitives. Starting from the bot-
tom: two fingers are d e f i n e d ; each finger is c o n t r o l l e d by muscle
tensionlstiffness and spinal reflexes; the fingers are a t t a c h e d to
form a composite hand; the brainstem and cerebellum help c o n t r o l
and coordinate motor commands and sensory information; and finally
at the level of the cortex, the fingers are thought of as a pincer that
engages in high-level tasks such as picking.

The language primitives presented in this paper are intended to
codify the description and control of hierarchically organized robots
in contact with the environment. This is useful both as an analytic
procedure to explore complex control laws, as well as a practical
tool to implement control laws at different levels in hierarchical
systems-where many different control laws may be needed to
accomplish a task. In particular, we are very interested in systems
for which the elementary robots remain unchanged, but the system
constraints are variable. Such an environment is present, for example,
in the contiol of a multi-fingered robot hand picking up an object.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARYIFEBRUARY 1992 185

We make a number of assumptions to simplify the initial analysis.
We will assume that .I is bijective in some neighborhood and that
G is surjective. For the primitives presented in the next section, we
also assume that there exists a forward kinematic function h: 0 w .r;
that is, the constraint is holonomic. We discuss the consequences of
removing these assumptions in later sections.

To include velocity constraints we again appeal to Lagrange's
equations. Following the approach in Rosenberg [27], the equations
of motion for our constrained system can be written as

where

Fig. 2. Planar two-fingered hand. Contacts are assumed to be maintained M = M + G J - ~ A ~ O J - ' G ~
throughout the motion. For this particular system the box position and
orientation, x, form a generalized set of coordinates for the system. c = c + G J - ~ (c ~ . J - ' G ~ + dfo(d/dt) (J - ' G r))

N = G J - ~ N ~ + N
In that situation, separate controllers are needed for the different F, = G J - ~ ~
phases of motion required of the hand: free space motion of the
hand, grasping of the object, and manipulation of the grasped object. M7 Me inertia matrix for the box and fingers, respectively

11. REVIEW OF ROBOT DYNAMICS AND CONTROL

In this section we selectively review the dynamics and control of
robot systems.

The basic result is that even for relatively complicated robot
systems, the equations of motion for the system can be written in
a standard form. This point of view has been used by Khatib in
his operational space formulation [16] and in some recent extensions
[17]. The results presented in this section are direct extensions of
those works, although the approach is different.

The dynamics for a robot manipulator with joint angles 0 E IR"
and actuator torques r E IRn can be derived using Lagrange's
equations and written in the form

where M(B) is a positive definite inertia matrix and c (B , !) ~ is the
Coriolis and centrifugal force vector. The vector N(B, B) E IRn
contains all friction and gravity terms and the vector T E IRn
represents generalized forces in the B coordinate frame. For systems
of this type, it can be shown that M - 2C is a skew symmetric matrix
with proper choice of C (such as that in [31]).

C, Co Coriolis and centrifugal terms

Thus we have an equation with a similar form to our "simple"
robot. In the box frame of reference, M is the mass of the effective
mass of the box, and 6 is the effective Coriolis and centrifugal matrix.
These matrices include the dynamics of the fingers, which are being
used to actually control the motion of the box. However the details
of the finger kinematics and dynamics are effectively hidden in the
definition of if and C. The skew symmetry of i 4 - 2~ is preserved
by this transformation.

B. Internal Forces

Although the grasp map G was assumed surjective, it need not
be square.From the equations of motion (3), we note that if fingertip
force J-'r is in the null space of G then the net force in the object
frame of reference is zero and causes no net motion of the object.
These forces act against the constraint and are generally termed
internal or constraint forces. We can use these internal forces to
satisfy other conditions, such as keeping the contact forces inside the
friction cone (to avoid slipping) or varying the load distribution of a
set of manipulators rigidly grasping an object.

To include the internal forces in our formulation, we extend the

A. Constrained Manipulators grasp map by defining an orthonormal matrix H(B) whose rows form
a basis for the null space of G(B). As before we assume that G(B)

Constrained robot systems can also be represented by dynamics is full row rank and we break all forces up into an external and an
in the same form as (1). As our main example, consider the.contro1 internal piece, F, and F,. Given these desired forces, the torques that
of a multifingered hand grasping a box (Fig. 2) where B E IRn is should be applied by the actuators are
a vector of all the joint angles and x E IRP is a vector describing
the position and orientation of the box. In most circumstances 11 = 3
or 6 depending on whether we consider planar or spatial motion.
The contacts constrain the relative velocities between fingertips
and object, dependent on the type of contact model. The grasping
constraint may be written as

where q = (0, x) E IRn x IRp, J is the Jacobian of the finger
kinematic function and G is the "grasp map" for the system. Here
m is the number of velocity constraints imposed by the grasp. This
form of constraint can also be used to describe a wide variety of other
systems, including grasping with rolling contacts, surface following
and coordinated lifting. A more complete derivation of grasping
kinematics can be found in [24] or [20].

C. Redundant Manipulators

Some manipulators contain more degrees of freedom than are
necessary to specify the position of the end effector. Mathematically,
these robots can be represented by a change of coordinates f : IRm -+

IRn where m > n. In this case, the Jacobian matrix J := d f)/dB
is not square and hence J-' is not well defined so the derivation of
(4) does not hold.

It is still possible to write the dynamics of redundant manipulators
in a form consistent with (3). To do so, we first define a matrix Ii(B)
whose rows span the null space of J(B). As before we assume that
J(B) is full row rank and hence Ii(B) has constant rank m - n. The

186 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1 , JANUARYIFEBRUARY 1992

rows of I i (8) are basis elements for the space of velocities that cause
no motion of the end effector; we can thus define an internal motion,
i, E IR'"" using the equation

By construction, j is full rank (and square) so we can use the
previous derivation to conclude that

where $1, C?, AT, and F, are obtained from (4) replacing J with J
and augmenting G with a block diagonal identity matrix to preserve
the .i.;'s. If we choose I< such that its rows are orthonormal then
J-' = (J + I i T) where J f = J T (J J T) - ' is the least-squares
inverseof J . This approach is related to the extended Jacobian
technique for resolving kinematic redundancy [I].

It might appear from our notation that we have parameterized
the internal motion of the system by a variable .c;. This is not
necessarily the case since only i; was defined in (6). Because we
chose I i only to span the null space of J , there may not exist a
function g such that x, = g (8) and a g / a 8 = It-. A necessary and
sufficient condition for such a g to exist is that each row of I i satisfy
a h ' i , / a O k = a I i i k / a 8 , . This is merely the statement that mixed
partials of g must commute.

It may not always be easy to choose I { (@) such that it is
the differential of some function. For this reason, we shall not
generally assume that an explicit coordinatization of the internal
motion manifold is available. A more detailed discussion of this
point can be found in [22].

D. Control

To illustrate the control of robot systems, we look at two controllers
that have appeared in the robotics literature. We start by considering
systems of the form

where M (q) is a positive definite inertia matrix and C (q , q) i is
the Coriolis and centrifugal force vector. The vectorN(q,q) E IRn
contains all friction and gravity terms and the vector F E Rn
represents generalized forces in thex coordinate frame.

For the case of more complicated manipulators, the dynamics
look essentially the same with appropriate definition of x and F.
For redundant manipulators we define x as (z , , x ,) , where it is
understood that derivatives of x , may be used in a control law, but z ,

should not appear unless a true coordinatization of the internal motion
has been chosen. This is point illustrated in more detail below.

' For manipulators that contain constraints, we define F as F,, cf. (3)
and we add an internal force F, to the applied actuator forces. Thus

(assuming J is either full rank or has been extended as described
previously). For simplicity, we omit discussion of the choice of
internal forces (see [19], [23] for details and references). Both internal
motions and forces are specified in terms of the basis vectors for the
appropriate null spaces.

Computed Torque: Computed torque is an exactly linearizing con-
trol law that has been used extensively in robotics research. It has
been used for joint level control [2], Cartesian control [21], and most
recently, control of multifingered hands [19], [6]. Given a desired
trajectory xd we use the control

where error e = ad - 1 and I<,, and I i , are constant gain matrices.
The resulting dynamics equations are linear with exponential rate of
convergence determined by I i , , and I i , . Since the system is linear,
we can use linear control theory to choose the gains (I i , , and I<,)
such that they satisfy some set of design criteria.

The disadvantage of this control law is that it is not easy to specify
the interaction with the environment. We might think that we could
use I i , to model the stiffness of the system and exert forces by
commanding trajectories that result in fixed errors. Unfortunately this
is not uniformly applicable as can be seen by examining the force
due to a quasi-static displacement Ax:

Since I<, must be constant in order to prove stability, the resultant
stiffness will vary with configuration. Additionally, given a desired
stiffness matrix it may not be possible to find a positive definite I i ,
that achieves that stiffness, even at a fixed value of q (the product of
positive definite matrices is not necessarily positive definite).

PD + Feedforward Control: PD controllers differ from computed
torque controllers in that the desired stiffness (and potentially damp-
ing) of the end effector is specified, rather than its position tracking
characteristics. Typically, control laws of this form rely on the skew-

symmetric property of mbot dynamics, namely a' (M - 2 ~) o = 0
for all a E IRn. Consider the control law

where I i , and I i , are symmetric positive definite. Using a Lyapunov
stability argument, it can be shown that the actual trajectory of
the robot converges to the desired trajectory asymptotically [18].
Extensions to the control law result in exponential rate of convergence

[3017 [281-
This PD control law has the advantage that for a quasi:static change

in position A x the resulting force is

and thus we can achieve an arbitrary symmetric stiffness. Exper-
imental results indicate that the trajectory tracking performance
of this control law does not always compare favorably with the
computed torque control law [23]. Additionally, there is no simple
design criteria for choosing Z i , and I i , to achieve good tracking
performance. While the stability results give necessary conditions
for stability they do not provide a method for choosing the gains.
Nonetheless, PD control has been used effectively in many robot
controllers and has some computational features that make it an
attractive alternative.

Control of Redundant Manipulators: Since the dynamics for a re-
dundant manipulator have the same form as our canonical robot
system, it is easy to extend the previous control laws to handle this
case. If a coordinatization of the internal motion manifold is available,
the control laws are identical with the addition of the redundant states.
If we do not have a set of coordinates for the internal motion, but
rather, only the velocities, then we must be slightly more careful. For
example, the computed torque control law becomes

Motion specification for such a control law would be in terms of a
position trajectory x e , d (.) and a velocity trajectory i , , d (.) .

This control law will guarantee tracking of the given internal
velocity. One method of calculating this velocity is to attempt to
use the redundant degrees of freedom to minimize a cost function.
Given the gradient of the cost function, we can project this vector - -

F = M (q) (? d + I i , ; + IiePe) + C (q , q) i + AT(q.q) (9) (in joint space) onto the range of I< (@) , which spans the internal

lEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARYIFEBRUARY 1992

motion directions. This determines x ; , ~ , which can be passed to the
controller. This type of cost criterion has been used with a computed
torque-like controller by Hsu et al. [15].

In this section we describe a set of primitives that gives us
the mathematical structure necessary to build a system and control
specification for dynamical robot systems. We do not require any
particular programming environment or language, borrowing instead
from languages such as C, Lisp and C++. As much as possible, we
have tried to define the primitives so that they can be implemented
in any of these languages.

As our basic data structure, we will assume the existence of an
object with an associated list of attributes. These attributes can be
thought of as a list of name-value pairs that can be assigned and
retrieved by name. A typical attribute that we will use is the inertia
of a robot. The existence of such an attribute implies the existence
of a function that is able to evaluate and return the inertia matrix of
a robot given its configuration.

Attributes will be assigned values using the notation attribute :=
value. Thus we might define our inertia attribute as

In order to evaluate the inertia attribute, we would call M with a
vector 0 E R2. This returns a 2 x 2 matrix as defined previously.
The Coriolis/centrifugal attribute, C, and friction/gravity/nonlinear
attribute, N, are defined similarly.

To encourage intuition, we will first describe the actions of the
primitives for the case of nonredundant robots. Additionally, we
ignore the internal forces that are present in constrained systems.
Extensions to these cases are presented in Section V.

A. The Robot Object

The fundamental object used by all primitives is a robot. Associated
with a robot are a set of attributes that are used to define its behavior:

M inertia of the robot

C Coriolis/centrifugal vector

N friction and gravity vector

rd return position and force information about the robot

w r send position and force information to the robot.

The rd function returns the current position, velocity, and accelera-
tion of the robot, and the forces measured by the robot. Each of these
will be a vector quantity of dimension equal to the number of degrees
of freedom of the robot. Typically a robot may only have access to
its joint positions and velocities, in which case 2 and F will be nil.

The w r function is used to specify an expected position and force
trajectory that the robot is to follow. In the simplest case, a robot
would ignore everything but F and try to apply this force/torque at its
actuators. As we shall see later, other robots may use this information
in a more intelligent fashion. We will often refer to the arguments
passed to w r by using the subscript e . Thus s, is the expected or
desired position passed to the w r function.

The task of describing a primitive is essentially the same as
describing how it generates the attributes of the new robot. The
following sections describe how each of the primitives generates these
attributes. The new attributes created by a primitive are distinguished
by a tilde over the name of the attribute.

Fig. 3. Example of the d e f i n e primitive. The robot shown here corre-
sponds to a robot with torque driven motors and only position and velocity
sensing.

DEFINE primitive

S y n o p s i s :

DEFINE (M , C , hT, rd, wr)

The d e f i n e primitive is used to create a simple robot object.
It defines the minimal set of attributes necessary for a robot. These
attributes are passed as arguments to the d e f i n e primitive and a
new robot object possessing those attributes is created:

M(O) := M(0)

Several different types of robots can be defined using this basic
primitive. For example, a dc motor actuated robot would be imple-
mented with a wr function that converts the desired torque to a motor
current and generates this current by communicating with some piece
of hardware (such as a D/A converter). This type of robot system is
shown in Fig. 3. On the other hand, a stepper motor actuated robot
might use a wr function that ignores the torque argument and uses
the position argument to move the actuator. Both robots would use
a rd function that returns the current position, velocity, acceleration
and actuator torque. If any of these pieces of information is missing,
it is up to the user to insure that they are not needed at a higher level.
We may also define a payload as a degenerate robot by setting the
wr argument to the nil function. Thus commanding a motion and/or
force on a payload produces no effect.

ATEACH primitive

S y n o p s i s :

ATTACH(J, G I h , p a y l o a d , r o b o t - l i s t)

A t t a c h is used to describe constrained motion involving a
payload and one or more robots. A t t a c h must create a new robot
object from the attributes of the payload and of the robots being
attached to it. The specification of the new robot requires a velocity
relationship between coordinate systems (JO = G ~ X) , an invertible
kinematic function relating robot positions to payload position (x =
h(O)), a payload object, and a list of robot objects involved in the
contact.

The only difference between the operation of the attachprimitive
and the equations derived for constrained motion of a robot manipu-
lator is that we now have a list of robots, each of which is constrained

188 IEEE TRANSAmIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1. JANUARYFEBRUARY 1992

nil F, J ~ G + 41. RZ F
8.

Payload I

Fig. 4. Data flow in a two robot attach. In this example we illustrate the
structure generated by a call to attach with 2 robots and a payload (e.g.,
a system like Fig. 2). The two large interior boxes represent the two robots,
with their input and output functions and their inertia properties. The outer
box (which has the same structure as the inner boxes) represents the new
robot generated by the call to attach. In this example the robots do not
have acceleration or force sensors, so these outputs are set to n i l .

to contact a payload. However, if we define O R to be the combined
joint angles of the robots in robot-list and similarly define M R
and C R as block diagonal matrices composed of the individual inertia
and Coriolis matrices of the robots, we have a system that is identical
to that presented previously. Namely, we have a "robot" with joint
angles O R and inertia matrix M R connected to an object with a
constraint of the form

where once again J is a block diagonal matrix composed of the
Jacobians of the individual robots. To simplify notation, we will
define A := J-'GT so that

The attributes of the new robot can thus be defined as:

where M p , C p , Np are attributes of the payload, M R and C R are as
described above and iVR is a stacked vector of friction and gravity
forces. This construction is illustrated in Fig. 4.

The rd attribute for an attached robot is a function that queries the
state of all the robots in robot-list. Thus O R in (19) is constructed
by calling the individual rd functions for all of the robots in the list.
The 0 values for each of these robots are then combined to form
O R and this is passed to the forward kinematic function. A similar
computation occurs for i ~ , f ? ~ and T R . Together, these four pieces
of data form the return value for the rd attribute.

In a dual manner, the wr attribute is defined as a function that takes
a desired trajectory (position and force), converts it to the proper
coordinate frame and sends each robot the correct portion of the
resultant trajectory.

A special case of the attach primitive is its use with a nil
payload object and G = I. In this case, M,, C p , and N p are all zero
and the equations above reduce to a simple change of coordinates.

buffer control robot

Fig. 5. Data flow in a typical controlled robot. Information written to the
robot is stored in an internal buffer where it can be accessed by the controller.
The controller uses this information and the current state of the robot to
generate forces that cause it to follow the desired trajectory.

In principle, we could also define a DETACH primitive that would
allow a composite robot system to be broken into components. This
operation could be useful when a robot hand releases an object in its
grasp, for example. An alternative approach is to respecify the new
control structure that properly models the constraints after the object
is released. Depending on the implementation, it might be possible
to do this efficiently using previously defined daughter robots.

CONTROL primitive

Synopsis:

CONTROL(robot, controller)

The control primitive is responsible for assigning a controller to
a robot. It is also responsible for creating a new robot with attributes
that properly represent the controlled robot. The attributes of the
created robot are completely determined by the individual controller.
However, the rd and tur attributes will often be the same for different
controllers. Typically the rd attribute for a controlled robot will be
the same as the rd attribute for the underlying robot. That is, the
current state of the controlled robot is equivalent to the current state
of the uncontrolled robot. A common wr attribute for a controlled
robot would be a function that saved the desired position, velocity,
acceleration and force in a local buffer accessible to our controller.
This configuration is shown in Fig. 5.

The dynamic attributes M, c and &' are determined by the
controller. At one extreme, a controller that compensates for the
inertia of the robot would set the dynamic attributes of the controlled
robot to zero. This does not imply that the robot is no longer a
dynamic object, but rather that controllers at higher levels can ignore
the dynamic properties of the robot, since they are being compensated
for at a lower level. At the other end of the spectrum, a controller may
make no attempt to compensate for the inertia of a robot, in which
case it should pass the dynamic attributes on to the next higher level.
Controllers that lie in the middle of this range may partially decouple
the dynamics of the manipulator without actually completely com-
pensating for them. To illustrate these concepts we next consider one
possible controller class, computed torque. However, many control
laws originally formulated in joint space may also be employed since
the structure of (3) has been preserved.

Computed Torque Controller: As we mentioned in Section 11, the
computed torque controller is an exactly linearizing controller that
inverts the nonlinearities of a robot to construct a linear system. This
linear system has a transfer function equal to the identity map and as a
result has no uncompensated dynamics. The proper representation for
such a system sets the dynamical attributes M, C, and^ to zero and
uses the rd and w r attributes as described previously. We introduce
x d to refer to the buffered desired trajectory.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARYrFEBRUARY 1992

The control process portion of the controller is responsible for
generating input robot forces which cause the robot to follow the
desired trajectory (available in zd). Additionally, the controller must
determine the "expected" trajectory to be sent to lower level robots.
For the computed torque controller we use the resolved acceleration
[21] to generate this path. This allows computed torque controllers
running at lower levels to properly compensate for nonlinearities
and results in a linear error response. The methodology is similar
to that used in determining that the dynamic attributes of the output
robot should be zero. The control algorithm is implemented by the
following equations:

where rd and wr are attributes of the robot that is being controlled.
Note the existence of the Fd term in the calculation of F,. This

is placed here to allow higher level controllers to specify not only a
trajectory but also an force term to compensate for payloads attached
at higher levels. In essence, a robot that is being controlled in this
manner can be viewed as an ideal force generator that is capable of
following an arbitrary path.

The computed torque controller defines two new attributes, lip
and I i , , which determine the gains (and hence the convergence
properties) of the controller. A variation of the computed torque
controller is the feedforward controller, which is obtained by setting
lip = I i , = 0. This controller can be used to distribute nonlinear
calculations in a hierarchical controller, as we shall see in Section IV.

IV. EXAMPLES

To make the use of the primitives more concrete we present some
examples of a planar hand grasping a box (Fig. 2) using various
control structures. For all of the controllers, we will use the following
functions

inertia matrix for the box in Cartesian
coordinates

Ml, Mr inertia matrix for the left and right fingers

Cb?Ci,Cr Coriolis/centrifugal vector for box and fingers

f finger kinematics function,
f : (81,er) H (~ 1 , ~ r)

9 grasp kinematics function, g : (xi, x,) r XI,

J finger Jacobian, J =

G grasp map, consistent with y

r d - l e f t r d - r i g h t read the current joint position and velocity
w r - l e f t wr - r igh t generate a desired torque on the joints

where B1, B,, xi, z,, and xb are defined as in Fig. 2.

box trajectory

CONTROL Computed
Torque

Constraint

ATTACH r'r'rl Kinematics Finger DEFINE

6 Finger DEFINE
Finger

Fig. 6. High-level computed torque. The primitives listed next to the nodes
in the graph indicate the primitive that was used to created the node. In this
structure all dynamic compensation and error correction occurs at the top of
the graph, using a complex dynamic model for the underlying system.

In terms of the primitives that we have defined, we build this
structure from the bottom up

left = D E F I N E (M ~ , C ~ , 0, rd-left, wr-left)
right = DEFINE(M,,C,, 0, rd-right, wr-right)
fingers = ATTACH(J, I,f, nil, left, right)

box = DEFINE(Mb,Cb, 0, nil, nil)
hand = ATTACH (I , G, g , box, fingers)

ct-hand = CONTROL(hand, computed-torque).

It is useful to consider how the data flows to and from the control
law running at the hand level. In the evaluation of xb and ib, the
following sequence occurs (through calls to the rd attribute):

hand: asks for current state, xb and x b

fingers: ask for current state, 2:f and rf

left: read current state, Bl and 81
right: read current state, 0,. and 8,

fingers: x f , x f + f(el, e,.), J(&, 8,)
hand: xb,ib + g (x f) , ~ T ~ f

Similarly, when we write a set of hand forces using the wr
attribute, it causes another chain of events to occur:

box: generate a box force Fb

hand: generate finger force Gt Fb

fingers: generate joint torques . J ~ G+ Fb
left: output torques conjugate to 6'1
right: output torques conjugate to 8,.

High-Level Computed Torque Control Using the transformations given above it is straightforward to
In this example we combine all systems to obtain a description calculate the torque generated by the control law by expanding

of the dynamic properties of the overall system in box coordinates. the structure of Fig. 6 using the definition of the primitives. Let
Once this is done we can move the box by directly specifying the the subscript d denote desired quantities at each level and let the
desired trajectory for the box. This structure is illustrated in Fig. 6. subscripts b, h, f refer to the body, hand, and fingers attributes,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1 , JANUARYFEBRUARY 1992

box trajectory box trajectory

Constraint

DEFINE
Kinematics

I &F&~ COUTROL CONTROL CT

DEF11E Left 1 1 Right / DEFINE
Finner Finger

Fig. 7. Low-level computed torque. Computed torque controllers are used
for the individual fingers to provide trajectory following capability in joint
space. Since no controller is positioned above the box, the dynamics of the
box are ignored even though the path is given in the box's frame of reference.

respectively,

Me and Ce refer the block diagonal matrices formed by the indi-
vidual finger attributes. This control law corresponds exactly to the
generalized computed torque control algorithm presented by Li, et al.
(191, with the omission of internal forces (see Section V-A).

A. Low-Level Computed Torque Control

Another common structure for controlling robots is to convert all
trajectories to joint coordinates and perform computed torque at that
level. In a crude implementation one might assume the dynamic
effects of the box were negligible and construct the following
structure shown in Fig. 7.

The primitives used to define this structure are

left = DEFINE(M,, C I , 0, rd-left, wr-left)
right = DEFINE(M,,C,, 0, rd-right, wr-right)
ct-left = CONTROL(left, computed-torque)
ct-right = CONTROL(right, computed-torque)

Torque

Kinematics

D E F I N E m Finger

Fig. 8. Multilevel computed torque and stiffness (PD). Controllers are used
at each level to provide a distributed control system with biological motivation
(cf. Fig. I), desirable control properties, and computational efficiency.

B. Multilevel Computed Torque/Stiffness Control

As a final example, we consider a control structure obtained by
analogy with biological systems in which controllers to run at several
different levels simultaneously (see Fig. 8).

At the lowest level we use simple PD control laws attached
directly to the individual fingers. These PD controllers mimic the
stiffness provided by muscle coactivation in a biological system [14].
Additionally, controllers at this level might be used to represent spinal
reflex actions. At a somewhat higher level, the fingers are attached
and considered as a single unit with relatively complicated dynamic
attributes and Cartesian configuration. Here we employ a feedforward
controller (computed torque with no error correction) to simplify
these dynamic properties, as viewed by higher levels of the brain.
With respect to these higher levels, the two fingers appear to be two
Cartesian force generators represented as a single composite robot.

Up to this point, the representation and control strategies do not
explicitly involve the box, a payload object. These force generators
are next attached to the box, yielding a robot with the dynamic
properties of the box but capable of motion due to the actuation in
the fingers. Finally, we use a computed torque controller at the very
highest level to allow us to command motions of the box without
worrying about the details of muscle actuation. By this controller we
simulate the actions of the cerebellum and brainstem to coordinate
the box's motion and correct for errors.

The structure in Fig. 8 also has interesting properties from a more
traditional control viewpoint. The low-level PD controllers can be
run at high servo rates (due to their simplicity) and allow us to tune

fingers = ATTACH(J,I, f , nil, ct-left, ct-right)
the response of the system to reject high frequency disturbances.

box = D E F I N E (M ~ , C ~ , 0, nil, nil)
The Cartesian feedforward controller permits a distribution of the
calculation of nonlinear compensation terms at various levels, lending

hand = ATTACH(I,G,~, box, fingers)
itself to multiprocessor implementation. Furthermore, it allows a

This controller is provably exponentially stable when the mass of degree of device independence since the underlying dynamics of the
the box is zero. However, this controller does not compensate for the fingers are masked from higher level controllers. Finally, ,,sing a
mass of the box. As a we expect degraded performance if the computed torque controller at the highest level gives the flexibility
mass of the box is large. ~xperimental results on a system of this of performing the controller design in the task space and results in
form confirm our intuition 1231. a system with linear error dynamics. Another feature is that if we

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARYFEBRUARY 1992 191

ignore the additional torques due to the PD terms, the joint torques
generated due to an error in the box position are the same as those
of the high-level computed torque scheme presented earlier.

V. EXTENSIONS TO THE BASIC PRIMITIVES

Having presented the primitives for nonredundant robot systems in
which we ignore internal forces, we now describe the modifications
necessary to include both internal motion and internal forces in the
primitives. As before, these extensions are based on the dynamic
equations given in Section I1 and rely on the fact that the equations
of motion of this class of systems can be expressed in a unified way.

Internal motion and force can be thought of as manifestations of
redundancies in the manipulator, and both can be used to improve
performance. A classical use of redundant motion in robotics is to
specify a cost function and use the redundancy of the manipulator to
attempt to minimize this cost function. If we extend our definition of
the wr function so that it takes not only an "external" trajectory,
but also an internal trajectory (which might be represented as a
cost function or directly as a desired velocity in the internal motion
directions) then this internal motion can be propagated down the
graph structure. A similar situation occurs with internal or constraint
forces.

The matrices J (q) and G (q) in (2) embody the fundamental
properties of the constrained system. We begin by assuming that J (q)
and G (q) are both full row rank. The null space of J (q) corresponds
to motions that do not affect the configuration of the object, i.e.,
internal motions. Likewise, the null space of G (q) describes internal
forces-the set of forces that cause no motion of the object. A
complete trajectory for a robot must specify not only external motion
and force for a robot but also the internal motion and force that lie
in these subspaces.

A. Internal Forces

Consider first the case where J is square (and invertible) but G
has a null space. If J is not square, then we can assume an extended
Jacobian has been defined, as described in Section 11-C. To allow
internal forces to be specified and controlled, we must first add them
to the r d and wr attributes. This is done by simply adding an extra
value to the list of values returned by rd and adding an extra argument
to w r . Thus the w r attribute is called as

~ u r (a . ~ , j . ~ , . ? ~ , F,. F ,) (21)

where F, is the desired internal force.
Internal forces are "created" by the attach primitive. The internal

force directions for a constraint are represented by an orthonormal
matrix H (0) whose rows form a basis for the null space of G(6').
Since any of the daughter robots may itself have an internal force
component, the internal force vector for a robot created by attach
consists of two pieces: the internal forces created by this constraint
and the combined internal forces for the daughter robots.

Let F,,, parameterize the internal forces generated by the current
constraint and let F,,2 be the collection of internal forces present in
the daughter robots.

The force transformations that describe this relationship are

where T R , ~ is the vector of external forces for the daughter robots
and TR, , is the vector of internal forces. This equation is analogous
to (5) in Section 11-B. Note that T R , , is identical to F,,2, thus internal

force specifications required by the daughter robots are appended
to the internal force specification required due to the constraint.
Expanding (22) we see the appropriate definition for the new 7Llr

attribute generated by attach is

uir(.r,..i.,, Y e . F,, F ,) := w r R (. J ~ G + F ~ + J ~ H ~ F , , , , F,,2)
(23)

The inclusion of internal forces in the rd attribute is similar. The
sensed forces from the robots, TR, are simply split into external and
internal components and converted to the appropriate internal and
external forces for the new robot. This is equivalent to inverting (22):

It follows that

Internal forces are resolved by the control primitive. In princi-
ple, a controller can specify any number of the internal forces for a
robot. Intelnal forces that are not resolved by a controller are left as
internal forces for the newly defined robot. In practice, controllers will
often be placed immediately above'the attached robots since internal
forces are most efficiently resolved at this level. Unlike external
motions and forces, internal forces are not subject to coordinate
change and so leaving such forces unresolved causes higher level
controllers to use low-level coordinates.

B. Internal Motions

Internal motions are also created by the attach primitive, this
time due to a nonsquare Jacobian matrix. As before, we must add
arguments to the rd and wr attributes of robots to handle the extra
information necessary for motion specification. We only assume that
the redundant velocities and accelerations are defined, so we add
only those quantities to rd and w r . Since the notation becomes quite
cumbersome, we won't actually define the rd andwr primitives, but
just specify the internal and external motion components.

Given a constraint that contains internal motions, the attach
primitive must again properly split the motion among the robots
attached to the object. Define I<(@) to be a matrix whose rows span
the null space of J (0) . Then we can rewrite our constraint as

Defining J and G as the extended Jacobian and grasp matrices,

we see that J is full rank and so we can use it to define A = j-' (
in (16H20). This then defines the dynamics attributes created
attach. Note that the dimension of the constrained subspace (whc
internal forces act) is unchanged by this extension.

The input and output attributes are described in a manner sim]
to those used for internal forces. For wr the external component
the motion is given by I

192 IEEE TRANSAiTlONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1 , JANUARYIFEBRUARY 1992

is defined similarly. OR,= is only defined if an inverse kinematic
function, hK1, is given. Otherwise that information is not passed to
the daughter robots. As before, if the robots themselves have internal
motions then these should be split off and passed unchanged to the
lower level robots. '

The rd attribute is defined by projecting robot motions into an
object motion component and an internal motion component. That is

xi., and xi are obtained by differentiating the expressions for x, and
x, .

Controllers must also be extended to understand internal motion.
This is fundamentally no different than control of an ordinary
manipulator except that position information is not available in
redundant directions. Thus the computed torque law would become

Motion specification for such a control law would be in terms of a
position trajectory x,(.) and a velocity trajectory x,(.). If a controller
actually resolves the internal motion (by specifying .i,,d(.) based on a
pseudo inverse calculation for example), then the internal motion will
be masked from higher level controllers; otherwise it is passed on.

C. Other Issues

Control laws commonly use the position of the object as part of the
feedback term. This may not always be available for systems with
nonintegrable constraints (such as grasping with rolling contacts).
If the object position cannot be calculated from 6' alone, then we
must retrieve it from some other source. One possibility is to use
an external sensor that senses x directly, such as a camera or tactile
array. The function to "read the sensor" could be assigned to the
payload rd function and a t t a c h could use this information to return
the payload position when queried. Another possible approach is to
integrate the object velocity (which is well defined) to bookkeep the
payload position.

Some care must also be taken with the evaluation of dynamic
attributes for robots that do not have well defined inverse kinematic
functions. There are some robot control laws that use feedforward
terms that depend on the desired output trajectory, e.g., M(xd)xd.
The advantage of writing such control laws is that this expression can
be evaluated offline, increasing controller bandwidth. This calculation
only makes sense if the desired configuration, qd, can be written as a
function of xd and more generally if q can be written as a function of
x. One solution to this problem is to only evaluate dynamic attributes
of a robot at the current configuration. Assuming each robot in the
system can determine its own position, these attributes are then well
defined. For all the control laws presented in this paper, M, C and
N are always evaluated at q, the current configuration.

Working from a physiological motivation we have developed a set
of robot description and control primitives consistent with Lagrangian
dynamics. Starting from a description of the inertia, sensor, and
actuator properties of individual robots, these primitives allow for the
construction of a composite constrained motion system with control
distributed at all levels. Robots, as dynamical systems, are recursively
defined in terms of daughter robots. The resulting hierarchical system
can be represented as a tree structure in a graph theoretic formalism,

with sensory data fusion occurring as information flows from the
leaves of the tree (individual robots and sensors) toward the root,
and data expansion as relatively simple motion commands at the root
of the tree flow down through contact constraints and kinematics to
the individual robot actuators.

There are many problems, both general and specific, which remain
open. We discuss a few of these below.

One of the primary challenges in robotic control is the integration
of large numbers of manipulators performing a coordinated task. The
primitives given in this paper allow specification of controllers that
can be used for such tasks. A typical task consists of many different
phases, each potentially requiring a different type of control. An
example of this is a hand grabbing an object, in which the initial
move and grab phases require position control of the fingers, while
the manipulation phase requires control of the composite grasping
system.

For each phase of the task, the control primitives can be used
to specify hierarchical control structures appropriate to the motion
being performed. Methods for smoothly changing from one control
structure to another, for example when contact is being made with an
object, need to be developed. If we represent the system dynamics as
a finite state machine, with each state corresponding to a different set
of constraints on the overall system, we can associate with each state
a controller defined in terms of the control primitives. In this context,
we are interested in control structures that facilitate the transition from
one state to another. It particular, it seems important to insure that
the controller does not force the system to return to the previous state
and begin an oscillation between states and the associated controllers.
The idea of representing the system as a graph of dynamical systems
is from a suggestion by Brockett [4] and is worthy of more study.

It would be very useful to determine broad stability properties
for the system with controllers at various levels. This is particularly
difficult when there are constraints in the system, since some low-
level controllers may not be aware of the constraints and the resulting
model mismatch could cause instability. A weak version of the
desired result is the observation that if we place a computed torque
controller at the highest level and feedforward controllers at lower
levels of the hierarchy, the commanded torques are identical to those
obtained by a single computed torque controller at the top of the
hierarchy. Thus the overall system is stable. Similar results with
PD controllers distributed throughout the structure seem plausible,
and there has been some work in this area in other contexts, such
as decentralized control [29]. By using the structure inherent in
controllers constructed using the primitives, it may be possible to
adapt these results and strengthen them.

Finally, one of the major future goals of this research is to
implement the primitives presented here on a real system. This
requires that efforts be made toward implementing primitives in
as efficient fashion as possible. The first implementation choice is
deciding when computation should occur. It is possible that the
entire set of primitives could be implemented off-line. In this case, a
controller-generator would read the primitives and construct suitable
code to control the system. A more realistic approach is to split the
computation burden more judiciously between on-line and off-line
resources. Symbolically calculating the attributes of the low-level
robots and storing these as precompiled functions might enable a large
number of systems to be constructed using a library of daughter robot
systems. Although the expressions employed are continuous time,
in practice digital computers will be relied upon for discrete time
implementations. This raises the issue of whether lower computation
rates may be practical for higher level robots/controllers.

Related to the issue of on-line versus off-line computation, is the
level at which we decide to label a mechanism as a simple robot

IEEE TRANSA(TT1ONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 1, JANUARYIFEBRUARY 1992 193

object, created by the def ine primitive. It is certainly possible to
define the individual links of a robot manipulator as robot objects, and
then attach these robots into a larger structure, such as a robotic finger.
However, since the links of the robot remain attached throughout the
execution of a task, it is likely that a more efficient representation
of the dynamics can b e achieved by modeling the entire finger as
a single mechanism. This corresponds to computation of the finger
dynamics in an off-line fashion.

We have made an initial implementation of the primitives using the
Mathematica symbolic manipulation program [32]. This implemen-
tation supports the basic primitives described in Section 111 and cor-
responds to a completely off-line implementation. The Mathematica
source code is available via anonymous ftp from united.berkeley.edu
in the directory "pub/RobotPrimitives." The listings for the Mathe-
matica package can be found in a recent technical report [9].

The authors would like to thank the reviewers for their remarks,
which have helped them provide a clearer description of the motiva-
tion and goals of this work.

[I] J . Baillieul, "Kinematic programming alternatives for redundant manip-
ulators," in Int. Con$ on Robotics and Automation, 1985, pp. 722-728.

[2] A. K. Bejczy, "Robot arm dynamics and control," Tech. Rep. 33-699,
Jet Propulsion Lab., 1974.

[3] R. W. Brockett, "On the computer control of movement," Tech. Rep.
CICS-P-31, Center for Intelligent Control Systems, Harvard Univ., Nov.
1987.

[4] R. W. Brockett, personal communication, 1990.
[S] D. Clark, "HIC: An operating system for hierarchies of servo loops," in

IEEE Int. ConJ Robotics Automat., 1989, pp. 1004-1008.
[6] A. B. A. Cole, J. E. Hauser, and S. S. Sastry, "Kinematics and control

of multifingered hands with rolling contact," IEEE Trans. Circuits and
Systems, vol. 34, pp. 398-404, 1989.

[7] J. J. Craig, Introduction to Robotics: Mechanics and Control, second ed.
Reading, MA: Addison-Wesley, 1989.

[8] M. R. Cutkosky, R. D. Howe, and A. P. Witkin, "Object-oriented
modeling of robot hands," in Knowledge-Based Expert Systems for
Manufacturing, 1986, presented at the Winter Annual Meeting of the
ASME, pp. 177-186.

[9] D. C. Deno, R. M. Murray, K. S. J. Pister, and S. S. Sastry, "Control
primitives for robot systems," Tech. Rep. UCBiERL M90139, Electron-
ics Res. Lab., Univ. California at Berkeley, May 1990.

[lo] V. Eng, The MDL Programmer's Reference Manual. Harvard Robotics
Lab., 1988, first revision.

[l l] K. S. Fu, R. C. Gonzalez, and C. S. George Lee, Robotics: Control,
Sensing, VZion, and Intelligence. New York: McGraw-Hill, 1987.

[12] C. Ghez, "Introduction to the motor system," in Principles of Neural
Science, second ed., E. R. Kandel and J . H. Schwartz, Eds. New York:
Elsevier, 1985, ch. 33.

[13] G. Hinton, "Some computational solutions to Bernstein's problems," in
Hwnan Motor Actions - Bernstein Reassessed, H. T. A. Whiting, Ed.
New York: Elsevier, 1984, ch. 4b.

[14] N. Hogan, "Stable execution of contact tasks using impedance control,"
in IEEE Int. Conf, Robotics Automat.,l987, pp. 1047-1053.

[15] P. Hsu, J. Hauser, and S. Sastry, "Dynamic control of redundant
manipulators,". J. Robotics Syst., vol. 6, no. 2, pp. 133-148, 1989.

[16] 0. Khatib, "A unified approach for motion and force control of robot
manipulators: The operational space formulation," IEEE J. Robotics and
Automation, vol. RA-3, pp. 43-53, Feb. 1987.

[17] 0. Khatib, "Augmented object and reduced effective inertia in robot
systems," in American Control Conf, 1988, pp. 2140-2147.

[I81 D. Koditschek, "Natural motion for robot arms," in IEEE Control and
Decision Coni, 1984, pp. 733-735.

[19] Z. Li, P. Hsu, and S. Sastry, "Grasping and coordinated manipulation
by a multifingered robot hand," Int. J. Robotics and Contr., vol. 8, no.
4, pp. 33-50, 1989.

[20] Z. Li and S. Sastry, "A unified approach for the control of multifingered
robot hands," Contemporary Mathematics, vol. 97, pp. 217-239, 1989.

[21] J. Y. S. Luh, M. W. Walker, and R. P. Paul, "Resilted acceleration
control of mechanical manipulators,"IEEE Trans. Circuits Syst., vol.
CAS-25, pp. 468-474, 1980.

[22] R. M. Murray, Robotic Control and Nonholonomic Motion Planning.
Ph.D. dissertation, Univ. California at Berkeley, 1990.

[23] R. M. Murray and S. S. Sastry, "Control experiments in planar manipula-
tion and grasping," in IEEE Int. Con[Robotics Automat., pp. 624-629,
1989.

[24] , "Grasping and manipulation using multifingered robot hands." in
Robotics: Proceedings of Symposia in Applied Mathematics, Vol. 41, R.
W . Brockett, Ed. Providence, RI: Amer. Math. Soc., 1990, pp. 91-128.

(2.51 R. P. Paul, Robot Manipulators: Mathematics, Programming, and Con-
trol. Cambridge, MA: MIT Press, 1981.

[26] R. P. Paul and V. Hayward, "Robot control and computer languages," in
Theory and Practice of Robots and Manipulators, pp. 187-193, 1984,;
also, in Proc. RoManSy '84: The F i f i CISM-IFTOMM Symp..

[27] R. M. Rosenberg, Analytical Dynamics of Discrete Systems. New York:
Plenum, 1977.

[28] N. Sadegh, "Adaptive control of mechanical manipulators: stability
and robustness analysis," Ph.D. dissertation, Dept. Mech. Eng., Univ.
California, Berkeley, 1987.

[29] N. R. Sandell, Jr., P. Varaiya, M. Athans, and M. G. Safonov, "Survey
of decentralized control methods for large scale systems," lEEE Trans.
Automat. Contr., vol. AC-23, pp. 108-128, 1978.

[30] J. E. Slotine and W. Li, "On the adaptive control of robot manipulators,"
in Int. J. Robotics and Contr., vol. 6, 1987, pp. 49-59.

[31] M. W. Spong and M. Vidyasagar, Dynamics and Control of Robot
Manipulators. New York: Wiley, 1989.

[32] S. Wolfram, Mathematica: A System for Doing Mathematics by Com-
puter. Reading, MA: Addison-Wesley, 1989.

Optimal Grasps for Planar Multifingered Robotic Hands

Gongliang Guo, William A. Gruver and Qixian Zhang

Abstract-A fast and simple algorithm for determining optimal grasps
of a planar multifingered robotic hand is presented. Using a representa-
tion for the stiffness of a planar grasp system, we derive conditions for
static equilibrium, task-oriented grasping, and stability. An optimization
model for determining optimal grasps of a planar multifingered hand
is established using a quality measure, which includes the effect of
the external disturbing forces and moments. A constrained gradient
descent technique is used to compute the optimal grasps. An example
demonstrates the applicability and effectiveness of the theory.

There is increasing interest in multifingered robotic hands that have
the capability t o grasp objects of different shapes and to manipulate
them with a variety of actions to accomplish a task [I]. This interest
has been driven by a need to extend the flexibility, dexterity, and
precision of industrial robots, and a desire to improve prostheses for

Manuscript received March 6, 1990; revised December 22, 1990 and May
22, 1991.

G. Guo and W. A. Gruver are with the Center for Robot.ics and Manufac-
turing Systems University of Kentucky, Lexington, KY 40506-0108

Q. Zhang is with the Institute for Robotics, Beijing University of Aeronau-
tics and Astronautics, Beijing, China

IEEE Log Number 9104108..

0018-9472/92$03.00 O 1992 IEEE

